Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

MAS-GPT: TRAINING LLMS 17O BUILD LLM-BASED
MULTI-AGENT SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM-based multi-agent systems (MAS) have shown significant potential in tack-
ling diverse tasks. However, to design effective MAS, existing approaches heavily
rely on manual configurations or multiple calls of advanced LLMs, resulting in
inadaptability and high inference costs. In this paper, we simplify the process of
building an MAS by reframing it as a generative language task, where the input is
auser query and the output is a corresponding MAS. To address this novel task, we
unify the representation of MAS as executable code and propose a consistency-
oriented data construction pipeline to create a high-quality dataset comprising co-
herent and consistent query-MAS pairs. Using this dataset, we train MAS-GPT,
an open-source medium-sized LLM that is capable of generating query-adaptive
MAS within a single LLM inference. The generated MAS can be seamlessly
applied to process user queries and deliver high-quality responses. Extensive ex-
periments on 9 benchmarks and 4 LLMs show that the proposed MAS-GPT con-
sistently outperforms 10+ baseline MAS methods on diverse settings, indicating
MAS-GPT’s high effectiveness, efficiency and strong generalization ability.

1 INTRODUCTION

Large language models (LLMs) such as ChatGPT (Ouyang et al.l 2022; |OpenAl, 2023) have
achieved significant success on a wide range of tasks. However, a single LLM often struggles to
handle the diverse and complex range of tasks (e.g., varying difficulties and domains) encountered
in practice (Hong et al., [2024} |Chen et al.| [2024)).

Such limitation has driven recent research towards building LLM-based multi-agent systems
(MAS) (Qian et al., 2024a; (Chen et al., |2024; |Liu et al., [2024b), where multiple LLMs (agents)
with specialized capabilities work collaboratively to achieve more effective solutions. For exam-
ple, MetaGPT (Hong et al.| [2024) and ChatDev (Qian et al., 2024a)) build multi-LLM teams with
expertise roles (e.g., programmer, tester, and product manager) to solve complex coding tasks in a
predefined pipeline; while AgentVerse (Chen et al.l 2024) involves recruiters, executors, and evalu-
ators for iterative task solving. These methods have shown superior performance over single LLM
inference.

Despite achieving promising task performance, there are two fundamental issues that hinder the
broad applications of MAS: inadaptability and high costs. (i) Inadaptability & high human effort:
MAS in MetaGPT (Hong et al., 2024), ChatDev (Qian et al., 2024a), and AgentVerse (Chen et al.,
2024) are all manually crafted (e.g., for coding tasks). That is, the collaboration structure and
agents’ prompts are predetermined and static, lacking in the generality to adapt towards any given
tasks. (ii) High inference costs: Although there have been efforts to design adaptive MAS, they
essentially shift the human cost onto the computational cost. For example, both GPTSwarm (Zhuge
et al.,|2024) and DyLAN (Liu et al.,[2024b) rely on LLMs to replace human involvement, iteratively
adjusting the collaboration structure or agents’ prompts in the MAS for each specific task. However,
this process often requires multiple LLM inferences.

Focusing on these key issues, this paper explores how to adaptively build a query-specific MAS at
a minimal cost. Our core idea is to reframe the process of building an executable MAS for each
query as a generative language task, making building MAS as simple and efficient as querying Chat-
GPT (Ouyang et al.,2022). Given the generated MAS, the query can then be seamlessly processed
to produce the final response, significantly simplifying the whole pipeline.

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Under this context, we introduce MAS-GPT, £ o0 iy boiins ™ nicrr i s
an specifically trained to adaptively gen- | ' e e I B 9@
erate executable MAS based on any given user EMASl!QJ | - 89% i (Quer]— é]g - !Q%:
query in one Single inference. While the con- ! :: Inadaptability! High Effort! I Adaptability! ~ One Inference! |
cept is straightforward, the challenge lies in)

the limited knowledge of LLMs on the task of Figure 1: Introduction of our proposed new
MAS generation and the lack of corresponding Paradigm for building MAS. During inference,
training data. These limitations raise two key MAS-GPT adaptively generates a query-specific
technical challenges: how to represent the MAS ~MAS with one LLM inference.

and how to construct the dataset. (1) To ensure the generated MAS is readily executable, we unify
the representation of MAS by describing it as a Python code snippet (i.e., a forward function), with
each agent’s prompt as a variable, LLM calls as functions, and agent relationships as string con-
catenation. (2) Building on this foundation, we propose a consistency-oriented data construction
pipeline to facilitate the model in learning generalizable patterns and logical correlations, which in-
cludes the construction, evaluation, selection, and refinement of query-MAS pairs. During selection,
we design an inter-consistency-oriented selection approach to ensure that similar queries are paired
with similar high-performing MAS, facilitating the model to learn generalizable patterns. During
refinement, we propose a intra-consistency-oriented refinement method to strengthen the relatedness
between query and MAS, enabling the model to learn the reasonable correlation. Finally, the result-
ing pairs are used to train open-source LLMs via supervised fine-tuning, where the instruction is the
user query and the response is the MAS represented by code. This will equip the model with the
ability to generate query-specific MAS, and also, generalize to unseen queries.

i

With the introduction of MAS-GPT, inference for a query becomes significantly simplified. Instead
of relying on manual crafting (Hong et al., [2024; |Qian et al., |2024a; (Chen et al.l [2024) or multiple
LLM inference costs (Liu et al., | 2024b; Zhuge et al., 2024) to obtain an MAS for each query, the user
simply inputs a query into MAS-GPT to get a corresponding executable MAS. Such MAS can be
directly applied to process the query, where multiple MAS-GPT-generated agents collaborate with
an MAS-GPT-generated structure to deliver the final solution. With advantages of adaptability, low
cost, and generalization, this approach could facilitate the application of MAS at scale.

We conduct extensive experiments to compare MAS-GPT with 10+ baseline methods on 9 bench-
marks (various domains) using 4 state-of-the-art (open-source and proprietary) LLMs. Our results
show that MAS-GPT consistently outperforms baseline methods on average, indicating its high gen-
erality and effectiveness. Meanwhile, MAS-GPT has the potential to further push the boundary of
strong reasoning capability of o1 (OpenAl, [2024b), bringing 13.34% gain on AIME-2024, a chal-
lenging mathematical benchmark. We also verify that our MAS-GPT can generalize to unfamiliar
queries and generate novel MAS via case studies.

Our contributions are as follows:

1. We reframe building MAS for each query as a generative language task. We unify the represen-
tation of MAS as executable code and propose a consistency-oriented query-MAS data construc-
tion pipeline for LLM training.

2. We introduce MAS-GPT, an LLM specifically trained to generate query-specific executable
MAS. All code, data and models will be open-sourced.

3. Experiments on 9 benchmarks and 4 LLMs show that MAS-GPT consistently outperforms 10+
baselines, indicating its effectiveness, efficiency and generalization ability.

2 RELATED WORK

LLM-based Multi-Agent Systems. Since a single LLM may struggle to handle the diverse and
complex range of tasks in practice (L1 et al., 2023} |Qian et al., 2024b), such limitation has driven
recent research towards building LLM-based multi-agent systems (MAS) (Wang et al.l 2024c; Wu
et al., |2023). MetaGPT (Hong et al., 2024) and ChatDev (Qian et al.l [2024a) introduce manually
designed multi-agent teams for solving coding tasks; while MedAgents is designed for medical
tasks (Tang et al.| 2024)). AgentVerse (Chen et al.|[2024) proposes an iterative collaboration structure
where agents are recruited to discuss, execute, and evaluate. Multi-Agent Debate (Du et al.| [2024;
Liang et al.,[2024) designs multiple expertise LLM-agents to debate and reason over multiple rounds

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

to get final answers. The MAS in these methods are all fixed regardless of the given query, lacking
in the generality to adapt accordingly.

DyLAN (Liu et al., 2024b) leverages LLMs to evaluate agents’ values and dynamically select the
best agents, GPTSwarm (Zhuge et al., 2024)) manually initializes an agent team, adjusts the collabo-
ration structure and agents’ prompts by prompting LLMs. Given queries with ground-truth answers
from one task and several available MAS as context, ADAS (Hu et al.| 2024) and AFlow (Zhang
et al.| [2024) leverages the strong capabilities of LLMs such as Claude-3.5-sonnet (Anthropic, [2024)
and GPT-4 (OpenAl, 2023) to iteratively generate task-oriented MAS for the specific task. All these
methods require multiple times of LLM calls (e.g., over 10 calls of API with lengthy context) to ob-
tain an MAS for each specific query, which is time-consuming and compute-expensive in practice.

Instead of manually designing a fixed MAS (Qian et al.l |2024a; |Chen et al., [2024; Du et al., [2024)
or requiring multiple LLM inference costs to obtain an MAS (Liu et al., [2024b} Zhuge et al., [2024)
for each query, our MAS-GPT significantly simplifies the process of building an MAS, which can
flexibly generate query-specific MAS within one LLM inference. Specifically, we design a data-
construction pipeline to generate a series of query-MAS pairs, which are used for training MAS-
GPT based on open-source LLMs.

LLM Post-Training. Modern state-of-the-art LLMs are usually post-trained via two main stages:
supervised fine-tuning (SFT) and preference learning (Ouyang et al., 2022 Dubey et al., 2024} Yang
et al.}2024;|Liu et al.,2024a), where SFT is the basic technique to teach LLM a defined tasks (Zhou
et al., 2023} [Longpre et al., 2023). Focusing on SFT, a series of researches are conducted on the
construction of datasets for training chatbot-type LLMs. For example, LIMA (Zhou et al.| [2023)
manually annotates high-quality language data for SFT, emphasizing the importance of quality of
SFT datasets. WizardLM (Xu et al., |2024), TULU 3 (Lambert et al., |2024)), and Persona Hub (Ge
et al.,[2024) synthesize SFT data by prompting GPT models, indicating the potential of synthetic data
for LLM training. For MAS-GPT, the training process leverages SFT, with a primary focus on data
construction. While previous approaches focus on training LLMs to directly answer user queries,
the challenge of training LLMs to generate MAS from user queries introduces a novel difficulty.
Unlike real-world dialogue data, LLMs have limited (if any) knowledge of MAS generation. Using
our proposed data construction pipeline, we create the first query-MAS-paired dataset, which will
be made open-source in future.

3 METHODOLOGY

This section first outlines the overall system integrated with MAS-GPT when processing user queries
during inference. Next, we delve into the specifics of training MAS-GPT, with a particular focus on
the dataset construction process.

3.1 OVERALL SYSTEM INTEGRATED WITH MAS-GPT

We follow a standard workflow: given a user query, a multi-agent system (MAS) is constructed, with
multiple agents working collaboratively to generate the final answer. Unlike previous approaches
that either manually design the MAS, rely on fixed and query-agnostic MAS, or incur significant
computational costs to determine the appropriate MAS, our approach streamlines the entire process
of building MAS by reducing it to a single LLM inference.

The core of our system is MAS-GPT, an LLM that is trained to generate MAS tailored specifically to
the input query. Instead of relying on pre-built agent configurations, MAS-GPT dynamically creates
an MAS for each query, ensuring that the system adapts to a wide range of tasks. This approach not
only minimizes the time and computational resources traditionally required to build the right MAS
but also enhances the system’s flexibility by generating task-specific solutions in real-time. Finally,
the MAS generated by MAS-GPT can be seamlessly integrated to process the query and deliver the
final answer (bottom right in Figure [3).

3.2 MAS-GPT: DATASET CONSTRUCTION AND TRAINING

To achieve the above goal, we reframe building MAS as a generative language task, where the input
is a user query and the output is an executable MAS capable of processing that query. This shift to a

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

e = = = === == - 1
1 Pool Construction Pair Evaluation Pair Refinement 1
1 € 1
Yy @ — . . WO Me S ®Y - YWY .- oo

13 Query Pool Query MAS Score {’ v
1S e O+ A > | O&A .,
15 T O&A i
1 & O o O+ A= 0 | '
1§ (o0 /A A O+ A= | 1O&A ! |
s A z : : TO&A ;|
' [l S5os=sd Poscos L

1 § A A O+ A > | Group-wise Query-MAS Pair Enhance Query-MAS Alignment |
: 8 MAS Pool O+ A = o0 Mapping for Inter-Consistency for Intra-Consistency 1
1

e e e e e o -
1 S ised |T' [} !
12 System: “Given the query, generate an MAS” Fil;lize'rl.'::ien 1 : 2 Query MAS-GPT MAS Query MAS Response |
1S . o o _ - 1
| E Instruction: The Query () 4@@ I 3]2 0) A =’ g oO— SQ% >
1 = Response: MAS with Reasoning A MAS-GPT : 1 £ ¥Q/ 1

Figure 3: Illustrations of dataset construction, training, and inference of our proposed MAS-GPT.

generative paradigm introduces a new challenge since there is few (if any) knowledge within LLMs
on MAS generation. To make this approach viable, the key focus lies in constructing an appropriate
dataset to teach the LLMs such brand-new task. To achieve this, we propose a consistency-oriented
data construction process, which involves four key steps: (1) construction of query and MAS pools,
(2) inference and evaluation of query-MAS pairs, (3) inter-consistency-oriented pair selection, (4)
intra-consistency-oriented pair refinement.

Data - Construction of Query and MAS Pools (Representing MAS as Executable Code). To
construct the dataset for supervised fine-tuning (SFT), we adopt the following data format: (system
prompt, instruction, response). Here, the system prompt briefly describes the MAS generation task,
the instruction corresponds to the user query, and the response includes the MAS, which can be
extracted by string matching. Therefore, training the LLM requires the collection of a series of
query-MAS pairs. Firstly, to enable MAS-GPT to handle diverse queries, we build a query pool
from open-source queries across various domains, such as general QA, mathematics, and coding.
Each query is carefully selected to be verifiable, ensuring the presence of a ground-truth answer or
test cases (e.g., for coding tasks).

While the collection of queries is relatively Moeffomaragaieryy: " TTTTTTTTTTTTToS H
straightforward, constructing the MAS pool rathoasent - T cre e expert selve i T .
presents a fundamental challenge: how to rep- math_output = eall_iin(nath agert)

resent an executable MAS. To address this, we

propose unifying the representation of MAS by Fecdback Agemt
formalizing it as executable Python code snip- query}, {math_output \
pets. This unified representation is motivated P O
by the observation that all existing LLM-based 1 _ fetr 2t Iin(elie seer) -
MAS methods are ultimately implemented as
code, encompassing the definition of agents’
prompts, LLM calls, and inter-agent interac-
tions (Qian et al.,2024a; |Hu et al., 2024;|Zhang
et al.,|2024). Specifically, we define an MAS as
a forward function that takes a user query as in-
put and returns the final answer generated by the MAS. Within the forward function, agent prompts
are defined as variables, agent inferences are implemented as function calls, and interactions be-
tween agents are represented through string concatenation; see an example in Figure 2]

1 I
1 1
1 1
1 I
1 1
1 query math_output I
1 I
1 1
1 1
1 I
1 1
1 1
1 I
1

Figure 2: Our unified code representation of an
executable MAS (i.e., a forward function). Each
color denotes an agent. Agents defined by vari-
ables, LLM calls denoted by function calls, and
interactions represented by string concatenations.

Following this framework, we first re-implement several existing MAS methods (e.g., Multi-Agent
Debate (Du et al.}2024)), Self-Consistency (Wang et al.,|2024b)), Self-Refine (Madaan et al.| 2024))
to align with our unified code representation. To further expand the diversity of MAS candidates,
we also manually design some MAS systems, resulting in a base MAS pool comprising over 40
unique MAS designs (Figure [7). Importantly, these 40+ MAS do not directly correspond to the
exact number of MAS in the training dataset; rather, they serve as foundations that evolve during the
query-MAS pair refinement process.

Data - Evaluation of Query-MAS Pairs. After constructing the query and MAS pools, it is crucial
to evaluate the query-MAS compatibility since not all MAS designs are equally suitable for every

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

query. To achieve this, we pair each query and MAS in the pool by inferring the query to the MAS
and evaluating the generated final answer.

Specifically, given the query pool Q = {(Q;, Y;)}Y; and the base MAS pool Ml = {M AS;?‘“"‘ }Jle
where @; is the query, Y; is the information for verification, N and M denotes the pool size,
we obtain N x M pairs. Then, a query-dependent evaluation function fey,(-) will be applied
to evaluate the effectiveness of the query-MAS pair: score; ; = fova(M AS?ase(Qi), Y;), where

M AS?ase(Qi) denotes the answer generated by M AS?ase given the query @);, 1 and 0 denotes cor-
rect and wrong respectively. Overall, we get M MAS scores for each query (Q;, which are denoted
by s; = [score; 1, ..., score; a], laying the foundation for subsequent steps for selecting appropriate
query-MAS pairs and further refinement.

Data - Inter-Consistency-Oriented Pair Selection. With the query-MAS pair results obtained
from the evaluation step, the next critical task is to select and construct high-quality query-MAS
pairs for training. The first selection criterion is intuitive: effectiveness. Specifically, we retain
only the query-MAS pairs where the MAS produces a correct answer (evaluation score is 1), as
MAS designs that generate correct answers are more likely to be suitable for their respective queries
compared to those that fail.

While using all the remaining effective query-MAS pairs for training is straightforward, it intro-
duces a significant problem of low infer-consistency: the same or similar queries may correspond to
multiple different MAS designs. This lack of consistency makes it difficult for the model to learn a
clear optimization objective, hindering its ability to understand and perform the task effectively.

To address this issue, we propose an inter-consistency-oriented pair selection method that optimizes
both effectiveness and inter-consistency. The core idea is to group similar queries and assign them
a single, high-performing MAS to maintain consistency across the dataset. Specifically, we cluster
queries based on their metadata or embeddings. For a group of S queries S = {Q; }5_,, we calculate
a cumulative score for each MAS by summing its effectiveness scores across all queries in the group:

s = Zle s;. The MAS with the highest cumulative score is then selected as the representative MAS

for all queries in the group: M AS%* = arg maxy;asem s. Through this, we pair each specific
query with a specific base MAS: (Q;, M A S;Jase).

By aligning similar queries with the same high-performing MAS, it improves the inter-consistency
of the query-MAS pairs, helping the model recognize generalizable patterns and generalize across
similar queries. For example, queries requiring divergent thinking may be consistently paired with
MAS structures where multiple agents independently generate ideas and then discuss.

Data - Intra-Consistency-Oriented Pair Refinement. While the inter-consistency-oriented pair
selection process effectively ensures consistency across query-MAS pairs, there remains a critical
issue within individual pairs: intra-consistency. Specifically, the alignment between a query and its
associated MAS may still be suboptimal, making it challenging for the model to learn meaningful
associations. For instance, a query about physics may be paired with an MAS involving experts
from multiple domains (e.g., physics and biology), where the presence of non-relevant agents like
biology experts can confuse the model.

To address this, we propose an intra-consistency-oriented pair refinement method. This approach
aims to improve the query-MAS alignment through two key strategies: (1) adjusting MAS to make
it query-dependent, and (2) introducing a reasoning process to strengthen the connection between
the query and MAS. We employ an LLM-based data synthesis method, where an advanced LLM
adjusts agents’ definitions within the MAS based on the query and the previously selected MAS.
The LLM is also instructed to generate a reasoning statement that explains the relationship between
the query and the refined MAS, improving the interpretability of the query-MAS pair; please refer
to prompt in Table[I0} This process enables the model to better understand the context and logic
behind each decision, which in turn facilitates model training and improves generalization.

Next, we infer and evaluate the refined MAS on the corresponding query, as advanced LLMs could
generate inappropriate or non-executable MAS. Specifically, for each base pair (Q;, M ASP®¢), the
refined M AS™® is tested and accepted only if it achieves a not-worse score. Formally:

MA Sreﬁne if Sreﬁne > Sbase
7 9 =

MAS; — , ,
{ MASY™e otherwise

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 1: Comparing MAS-GPT with 10 baselines across 8 benchmarks using Llama-3-70B-Instruct,
MAS-GPT performs the best on average, verifying its generality in handling diverse queries. Bench-
marks with * are out-of-domain for MAS-GPT.

Method | MATH GSMS8K GSM-H H-Eval® H-Eval+* MMLU GPQA" SciBench® | Avg.
Single (Dubey et al.|[2024) 50.55 92.38 45.80 79.01 75.78 71.37 36.68 21.05 59.83
Chain-of-Thought (Wei et al.|[2022) 53.20 92.79 46.20 77.16 77.02 75.56 35.28 17.68 59.36
Self-Consistency (Wang et al.|2024b) | 61.59 94.99 47.20 77.78 75.78 78.18 37.15 20.00 61.58
LLM-Debate (Du et al.|[2024) 61.37 91.58 44.60 74.69 74.53 77.78 34.35 19.79 59.84
Self-Refine (Madaan et al.|2024) 58.50 90.78 37.80 67.90 62.73 74.75 38.32 20.00 56.35
Quality-Diversity (Lu et al.|/[2024) 60.49 92.99 45.60 70.99 70.19 75.76 33.64 20.63 58.79
SPP (Wang et al.|2024c) 51.66 92.79 44.80 76.54 73.29 77.37 35.05 20.84 59.04
AgentVerse (Chen et al.||2024) 55.63 93.39 41.40 77.78 73.91 76.57 40.19 16.00 59.36
GPTSwarm (Zhuge et al.|[2024) 55.41 93.19 43.20 69.14 73.91 75.15 36.45 14.11 57.57
DyLAN (Liu et al.[[2024b) 59.60 91.18 44.80 79.01 75.78 78.18 35.98 19.79 60.54
MAS-GPT (Ours) 68.65 93.39 62.40 80.25 78.88 78.38 37.62 24.21 65.47

where s®i¢ = f, (M AS®I(Q,),Y;) and s*° = fo(MASP**(Q;),Y;) are evaluation scores
by comparing the MAS-generated and ground-truth answer Y;.

Through this process, each query ; is ultimately associated with a tuple (Q;, R;, M AS;), where
R; denotes the reasoning statement, and M AS; is the final MAS. This refined dataset ensures both
inter- and intra-consistency, providing high-quality training data for subsequent model fine-tuning.

Training - Supervised Fine-Tuning of MAS-GPT Our dataset follows the format (system prompt,
instruction, response). The system prompt briefly describes the task of generating a query-specific
MAS and the instruction corresponds to the user query ;. The response is constructed as the
concatenation of the reasoning process and the final MAS, which is represented as executable code
in text form.

Building upon this dataset, we perform supervised fine-tuning of MAS-GPT on the open-source
medium-sized LLM, Qwen2.5-Coder-32B-Instruct (Yang et al., 2024)), leveraging its capabilities of
code generation and instruction-following. During inference, when a user query is received, MAS-
GPT generates an executable MAS tailored to that specific query Q;: M ASF™ = MAS-GPT(Q;).
The generated MAS is directly usable for processing the query (); and delivering the final answer:
A; = MASF"(Q,), significantly simplifying the task handling process.

3.3 DISCUSSIONS

Overall, our system integrated with MAS-GPT offers the following key advantages: simplicity, cost-
efficiency, and adaptability (generality). Instead of manually designing an MAS for each specific
query, relying on a fixed MAS for all queries, or requiring multiple LLM inference costs to obtain an
MAS for a query, our MAS-GPT significantly simplifies the process of building an MAS by reducing
into one single LLM inference. Given a user query, MAS-GPT will efficiently return a query-specific
MAS, which is executable and can be seamlessly applied to process the query to deliver the final
answer. Although training incurs some cost, it is a one-time expense, whereas inference is potentially
endless in practical applications. We believe that MAS-GPT has the potential to further advance the
real-world application of MAS due to its simplicity, cost-efficiency, and adaptability.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Training. Our training queries are sampled from the training splits available in MATH (Hendrycks
et al.,|2021b), GSMS8K (Cobbe et al.,|2021), MBPP (Austin et al.,2021), MMLU (Hendrycks et al.,
2021a)), and SciQ (Welbl et al., |2017), covering domains of math, coding, and general QA. Llama-
3-70B-Instruct is used during dataset construction. The number of training samples (i.e., query-
MAS pairs) is approximately 11k; see the statistics of our dataset in Table d] Our MAS-GPT is
trained over Qwen2.5-Coder-32B-Instruct (Yang et al. 2024)), leveraging its instruction-following
and coding capabilities. We train the LLM using 16 A100s with an effective batch size of 32 for 3
epochs at a learning rate of le-5 (Zheng et al.,2024)).

Testing. To verify that our MAS-GPT can handle diverse queries in practice, we con-
sider multiple benchmarks from diverse domains. These include MATH (Hendrycks et al.,

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

MAS Empowered by ol-Preview Trade-off Between Peformance and Cost
BGCcrmparisons with Task-Specific Method

[Single 3 AFlow 3 MAS-GPT

AFlow's In-Domain AFlow's Out-Domain [80

Ladl

~
o

66.67 MAS-GPT (Ours)

o
@
-
S
3
R

DyLAN
LLM Debate_ O

3
vl
Out-Domain Performance (%)

A =13.34%

o
=]

56.67

Accuracy on AIME-2024 (%)
g
Performance (%)

In-Domain Performance (%)
ey
3

AgentV
* 5333 5333 5333 50 ° gentverse GPTSwarm
50" Single Self-Refine DyLAN Self-Con. MAS-GPT MATH GSM-Hard MMLU HumanEval+ >> 56, 8 16 32 64
Different Methods Benchmarks Inference Times
(a) MAS-GPT-Assisted Reasoning (b) Task-Specific Method (c) Performance v.s. Costs

Figure 4: (a) Different methods empowered with strong reasoning LLM: ol-preview. We see that
our MAS-GPT significantly enhance the reasoning performance over single LLM, indicating its po-
tential in further augmenting LLM reasoning. (b) Comparisons with AFlow (optimized on MATH).
MAS-GPT even outperforms AFlow on its in-domain benchmarks; while AFlow fails on out-of-
domain benchmarks. (c) MAS-GPT achieves the best performance with low inference cost.

2021b), GSM8K (Cobbe et all 2021), and GSM-Hard (Gao et al., |2023) for math do-
mains; HumanEval (Chen et al., 2021) and HumanEval+ (Liu et al) [2023) for coding tasks;
MMLU (Hendrycks et al.), [2021a) for general QA tasks; GPQA (Rein et al., [2023) and
SciBench (Wang et al., 2024a) for science topics. Please refer to Table E] for details about datasets
and Section [C.2] for details about evaluation. For all baselines, the LLMs that drive the MAS to
process user queries are kept the same, where we consider four state-of-the-art LLMs including
Llama-3-70B-Instruct (Dubey et al.l [2024), Qwen2.5-72B-Instruct (Yang et al.| [2024), GPT-4o0-
mini-2024-07-18 (OpenAl, [20244)), and ol-preview-2024-09-12 (OpenAl, |2024b).

Baselines. For fair comparisons, we consider 10 baselines that are suitable for handling diverse
tasks. We include single agent and agent with chain-of-thought (Wei et al., [2022)) as two ba-
sic baselines, Self-Consistency (Wang et al.l [2024b) and Quality-Diversity (Lu et al.l 2024) that
select the best from multiple answers, LLM-Debate (Du et al., 2024) that involves multiple ex-
perts for debating, Self-Refine (Madaan et al., 2024) that iteratively refines last agent’s answer,
SPP (Wang et al.| [2024c) that stimulates conversations among multiple roles, AgentVerse (Chen
et al.l 2024) and DyLAN (Liu et al., 2024b) that dynamically adjust multi-agent team during infer-
ence, GPTSwarm (Zhuge et al.| 2024) that relies on a graph collaboration structure.

4.2 MAIN RESULTS

Since our MAS-GPT aims to facilitate the multi-agent systems in flexibly handling diverse queries,
our results focus on generality. Here, we show the generality of MAS-GPT by comparing perfor-
mance averaged on various benchmarks and performance using different LLMs to drive the MAS.

MAS-GPT’s generality in handling diverse queries. We compare MAS-GPT with 10 baselines
on 8 benchmarks using Llama-3-70B-Instruct (Dubey et al., |2024) to drive the MAS, with results
reported in Table[I] GPQA and SciBench are two benchmarks that are out-of-domain for our MAS-
GPT. From the table, we see that (1) our MAS-GPT significantly outperforms the baseline methods
on average, outperforming the second-best method by 3.89%. (2) Our MAS-GPT simultaneously
achieves promising performance in both in-domain and out-of-domain (i.e., queries that are signifi-
cantly different from those in the training data) benchmarks, indicating MAS-GPT’s generality.

Generality in using diverse LLM backbones for MAS. Llama-3-70B-Instruct was utilized to
drive MAS during dataset construction for training MAS-GPT, a 32B-sized LLM. As shown in
Table [T} this approach proves effective when employing the same LLM to drive MAS during test
time. To further validate the versatility of MAS-GPT, we assess its performance under different
MAS-driving LLMs, including Qwen2.5-72B-Instruct and GPT-40-mini-2024-07-18, in Table @
The results demonstrate that MAS-GPT consistently achieves superior performance, regardless of
the LLM used to drive MAS, highlighting its strong compatibility and adaptability across various
MAS-driving LLMs.

MAS-GPT’s potential in further augmenting the reasoning performance of strong reasoning
LLMs such as ol. In recent developments, the Al community has introduced several state-of-the-
art reasoning LLMs (OpenAl, 2024b; |[Qwen, 2024), which have demonstrated remarkable reason-
ing capabilities by scaling inference-time computations (Snell et al., [2024). In this context, we
aim to explore whether our proposed MAS-GPT can take the reasoning power of these already ad-

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Failure Analysis with Data Size Scaling %0 Performance with Data Size Scaling 90 Performance with Model Size Scaling
Sxm —— 1 N=0 78
xtraction —
\.\ e ecution ,\;75 3 N=1E2 <78 1 148
B4 g & 3 N=1E3 & 3328
€ N 0 60 [N=1E4 o
3 <, ¥ v 66
& . 5 £
I \-\Lower is Better E 45 E 4
2 1 3 S
3 \\ €30 €
I . 7] 7]
L L o 42
0 30
0 100 1000 10000 0 Groa MATH MMLU HumanEval-Plus GPQA MATH MMLU HumanEval+
Data Scale Benchmarks Benchmarks
(a) Data Scale v.s. Failure (b) Data Scale v.s. Performance (c) Model Scale v.s. Performance

Figure 5: Explorations of scaling in training MAS-GPT. (a) More data leads to fewer execution
failures. (b) More data contributes to better performance of MAS-GPT in facilitating MAS applica-
tion. Without training (N=0), the model fails, highlighting that MAS generation is a non-trivial task
requiring specific training. (c) Larger model generally contributes to better performance. These find-
ings demonstrate the promising potential of MAS-GPT, suggesting that it can be further improved
with more diverse, high-quality data and stronger models as the community continues to advance.

vanced models even further. To test this, we conduct experiments using OpenAI’s o1-preview-2024-
09-12 (OpenAl| 2024b) model, evaluating it on the highly challenging AIME-2024 mathematical
benchmar The results, as shown in Figure show that our proposed MAS-GPT significantly
outperforms the baseline methods on this challenging task. Specifically, it improves over the sin-
gle LLM by a large margin: 13.34%. This result not only verifies the generality of our proposed
MAS-GPT, but also indicates its promising potential in pushing the boundaries of LLM reasoning.

Comparisons with task-specific methods,
AFlow. To further demonstrate the generality
and effectiveness of our MAS-GPT during in-

Table 2: MAS-GPT consistently performs the best
across MAS-driving LLMs, indicating its strong

. . compatibility.
ference time, we compare with AFlow (Zhang P Y
et al [2024), a latest task-specific method for ~ Method ~ |MATH GSM-H H-Eval+ MMLU GPQA | Avg.
MAS optimization that has been specifically Sinel o 86ng:§-15-721;-5h;;truct82 0 430 17263
.- ingle . 3 3 . .3 d
optimized on MATH (Hendrycks et al.| 2021'b) coT 36900 6227 8415 8320 4786 |72.88
dataset. We evaluate on two AFlow’s in- Self-Con. 87.32 6146 8720 8340 50.00 |73.88

: ss LLM-Debate| 8524 6349 6890 8620 47.86 |70.34
domain (MATH and GSM8K) and two AFlow’s - ¢ C00 1 550 03 7566 8540 4332 7000

out-domain (MMLU and HumanEval+) bench- qp 8565 63.08 7683 82.80 48.66 |71.40
marks. Results in Figure fA(b)| show surpris- ~ SPP 8505 6288 8232 8340 48407253
inol d perf " d MAS AgentVerse | 84.82 5943 81.10 8320 44.65 |70.64
ngly good performance ol our propose © GPTSwarm | 83.16 63.89 8354 84.60 44.92 |72.02
GPT. As a general method, our MAS-GPT even DyLAN 8773 63.08 8537 8440 51.07 |74.33
outperforms math-specific AFlow on the MATH ~ MAS-GPT | 8753 6633 8598 8380 4866 | 7446
dataset by 3.53%! Meanwhile, the MAS opti- GPT-40-mini-2024-07-18

vod on MATH by AFlow fails t i Single 78.18 58.03 8625 78.56 38.03 |67.81
mized on Y ow Tails 1o generalize cor 7879 60.84 8562 79.16 39.60 |68.80

to other domains, achieving worse performance Self-Con. | 81.62 59.04 8500 8096 39.82 |69.29

. LLM-Debate | 79.60 60.84 8625 80.76 37.81 |69.05
than a single LLM. In contrast, our MAS- ¢irp 0l 250 Sie2 7688 7916 33.33 6371

GPT consistently performs the best across these @b 79.80 59.64 8438 7976 37.58 |68.23

benchmarks. It is also worth mentioning that ~ SPP 77.58 5763 8625 7796 37.58 |67.40
MAS-GPT onl . . > AgentVerse | 75.15 5562 7938 7836 36.24 |64.95
our - only requires one-time infer- Gprswarm | 7515 55.62 7938 7836 3632 | 64.97

ence of a 32B-sized LLM to build the MAS; DyLAN 8121 5924 80.62 79.96 40.94 |68.39
while AFlow needs to call the APIs of pow- MAS-GPT | 8121 6145 8688 8036 4260 |7050
erful proprietary LLMs, such as Claude-3.5-

Sonnet (Anthropic| [2024)), 10 times per query and depends on a hold-out validation set.

Cost comparisons. Here, we compare the inference cost of various methods from the moment a
user query is received to the generation of the final answer, as illustrated in Figure[4(c)] We quantify
the inference cost in terms of the number of LLM inference calls (Liu et al.|[2024b)), interpreting the
inference of MAS-GPT as 0.5 times, given that its model size is approximately half that of the MAS-
driving LLM (32B v.s. 70B). From the figure, we observe that, among the four methods compared,
MAS-GPT achieves the best performance while requiring the fewest inference calls, demonstrating
its efficiency and effectiveness.

4.3 ANALYSIS OF MAS-GPT

"https://huggingface.co/datasets/Maxwell-Jia/ AIME_2024

https://huggingface.co/datasets/Maxwell-Jia/AIME_2024

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 3: Ablation studies on the designs of dataset
construction: (1) our inter-consistency-oriented pair
selection, (2) the adjustment of MAS in our intra-
consistency-oriented pair refinement: Refine-A, (3)
the introduction of reasoning process in our intra-
consistency-oriented pair refinement: Refine-R. The
table shows that these three designs all play critical
roles in achieving high task performance.

Effectiveness of inter-consistency-oriented
pair selection. During data construction, to
facilitate the model in recognizing generaliz-
able patterns between queries and MAS, we
propose an inter-consistency-oriented query-
MAS pair selection method, which maps sim-
ilar queries with consistent high-performing
MAS. To examine its effectiveness, we re-
place this mapping with a random mapping Select Refine-A Refine-R |[MATH MMLU GPQA
approach, wh1;h randomly selects one out of 6026 7758 36.63
those MAS with correct answers. From Ta- 6623 7778 3645
ble 3] by comparing @ and @, we see that 6490 7596 37.15
our proposed method brings significant per- 68.65 7838 37.62
formance gain, with an absolute improvement
of 8.39% on MATH.

®ee06
SNECENEN

ANENENE S
SNENESEN

Effectiveness of intra-consistency-oriented pair refinement. During data construction, to help
the model learn the associations between query and MAS, we propose an intra-consistency-oriented
query-MAS pair refinement method. This method enhances the query-MAS alignment by adjusting
MAS to make it query-dependent and introducing a reasoning process to strengthen the logical
connection. To examine their effects, we conduct two experiments with one without adjustment of
MAS and one without reasoning process. From Table [3| by comparing @ and @, ® and @, we see
that our designs in adjusting MAS and introducing reasoning process both contribute to performance
improvement, indicating the effectiveness of our proposed refinement method.

Scaling effects of data size. To explore the scaling effects of data size for training MAS-GPT, we
adjust the size from O to 11k using the same 32B-sized model and compare the extractability (i.e., the
Python code can be extracted), executability (i.e., the code is executable), task performance. Results
in Figure [5(a)| show that except for the extractability under O data sample (the base model knows
that it needs to generate Python code, but do not know what codes are needed), the extractability and
executability generally improves with the data scale. Results in Figure[5(b)]show (1) the base model
is unable to generate an effective MAS in zero-shot setting, indicating the necessity for training
MAS-GPT. Overall, we observe a promising scaling trend of training MAS-GPT: more data leads to
better performance.

Scaling effects of model size. Here, we compare the performance of MAS-GPT trained based on
7B, 14B, and 32B models. Results in Figure[5(c)|show that the performance of MAS-GPT improves
steadily with the growing model size. Overall, these findings demonstrate the promising potential
of MAS-GPT, suggesting that it can be further improved with more diverse, high-quality data and
stronger models as the community continues to advance.

Case study. To offer an intuitive understanding, we present several examples in Appendix show-
casing the query, the MAS-GPT-generated reasoning process, and the MAS-GPT-generated MAS.
These show that MAS-GPT can generate query-specific MAS (Section [A.T), generalize to unseen
queries (Section[A.72)), generate novel MAS (Section [A.3).

5 CONCLUSION

Building MAS was time-consuming and resource-intensive. This paper aims to streamline this pro-
cess into a single LLM inference, making MAS creation as effortless as querying ChatGPT. To this
end, we introduce MAS-GPT, an LLM specifically trained to generate executable MAS from arbi-
trary user queries. Our approach follows a data-driven spirit, leveraging a consistency-oriented data
construction pipeline to enhance the coherence and consistency of data pairs. We conduct extensive
experiments, comparing MAS-GPT against 10+ baseline methods across 9 benchmarks, using 4 dif-
ferent LLMs as MAS drivers. The results consistently demonstrate that MAS-GPT outperforms all
baselines, strongly validating its effectiveness and generalizability. Additionally, we observe MAS-
GPT’s potential to further enhance state-of-the-art reasoning capabilities, as well as its scalability
for continued improvements. We believe MAS-GPT can accelerate the adoption of MAS, inspiring
future research and real-world applications.

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

REFERENCES

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
claude—3-5-sonnet) 2024. Accessed: 2025-01-22.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors. In The Twelfth International Conference on Learning Representa-
tions, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
tuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764-10799. PMLR, 2023.

Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data
creation with 1,000,000,000 personas. arXiv preprint arXiv:2406.20094, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021b.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2024.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In NeurIPS 2024
Workshop on Open-World Agents, 2024.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\” ulu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-

municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008, 2023.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shum-
ing Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through
multi-agent debate. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
17889-17904, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.992. URL https://aclanthology.org/2024.
emnlp-main.992/.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158-167,
2017.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Jiawei Liu, Chunqgiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network
for task-oriented agent collaboration. In First Conference on Language Modeling, 2024b.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
instruction tuning. In International Conference on Machine Learning, pp. 22631-22648. PMLR,
2023.

Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
foundation models. In Automated Reinforcement Learning: Exploring Meta-Learning, AutoML,
and LLMs, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAl. Gpt-4o mini: advancing cost-efficient intelligence. https://openai.com/index/gpt-4o0-mini-
advancing-cost-efficient-intelligence/, 2024a. Accessed: 2025-01-23.

OpenAlL Introducing openai ol-preview. https://openai.com/index/
introducing—openai-ol-preview/, 2024b. Accessed: 2025-01-22.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. NIPS, 35:27730-27744, 2022.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 15174-15186, 2024a.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024b.

Qwen. Qwq: Reflect deeply on the boundaries of the unknown. https://gwenlm.github.
io/blog/qwg-32b—-preview/, 2024. Accessed: 2025-01-27.

11

https://aclanthology.org/2024.emnlp-main.992/
https://aclanthology.org/2024.emnlp-main.992/
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Co-
han, and Mark Gerstein. MedAgents: Large language models as collaborators for zero-shot med-
ical reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2024, pp. 599-621, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.33. URL
https://aclanthology.org/2024.findings—-acl.33/.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level scien-
tific problem-solving abilities of large language models. In Forty-first International Conference
on Machine Learning, 2024a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2024b.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. In Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 257-279, 2024c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-generated Text, pp. 94—106, 2017.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow com-
plex instructions. In The Twelfth International Conference on Learning Representations, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiagi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. arXiv preprint arXiv:2410.10762, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. LlamaFactory: Uni-
fied efficient fine-tuning of 100+ language models. In Yixin Cao, Yang Feng, and Deyi Xiong
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 3: System Demonstrations), pp. 400-410, Bangkok, Thailand, August 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-demos.38. URL https:
//aclanthology.orqg/2024.acl-demos.38/.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2023.

12

https://aclanthology.org/2024.findings-acl.33/
https://aclanthology.org/2024.acl-demos.38/
https://aclanthology.org/2024.acl-demos.38/

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

13

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 4: Statistics of MAS-GPT’s training dataset. We show the number of samples Ngq1q; the
averaged instruction L;,; the averaged response L., reasoning L,,, and MAS length Lys4s;
and the number of unique MAS Njsa5s.

Niata ‘ Lins ‘ Lyes Lysp Lyras ‘NMAS
11442 | ~75.0 | ~1062.3 ~262.5 ~784.8 | 7580

Table 5: Case 1: user query and the reasoning process generated by our MAS-GPT. MAS-GPT
firstly analyzes the domain, difficulty, and required knowledge, then propose the idea of what multi-
agent system is appropriate.

Query The following is a multiple-choice question: Which of the following state-
ments about any two events A and B is true?

The following choices are provided:

(A) P(A U B) implies events A and B are independent.

(B) P(A U B) = 0 implies events A and B are mutually exclusive.
(C) P(A N B) implies events A and B are independent.

(D) P(A U B) implies events A and B are mutually exclusive.

(E) P(AN B) = 0 implies events A and B are mutually exclusive.
(F) P(AN B) = 1 implies events A and B are independent.

(G) P(AU B) = 1 implies events A and B are independent.

(H) P(AN B) =1 implies events A and B are mutually exclusive.
() P(AU B) = 1 implies events A and B are mutually exclusive.
() P(AN B) = 0 implies events A and B are independent.

Please finish your answer with “the answer is (X)” where X is the cor-
rect letter choice.

Reasoning The question is a multiple-choice problem in the domain of probability
generated by | theory, specifically focusing on the relationships between events, such as
MAS-GPT independence and mutual exclusivity. The difficulty lies in the need for precise
understanding of probability concepts and their implications, as well as the
ability to analyze and evaluate multiple statements to identify the correct one.
This requires both theoretical knowledge and logical reasoning.

To address this question effectively, a multi-agent system should include
agents that specialize in analyzing the relationships between events in proba-
bility theory. Each agent should focus on a specific aspect of the problem, such
as independence, mutual exclusivity, or the implications of specific probability
values (e.g., P(ANB) = 0or P(AU B) = 1). By dividing the task into these
focused analyses, the system ensures comprehensive coverage of the problem
space. Additionally, a final decision-making agent is necessary to synthesize
the insights from all agents and provide a well-reasoned final answer. This
structure ensures that the system can handle the complexity of the question
while leveraging the strengths of specialized reasoning agents. The system is
designed to align with the specific requirements of the question, ensuring that
each agent contributes relevant and precise insights to the solution process.

A CASE STUDY

A.1 MAS-GPT CAN GENERATE QUERY-SPECIFIC MAS

From Table 5] we see that given a query, MAS-GPT first provides a reasoning process in analyzing
the domain, difficulty, and required knowledge of the query. Secondly, MAS-GPT analyzes what
multi-agent system is appropriate for addressing the question effectively and decides the required
agents and structure.

14

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Y
o b 4
Exc\HSva{IénaEl)vsws Agent Log\ca/\ }pcé‘n‘gs«g?cy Identifier
g
e &
p Final Decws.}n Agent A 4 P
\: (D; H‘ Definations and properties s
o \ (i) R g
Indopondne Analss Agont I” LMW‘?; — @
In'ormaﬂor\(\‘ E\plcwc)amn Agent
(a) Visualization of Case 1 (b) Visualization of Case 2 (c) Visualization of Case 3

Figure 6: Visualization of three cases. (a) MAS-GPT can generate query-specific MAS. (b) MAS-
GPT can generalize to unseen queries. (¢) MAS-GPT can generate novel MAS.

Finally, MAS-GPT generates a query-specific MAS (Listing[T]and Figure [6(a)), which involves five
agents with specific tasks targeting the query and a final decision-making agent to provide the final
answer.

This indicates that MAS-GPT can flexibly generate a query-specific MAS within one single LLM
inference.

A.2 MAS-GPT CAN GENERALIZE TO UNSEEN QUERIES

From Table[6] we see that given a query whose domain is unseen from our training dataset, MAS-
GPT still works well. Specifically, it first analyzes the involved domain, the required understandings,
and the difficulty of the given query. Secondly, it figures out a well-suited multi-agent system to
answer the query, which directly mentions what agents and what structure are appropriate.

Finally, MAS-GPT generates a query-specific MAS (Listing[2and Figure[6(b)), which involves four
parallel pipelines: two pipelines that answer the query via coding and two pipelines that directly
answer the query. The first two pipelines are both consisted of two agents: one for writing and
executing the code, and one for organizing the final answer. Finally, an aggregation agent reasons
over the four solutions and provides the final answer.

This indicates that MAS-GPT can generalize to unseen queries and generate appropriate MAS.

A.3 MAS-GPT CAN GENERATE NOVEL MAS

From Table[7)and Listing 3] (Figure[6(c)), we see that given a query, the MAS-GPT proposes a novel
MAS that is unseen from our base MAS pool. Specifically, it builds an MAS with five parallel
pipelines, where each pipeline actually involves an agent for answering the question and another
agent for refining the solution. Finally, a decision-making agent is introduced to provide the final
answer.

This shows that MAS-GPT is not merely memorizing the data during training, but actually learns
patterns of designing MAS, indicating the generalization ability of our proposed MAS-GPT.

Listing 1: Case 1: Multi-agent system generated by MAS-GPT. MAS-GPT can generate query-
specific MAS. MAS-GPT designs five independent responding agents, each responsible for different
aspects of the task.

I | from utils import =

3 |class MAS() :
4 def _ init_ (self, model_list):
self.llm = LLM(model_1list)

7 def forward(self, taskInfo):

8 nun

9 A multi-agent system for solving probability-related multiple-
choice questions.

15

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

11 Steps:

12 1. 5 agents analyze the task independently, each focusing
on a specific aspect of probability theory.

13 2. A final decision-making agent reasons over the
solutions and provides the final solution.

14 nun

15

16 # Step-by-step instruction for each agent to reason and
generate answer

17 instructions = [

18 f"Task: {taskInfo}\n\nFocus on analyzing the relationship

between events A and B in terms of independence. Solve

the task.",

19 f"Task: {taskInfo}\n\nFocus on analyzing the relationship

between events A and B in terms of mutual exclusivity.

Solve the task.",

20 f"Task: {taskInfo}\n\nFocus on the implications of P (A \
cup B) and P(A \cap B) on the relationship between
events A and B. Solve the task.",

f"Task: {taskInfo}\n\nFocus on the definitions and
properties of probability union and intersection.
Solve the task.",

22 f"Task: {taskInfo}\n\nFocus on identifying any logical

inconsistencies or impossibilities in the given

choices. Solve the task."

)

23]
24
25 # Call the 1lm to generate each solution

26 cot_results = [self.llm.call_llm(instruction) for instruction
in instructions]

27

28 # Get the instruction for the final decision-making agent
based on all generated solutions
29 final decision_instruction = self.

get_final_decision_instruction(taskInfo, cot_results)

31 # Call the 1llm to process the final decision-making
instruction and generate the final answer

32 final_decision_result = self.llm.call_llm(

final decision_instruction)

34 # Return the final solution

35 return final_decision_result

36

37 def get_final decision_instruction(self, taskInfo, cot_results):
38 mwn

39 Format an instruction for final decision-making based on a

given task description and a list of solutions.

41 Args:

42 taskInfo (str): A description of the task that needs to be

completed.

43 cot_results (list): A list containing solutions or
reasoning steps for the task.

44

45 Returns:

46 str: A formatted instruction that includes the task
description, each solution, and a prompt for final
decision-making.

47 nmwn

48

49 # Initialize the instruction text with a general guideline

50 instruction = f"Task:\n{taskInfo}\n\n"

W W

o =

Append each solution from cot_results to the instruction

16

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

53 for i, result in enumerate (cot_results):
54 instruction 4= f"Solution {i+1l}:\n{result}\n\n" # Number
each solution for clarity

56 # Add the final prompt to encourage reasoning over the
solutions and provide a final answer

57 instruction += "Given all the above solutions, reason over
them carefully and provide a final answer to the task."

58
59 # Return the complete instruction text
60 return instruction

Table 6: Case 2: user query and the reasoning process generated by our MAS-GPT. MAS-GPT firstly
analyzes the domain,required elements, and the difficulty, then propose the idea of what multi-agent
system is appropriate.

Query An electric dipole consisting of charges of magnitude 1.50nC separated by
6.20pm is in an electric field of strength 1100 N/C. What is the magnitude of
the electric dipole moment?

Reasoning The question involves calculating the magnitude of the electric dipole moment,
generated by | a concept rooted in physics, specifically in the domain of electromagnetism.
MAS-GPT The problem requires understanding the relationship between the charges,
their separation, and the resulting dipole moment. While the mathematical
computation is straightforward, the problem demands precise application of
the formula for the dipole moment and careful handling of units, which adds a
layer of complexity.

To address this, one would analyze the question by identifying the key
variables (charge magnitude, separation distance) and the formula (dipole
moment = charge X separation).

A multi-agent system is well-suited for this task because it can leverage
multiple approaches to ensure accuracy and robustness. First, agents can
independently break down the problem into steps, generate Python code to
compute the solution, and execute the code to verify the calculations. This en-
sures that the solution is not only theoretically correct but also computationally
validated. Additionally, other agents can directly generate solutions without
code, providing a baseline for comparison. Finally, an evaluation agent can
synthesize the outputs from all agents, ensuring consistency and selecting the
most reliable solution. This multi-faceted approach is particularly effective
for scientific problems where both analytical and computational accuracy are
critical.

Listing 2: Case 2: Multi-agent system generated by MAS-GPT. MAS-GPT can generalize to unseen
queries from SciBench (Wang et al.,[2024a), generating an appropriate multi-agent system to handle
the query.

I | from utils import =

3 |class MAS() :
4 def _ init_ (self, model_list):
5 self.llm = LLM(model_1list)

7 def forward(self, taskInfo):

8 nmwnw

9 A multi-agent system for solving math problems by executing code
and directly answering.

10 Steps:

11 1. 2 agents independently solves the problem by breaking it
down into steps and generating code, where each agent

17

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

organizes the solution based on the code execution results
, ensuring clarity and correctness.

12 2. 2 agents generate a solution directly, which provides
baseline solutions especially when code generation is
challenging

3 3. A final agent evaluates all the solutions and determines
the final solution.

14 wnwn

15 # 4 parallel pipelines to solve the problem independently

16 solutions = []

17

18 # The first two pipelines generate code to solve the problem

19 for _ in range(2):

20 answer, output = self.generate_code_get_output (taskInfo)

21 solution = self.organize(taskInfo, answer, output)

22 solutions.append(solution)

23

24 # The third pipeline generates a solution directly

25 for _ in range(2):

26 solution = self.llm.call_llm(taskInfo)

27 solutions.append(solution)

28

29 # Determine the final solution based on the generated

solutions

30 final_solution = self.get_final_ solution(taskInfo, solutions)

31 return final_solution

0

33 def generate_code_get_output (self, taskInfo):

34 wnnn

35 Generate Python code to solve the mathematical problem and execute
the code to get the output.

36 Args:

37 taskInfo (str): The mathematical problem to be solved.

38 Returns:

39 a tuple containing:

40 - str: The answer generated by the LLM model.

41 - str: The output of the code execution.

42 nmwnw

43 code_generation_instruction = f£"""You are an expert in solving

mathematical problems.

44 | *xProblem: %%

45 | {taskInfo}

46 | *xInstructions: *x

47 |1. Analyze the problem and list the steps required to solve it.

48 | 2. Generate Python code that can help solve the problem. The code

should:

49 |- Print important intermediate results in the calculation process,
along with clear explanations.

50 | = Store the final calculation result in a variable named ‘output‘.

This variable should contain the final result of the computation
and be defined at the global scope.

- Be directly executable. The code should run and produce a result
when executed.

Wrap your final code solution in <Code Solution> and </Code Solution>.

For example:

<Code Solution>

Your function code here

</Code Solution>

nun

W W
) -

[T T R Y
[V I S

s

57 # Call ‘generate_and_extract_code' to generate answer and
extract the code
58 answer, code = generate_and_extract_code(llm=self.llm, prompt=

code_generation_instruction)

18

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

60

66

69

76
71
78
79
80

90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105
106

Call ‘execute_code' to execute the generated code and get
output

output = execute_code (code)

return answer, output

def organize(self, taskInfo, answer, result):
nnnw
Organize the solution based on the code execution results.
Args:
taskInfo (str): The mathematical problem to be solved.
answer (str): The initial solution generated by the LLM model.
result (str): The output of the code execution.
Returns:
str: The organized solution based on the code execution
results.
nnwn
organize_instruction = f"""xxProblem: xx*

{taskInfo}

*xInitial Solution:=x

{answer}

*xCode Execution Result:*x*

{result}

To solve the *+Problem**, the xxInitial Solutionx* provides steps and
python code for calculations. The xxCode Execution Resultxx is the

output of the code.

Based on the x+Initial Solutionxx and x*xCode Execution Resultxx,
provide a final solution to the problem. Include the results of
the code calculation in your response. Your final response should
be complete as if you are directly answering the problem."""

solution = self.llm.call_llm(organize_instruction)
return solution

def get_final_ solution(self, taskInfo, solutions):
nmwn
Evaluate the solutions provided by the agents and determine the
final solution.
Args:
taskInfo (str): The mathematical problem to be solved.
solutions (list): A list of solutions provided by the agents.
Returns:
str: The final solution to the mathematical problem.
nmnwnw
Prepare the solutions in a numbered format for evaluation
solutions_str = ""
for i, solution in enumerate (solutions):
solutions_str += f"Solution {i+l}\n{solution}\n\n"

final_ solution_instruction = f"""x*xProblem: xx

{taskInfo}

x*xSolutions: xx*

{solutions_str}

Several solutions are given to solve the problem. Carefully evaluate
these solutions. This consistency in answers is crucial for
determining the most reliable solution.

You should provide a final solution to the problem. Your final
response should be complete as if you are directly answering the
problem."""

final solution = self.llm.call_llm(final_ solution_instruction)
return final_solution

19

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 7: Case 3: user query and the reasoning process generated by our MAS-GPT. MAS-GPT
firstly analyzes the domain, difficulty, and required knowledge, then propose the idea of what multi-
agent system is appropriate.

Query The following is a multiple-choice question: Suppose that there are two firms
in the market facing no costs of production and a demand curve given by Q
= 150 - P for their identical products. Suppose the two firms choose prices
simultaneously as in the Bertrand model. Compute the prices in the nash
equilibrium.

The following choices are provided:
(A) 30
(B) 50
<o
D) 25
(E) 150
F 75
(G) 90
(H) 120
I 100
J) 60

Please finish your answer with ”the answer is (X)” where X is the correct letter
choice.

Reasoning The question pertains to a classic economic problem in the domain of game
generated by | theory and microeconomics, specifically focusing on the Bertrand model of
MAS-GPT price competition. The difficulty lies in understanding the strategic interaction
between two firms, the implications of no production costs, and the Nash
equilibrium concept. Solving this requires both theoretical knowledge of
economic models and the ability to apply mathematical reasoning to derive the
equilibrium price.

To address such a question, one must first break it down into its core
components: the demand curve, the firms’ identical products, and the simulta-
neous price-setting behavior.

A multi-agent system is well-suited for this task because it can leverage
multiple perspectives to ensure accuracy and depth in reasoning. By employ-
ing agents that independently analyze the problem, generate solutions, and
refine their responses through iterative feedback, the system ensures a robust
exploration of the problem space. This approach is particularly valuable for
a question like this, where multiple solution paths (e.g., algebraic derivation,
economic intuition) can lead to the correct answer. The iterative refinement
process allows for cross-verification of solutions, reducing the likelihood of
errors. Finally, a decision-making agent synthesizes the diverse solutions,
ensuring that the final answer is both logically sound and consistent with the
principles of the Bertrand model. This structured reasoning process aligns
with the complexity of the question and ensures a reliable outcome.

Listing 3: Case 3: Multi-agent system generated by MAS-GPT. MAS-GPT can generate novel MAS.

I | from utils import =

class MAS () :
4 def _ _init_ (self, model_list):
5 self.llm = LLM(model_1list)

20

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

15
16

17
18
19

20
21

22

26
27
28

29
30

46
47
"

49
50
51
52

53

def

def

forward(self, taskInfo):

A multi-agent system for solving general tasks.

Steps:
1. 5 agents solve the task independently.
2. Each agent reflects on the solutions and provides an
improved solution.
3. A final decision-making agent reasons over the improved
solutions and provides the final solution.
nnn
Step-by-step instruction for each agent to reason and
generate answer
instruction = f"Task: {taskInfo}\n\nPlease solve the task."

Set the number of solutions to generate; using 5 for variety
and diversity

N =5
Call the 1lm to generate each solution
cot_results = [self.llm.call_llm(instruction) for _ in range (N

)]

Get the instruction for the self-refine process based on all
generated solutions
self_refine_instruction = self.get_self_refine_instruction/
taskInfo, cot_results)

Call the 1lm to refine each solution
refined_results = [self.llm.call_llm(self refine_ instruction)
for _ in range(N)]

Get the final decision-making instruction based on all
refined solutions

final_decision_instruction = self.
get_final decision_instruction(taskInfo, refined_results)

Call the 1llm to process the final decision-making
instruction and generate the final answer

final decision_result = self.llm.call_1lm(
final_decision_instruction)

Return the final solution
return final decision_result

get_self refine_instruction(self, taskInfo, cot_results):

nmmwn

Format an instruction for self-refinement based on a given
task description and a list of solutions.

Args:
taskInfo (str): A description of the task that needs to be
completed.
cot_results (list): A list containing solutions or
reasoning steps for the task.

Returns:
str: A formatted instruction that includes the task
description, each solution, and a prompt for self-
refinement.

nun

Initialize the instruction text with a general guideline
instruction = f"Task:\n{taskInfo}\n\n"

21

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

54 # Append each solution from cot_results to the instruction
55 for i, result in enumerate (cot_results):
56 instruction += f"Solution {i+1}:\n{result}\n\n" # Number

each solution for clarity

58 # Add the final prompt to encourage self-refinement and
improvement

59 instruction += "Given all the above solutions, reason over
them carefully and provide an improved solution to the
task."

61 # Return the complete instruction text

62 return instruction

63

64 def get_final_decision_instruction(self, taskInfo, refined_results
) e

(WS mwn

66 Format an instruction for final decision-making based on a

given task description and a list of refined solutions.
67

68 Args:

69 taskInfo (str): A description of the task that needs to be

completed.

70 refined_results (list): A list containing refined
solutions for the task.

71

72 Returns:

73 str: A formatted instruction that includes the task
description, each refined solution, and a prompt for
final decision-making.

74 nmmwn

75

76 # Initialize the instruction text with a general guideline

77 instruction = f"Task:\n{taskInfo}\n\n"

78

79 # Append each refined solution from refined_results to the

instruction

80 for i, result in enumerate (refined_results):

81 instruction 4= f"Solution {i+1l}:\n{result}\n\n" # Number
each solution for clarity

82

83 # Add the final prompt to encourage reasoning over the

solutions and provide a final answer

84 instruction += "Given all the above solutions, reason over

them carefully and provide a final answer to the task."

86 # Return the complete instruction text
87 return instruction

B VISUALIZATION OF OUR MAS POOL

We visualize several MAS in our MAS pool in Figure|[7]

C ADDITIONAL EXPERIMENTAL SETUPS.

C.1 DESCRIPTIONS OF DATASETS

We provide an overall descriptions of the training and testing datasets in Table 0]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

s

¢

g

Chain-of-thought agent
(ID: A)
(a) CoT (c) Reflection
L]
b Com g ot
e . o
° e
e FO g g "
(e) Math Ensemble (f) Test Refine (g) Test Fix Ensemble
20 o .
B L
0;;._“;.”“._,
T g
(1) Quality Diversity () 3 LLM Debate (k) 3 Code Organize

ety prngies e

s ek g s vcen

(m) Step Back Abstraction (n) Code LLM Debate (0) Dynamic Agent

““““

R

(d) Scientific LLM Debate

o o @

enerate outon candate
fomat slcted st 2y

100 ormble mecharism for selecting best answer
)

(h) Ensemble Format

-y i/
o 4

i)
Gode Tost Agent
0B

(1) Code Test

(p) Heuristic Simulation
Refine

e

(q) Priority Refine (r) Socratic Questioning (s) Strategy Engi- (t) 2 Code 2 Basic Ensem-

neer—Scientist

Figure 7: Visualization of our MAS pool

23

ble

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

METHOD | HUMANEVAL HUMANEVAL-PLUS | MATH
CHATDEV (QIAN ET AL.,[2024A) 83.33 84.04 62.07
MAS-GPT (OURS) 91.18 87.23 77.59

Table 8: Comparisons with task-specific method, ChatDev (Qian et al.|[20244a), which is specifically
designed for software development.

Purpose ‘ Dataset Name ‘ Domain Sub-Domains Sample Number
Counting & Probabil-
ity
Geometry
Algebra
MATH (Hendrycks et al.,[2021b) Math Number Theory 6000
Precalculus
Training Prealgebra
Intermediate Algebra
GSMBS8K (Cobbe et al.;[2021) Math - 1000
GSM-Hard (Gao et al., [2023)) Math - 319
AQUA-RAT (Ling et al.;|[2017) Reasoning - 1000
MBPP (Austin et al.,|2021) Code - 374
SciQ (Welbl et al.|[2017) General QA - 2000
Humanities
MMLU (Hendrycks et al., 2021a) | General QA g%(gi}[Scwnce 1529
Others
Counting & Probabil-
ity
Geometry
MATH (Hendrycks et al.,[2021b) Math g{lg;lbbz Theory 500
Precalculus
Prealgebra
Testing Intermediate Algebra
GSMSK (Cobbe et al.,|2021) Math - 500
GSM-Hard (Gao et al.}[2023) Math - 500
HumanEval (Chen et al.}[2021) Code - 164
HumanEval-Plus (Liu et al.| 2023) Code - 164
GPQA (Rein et al.,[2023) Science - 448
SciBench (Wang et al.,[2024a) Science - 500
Humanities
MMLU (Hendrycks et al., 2021a) | General QA gf}(gi}[Scwnce 500
Others
AIME-2024 Math - 30

Table 9: Descriptions of benchmarks

C.2 EVALUATIONS

In this section, we detail our evaluation approach. For queries with ground truth answers, we employ
LLMs to extract the MAS output and compare it with the ground truth. For code benchmarks like
HumanEval and MBPP, we assess correctness using test cases.

LLM-based Evaluation with Ground-Truth Answer We utilize LLMs to perform evaluation with
ground-truth answer. However, direct evaluation against the ground truth is incompatible as the LLM
annotates the response itself. To address this issue, we adopt a two-step evaluation process based
on the prompts used in AutoGen (Wu et al., [2023), first extract the answer, then evaluation. Here
the responses generated by multi-agent systems (MAS) are often unstructured and irregular, making
it difficult to extract the final answer to a query using rule-based methods. To avoid extraction
errors that could impact the evaluation of MAS performance, we use LLMs to automate the answer

24

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 10: The prompt for intra-consistency-oriented pair refinement. This prompt is fed to GPT-4o-
2024-11-20 to adjust the MAS and generate a reasoning statement. The prompt is integrated with a
user query and the selected MAS represented by Python code.

I will give you a question and a multi-agent system. The multi-agent system is described in
the format of Python code, where each agent is represented by an agent-specific instruction
and one call_llm. Though the multi-agent system can answer the question, it may not be the
best one. You task is return me two things: an improved multi-agent system and a paragraph.

The improved multi-agent system should be more related to the question, while basically,
try not to change the architecture compared to the original multi-agent system.

- For example, if the multi-agent system is in a parallel structure (e.g., 5 parallel agents
generate answer and 1 agent select the best answer), you may keep the structure unchanged
while only changing each parallel agent’s instruction.

- If the multi-agent system is already suitable, you may only modify the instructions in the
multi-agent system more relevant to the question while leaving the structure unchanged.

- If you think additional agents are required (e.g., the question is difficult and complex), you
may add some related expert agents to enhance the multi-agent system.

The paragraph should first analyze the question itself, from the perspectives of domain and
difficulty. Then, you should provide a reasoning process to bridge the question and the
improved multi-agent system. The reasoning process should be in the views of that how
one analyzes the question and objectively thinks about what multi-agent system is needed.
Then, the reasoning process can finally and logically lead to the improved multi-agent
system. Do not mention “this multi-agent system”, or “the improved multi-agent system”,
rather, say “a multi-agent system” instead. Do not mention the original multi-agent system
or the original structure.

Please follow the following format requirements:
- The improved multi-agent system should be included between <CODE> and </CODE>
- The paragraph should be included between <PARAGRAPH> and </PARAGRAPH>

Please firstly generate the multi-agent system and then generate the paragraph. The
paragraph should analyze about the question and the generated multi-agent sytem, such that
when one sees the (question, paragraph, the improved multi-agent system) triplet (wihtout
the original multi-agent system), one can understand the reasoning process behind the
improved multi-agent system. Notice! The paragraph should never mention the original
multi-agent system or the original structure.

The question is:
{query}

The multi-agent system is:
{MAS code}

extraction process. Specifically, we prompt the LLM to extract the answer from the MAS response
based on predefined rules and then ask the LLM to compare it with the ground truth. The prompts
used for this process are detailed in Table 2]

Code Evaluation with Test Cases We evaluate the MAS performance on coding tasks based on
pass rate on test cases, with a two step approach: first, prompting the LLM to extract the code from
the MAS response, and second, executing it in a coding environment to calculate the pass rate; see
the prompts used for extract code and functions in Table

25

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 11: The prompt for generating a reasoning process if the refined MAS fails. This prompt is
fed to GPT-40-2024-11-20 to generate a reasoning statement. The prompt is integrated with a user
query and a selected MAS represented by Python code.

I will give you a question and a multi-agent system. The multi-agent system is described in
the format of Python code, where each agent is represented by an agent-specific instruction
and one call_llm. You task is return me a paragraph.

The paragraph should first analyze the question itself, from the perspectives of domain
and difficulty. Then, you should provide a reasoning process to bridge the question and
the provided multi-agent system. The reasoning process should be in the angle of views
that how one analyzes the question and objectively thinks about what multi-agent system
is needed. Then, the reasoning process can finally and logically lead to the provided
multi-agent system. Do not mention “this multi-agent system”, or “the provided multi-agent
system”, rather, say “a multi-agent system” instead.

The paragraph should analyze about the question and the provided multi-agent sytem, such
that when one sees the (question, paragraph, the provided multi-agent system) triplet, one
can understand the reasoning process behind the provided multi-agent system.

Remember, the paragraph should be included between PARAGRAPH; and j/PARA-
GRAPH;.

The question is:
{query}

The provided multi-agent system is:
{MAS code}

26

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 12: Prompts for extract answer and answer evaluation.

You are a helpful Al assistant tasked with extracting the final answer from a provided

solution.

nput:

1. A problem statement, prefixed with ”’===Problem: <problem>".

2. A solution to the problem, prefixed with ”===Solution:<solution>".

Problem and Solution:
===Problem: {query}

===Solution: {response}

**Instructions: **

- Carefully analyze the solution and extract the final answer in reply: “The answer is
<answer extracted> inreply”.

- If the solution does not contain a final answer (e.g., only reasoning, code without execu-
tion, or incomplete information), respond with: ”The reply doesn’t contain an answer.”

- Ensure that the extracted answer is exactly as presented in the solution. Do not infer or use
external knowledge. Do not execute the code yourself.

- Remember, Never execute the code yourself! Never doing any computation yourself! Just
extract and output the existing answer!

You are a helpful Al assistant. You will use your coding and language skills to verify the

answer.

You are given:

1. A problem, which is going to start like "===Problem: <problem>".

2. A ground truth answer, which is going to start like ”===Ground truth answer:”.

3. A reply with the answer to the problem, which are going to start like "===Reply:”.

Please do the following:

1. Extract the answer in reply: “The answer is <answer extracted> inreply”.

2. Check whether the answer in reply matches the ground truth answer. When comparison is
not obvious (for example, 3*sqrt(6) and 7.348), you may compare by calculation, allowing
a small margin of error.

3. After everything is done, please give each reply a comment like the following options:

- ”The answer is correct.”

- ”The answer is approximated but should be correct. Correct Answer: <ground truth
answer> | Answer extracted: <answer extracted>.”

- "The answer is incorrect. Correct Answer: <ground truth answer> | Answer
extracted: <answer extracted>.

- ”The reply doesn’t contain an answer.”

Here are the problem, the ground truth answer and the reply:

===Problem: {query}

===Ground truth answer: {ground_truth _answer}

===Reply: {Reply}

27

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 13: Prompts for extract code and functions.

You are given a **Problem** and a **Solution**. The **Problem** asks for a code
function. Extract the final code function from the **Solution**.
Problem:

{query}

**Solution: **
{solution}

Please follow the following rules:

- Only output the code function that exists in the **Solution**, without any additional ex-
planation or content.

- Do not modify any part of the code function.

- Remove parts like ’example use’ or ’test cases’.

- If the **Solution** does not contain a code function, respond with: “The reply doesn’t
contain a code function.”

28

	Introduction
	Related Work
	Methodology
	Overall System Integrated with MAS-GPT
	MAS-GPT: Dataset Construction and Training
	Discussions

	Experiments
	Experimental Setups
	Main Results
	Analysis of MAS-GPT

	Conclusion
	Case Study
	MAS-GPT Can Generate Query-Specific MAS
	MAS-GPT Can Generalize to Unseen Queries
	MAS-GPT Can Generate Novel MAS

	Visualization of Our MAS pool
	Additional Experimental Setups.
	Descriptions of Datasets
	Evaluations

