
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

MAS-GPT: TRAINING LLMS TO BUILD LLM-BASED
MULTI-AGENT SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM-based multi-agent systems (MAS) have shown significant potential in tack-
ling diverse tasks. However, to design effective MAS, existing approaches heavily
rely on manual configurations or multiple calls of advanced LLMs, resulting in
inadaptability and high inference costs. In this paper, we simplify the process of
building an MAS by reframing it as a generative language task, where the input is
a user query and the output is a corresponding MAS. To address this novel task, we
unify the representation of MAS as executable code and propose a consistency-
oriented data construction pipeline to create a high-quality dataset comprising co-
herent and consistent query-MAS pairs. Using this dataset, we train MAS-GPT,
an open-source medium-sized LLM that is capable of generating query-adaptive
MAS within a single LLM inference. The generated MAS can be seamlessly
applied to process user queries and deliver high-quality responses. Extensive ex-
periments on 9 benchmarks and 4 LLMs show that the proposed MAS-GPT con-
sistently outperforms 10+ baseline MAS methods on diverse settings, indicating
MAS-GPT’s high effectiveness, efficiency and strong generalization ability.

1 INTRODUCTION

Large language models (LLMs) such as ChatGPT (Ouyang et al., 2022; OpenAI, 2023) have
achieved significant success on a wide range of tasks. However, a single LLM often struggles to
handle the diverse and complex range of tasks (e.g., varying difficulties and domains) encountered
in practice (Hong et al., 2024; Chen et al., 2024).

Such limitation has driven recent research towards building LLM-based multi-agent systems
(MAS) (Qian et al., 2024a; Chen et al., 2024; Liu et al., 2024b), where multiple LLMs (agents)
with specialized capabilities work collaboratively to achieve more effective solutions. For exam-
ple, MetaGPT (Hong et al., 2024) and ChatDev (Qian et al., 2024a) build multi-LLM teams with
expertise roles (e.g., programmer, tester, and product manager) to solve complex coding tasks in a
predefined pipeline; while AgentVerse (Chen et al., 2024) involves recruiters, executors, and evalu-
ators for iterative task solving. These methods have shown superior performance over single LLM
inference.

Despite achieving promising task performance, there are two fundamental issues that hinder the
broad applications of MAS: inadaptability and high costs. (i) Inadaptability & high human effort:
MAS in MetaGPT (Hong et al., 2024), ChatDev (Qian et al., 2024a), and AgentVerse (Chen et al.,
2024) are all manually crafted (e.g., for coding tasks). That is, the collaboration structure and
agents’ prompts are predetermined and static, lacking in the generality to adapt towards any given
tasks. (ii) High inference costs: Although there have been efforts to design adaptive MAS, they
essentially shift the human cost onto the computational cost. For example, both GPTSwarm (Zhuge
et al., 2024) and DyLAN (Liu et al., 2024b) rely on LLMs to replace human involvement, iteratively
adjusting the collaboration structure or agents’ prompts in the MAS for each specific task. However,
this process often requires multiple LLM inferences.

Focusing on these key issues, this paper explores how to adaptively build a query-specific MAS at
a minimal cost. Our core idea is to reframe the process of building an executable MAS for each
query as a generative language task, making building MAS as simple and efficient as querying Chat-
GPT (Ouyang et al., 2022). Given the generated MAS, the query can then be seamlessly processed
to produce the final response, significantly simplifying the whole pipeline.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Inadaptability!

Manually Design MAS

Query

Adaptability! One Inference!

MAS-GPT: Generating MAS

High Effort!

32B
Query

Answer

MAS

Figure 1: Introduction of our proposed new
paradigm for building MAS. During inference,
MAS-GPT adaptively generates a query-specific
MAS with one LLM inference.

Under this context, we introduce MAS-GPT,
an LLM specifically trained to adaptively gen-
erate executable MAS based on any given user
query in one single inference. While the con-
cept is straightforward, the challenge lies in
the limited knowledge of LLMs on the task of
MAS generation and the lack of corresponding
training data. These limitations raise two key
technical challenges: how to represent the MAS
and how to construct the dataset. (1) To ensure the generated MAS is readily executable, we unify
the representation of MAS by describing it as a Python code snippet (i.e., a forward function), with
each agent’s prompt as a variable, LLM calls as functions, and agent relationships as string con-
catenation. (2) Building on this foundation, we propose a consistency-oriented data construction
pipeline to facilitate the model in learning generalizable patterns and logical correlations, which in-
cludes the construction, evaluation, selection, and refinement of query-MAS pairs. During selection,
we design an inter-consistency-oriented selection approach to ensure that similar queries are paired
with similar high-performing MAS, facilitating the model to learn generalizable patterns. During
refinement, we propose a intra-consistency-oriented refinement method to strengthen the relatedness
between query and MAS, enabling the model to learn the reasonable correlation. Finally, the result-
ing pairs are used to train open-source LLMs via supervised fine-tuning, where the instruction is the
user query and the response is the MAS represented by code. This will equip the model with the
ability to generate query-specific MAS, and also, generalize to unseen queries.

With the introduction of MAS-GPT, inference for a query becomes significantly simplified. Instead
of relying on manual crafting (Hong et al., 2024; Qian et al., 2024a; Chen et al., 2024) or multiple
LLM inference costs (Liu et al., 2024b; Zhuge et al., 2024) to obtain an MAS for each query, the user
simply inputs a query into MAS-GPT to get a corresponding executable MAS. Such MAS can be
directly applied to process the query, where multiple MAS-GPT-generated agents collaborate with
an MAS-GPT-generated structure to deliver the final solution. With advantages of adaptability, low
cost, and generalization, this approach could facilitate the application of MAS at scale.

We conduct extensive experiments to compare MAS-GPT with 10+ baseline methods on 9 bench-
marks (various domains) using 4 state-of-the-art (open-source and proprietary) LLMs. Our results
show that MAS-GPT consistently outperforms baseline methods on average, indicating its high gen-
erality and effectiveness. Meanwhile, MAS-GPT has the potential to further push the boundary of
strong reasoning capability of o1 (OpenAI, 2024b), bringing 13.34% gain on AIME-2024, a chal-
lenging mathematical benchmark. We also verify that our MAS-GPT can generalize to unfamiliar
queries and generate novel MAS via case studies.

Our contributions are as follows:

1. We reframe building MAS for each query as a generative language task. We unify the represen-
tation of MAS as executable code and propose a consistency-oriented query-MAS data construc-
tion pipeline for LLM training.

2. We introduce MAS-GPT, an LLM specifically trained to generate query-specific executable
MAS. All code, data and models will be open-sourced.

3. Experiments on 9 benchmarks and 4 LLMs show that MAS-GPT consistently outperforms 10+
baselines, indicating its effectiveness, efficiency and generalization ability.

2 RELATED WORK

LLM-based Multi-Agent Systems. Since a single LLM may struggle to handle the diverse and
complex range of tasks in practice (Li et al., 2023; Qian et al., 2024b), such limitation has driven
recent research towards building LLM-based multi-agent systems (MAS) (Wang et al., 2024c; Wu
et al., 2023). MetaGPT (Hong et al., 2024) and ChatDev (Qian et al., 2024a) introduce manually
designed multi-agent teams for solving coding tasks; while MedAgents is designed for medical
tasks (Tang et al., 2024). AgentVerse (Chen et al., 2024) proposes an iterative collaboration structure
where agents are recruited to discuss, execute, and evaluate. Multi-Agent Debate (Du et al., 2024;
Liang et al., 2024) designs multiple expertise LLM-agents to debate and reason over multiple rounds

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

to get final answers. The MAS in these methods are all fixed regardless of the given query, lacking
in the generality to adapt accordingly.

DyLAN (Liu et al., 2024b) leverages LLMs to evaluate agents’ values and dynamically select the
best agents, GPTSwarm (Zhuge et al., 2024) manually initializes an agent team, adjusts the collabo-
ration structure and agents’ prompts by prompting LLMs. Given queries with ground-truth answers
from one task and several available MAS as context, ADAS (Hu et al., 2024) and AFlow (Zhang
et al., 2024) leverages the strong capabilities of LLMs such as Claude-3.5-sonnet (Anthropic, 2024)
and GPT-4 (OpenAI, 2023) to iteratively generate task-oriented MAS for the specific task. All these
methods require multiple times of LLM calls (e.g., over 10 calls of API with lengthy context) to ob-
tain an MAS for each specific query, which is time-consuming and compute-expensive in practice.

Instead of manually designing a fixed MAS (Qian et al., 2024a; Chen et al., 2024; Du et al., 2024)
or requiring multiple LLM inference costs to obtain an MAS (Liu et al., 2024b; Zhuge et al., 2024)
for each query, our MAS-GPT significantly simplifies the process of building an MAS, which can
flexibly generate query-specific MAS within one LLM inference. Specifically, we design a data-
construction pipeline to generate a series of query-MAS pairs, which are used for training MAS-
GPT based on open-source LLMs.

LLM Post-Training. Modern state-of-the-art LLMs are usually post-trained via two main stages:
supervised fine-tuning (SFT) and preference learning (Ouyang et al., 2022; Dubey et al., 2024; Yang
et al., 2024; Liu et al., 2024a), where SFT is the basic technique to teach LLM a defined tasks (Zhou
et al., 2023; Longpre et al., 2023). Focusing on SFT, a series of researches are conducted on the
construction of datasets for training chatbot-type LLMs. For example, LIMA (Zhou et al., 2023)
manually annotates high-quality language data for SFT, emphasizing the importance of quality of
SFT datasets. WizardLM (Xu et al., 2024), TULU 3 (Lambert et al., 2024), and Persona Hub (Ge
et al., 2024) synthesize SFT data by prompting GPT models, indicating the potential of synthetic data
for LLM training. For MAS-GPT, the training process leverages SFT, with a primary focus on data
construction. While previous approaches focus on training LLMs to directly answer user queries,
the challenge of training LLMs to generate MAS from user queries introduces a novel difficulty.
Unlike real-world dialogue data, LLMs have limited (if any) knowledge of MAS generation. Using
our proposed data construction pipeline, we create the first query-MAS-paired dataset, which will
be made open-source in future.

3 METHODOLOGY

This section first outlines the overall system integrated with MAS-GPT when processing user queries
during inference. Next, we delve into the specifics of training MAS-GPT, with a particular focus on
the dataset construction process.

3.1 OVERALL SYSTEM INTEGRATED WITH MAS-GPT

We follow a standard workflow: given a user query, a multi-agent system (MAS) is constructed, with
multiple agents working collaboratively to generate the final answer. Unlike previous approaches
that either manually design the MAS, rely on fixed and query-agnostic MAS, or incur significant
computational costs to determine the appropriate MAS, our approach streamlines the entire process
of building MAS by reducing it to a single LLM inference.

The core of our system is MAS-GPT, an LLM that is trained to generate MAS tailored specifically to
the input query. Instead of relying on pre-built agent configurations, MAS-GPT dynamically creates
an MAS for each query, ensuring that the system adapts to a wide range of tasks. This approach not
only minimizes the time and computational resources traditionally required to build the right MAS
but also enhances the system’s flexibility by generating task-specific solutions in real-time. Finally,
the MAS generated by MAS-GPT can be seamlessly integrated to process the query and deliver the
final answer (bottom right in Figure 3).

3.2 MAS-GPT: DATASET CONSTRUCTION AND TRAINING

To achieve the above goal, we reframe building MAS as a generative language task, where the input
is a user query and the output is an executable MAS capable of processing that query. This shift to a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Pool Construction Pair Evaluation Pair Selection Pair Refinement

Query Pool

MAS Pool

…

Query MAS

…

+

+
+

+
+

Score
⇒

⇒
⇒

⇒
⇒

1

0
1

1
0

…

&

&

&

&

&

&

&

&

Enhance Query-MAS Alignment
for Intra-ConsistencyD

at
as

et
 C

on
st

ru
ct

io
n

Tr
ai

ni
ng System: “Given the query, generate an MAS”

Instruction: The Query

Response: MAS with Reasoning MAS-GPT

Supervised
Fine-Tuning

In
fe

re
nc

e

Query MAS-GPT MAS

=

Query MAS Response

Group-wise Query-MAS Pair
Mapping for Inter-Consistency

Figure 3: Illustrations of dataset construction, training, and inference of our proposed MAS-GPT.

generative paradigm introduces a new challenge since there is few (if any) knowledge within LLMs
on MAS generation. To make this approach viable, the key focus lies in constructing an appropriate
dataset to teach the LLMs such brand-new task. To achieve this, we propose a consistency-oriented
data construction process, which involves four key steps: (1) construction of query and MAS pools,
(2) inference and evaluation of query-MAS pairs, (3) inter-consistency-oriented pair selection, (4)
intra-consistency-oriented pair refinement.

Data - Construction of Query and MAS Pools (Representing MAS as Executable Code). To
construct the dataset for supervised fine-tuning (SFT), we adopt the following data format: (system
prompt, instruction, response). Here, the system prompt briefly describes the MAS generation task,
the instruction corresponds to the user query, and the response includes the MAS, which can be
extracted by string matching. Therefore, training the LLM requires the collection of a series of
query-MAS pairs. Firstly, to enable MAS-GPT to handle diverse queries, we build a query pool
from open-source queries across various domains, such as general QA, mathematics, and coding.
Each query is carefully selected to be verifiable, ensuring the presence of a ground-truth answer or
test cases (e.g., for coding tasks).

def forward(query):
math_agent = f'You are a math expert. Solve this\

question: {query}’
math_output = call_llm(math_agent)

feedback_agent = f'Given {query} and {math_output},\
provide feedback’

feedback_output = call_llm(feedback_agent)

refine_agent = f'Given {query}, {math_output} and \
{feedback_output}, provide the final answer’

return call_llm(refine_agent)

Math
Agent

Feedback Agent

Refine
Agent

Figure 2: Our unified code representation of an
executable MAS (i.e., a forward function). Each
color denotes an agent. Agents defined by vari-
ables, LLM calls denoted by function calls, and
interactions represented by string concatenations.

While the collection of queries is relatively
straightforward, constructing the MAS pool
presents a fundamental challenge: how to rep-
resent an executable MAS. To address this, we
propose unifying the representation of MAS by
formalizing it as executable Python code snip-
pets. This unified representation is motivated
by the observation that all existing LLM-based
MAS methods are ultimately implemented as
code, encompassing the definition of agents’
prompts, LLM calls, and inter-agent interac-
tions (Qian et al., 2024a; Hu et al., 2024; Zhang
et al., 2024). Specifically, we define an MAS as
a forward function that takes a user query as in-
put and returns the final answer generated by the MAS. Within the forward function, agent prompts
are defined as variables, agent inferences are implemented as function calls, and interactions be-
tween agents are represented through string concatenation; see an example in Figure 2.

Following this framework, we first re-implement several existing MAS methods (e.g., Multi-Agent
Debate (Du et al., 2024), Self-Consistency (Wang et al., 2024b), Self-Refine (Madaan et al., 2024))
to align with our unified code representation. To further expand the diversity of MAS candidates,
we also manually design some MAS systems, resulting in a base MAS pool comprising over 40
unique MAS designs (Figure 7). Importantly, these 40+ MAS do not directly correspond to the
exact number of MAS in the training dataset; rather, they serve as foundations that evolve during the
query-MAS pair refinement process.

Data - Evaluation of Query-MAS Pairs. After constructing the query and MAS pools, it is crucial
to evaluate the query-MAS compatibility since not all MAS designs are equally suitable for every

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

query. To achieve this, we pair each query and MAS in the pool by inferring the query to the MAS
and evaluating the generated final answer.

Specifically, given the query pool Q = {(Qi, Yi)}Ni=1 and the base MAS pool M = {MASbase
j }Mj=1,

where Qi is the query, Yi is the information for verification, N and M denotes the pool size,
we obtain N × M pairs. Then, a query-dependent evaluation function feval(·) will be applied
to evaluate the effectiveness of the query-MAS pair: scorei,j = feval(MASbase

j (Qi), Yi), where
MASbase

j (Qi) denotes the answer generated by MASbase
j given the query Qi, 1 and 0 denotes cor-

rect and wrong respectively. Overall, we get M MAS scores for each query Qi, which are denoted
by si = [scorei,1, ..., scorei,M], laying the foundation for subsequent steps for selecting appropriate
query-MAS pairs and further refinement.

Data - Inter-Consistency-Oriented Pair Selection. With the query-MAS pair results obtained
from the evaluation step, the next critical task is to select and construct high-quality query-MAS
pairs for training. The first selection criterion is intuitive: effectiveness. Specifically, we retain
only the query-MAS pairs where the MAS produces a correct answer (evaluation score is 1), as
MAS designs that generate correct answers are more likely to be suitable for their respective queries
compared to those that fail.

While using all the remaining effective query-MAS pairs for training is straightforward, it intro-
duces a significant problem of low inter-consistency: the same or similar queries may correspond to
multiple different MAS designs. This lack of consistency makes it difficult for the model to learn a
clear optimization objective, hindering its ability to understand and perform the task effectively.

To address this issue, we propose an inter-consistency-oriented pair selection method that optimizes
both effectiveness and inter-consistency. The core idea is to group similar queries and assign them
a single, high-performing MAS to maintain consistency across the dataset. Specifically, we cluster
queries based on their metadata or embeddings. For a group of S queries S = {Qi}Si=1, we calculate
a cumulative score for each MAS by summing its effectiveness scores across all queries in the group:
s =

∑S
i=1 si. The MAS with the highest cumulative score is then selected as the representative MAS

for all queries in the group: MASbase
∗ = argmaxMAS∈M s. Through this, we pair each specific

query with a specific base MAS: (Qi,MASbase
i).

By aligning similar queries with the same high-performing MAS, it improves the inter-consistency
of the query-MAS pairs, helping the model recognize generalizable patterns and generalize across
similar queries. For example, queries requiring divergent thinking may be consistently paired with
MAS structures where multiple agents independently generate ideas and then discuss.

Data - Intra-Consistency-Oriented Pair Refinement. While the inter-consistency-oriented pair
selection process effectively ensures consistency across query-MAS pairs, there remains a critical
issue within individual pairs: intra-consistency. Specifically, the alignment between a query and its
associated MAS may still be suboptimal, making it challenging for the model to learn meaningful
associations. For instance, a query about physics may be paired with an MAS involving experts
from multiple domains (e.g., physics and biology), where the presence of non-relevant agents like
biology experts can confuse the model.

To address this, we propose an intra-consistency-oriented pair refinement method. This approach
aims to improve the query-MAS alignment through two key strategies: (1) adjusting MAS to make
it query-dependent, and (2) introducing a reasoning process to strengthen the connection between
the query and MAS. We employ an LLM-based data synthesis method, where an advanced LLM
adjusts agents’ definitions within the MAS based on the query and the previously selected MAS.
The LLM is also instructed to generate a reasoning statement that explains the relationship between
the query and the refined MAS, improving the interpretability of the query-MAS pair; please refer
to prompt in Table 10. This process enables the model to better understand the context and logic
behind each decision, which in turn facilitates model training and improves generalization.

Next, we infer and evaluate the refined MAS on the corresponding query, as advanced LLMs could
generate inappropriate or non-executable MAS. Specifically, for each base pair (Qi,MASbase

i), the
refined MASrefine

i is tested and accepted only if it achieves a not-worse score. Formally:

MASi =

{
MASrefine

i , if srefine ≥ sbase

MASbase
i , otherwise

,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 1: Comparing MAS-GPT with 10 baselines across 8 benchmarks using Llama-3-70B-Instruct,
MAS-GPT performs the best on average, verifying its generality in handling diverse queries. Bench-
marks with ∗ are out-of-domain for MAS-GPT.

Method MATH GSM8K GSM-H H-Eval∗ H-Eval+∗ MMLU GPQA∗ SciBench∗ Avg.

Single (Dubey et al., 2024) 50.55 92.38 45.80 79.01 75.78 77.37 36.68 21.05 59.83
Chain-of-Thought (Wei et al., 2022) 53.20 92.79 46.20 77.16 77.02 75.56 35.28 17.68 59.36
Self-Consistency (Wang et al., 2024b) 61.59 94.99 47.20 77.78 75.78 78.18 37.15 20.00 61.58
LLM-Debate (Du et al., 2024) 61.37 91.58 44.60 74.69 74.53 77.78 34.35 19.79 59.84
Self-Refine (Madaan et al., 2024) 58.50 90.78 37.80 67.90 62.73 74.75 38.32 20.00 56.35
Quality-Diversity (Lu et al., 2024) 60.49 92.99 45.60 70.99 70.19 75.76 33.64 20.63 58.79
SPP (Wang et al., 2024c) 51.66 92.79 44.80 76.54 73.29 77.37 35.05 20.84 59.04
AgentVerse (Chen et al., 2024) 55.63 93.39 41.40 77.78 73.91 76.57 40.19 16.00 59.36
GPTSwarm (Zhuge et al., 2024) 55.41 93.19 43.20 69.14 73.91 75.15 36.45 14.11 57.57
DyLAN (Liu et al., 2024b) 59.60 91.18 44.80 79.01 75.78 78.18 35.98 19.79 60.54
MAS-GPT (Ours) 68.65 93.39 62.40 80.25 78.88 78.38 37.62 24.21 65.47

where srefine = feval(MASrefine
i (Qi), Yi) and sbase = feval(MASbase

i (Qi), Yi) are evaluation scores
by comparing the MAS-generated and ground-truth answer Yi.

Through this process, each query Qi is ultimately associated with a tuple (Qi, Ri,MASi), where
Ri denotes the reasoning statement, and MASi is the final MAS. This refined dataset ensures both
inter- and intra-consistency, providing high-quality training data for subsequent model fine-tuning.

Training - Supervised Fine-Tuning of MAS-GPT Our dataset follows the format (system prompt,
instruction, response). The system prompt briefly describes the task of generating a query-specific
MAS and the instruction corresponds to the user query Qi. The response is constructed as the
concatenation of the reasoning process and the final MAS, which is represented as executable code
in text form.

Building upon this dataset, we perform supervised fine-tuning of MAS-GPT on the open-source
medium-sized LLM, Qwen2.5-Coder-32B-Instruct (Yang et al., 2024), leveraging its capabilities of
code generation and instruction-following. During inference, when a user query is received, MAS-
GPT generates an executable MAS tailored to that specific query Qi: MASgen

i = MAS-GPT(Qi).
The generated MAS is directly usable for processing the query Qi and delivering the final answer:
Ai = MASgen

i (Qi), significantly simplifying the task handling process.

3.3 DISCUSSIONS

Overall, our system integrated with MAS-GPT offers the following key advantages: simplicity, cost-
efficiency, and adaptability (generality). Instead of manually designing an MAS for each specific
query, relying on a fixed MAS for all queries, or requiring multiple LLM inference costs to obtain an
MAS for a query, our MAS-GPT significantly simplifies the process of building an MAS by reducing
into one single LLM inference. Given a user query, MAS-GPT will efficiently return a query-specific
MAS, which is executable and can be seamlessly applied to process the query to deliver the final
answer. Although training incurs some cost, it is a one-time expense, whereas inference is potentially
endless in practical applications. We believe that MAS-GPT has the potential to further advance the
real-world application of MAS due to its simplicity, cost-efficiency, and adaptability.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Training. Our training queries are sampled from the training splits available in MATH (Hendrycks
et al., 2021b), GSM8K (Cobbe et al., 2021), MBPP (Austin et al., 2021), MMLU (Hendrycks et al.,
2021a), and SciQ (Welbl et al., 2017), covering domains of math, coding, and general QA. Llama-
3-70B-Instruct is used during dataset construction. The number of training samples (i.e., query-
MAS pairs) is approximately 11k; see the statistics of our dataset in Table 4. Our MAS-GPT is
trained over Qwen2.5-Coder-32B-Instruct (Yang et al., 2024), leveraging its instruction-following
and coding capabilities. We train the LLM using 16 A100s with an effective batch size of 32 for 3
epochs at a learning rate of 1e-5 (Zheng et al., 2024).

Testing. To verify that our MAS-GPT can handle diverse queries in practice, we con-
sider multiple benchmarks from diverse domains. These include MATH (Hendrycks et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Single Self-Refine DyLAN Self-Con. MAS-GPT
Different Methods

50

55

60

65

70

Ac
cu

ra
cy

 o
n

AI
M

E-
20

24
 (

%
)

 = 13.34%

53.33 53.33 53.33

56.67

66.67

MAS Empowered by o1-Preview

(a) MAS-GPT-Assisted Reasoning

MATH GSM-Hard MMLU HumanEval+
Benchmarks

50

60

70

80

In
-D

om
ai

n
Pe

rf
or

m
an

ce
 (

%
)

AFlow's In-Domain

Comparisons with Task-Specific Method
Single AFlow MAS-GPT

65

70

75

80

O
ut

-D
om

ai
n

Pe
rf

or
m

an
ce

 (
%

)

AFlow's Out-Domain

(b) Task-Specific Method

4 8 16 32 64
Inference Times

56

60

64

Pe
rf

or
m

an
ce

 (
%

)

AgentVerse

DyLAN

GPTSwarm

MAS-GPT (Ours)

LLM Debate

Trade-off Between Peformance and Cost

(c) Performance v.s. Costs

Figure 4: (a) Different methods empowered with strong reasoning LLM: o1-preview. We see that
our MAS-GPT significantly enhance the reasoning performance over single LLM, indicating its po-
tential in further augmenting LLM reasoning. (b) Comparisons with AFlow (optimized on MATH).
MAS-GPT even outperforms AFlow on its in-domain benchmarks; while AFlow fails on out-of-
domain benchmarks. (c) MAS-GPT achieves the best performance with low inference cost.

2021b), GSM8K (Cobbe et al., 2021), and GSM-Hard (Gao et al., 2023) for math do-
mains; HumanEval (Chen et al., 2021) and HumanEval+ (Liu et al., 2023) for coding tasks;
MMLU (Hendrycks et al., 2021a) for general QA tasks; GPQA (Rein et al., 2023) and
SciBench (Wang et al., 2024a) for science topics. Please refer to Table 9 for details about datasets
and Section C.2 for details about evaluation. For all baselines, the LLMs that drive the MAS to
process user queries are kept the same, where we consider four state-of-the-art LLMs including
Llama-3-70B-Instruct (Dubey et al., 2024), Qwen2.5-72B-Instruct (Yang et al., 2024), GPT-4o-
mini-2024-07-18 (OpenAI, 2024a), and o1-preview-2024-09-12 (OpenAI, 2024b).

Baselines. For fair comparisons, we consider 10 baselines that are suitable for handling diverse
tasks. We include single agent and agent with chain-of-thought (Wei et al., 2022) as two ba-
sic baselines, Self-Consistency (Wang et al., 2024b) and Quality-Diversity (Lu et al., 2024) that
select the best from multiple answers, LLM-Debate (Du et al., 2024) that involves multiple ex-
perts for debating, Self-Refine (Madaan et al., 2024) that iteratively refines last agent’s answer,
SPP (Wang et al., 2024c) that stimulates conversations among multiple roles, AgentVerse (Chen
et al., 2024) and DyLAN (Liu et al., 2024b) that dynamically adjust multi-agent team during infer-
ence, GPTSwarm (Zhuge et al., 2024) that relies on a graph collaboration structure.

4.2 MAIN RESULTS

Since our MAS-GPT aims to facilitate the multi-agent systems in flexibly handling diverse queries,
our results focus on generality. Here, we show the generality of MAS-GPT by comparing perfor-
mance averaged on various benchmarks and performance using different LLMs to drive the MAS.

MAS-GPT’s generality in handling diverse queries. We compare MAS-GPT with 10 baselines
on 8 benchmarks using Llama-3-70B-Instruct (Dubey et al., 2024) to drive the MAS, with results
reported in Table 1. GPQA and SciBench are two benchmarks that are out-of-domain for our MAS-
GPT. From the table, we see that (1) our MAS-GPT significantly outperforms the baseline methods
on average, outperforming the second-best method by 3.89%. (2) Our MAS-GPT simultaneously
achieves promising performance in both in-domain and out-of-domain (i.e., queries that are signifi-
cantly different from those in the training data) benchmarks, indicating MAS-GPT’s generality.

Generality in using diverse LLM backbones for MAS. Llama-3-70B-Instruct was utilized to
drive MAS during dataset construction for training MAS-GPT, a 32B-sized LLM. As shown in
Table 1, this approach proves effective when employing the same LLM to drive MAS during test
time. To further validate the versatility of MAS-GPT, we assess its performance under different
MAS-driving LLMs, including Qwen2.5-72B-Instruct and GPT-4o-mini-2024-07-18, in Table 2.
The results demonstrate that MAS-GPT consistently achieves superior performance, regardless of
the LLM used to drive MAS, highlighting its strong compatibility and adaptability across various
MAS-driving LLMs.

MAS-GPT’s potential in further augmenting the reasoning performance of strong reasoning
LLMs such as o1. In recent developments, the AI community has introduced several state-of-the-
art reasoning LLMs (OpenAI, 2024b; Qwen, 2024), which have demonstrated remarkable reason-
ing capabilities by scaling inference-time computations (Snell et al., 2024). In this context, we
aim to explore whether our proposed MAS-GPT can take the reasoning power of these already ad-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

0 100 1000 10000
Data Scale

0

1

2

3

4

5

Fa
ilu

re
 C

ou
nt

s

×102

Lower is Better

Failure Analysis with Data Size Scaling

Extraction
Execution

(a) Data Scale v.s. Failure

GPQA MATH MMLU HumanEval-Plus
Benchmarks

0

15

30

45

60

75

90

Pe
rf

or
m

an
ce

 (
%

)

Performance with Data Size Scaling
N=0
N=1E2
N=1E3
N=1E4

(b) Data Scale v.s. Performance

GPQA MATH MMLU HumanEval+
Benchmarks

30

42

54

66

78

90

Pe
rf

or
m

an
ce

 (
%

)

Performance with Model Size Scaling
7B
14B
32B

(c) Model Scale v.s. Performance

Figure 5: Explorations of scaling in training MAS-GPT. (a) More data leads to fewer execution
failures. (b) More data contributes to better performance of MAS-GPT in facilitating MAS applica-
tion. Without training (N=0), the model fails, highlighting that MAS generation is a non-trivial task
requiring specific training. (c) Larger model generally contributes to better performance. These find-
ings demonstrate the promising potential of MAS-GPT, suggesting that it can be further improved
with more diverse, high-quality data and stronger models as the community continues to advance.

vanced models even further. To test this, we conduct experiments using OpenAI’s o1-preview-2024-
09-12 (OpenAI, 2024b) model, evaluating it on the highly challenging AIME-2024 mathematical
benchmark1. The results, as shown in Figure 4(a), show that our proposed MAS-GPT significantly
outperforms the baseline methods on this challenging task. Specifically, it improves over the sin-
gle LLM by a large margin: 13.34%. This result not only verifies the generality of our proposed
MAS-GPT, but also indicates its promising potential in pushing the boundaries of LLM reasoning.

Table 2: MAS-GPT consistently performs the best
across MAS-driving LLMs, indicating its strong
compatibility.

Method MATH GSM-H H-Eval+ MMLU GPQA Avg.

Qwen2.5-72B-Instruct
Single 85.86 64.91 85.37 82.60 44.39 72.63
COT 86.90 62.27 84.15 83.20 47.86 72.88
Self-Con. 87.32 61.46 87.20 83.40 50.00 73.88
LLM-Debate 85.24 63.49 68.90 86.20 47.86 70.34
Self-Refine 83.58 59.03 78.66 85.40 43.32 70.00
Q-D 85.65 63.08 76.83 82.80 48.66 71.40
SPP 85.65 62.88 82.32 83.40 48.40 72.53
AgentVerse 84.82 59.43 81.10 83.20 44.65 70.64
GPTSwarm 83.16 63.89 83.54 84.60 44.92 72.02
DyLAN 87.73 63.08 85.37 84.40 51.07 74.33
MAS-GPT 87.53 66.33 85.98 83.80 48.66 74.46

GPT-4o-mini-2024-07-18
Single 78.18 58.03 86.25 78.56 38.03 67.81
COT 78.79 60.84 85.62 79.16 39.60 68.80
Self-Con. 81.62 59.04 85.00 80.96 39.82 69.29
LLM-Debate 79.60 60.84 86.25 80.76 37.81 69.05
Self-Refine 74.55 54.62 76.88 79.16 33.33 63.71
Q-D 79.80 59.64 84.38 79.76 37.58 68.23
SPP 77.58 57.63 86.25 77.96 37.58 67.40
AgentVerse 75.15 55.62 79.38 78.36 36.24 64.95
GPTSwarm 75.15 55.62 79.38 78.36 36.32 64.97
DyLAN 81.21 59.24 80.62 79.96 40.94 68.39
MAS-GPT 81.21 61.45 86.88 80.36 42.60 70.50

Comparisons with task-specific methods,
AFlow. To further demonstrate the generality
and effectiveness of our MAS-GPT during in-
ference time, we compare with AFlow (Zhang
et al., 2024), a latest task-specific method for
MAS optimization that has been specifically
optimized on MATH (Hendrycks et al., 2021b)
dataset. We evaluate on two AFlow’s in-
domain (MATH and GSM8K) and two AFlow’s
out-domain (MMLU and HumanEval+) bench-
marks. Results in Figure 4(b) show surpris-
ingly good performance of our proposed MAS-
GPT. As a general method, our MAS-GPT even
outperforms math-specific AFlow on the MATH
dataset by 3.53%! Meanwhile, the MAS opti-
mized on MATH by AFlow fails to generalize
to other domains, achieving worse performance
than a single LLM. In contrast, our MAS-
GPT consistently performs the best across these
benchmarks. It is also worth mentioning that
our MAS-GPT only requires one-time infer-
ence of a 32B-sized LLM to build the MAS;
while AFlow needs to call the APIs of pow-
erful proprietary LLMs, such as Claude-3.5-
Sonnet (Anthropic, 2024), 10 times per query and depends on a hold-out validation set.

Cost comparisons. Here, we compare the inference cost of various methods from the moment a
user query is received to the generation of the final answer, as illustrated in Figure 4(c). We quantify
the inference cost in terms of the number of LLM inference calls (Liu et al., 2024b), interpreting the
inference of MAS-GPT as 0.5 times, given that its model size is approximately half that of the MAS-
driving LLM (32B v.s. 70B). From the figure, we observe that, among the four methods compared,
MAS-GPT achieves the best performance while requiring the fewest inference calls, demonstrating
its efficiency and effectiveness.

4.3 ANALYSIS OF MAS-GPT

1https://huggingface.co/datasets/Maxwell-Jia/AIME 2024

8

https://huggingface.co/datasets/Maxwell-Jia/AIME_2024

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 3: Ablation studies on the designs of dataset
construction: (1) our inter-consistency-oriented pair
selection, (2) the adjustment of MAS in our intra-
consistency-oriented pair refinement: Refine-A, (3)
the introduction of reasoning process in our intra-
consistency-oriented pair refinement: Refine-R. The
table shows that these three designs all play critical
roles in achieving high task performance.

Select Refine-A Refine-R MATH MMLU GPQA

➀ ✗ ✓ ✓ 60.26 77.58 36.68
➁ ✓ ✗ ✓ 66.23 77.78 36.45
➂ ✓ ✓ ✗ 64.90 75.96 37.15
➃ ✓ ✓ ✓ 68.65 78.38 37.62

Effectiveness of inter-consistency-oriented
pair selection. During data construction, to
facilitate the model in recognizing generaliz-
able patterns between queries and MAS, we
propose an inter-consistency-oriented query-
MAS pair selection method, which maps sim-
ilar queries with consistent high-performing
MAS. To examine its effectiveness, we re-
place this mapping with a random mapping
approach, which randomly selects one out of
those MAS with correct answers. From Ta-
ble 3, by comparing ➀ and ➃, we see that
our proposed method brings significant per-
formance gain, with an absolute improvement
of 8.39% on MATH.

Effectiveness of intra-consistency-oriented pair refinement. During data construction, to help
the model learn the associations between query and MAS, we propose an intra-consistency-oriented
query-MAS pair refinement method. This method enhances the query-MAS alignment by adjusting
MAS to make it query-dependent and introducing a reasoning process to strengthen the logical
connection. To examine their effects, we conduct two experiments with one without adjustment of
MAS and one without reasoning process. From Table 3, by comparing ➁ and ➃, ➂ and ➃, we see
that our designs in adjusting MAS and introducing reasoning process both contribute to performance
improvement, indicating the effectiveness of our proposed refinement method.

Scaling effects of data size. To explore the scaling effects of data size for training MAS-GPT, we
adjust the size from 0 to 11k using the same 32B-sized model and compare the extractability (i.e., the
Python code can be extracted), executability (i.e., the code is executable), task performance. Results
in Figure 5(a) show that except for the extractability under 0 data sample (the base model knows
that it needs to generate Python code, but do not know what codes are needed), the extractability and
executability generally improves with the data scale. Results in Figure 5(b) show (1) the base model
is unable to generate an effective MAS in zero-shot setting, indicating the necessity for training
MAS-GPT. Overall, we observe a promising scaling trend of training MAS-GPT: more data leads to
better performance.

Scaling effects of model size. Here, we compare the performance of MAS-GPT trained based on
7B, 14B, and 32B models. Results in Figure 5(c) show that the performance of MAS-GPT improves
steadily with the growing model size. Overall, these findings demonstrate the promising potential
of MAS-GPT, suggesting that it can be further improved with more diverse, high-quality data and
stronger models as the community continues to advance.

Case study. To offer an intuitive understanding, we present several examples in Appendix show-
casing the query, the MAS-GPT-generated reasoning process, and the MAS-GPT-generated MAS.
These show that MAS-GPT can generate query-specific MAS (Section A.1), generalize to unseen
queries (Section A.2), generate novel MAS (Section A.3).

5 CONCLUSION

Building MAS was time-consuming and resource-intensive. This paper aims to streamline this pro-
cess into a single LLM inference, making MAS creation as effortless as querying ChatGPT. To this
end, we introduce MAS-GPT, an LLM specifically trained to generate executable MAS from arbi-
trary user queries. Our approach follows a data-driven spirit, leveraging a consistency-oriented data
construction pipeline to enhance the coherence and consistency of data pairs. We conduct extensive
experiments, comparing MAS-GPT against 10+ baseline methods across 9 benchmarks, using 4 dif-
ferent LLMs as MAS drivers. The results consistently demonstrate that MAS-GPT outperforms all
baselines, strongly validating its effectiveness and generalizability. Additionally, we observe MAS-
GPT’s potential to further enhance state-of-the-art reasoning capabilities, as well as its scalability
for continued improvements. We believe MAS-GPT can accelerate the adoption of MAS, inspiring
future research and real-world applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

REFERENCES

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, 2024. Accessed: 2025-01-22.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors. In The Twelfth International Conference on Learning Representa-
tions, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
tuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data
creation with 1,000,000,000 personas. arXiv preprint arXiv:2406.20094, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021b.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2024.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In NeurIPS 2024
Workshop on Open-World Agents, 2024.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\” ulu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shum-
ing Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through
multi-agent debate. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
17889–17904, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.992. URL https://aclanthology.org/2024.
emnlp-main.992/.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158–167,
2017.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network
for task-oriented agent collaboration. In First Conference on Language Modeling, 2024b.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
instruction tuning. In International Conference on Machine Learning, pp. 22631–22648. PMLR,
2023.

Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
foundation models. In Automated Reinforcement Learning: Exploring Meta-Learning, AutoML,
and LLMs, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence. https://openai.com/index/gpt-4o-mini-
advancing-cost-efficient-intelligence/, 2024a. Accessed: 2025-01-23.

OpenAI. Introducing openai o1-preview. https://openai.com/index/
introducing-openai-o1-preview/, 2024b. Accessed: 2025-01-22.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. NIPS, 35:27730–27744, 2022.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 15174–15186, 2024a.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024b.

Qwen. Qwq: Reflect deeply on the boundaries of the unknown. https://qwenlm.github.
io/blog/qwq-32b-preview/, 2024. Accessed: 2025-01-27.

11

https://aclanthology.org/2024.emnlp-main.992/
https://aclanthology.org/2024.emnlp-main.992/
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Co-
han, and Mark Gerstein. MedAgents: Large language models as collaborators for zero-shot med-
ical reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2024, pp. 599–621, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.33. URL
https://aclanthology.org/2024.findings-acl.33/.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level scien-
tific problem-solving abilities of large language models. In Forty-first International Conference
on Machine Learning, 2024a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2024b.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. In Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 257–279, 2024c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-generated Text, pp. 94–106, 2017.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow com-
plex instructions. In The Twelfth International Conference on Learning Representations, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. arXiv preprint arXiv:2410.10762, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. LlamaFactory: Uni-
fied efficient fine-tuning of 100+ language models. In Yixin Cao, Yang Feng, and Deyi Xiong
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 3: System Demonstrations), pp. 400–410, Bangkok, Thailand, August 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-demos.38. URL https:
//aclanthology.org/2024.acl-demos.38/.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2023.

12

https://aclanthology.org/2024.findings-acl.33/
https://aclanthology.org/2024.acl-demos.38/
https://aclanthology.org/2024.acl-demos.38/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 4: Statistics of MAS-GPT’s training dataset. We show the number of samples Ndata; the
averaged instruction Lins; the averaged response Lres, reasoning Lrsn, and MAS length LMAS ;
and the number of unique MAS NMAS .

Ndata Lins Lres Lrsn LMAS NMAS

11442 ∼ 75.0 ∼ 1062.3 ∼ 262.5 ∼ 784.8 7580

Table 5: Case 1: user query and the reasoning process generated by our MAS-GPT. MAS-GPT
firstly analyzes the domain, difficulty, and required knowledge, then propose the idea of what multi-
agent system is appropriate.

Query The following is a multiple-choice question: Which of the following state-
ments about any two events A and B is true?

The following choices are provided:
(A) P (A ∪B) implies events A and B are independent.
(B) P (A ∪B) = 0 implies events A and B are mutually exclusive.
(C) P (A ∩B) implies events A and B are independent.
(D) P (A ∪B) implies events A and B are mutually exclusive.
(E) P (A ∩B) = 0 implies events A and B are mutually exclusive.
(F) P (A ∩B) = 1 implies events A and B are independent.
(G) P (A ∪B) = 1 implies events A and B are independent.
(H) P (A ∩B) = 1 implies events A and B are mutually exclusive.
(I) P (A ∪B) = 1 implies events A and B are mutually exclusive.
(J) P (A ∩B) = 0 implies events A and B are independent.

Please finish your answer with ”the answer is (X)” where X is the cor-
rect letter choice.

Reasoning
generated by
MAS-GPT

The question is a multiple-choice problem in the domain of probability
theory, specifically focusing on the relationships between events, such as
independence and mutual exclusivity. The difficulty lies in the need for precise
understanding of probability concepts and their implications, as well as the
ability to analyze and evaluate multiple statements to identify the correct one.
This requires both theoretical knowledge and logical reasoning.

To address this question effectively, a multi-agent system should include
agents that specialize in analyzing the relationships between events in proba-
bility theory. Each agent should focus on a specific aspect of the problem, such
as independence, mutual exclusivity, or the implications of specific probability
values (e.g., P (A∩B) = 0 or P (A∪B) = 1). By dividing the task into these
focused analyses, the system ensures comprehensive coverage of the problem
space. Additionally, a final decision-making agent is necessary to synthesize
the insights from all agents and provide a well-reasoned final answer. This
structure ensures that the system can handle the complexity of the question
while leveraging the strengths of specialized reasoning agents. The system is
designed to align with the specific requirements of the question, ensuring that
each agent contributes relevant and precise insights to the solution process.

A CASE STUDY

A.1 MAS-GPT CAN GENERATE QUERY-SPECIFIC MAS

From Table 5, we see that given a query, MAS-GPT first provides a reasoning process in analyzing
the domain, difficulty, and required knowledge of the query. Secondly, MAS-GPT analyzes what
multi-agent system is appropriate for addressing the question effectively and decides the required
agents and structure.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

(a) Visualization of Case 1 (b) Visualization of Case 2 (c) Visualization of Case 3

Figure 6: Visualization of three cases. (a) MAS-GPT can generate query-specific MAS. (b) MAS-
GPT can generalize to unseen queries. (c) MAS-GPT can generate novel MAS.

Finally, MAS-GPT generates a query-specific MAS (Listing 1 and Figure 6(a)), which involves five
agents with specific tasks targeting the query and a final decision-making agent to provide the final
answer.

This indicates that MAS-GPT can flexibly generate a query-specific MAS within one single LLM
inference.

A.2 MAS-GPT CAN GENERALIZE TO UNSEEN QUERIES

From Table 6, we see that given a query whose domain is unseen from our training dataset, MAS-
GPT still works well. Specifically, it first analyzes the involved domain, the required understandings,
and the difficulty of the given query. Secondly, it figures out a well-suited multi-agent system to
answer the query, which directly mentions what agents and what structure are appropriate.

Finally, MAS-GPT generates a query-specific MAS (Listing 2 and Figure 6(b)), which involves four
parallel pipelines: two pipelines that answer the query via coding and two pipelines that directly
answer the query. The first two pipelines are both consisted of two agents: one for writing and
executing the code, and one for organizing the final answer. Finally, an aggregation agent reasons
over the four solutions and provides the final answer.

This indicates that MAS-GPT can generalize to unseen queries and generate appropriate MAS.

A.3 MAS-GPT CAN GENERATE NOVEL MAS

From Table 7 and Listing 3 (Figure 6(c)), we see that given a query, the MAS-GPT proposes a novel
MAS that is unseen from our base MAS pool. Specifically, it builds an MAS with five parallel
pipelines, where each pipeline actually involves an agent for answering the question and another
agent for refining the solution. Finally, a decision-making agent is introduced to provide the final
answer.

This shows that MAS-GPT is not merely memorizing the data during training, but actually learns
patterns of designing MAS, indicating the generalization ability of our proposed MAS-GPT.

Listing 1: Case 1: Multi-agent system generated by MAS-GPT. MAS-GPT can generate query-
specific MAS. MAS-GPT designs five independent responding agents, each responsible for different
aspects of the task.
1 from utils import *
2

3 class MAS():
4 def __init__(self, model_list):
5 self.llm = LLM(model_list)
6

7 def forward(self, taskInfo):
8 """
9 A multi-agent system for solving probability-related multiple-

choice questions.
10

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

11 Steps:
12 1. 5 agents analyze the task independently, each focusing

on a specific aspect of probability theory.
13 2. A final decision-making agent reasons over the

solutions and provides the final solution.
14 """
15

16 # Step-by-step instruction for each agent to reason and
generate answer

17 instructions = [
18 f"Task: {taskInfo}\n\nFocus on analyzing the relationship

between events A and B in terms of independence. Solve
the task.",

19 f"Task: {taskInfo}\n\nFocus on analyzing the relationship
between events A and B in terms of mutual exclusivity.
Solve the task.",

20 f"Task: {taskInfo}\n\nFocus on the implications of P(A \
cup B) and P(A \cap B) on the relationship between
events A and B. Solve the task.",

21 f"Task: {taskInfo}\n\nFocus on the definitions and
properties of probability union and intersection.
Solve the task.",

22 f"Task: {taskInfo}\n\nFocus on identifying any logical
inconsistencies or impossibilities in the given
choices. Solve the task."

23]
24

25 # Call the llm to generate each solution
26 cot_results = [self.llm.call_llm(instruction) for instruction

in instructions]
27

28 # Get the instruction for the final decision-making agent
based on all generated solutions

29 final_decision_instruction = self.
get_final_decision_instruction(taskInfo, cot_results)

30

31 # Call the llm to process the final decision-making
instruction and generate the final answer

32 final_decision_result = self.llm.call_llm(
final_decision_instruction)

33

34 # Return the final solution
35 return final_decision_result
36

37 def get_final_decision_instruction(self, taskInfo, cot_results):
38 """
39 Format an instruction for final decision-making based on a

given task description and a list of solutions.
40

41 Args:
42 taskInfo (str): A description of the task that needs to be

completed.
43 cot_results (list): A list containing solutions or

reasoning steps for the task.
44

45 Returns:
46 str: A formatted instruction that includes the task

description, each solution, and a prompt for final
decision-making.

47 """
48

49 # Initialize the instruction text with a general guideline
50 instruction = f"Task:\n{taskInfo}\n\n"
51

52 # Append each solution from cot_results to the instruction

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

53 for i, result in enumerate(cot_results):
54 instruction += f"Solution {i+1}:\n{result}\n\n" # Number

each solution for clarity
55

56 # Add the final prompt to encourage reasoning over the
solutions and provide a final answer

57 instruction += "Given all the above solutions, reason over
them carefully and provide a final answer to the task."

58

59 # Return the complete instruction text
60 return instruction

Table 6: Case 2: user query and the reasoning process generated by our MAS-GPT. MAS-GPT firstly
analyzes the domain,required elements, and the difficulty, then propose the idea of what multi-agent
system is appropriate.

Query An electric dipole consisting of charges of magnitude 1.50nC separated by
6.20µm is in an electric field of strength 1100 N/C. What is the magnitude of
the electric dipole moment?

Reasoning
generated by
MAS-GPT

The question involves calculating the magnitude of the electric dipole moment,
a concept rooted in physics, specifically in the domain of electromagnetism.
The problem requires understanding the relationship between the charges,
their separation, and the resulting dipole moment. While the mathematical
computation is straightforward, the problem demands precise application of
the formula for the dipole moment and careful handling of units, which adds a
layer of complexity.

To address this, one would analyze the question by identifying the key
variables (charge magnitude, separation distance) and the formula (dipole
moment = charge × separation).

A multi-agent system is well-suited for this task because it can leverage
multiple approaches to ensure accuracy and robustness. First, agents can
independently break down the problem into steps, generate Python code to
compute the solution, and execute the code to verify the calculations. This en-
sures that the solution is not only theoretically correct but also computationally
validated. Additionally, other agents can directly generate solutions without
code, providing a baseline for comparison. Finally, an evaluation agent can
synthesize the outputs from all agents, ensuring consistency and selecting the
most reliable solution. This multi-faceted approach is particularly effective
for scientific problems where both analytical and computational accuracy are
critical.

Listing 2: Case 2: Multi-agent system generated by MAS-GPT. MAS-GPT can generalize to unseen
queries from SciBench (Wang et al., 2024a), generating an appropriate multi-agent system to handle
the query.
1 from utils import *
2

3 class MAS():
4 def __init__(self, model_list):
5 self.llm = LLM(model_list)
6

7 def forward(self, taskInfo):
8 """
9 A multi-agent system for solving math problems by executing code

and directly answering.
10 Steps:
11 1. 2 agents independently solves the problem by breaking it

down into steps and generating code, where each agent

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

organizes the solution based on the code execution results
, ensuring clarity and correctness.

12 2. 2 agents generate a solution directly, which provides
baseline solutions especially when code generation is
challenging

13 3. A final agent evaluates all the solutions and determines
the final solution.

14 """
15 # 4 parallel pipelines to solve the problem independently
16 solutions = []
17

18 # The first two pipelines generate code to solve the problem
19 for _ in range(2):
20 answer, output = self.generate_code_get_output(taskInfo)
21 solution = self.organize(taskInfo, answer, output)
22 solutions.append(solution)
23

24 # The third pipeline generates a solution directly
25 for _ in range(2):
26 solution = self.llm.call_llm(taskInfo)
27 solutions.append(solution)
28

29 # Determine the final solution based on the generated
solutions

30 final_solution = self.get_final_solution(taskInfo, solutions)
31 return final_solution
32

33 def generate_code_get_output(self, taskInfo):
34 """
35 Generate Python code to solve the mathematical problem and execute

the code to get the output.
36 Args:
37 taskInfo (str): The mathematical problem to be solved.
38 Returns:
39 a tuple containing:
40 - str: The answer generated by the LLM model.
41 - str: The output of the code execution.
42 """
43 code_generation_instruction = f"""You are an expert in solving

mathematical problems.
44 **Problem:**
45 {taskInfo}
46 **Instructions:**
47 1. Analyze the problem and list the steps required to solve it.
48 2. Generate Python code that can help solve the problem. The code

should:
49 - Print important intermediate results in the calculation process,

along with clear explanations.
50 - Store the final calculation result in a variable named ‘output‘.

This variable should contain the final result of the computation
and be defined at the global scope.

51 - Be directly executable. The code should run and produce a result
when executed.

52 Wrap your final code solution in <Code Solution> and </Code Solution>.
For example:

53 <Code Solution>
54 Your function code here
55 </Code Solution>
56 """
57 # Call ‘generate_and_extract_code‘ to generate answer and

extract the code
58 answer, code = generate_and_extract_code(llm=self.llm, prompt=

code_generation_instruction)
59

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

60 # Call ‘execute_code‘ to execute the generated code and get
output

61 output = execute_code(code)
62 return answer, output
63

64 def organize(self, taskInfo, answer, result):
65 """
66 Organize the solution based on the code execution results.
67 Args:
68 taskInfo (str): The mathematical problem to be solved.
69 answer (str): The initial solution generated by the LLM model.
70 result (str): The output of the code execution.
71 Returns:
72 str: The organized solution based on the code execution

results.
73 """
74 organize_instruction = f"""**Problem:**
75 {taskInfo}
76 **Initial Solution:**
77 {answer}
78 **Code Execution Result:**
79 {result}
80 To solve the **Problem**, the **Initial Solution** provides steps and

python code for calculations. The **Code Execution Result** is the
output of the code.

81 Based on the **Initial Solution** and **Code Execution Result**,
provide a final solution to the problem. Include the results of
the code calculation in your response. Your final response should
be complete as if you are directly answering the problem."""

82 solution = self.llm.call_llm(organize_instruction)
83 return solution
84

85 def get_final_solution(self, taskInfo, solutions):
86 """
87 Evaluate the solutions provided by the agents and determine the

final solution.
88 Args:
89 taskInfo (str): The mathematical problem to be solved.
90 solutions (list): A list of solutions provided by the agents.
91 Returns:
92 str: The final solution to the mathematical problem.
93 """
94 # Prepare the solutions in a numbered format for evaluation
95 solutions_str = ""
96 for i, solution in enumerate(solutions):
97 solutions_str += f"Solution {i+1}\n{solution}\n\n"
98

99 final_solution_instruction = f"""**Problem:**
100 {taskInfo}
101 **Solutions:**
102 {solutions_str}
103 Several solutions are given to solve the problem. Carefully evaluate

these solutions. This consistency in answers is crucial for
determining the most reliable solution.

104 You should provide a final solution to the problem. Your final
response should be complete as if you are directly answering the
problem."""

105 final_solution = self.llm.call_llm(final_solution_instruction)
106 return final_solution

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 7: Case 3: user query and the reasoning process generated by our MAS-GPT. MAS-GPT
firstly analyzes the domain, difficulty, and required knowledge, then propose the idea of what multi-
agent system is appropriate.

Query The following is a multiple-choice question: Suppose that there are two firms
in the market facing no costs of production and a demand curve given by Q
= 150 - P for their identical products. Suppose the two firms choose prices
simultaneously as in the Bertrand model. Compute the prices in the nash
equilibrium.

The following choices are provided:
(A) 30
(B) 50
(C) 0
(D) 25
(E) 150
(F) 75
(G) 90
(H) 120
(I) 100
(J) 60

Please finish your answer with ”the answer is (X)” where X is the correct letter
choice.

Reasoning
generated by
MAS-GPT

The question pertains to a classic economic problem in the domain of game
theory and microeconomics, specifically focusing on the Bertrand model of
price competition. The difficulty lies in understanding the strategic interaction
between two firms, the implications of no production costs, and the Nash
equilibrium concept. Solving this requires both theoretical knowledge of
economic models and the ability to apply mathematical reasoning to derive the
equilibrium price.

To address such a question, one must first break it down into its core
components: the demand curve, the firms’ identical products, and the simulta-
neous price-setting behavior.

A multi-agent system is well-suited for this task because it can leverage
multiple perspectives to ensure accuracy and depth in reasoning. By employ-
ing agents that independently analyze the problem, generate solutions, and
refine their responses through iterative feedback, the system ensures a robust
exploration of the problem space. This approach is particularly valuable for
a question like this, where multiple solution paths (e.g., algebraic derivation,
economic intuition) can lead to the correct answer. The iterative refinement
process allows for cross-verification of solutions, reducing the likelihood of
errors. Finally, a decision-making agent synthesizes the diverse solutions,
ensuring that the final answer is both logically sound and consistent with the
principles of the Bertrand model. This structured reasoning process aligns
with the complexity of the question and ensures a reliable outcome.

Listing 3: Case 3: Multi-agent system generated by MAS-GPT. MAS-GPT can generate novel MAS.

1 from utils import *
2

3 class MAS():
4 def __init__(self, model_list):
5 self.llm = LLM(model_list)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

6

7 def forward(self, taskInfo):
8 """
9 A multi-agent system for solving general tasks.

10

11 Steps:
12 1. 5 agents solve the task independently.
13 2. Each agent reflects on the solutions and provides an

improved solution.
14 3. A final decision-making agent reasons over the improved

solutions and provides the final solution.
15 """
16 # Step-by-step instruction for each agent to reason and

generate answer
17 instruction = f"Task: {taskInfo}\n\nPlease solve the task."
18

19 # Set the number of solutions to generate; using 5 for variety
and diversity

20 N = 5
21 # Call the llm to generate each solution
22 cot_results = [self.llm.call_llm(instruction) for _ in range(N

)]
23

24 # Get the instruction for the self-refine process based on all
generated solutions

25 self_refine_instruction = self.get_self_refine_instruction(
taskInfo, cot_results)

26

27 # Call the llm to refine each solution
28 refined_results = [self.llm.call_llm(self_refine_instruction)

for _ in range(N)]
29

30 # Get the final decision-making instruction based on all
refined solutions

31 final_decision_instruction = self.
get_final_decision_instruction(taskInfo, refined_results)

32

33 # Call the llm to process the final decision-making
instruction and generate the final answer

34 final_decision_result = self.llm.call_llm(
final_decision_instruction)

35

36 # Return the final solution
37 return final_decision_result
38

39 def get_self_refine_instruction(self, taskInfo, cot_results):
40 """
41 Format an instruction for self-refinement based on a given

task description and a list of solutions.
42

43 Args:
44 taskInfo (str): A description of the task that needs to be

completed.
45 cot_results (list): A list containing solutions or

reasoning steps for the task.
46

47 Returns:
48 str: A formatted instruction that includes the task

description, each solution, and a prompt for self-
refinement.

49 """
50

51 # Initialize the instruction text with a general guideline
52 instruction = f"Task:\n{taskInfo}\n\n"
53

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

54 # Append each solution from cot_results to the instruction
55 for i, result in enumerate(cot_results):
56 instruction += f"Solution {i+1}:\n{result}\n\n" # Number

each solution for clarity
57

58 # Add the final prompt to encourage self-refinement and
improvement

59 instruction += "Given all the above solutions, reason over
them carefully and provide an improved solution to the
task."

60

61 # Return the complete instruction text
62 return instruction
63

64 def get_final_decision_instruction(self, taskInfo, refined_results
):

65 """
66 Format an instruction for final decision-making based on a

given task description and a list of refined solutions.
67

68 Args:
69 taskInfo (str): A description of the task that needs to be

completed.
70 refined_results (list): A list containing refined

solutions for the task.
71

72 Returns:
73 str: A formatted instruction that includes the task

description, each refined solution, and a prompt for
final decision-making.

74 """
75

76 # Initialize the instruction text with a general guideline
77 instruction = f"Task:\n{taskInfo}\n\n"
78

79 # Append each refined solution from refined_results to the
instruction

80 for i, result in enumerate(refined_results):
81 instruction += f"Solution {i+1}:\n{result}\n\n" # Number

each solution for clarity
82

83 # Add the final prompt to encourage reasoning over the
solutions and provide a final answer

84 instruction += "Given all the above solutions, reason over
them carefully and provide a final answer to the task."

85

86 # Return the complete instruction text
87 return instruction

B VISUALIZATION OF OUR MAS POOL

We visualize several MAS in our MAS pool in Figure 7.

C ADDITIONAL EXPERIMENTAL SETUPS.

C.1 DESCRIPTIONS OF DATASETS

We provide an overall descriptions of the training and testing datasets in Table 9.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

(a) CoT (b) 5 CoT SC (c) Reflection (d) Scientific LLM Debate

(e) Math Ensemble (f) Test Refine (g) Test Fix Ensemble (h) Ensemble Format

(i) Quality Diversity (j) 3 LLM Debate (k) 3 Code Organize (l) Code Test

(m) Step Back Abstraction (n) Code LLM Debate (o) Dynamic Agent (p) Heuristic Simulation
Refine

(q) Priority Refine (r) Socratic Questioning (s) Strategy Engi-
neer—Scientist

(t) 2 Code 2 Basic Ensem-
ble

Figure 7: Visualization of our MAS pool

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

METHOD HUMANEVAL HUMANEVAL-PLUS MATH

CHATDEV (QIAN ET AL., 2024A) 83.33 84.04 62.07
MAS-GPT (OURS) 91.18 87.23 77.59

Table 8: Comparisons with task-specific method, ChatDev (Qian et al., 2024a), which is specifically
designed for software development.

Purpose Dataset Name Domain Sub-Domains Sample Number

Training

MATH (Hendrycks et al., 2021b) Math

Counting & Probabil-
ity
Geometry
Algebra
Number Theory
Precalculus
Prealgebra
Intermediate Algebra

6000

GSM8K (Cobbe et al., 2021) Math - 1000
GSM-Hard (Gao et al., 2023) Math - 319

AQUA-RAT (Ling et al., 2017) Reasoning - 1000
MBPP (Austin et al., 2021) Code - 374
SciQ (Welbl et al., 2017) General QA - 2000

MMLU (Hendrycks et al., 2021a) General QA

Humanities
Social Science
STEM
Others

1529

Testing

MATH (Hendrycks et al., 2021b) Math

Counting & Probabil-
ity
Geometry
Algebra
Number Theory
Precalculus
Prealgebra
Intermediate Algebra

500

GSM8K (Cobbe et al., 2021) Math - 500
GSM-Hard (Gao et al., 2023) Math - 500

HumanEval (Chen et al., 2021) Code - 164
HumanEval-Plus (Liu et al., 2023) Code - 164

GPQA (Rein et al., 2023) Science - 448
SciBench (Wang et al., 2024a) Science - 500

MMLU (Hendrycks et al., 2021a) General QA

Humanities
Social Science
STEM
Others

500

AIME-2024 Math - 30

Table 9: Descriptions of benchmarks

C.2 EVALUATIONS

In this section, we detail our evaluation approach. For queries with ground truth answers, we employ
LLMs to extract the MAS output and compare it with the ground truth. For code benchmarks like
HumanEval and MBPP, we assess correctness using test cases.

LLM-based Evaluation with Ground-Truth Answer We utilize LLMs to perform evaluation with
ground-truth answer. However, direct evaluation against the ground truth is incompatible as the LLM
annotates the response itself. To address this issue, we adopt a two-step evaluation process based
on the prompts used in AutoGen (Wu et al., 2023), first extract the answer, then evaluation. Here
the responses generated by multi-agent systems (MAS) are often unstructured and irregular, making
it difficult to extract the final answer to a query using rule-based methods. To avoid extraction
errors that could impact the evaluation of MAS performance, we use LLMs to automate the answer

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 10: The prompt for intra-consistency-oriented pair refinement. This prompt is fed to GPT-4o-
2024-11-20 to adjust the MAS and generate a reasoning statement. The prompt is integrated with a
user query and the selected MAS represented by Python code.

I will give you a question and a multi-agent system. The multi-agent system is described in
the format of Python code, where each agent is represented by an agent-specific instruction
and one call llm. Though the multi-agent system can answer the question, it may not be the
best one. You task is return me two things: an improved multi-agent system and a paragraph.

The improved multi-agent system should be more related to the question, while basically,
try not to change the architecture compared to the original multi-agent system.
- For example, if the multi-agent system is in a parallel structure (e.g., 5 parallel agents
generate answer and 1 agent select the best answer), you may keep the structure unchanged
while only changing each parallel agent’s instruction.
- If the multi-agent system is already suitable, you may only modify the instructions in the
multi-agent system more relevant to the question while leaving the structure unchanged.
- If you think additional agents are required (e.g., the question is difficult and complex), you
may add some related expert agents to enhance the multi-agent system.

The paragraph should first analyze the question itself, from the perspectives of domain and
difficulty. Then, you should provide a reasoning process to bridge the question and the
improved multi-agent system. The reasoning process should be in the views of that how
one analyzes the question and objectively thinks about what multi-agent system is needed.
Then, the reasoning process can finally and logically lead to the improved multi-agent
system. Do not mention “this multi-agent system”, or “the improved multi-agent system”,
rather, say “a multi-agent system” instead. Do not mention the original multi-agent system
or the original structure.

Please follow the following format requirements:
- The improved multi-agent system should be included between <CODE> and </CODE>
- The paragraph should be included between <PARAGRAPH> and </PARAGRAPH>

Please firstly generate the multi-agent system and then generate the paragraph. The
paragraph should analyze about the question and the generated multi-agent sytem, such that
when one sees the (question, paragraph, the improved multi-agent system) triplet (wihtout
the original multi-agent system), one can understand the reasoning process behind the
improved multi-agent system. Notice! The paragraph should never mention the original
multi-agent system or the original structure.

The question is:
{query}

The multi-agent system is:
{MAS code}

extraction process. Specifically, we prompt the LLM to extract the answer from the MAS response
based on predefined rules and then ask the LLM to compare it with the ground truth. The prompts
used for this process are detailed in Table 12.

Code Evaluation with Test Cases We evaluate the MAS performance on coding tasks based on
pass rate on test cases, with a two step approach: first, prompting the LLM to extract the code from
the MAS response, and second, executing it in a coding environment to calculate the pass rate; see
the prompts used for extract code and functions in Table 13.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 11: The prompt for generating a reasoning process if the refined MAS fails. This prompt is
fed to GPT-4o-2024-11-20 to generate a reasoning statement. The prompt is integrated with a user
query and a selected MAS represented by Python code.

I will give you a question and a multi-agent system. The multi-agent system is described in
the format of Python code, where each agent is represented by an agent-specific instruction
and one call llm. You task is return me a paragraph.

The paragraph should first analyze the question itself, from the perspectives of domain
and difficulty. Then, you should provide a reasoning process to bridge the question and
the provided multi-agent system. The reasoning process should be in the angle of views
that how one analyzes the question and objectively thinks about what multi-agent system
is needed. Then, the reasoning process can finally and logically lead to the provided
multi-agent system. Do not mention “this multi-agent system”, or “the provided multi-agent
system”, rather, say “a multi-agent system” instead.

The paragraph should analyze about the question and the provided multi-agent sytem, such
that when one sees the (question, paragraph, the provided multi-agent system) triplet, one
can understand the reasoning process behind the provided multi-agent system.

Remember, the paragraph should be included between ¡PARAGRAPH¿ and ¡/PARA-
GRAPH¿.

The question is:
{query}

The provided multi-agent system is:
{MAS code}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 12: Prompts for extract answer and answer evaluation.

You are a helpful AI assistant tasked with extracting the final answer from a provided
solution.

Input:
1. A problem statement, prefixed with ”===Problem: <problem>”.
2. A solution to the problem, prefixed with ”===Solution:<solution>”.

Problem and Solution:
===Problem: {query}

===Solution: {response}

Instructions:
- Carefully analyze the solution and extract the final answer in reply: ”The answer is
<answer extracted> in reply”.
- If the solution does not contain a final answer (e.g., only reasoning, code without execu-
tion, or incomplete information), respond with: ”The reply doesn’t contain an answer.”
- Ensure that the extracted answer is exactly as presented in the solution. Do not infer or use
external knowledge. Do not execute the code yourself.
- Remember, Never execute the code yourself! Never doing any computation yourself! Just
extract and output the existing answer!

You are a helpful AI assistant. You will use your coding and language skills to verify the
answer.
You are given:
1. A problem, which is going to start like ”===Problem: <problem>”.
2. A ground truth answer, which is going to start like ”===Ground truth answer:”.
3. A reply with the answer to the problem, which are going to start like ”===Reply:”.
Please do the following:
1. Extract the answer in reply: ”The answer is <answer extracted> in reply”.
2. Check whether the answer in reply matches the ground truth answer. When comparison is
not obvious (for example, 3*sqrt(6) and 7.348), you may compare by calculation, allowing
a small margin of error.
3. After everything is done, please give each reply a comment like the following options:
- ”The answer is correct.”
- ”The answer is approximated but should be correct. Correct Answer: <ground truth
answer> | Answer extracted: <answer extracted>.”
- ”The answer is incorrect. Correct Answer: <ground truth answer> | Answer
extracted: <answer extracted>.”
- ”The reply doesn’t contain an answer.”
Here are the problem, the ground truth answer and the reply:
===Problem: {query}

===Ground truth answer: {ground truth answer}

===Reply: {Reply}

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 13: Prompts for extract code and functions.

You are given a **Problem** and a **Solution**. The **Problem** asks for a code
function. Extract the final code function from the **Solution**.
Problem:
{query}

Solution:
{solution}

Please follow the following rules:
- Only output the code function that exists in the **Solution**, without any additional ex-
planation or content.
- Do not modify any part of the code function.
- Remove parts like ’example use’ or ’test cases’.
- If the **Solution** does not contain a code function, respond with: ”The reply doesn’t
contain a code function.”

28

	Introduction
	Related Work
	Methodology
	Overall System Integrated with MAS-GPT
	MAS-GPT: Dataset Construction and Training
	Discussions

	Experiments
	Experimental Setups
	Main Results
	Analysis of MAS-GPT

	Conclusion
	Case Study
	MAS-GPT Can Generate Query-Specific MAS
	MAS-GPT Can Generalize to Unseen Queries
	MAS-GPT Can Generate Novel MAS

	Visualization of Our MAS pool
	Additional Experimental Setups.
	Descriptions of Datasets
	Evaluations

