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Abstract
Training models to effectively use test-time com-
pute is crucial for improving the reasoning per-
formance of LLMs. Current methods mostly do
so via fine-tuning on search traces or running RL
with 0/1 outcome reward, but do these approaches
efficiently utilize test-time compute? Would these
approaches continue to scale as the budget im-
proves? To answer these questions, in this paper,
we formalize the problem of optimizing test-time
compute as a meta-reinforcement learning (RL)
problem, which provides a principled perspective
on spending test-time compute. This perspective
enables us to view the long output stream from the
LLM as consisting of several episodes run at test
time and leads us to use a notion akin to cumula-
tive regret over output tokens as a way to measure
the efficacy of test-time compute. Akin to how RL
algorithms can best tradeoff exploration and ex-
ploitation over training, minimizing regret should
also provide the best balance between exploration
and exploitation in the token stream. While we
show that state-of-the-art models do not minimize
regret, one can do so by maximizing a dense re-
ward bonus in conjunction with the outcome 0/1
reward RL. This bonus is the “progress” made
by each subsequent block in the output stream,
quantified by the change in the likelihood of even-
tual success. Using these insights, we develop
Meta Reinforcment Fine-Tuning, or MRT, a new
class of fine-tuning methods for optimizing test-
time compute. MRT leads to a 2-3x relative gain
in performance and roughly a 1.5x gain in token
efficiency for math reasoning.

1. Introduction
Recent results in LLM reasoning (Snell et al., 2024) il-
lustrate the potential to improve reasoning capabilities by
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scaling test-time compute. Generally, these approaches train
models to produce traces that are longer than the typical cor-
rect solution, and consist of tokens that attempt to implement
some “algorithm”, e.g., reflecting on previous answers (Qu
et al., 2024; Kumar et al., 2024), planning (DeepSeek-AI
et al., 2025), or implementing some form of linearized
search (Gandhi et al., 2024). These approaches include
explicitly fine-tuning pre-trained LLMs for algorithmic be-
havior, e.g., SFT on search data (Gandhi et al., 2024; Nie
et al., 2024), or running outcome-reward RL (DeepSeek-AI
et al., 2025) against a 0/1 correctness reward.

While training models to spend test-time compute by gen-
erating long reasoning chains via outcome-reward RL has
been promising, for continued gains from scaling test-time
compute, we ultimately need to answer some critical under-
standing and method design questions. First, do current
LLMs efficiently use test-time compute? That is, do they
spend tokens roughly in the ballpark of the typical solution
length or do they use too many tokens even on easy ques-
tions? Second, would LLMs be able to “discover” solutions
to harder questions when run at much larger test-time to-
ken budgets than what was used for training? Ultimately,
we would want models to derive enough utility from ev-
ery token (or any semantically meaningful segment) they
produce, not only for efficiency but also because doing so
imbues a systematic procedure to discover solutions for
harder, out-of-distribution problems.

In this paper, we formalize the above challenges in optimiz-
ing test-time compute through the lens of meta reinforce-
ment learning (RL) (Weng, 2019). To build our approach,
we segment the output stream from an LLM on a problem
into multiple episodes (Figure 2). If we were to only care
about (a) the efficiency, then the LLM only needs to learn
to exploit and directly output the answer without spending
too many episodes. On the other hand, if the LLM is solely
focused on (b) the discovery, then exploration is more de-
sirable, so that the LLM can spend several episodes trying
different approaches, verifying and revising them, before
producing the final answer. Fundamentally, this is different
from traditional RL since the goal here is to learn an LLM
that implements explore-exploit algorithms on every test
problem. In other words, we aim to learn such algorithms
from training data, making this a meta RL learning problem.
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Figure 1. Standard outcome-reward reinforcement fine-tuning vs. MRT. Standard techniques for fine-tuning LLMs to use test-time
compute optimize outcome reward at the end of a long trace. This does not incentivize the model to make use of intermediate tokens
to make progress (i.e., probability of eventual success) and leads to 1) unnecessarily long output traces and 2) inability to make steady
progress on new, hard problems as shown in (a). MRT, shown in (b), trains the LLM to minimize cumulative regret over the entire output
stream (red, shaded area) by optimizing a dense reward function in addition to sparse 0/1 reward and thus alleviates both challenges in (a).

Figure 2. MRT uses dense rewards based on progress throughout
the thinking trace (segmented into “episodes”) to improve test-time
efficiency and performance. Standard fine-tuning only trains mod-
els with outcome rewards at the end, thus reinforcing several traces
that make subpar progress but somehow succeed (Figure 1(a)).

A desired “meta” behavior is one that strikes a balance be-
tween committing to an approach prematurely (i.e., an “ex-
ploitation” episode) and trying too many high-risk strategies
(i.e., an “exploration” episode). From meta RL literature,
we know that optimally trading off exploration and exploita-
tion is equivalent to minimizing cumulative regret over the
output token budget. This regret measures the difference
between the likelihoods of success of the LLM and an oracle
comparator, as illustrated by the red area in Figure 1(b).

By training an LLM to minimize cumulative regret on ev-
ery query, we learn a reasoning strategy that is agnostic of
the test-time budget, i.e., when deployed, the LLM spends
only the necessary amount of tokens while still making
progress when run at larger token budgets. We develop a
new class of fine-tuning methods for optimizing test-time
compute, which we refer to as Meta Reinforcement fine-
Tuning (MRT), by minimizing the cumulative regret. Cu-
mulative regret also provides a metric for evaluating the

effectiveness of SOTA reasoning models such as Deepseek-
R1 (DeepSeek-AI et al., 2025) in using test-time compute.

In particular, we show that SoTA LLMs fine-tuned with
outcome reward fail to improve their chances of discovering
the right answer with more episodes, i.e., they do not make
steady “progress” (illustration in Figure 1(a)), even though
this behavior is critical for solving hard unseen problems.
In fact, a much more naı̈ve approach of running substan-
tially fewer episodes coupled with majority voting is often
more effective on harder questions in a FLOPs-matched
evaluation (Figure 3). In contrast, we show that optimiz-
ing for progress in addition to outcome reward naturally
emerges when the objective is to minimize regret. Con-
cretely, our fine-tuning paradigm, MRT, prescribes a dense
reward bonus for RL training (Definition 4.1). This progress
reward measures the change in the likelihood of finishing at
a correct answer, before and after an episode is generated.
Intuitively, the progress made by an episode is akin to the
“information gained” about the underlying problem.

Empirically, we evaluate MRT in two settings that differ in
the way they parameterize episodes. For the first setting,
we employ the format of enclosing the reasoning process
in between <think> markers and fine-tune base models:
DeepScaleR-1.5B-Preview (Luo et al., 2025), DeepSeek-
R1-Distill-Qwen-1.5B, and DeepSeek-R1-Distill-Qwen-
7B (DeepSeek-AI et al., 2025), on a dataset of math reason-
ing problems. We find that MRT consistently outperforms
outcome-reward RL, achieving state-of-the-art results at
the 1.5B parameter scale across multiple benchmarks in
aggregate (AIME 2024/2025, AMC 2023, etc.), with im-
provements in accuracy approximately of 2-3x compared
to those obtained by standard outcome-reward RL (GRPO),
and 1.5–5x token efficiency over GRPO and base models.
In the second setting, we fine-tune Llama3.1 models (3B
and 8B) to implement backtracking search on math prob-
lems, where MRT achieves token efficiency improvements
of 30% over STaR (Zelikman et al., 2022) and 38% GRPO.
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We analyze MRT and show that it attains a lower cumulative
regret and makes more steady progress, even when extrapo-
lating to 2x larger token budgets than what it was trained on.
We also show that, unlike other methods for constraining
length, which typically come at the cost of accuracy, MRT
reduces the output length while boosting accuracy. We also
find that the output length oscillates during RL and that
length alone does not imply accuracy. Finally, we show
that recipes for iteratively scaling test-time budgets–which
have been noted to be more effective than training with a
large output budget from scratch–also implicitly maximize
progress and, hence, minimize regret.

2. Problem Formulation
In this section, we will formalize the problem of optimiz-
ing test-time compute as a meta RL problem. In the next
section, we will show that this meta RL perspective can be
used to evaluate if state-of-the-art models (e.g., Deepseek-
R1 (DeepSeek-AI et al., 2025)) are effectively and effi-
ciently using test-time compute. Finally, we will utilize
these ideas to develop a fine-tuning paradigm, called MRT,
to optimize test-time compute.

2.1. Optimizing Test-Time Compute
We want an LLM to attain maximum performance on Ptest

within test-time budget C0 (i.e., ∀x, Ez∼π(·|x)|z| ≤ C0):

max
π

Ex∼Ptest,z∼π(·|x) [r(x, z) | Dtrain] (1)

While this is identical to optimizing the test performance
like any standard ML algorithm, we emphasize that the bud-
get C0 used for evaluation is larger than the typical length
of a correct response. This means that the LLM π(·|x) can
afford to spend a part of the budget into performing opera-
tions that do not actually solve x but rather indirectly help
the model in discovering the correct answer eventually. For
example, consider a math proof question where the output
is composed of a sequence of steps. If the policy could
figure out that it should backtrack a few steps and restart
its attempt, it may not only increase its chances of success,
but also allow the LLM to confidently identify what steps to
avoid and be careful about. However, compute budget C0

does not necessarily equal to the deployment budget.

The conventional way of training an LLM to attain high out-
come reward (DeepSeek-AI et al., 2025; Kimi-Team, 2025)
given a fixed token budget is suboptimal. On problems
where the typical solution length is well below the maximal
token budget in training, this kind of training procedure
would encourage redundancy and inefficient use of tokens
as the model lacks incentive to develop more succinct re-
sponses. Now if the LLM is deployed with a budget less
than the one used for training, yet sufficient to solve the task,
the trained LLM might still not be able to finish responding.

While one way to address this issue is to force the model to

terminate early if it can, this strategy is suboptimal for com-
plex problems that require the model to potentially spend
more budget on attempting to discover the right approach.
In other words, training to succeed in the fewest tokens can
spuriously cause the model to prematurely “commit” to an
answer upon deployment, though this is not the best strategy.
Additionally, training with only outcome reward is again
suboptimal since it is unable to differentiate between solu-
tions that are still on track progress and solutions that are not
on track, if they both succeed or both do not succeed. We
would instead like the model to still be rewarded positively
for attempting to explore multiple approaches towards a
solution and spending more tokens if it is on track and can
succeed eventually. We therefore propose a different formu-
lation for optimizing test-time compute that trains LLMs
to be “optimal” at spending test-time compute, agnostic
of the training token budget utilized, thus alleviating any
commitment to a particular budget at test time.

Budget-agnostic LLMs. The only approach that can guaran-
tee optimal for any test-time compute budget is a “budget-
agnostic” strategy that imbues behavior that can work well
for multiple large enough budgets. To attain a high test
performance, an LLM π should exhibit behavior that trades
off between exploration and exploitation to make the most
use of the compute budget available.

2.2. Characterizing Optimal Use of Test-Time Compute
To develop a training paradigm to effectively use test-time
compute, we first need to understand the characteristics
of budget-agnostic LLMs that use test-time compute the
most optimally. One way to characterize these LLMs is by
explicitly segmenting the output stream z ∼ π(·|x) into a
sequence of meaningful blocks (i.e., episodes), and viewing
this sequence of episodes as some sort of an “adaptation”
procedure on the test problem. This segmentation then
allows us frame it as a meta-RL problem.

Formally, suppose that z can be divided into k contiguous

segments z def
= [z0, z1, · · · , zk−1]

1. As shown in Figure 2,
these episodes could consist of multiple attempts at a prob-
lem (Qu et al., 2024), alternating between verification and
generation (Zhang et al., 2024) such that successive gener-
ation episodes attain better performance, or be paths in a
search tree separated by backtrack markers.

We eventually want the LLM π to succeed in the last episode
it produces within the total budget, i.e., zk−1. However,
since we operate in a setting where the LLM is unaware of
the test-time deployment budget, we need to make sure that

1While there are many different strategies to segment z into
variable number of episodes, for simplicity we assume a fixed
number of episodes k in our exposition. Note that if a particular z
contains l ≥ k natural episodes, we can always choose to merge
the last l − k episodes into one for the purposes of our discussion.
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the LLM is constantly making progress and is able to effec-
tively strike the balance between “exploration”: producing
tokens that are irrelevant to the final answer (e.g., verifying
previous steps or trying a different strategy), but might help
in later episodes, and “exploitation”: attempting to simply
expand on a approach to get to an answer.

Building on this intuition, our key insight is that the adapta-
tion procedure implemented in the test-time token stream
can be viewed as running an RL algorithm on the test prob-
lem, where prior episodes serve the role of “training” data
for this purely in-context process. Under this abstraction,
an “optimal” algorithm is one that makes steady progress
towards discovering the solution for the problem with each
episode, balancing between discovery and exploitation. As
a result, we can use the metric of cumulative regret from
RL to also quantify the optimality of this process.

Definition 2.1 (Cumulative regret). Given k episodes
z generated from π(·|x), another LLM µ that computes
an estimate of the correct response given episodes so
far, and the optimal comparator policy given a j-episode
budget as π∗

j , we define cumulative regret ∆µ
k(x;π) as:

Ez∼π(·|x)

k−1∑
j=0

Jr(x;π
∗
j )− Jr(x;µ(·|x, z0:j))

.
Here Jr is the expected 0/1 outcome reward attained by
LLM µ when conditioning on prior episodes z0:j−1 pro-
duced by π, and Jr(π

∗) is the reward of the best possi-
ble budget-agnostic comparator π∗ that achievable via fine-
tuning within a j-episode test-time budget. The meta-prover
policy µ may be the same as or different from π. For ex-
ample, if each episode produced by π ends in an estimate
of the answer, then we can measure 0/1 correctness of this
answer in itself for computing ∆µ

k and set µ = π. If some
episodes produced by π do not end in a final answer (e.g.,
episodes within the “think” block), we can use a different µ
to help us extrapolate the answer. In our experiments, µ2 is
the policy induced by the same underlying LLM, obtained
by terminating the “think” block and forcing the model to
estimate the best possible answer. The red colored area
in Figure 1 denotes the cumulative regret. If the regret is
large or if it increases with the number of episodes k, then
we say that episodes z did not actually make meaningful
progress. On the other hand, the lower the rate of growth in
the regret, the more meaningful progress a budget-agnostic
LLM π makes as the budget grows.

3. Case Study: Analyzing DeepSeek-R1
Having defined the notion of cumulative regret, can we now
use it to analyze state-of-the-art models, such as derivatives

2While µ and π share the same underlying LLM, they represent
distinct policies with different trajectory distributions.

of the DeepSeek-R1 (DeepSeek-AI et al., 2025) family?
While we cannot necessarily compute the oracle comparator
π∗, we are still able to compare performance conditioned
on different numbers of episodes in the thought block. This
gives us a sense of whether the cumulative regret grows
only very slowly in T . To this end, we study the behavior of
the DeepSeek-R1-Distill-Qwen-32B model on two datasets:
AIME 2024 and a subset from OmniMATH (Gao et al.,
2024). In this context, an episode is defined as a continu-
ous segment of the model’s thought (i.e., text enclosed in
between the <think> and </think> markers) uninterrupted
by words such as “Wait” and “Alternatively” which break
the current flow of logic.
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Figure 3. R1 scaling curve on Omni-MATH subset. We compare
performance when terminating at the j-th episode: blue points
represent [maj@1]j , where the model continues reasoning up to
that point before answering; green points represent [maj@p]j
for p = 1, 2, 4, 8, where the model stops at the same point and
produces p completions for majority voting. Surprisingly, under
the same token and episode budget, early termination with multiple
completions (green) often outperforms continued reasoning (blue),
suggesting that overthinking can degrade performance.

We report our metrics in terms of the [maj@p]j metric,
in which we truncate the thought block produced by the
LLM to the first j episodes (z0:j−1) and steer it into im-
mediately producing the final solution (without producing
more episodes) conditioned on this truncated thought block.
We then sample such immediate answers p times and run a
majority vote over them to produce a single answer. p and
j are variables that parameterize the metric [maj@p]j that
we measure. We also found that terminating the model’s
thinking process early requires us to incorporate an inter-
mediate prompt that asks the model to “formulate a final
answer based on what it already has” because it has already
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spent enough time on this problem3. Observing [maj@p]j
evolve with j tells us if adding more episodes helps the
model make meaningful progress and discover the correct
solution. We compare this against the direct baseline, in
which we fine-tune the base model to produce “best guess”
responses directly (Qwen2.5-32B-Instruct model based on
the same base model; see Appendix I).

Analysis results. We plot the average accuracy of the model
at different episodes j = {0, · · · , k−1} as a function of the
test-time compute (measured in tokens and episodes) and
the episode index j in Figure 3. In particular, we average
across solutions that contain similar numbers of episodes
(total episodes = 6 - 10, 26 - 30, 41 - 45) to demonstrate the
relationship between steady improvement and total episodes.
We plot the performance of the direct baseline in orange,
and the performance of [maj@1]j at different j in blue. The
dashed green lines branching from the blue curve extend
average accuracy at the end of a given episode j, or alterna-
tively, [maj@1]j (note that maj@1 = average accuracy on
the given problem) to [maj@p]j for different number p of
solutions given the thinking trace.

Takeaways. When provided with a few episodes (top row
in Figure 3; 6 - 10), cumulative regret is low and each new
episode continuously reduces regret, whereas [maj@p]j and
the direct baseline grow slower. However, in settings that
require more episodes (e.g., 41-45 episodes in the bottom
row and more examples in Appendix I), we find that the
accuracy (blue line) does not increase with each episode,
and sometimes degrades with each subsequent episode gen-
erated in the output stream. This illustrates that current
training does not quite produce traces that optimize regret
swiftly (Figure 3), despite it being possible to minimize
regret from intermediate episodes using information present
in the model (as indicated by the much better performance
of [maj@p]j when the total number of episodes ∈ [41, 45]).

This result is even more surprising because: a long trace
with multiple sequential episodes should be perfectly capa-
ble of implementing the [maj@p]j baseline as there is no
new knowledge needed to implement this baseline. It should
also easily beat the direct baseline, which just reasons in a
direct/linear chain and does not perform long CoT reason-
ing. However, reasoning with sequential episodes loses to
both baselines when the solution contains more episodes.
Inconsistent progress with many episodes implies poor per-
formance as we scale up test-time compute even further.

3We discovered that similar statements are used to limit the
thinking time of R1 models when it outputs an exceedingly long
solution. Following such a statement, R1 would end the thinking
block and give a final answer. To make sure that a rather prema-
ture trimming of the thought block results in natural terminations
and does not alter the model’s abilities in a detrimental manner,
we manually incorporated a suffix of this sort when computing
[maj@p]j. The exact prompt is shown in Appendix I.

If outcome-reward RL was imbuing the LLM with gener-
alizable test-time scaling, we would expect it to improve
consistently.

Takeaways: Existing models do not minimize regret

• Additional reasoning in models trained with out-
come reward RL do not consistently yield a per-
formance improvement, particularly for complex
problems that require many episodes.

• Even when better performance can be achieved by
implementing “naı̈ve” strategies such as majority
voting on fewer episodes, a long sequential chain of
thought is unable to implement those.

4. The MRT Paradigm
Sequential episodes 

allow exploration
Each episode 
exploits

Per-episode outcome reward Outcome reward
Self-correct / RL² R1 / E-RL²MRT (Ours)

Figure 4. Explore/exploit spectrum. Final reward RL does not re-
ward intermediate episodes encouraging unstructured exploration,
whereas SCoRe (Kumar et al., 2024; Qu et al., 2024) constrains
each episode based on its outcome reward making it too exploita-
tive. MRT strikes a balance by assigning an information gain based
reward which aims to make progress in a budget-agnostic setting.

We will now develop a fine-tuning paradigm that we call
meta reinforcement fine-tuning (MRT) that directly aims
to learn a budget-agnostic LLM, which makes steady
progress. Abstractly, MRT fine-tunes LLMs to directly
optimize (a surrogate to) cumulative regret.

Optimizing outcome reward over a long stream does not
incentivize meaningful regret minimization during test-time.
As long as the LLM finds some arbitrary way to eventually
succeed, all intermediate episodes in this rollout will be
equally reinforced without accounting for the contribution
of every episode towards the eventual success. This is prob-
lematic for two reasons: (i) we may simply run out of the
deployment token budget to discover solutions to hard prob-
lems if we are not making progress, and (ii) we will waste
the token budget on easy problems that could be solved oth-
erwise more efficiently. One way of addressing these issues
is to directly optimize for the cumulative regret objective
(Definition 2.1). However, this is problematic due to the
presence of the optimal comparator policy π∗, which we do
not have access to. The inability to access π∗ is not new or
surprising: even over training of any RL algorithm, we do
not have access to the comparator policy for minimizing cu-
mulative regret. The difference here is that this cumulative
regret is not measured over training steps but rather on
test-time token output on a given test query (see Figure 1(b),
where the regret corresponds to the red area). As a result,
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in this section, we come up with a surrogate objective that
trains the LLM to implement a regret-minimizing strategy
when deployed. This should allow us to strike a balance
between spending tokens on exploration and exploitation
at test time (Figure 4); exploration in the sense of trying
new approaches, verifying prior answers, running major-
ity voting and exploitation in the sense of committing to
simplifying an expression following a given plan.

4.1. Surrogate Objectives for Minimizing Regret
The regret (Definition 2.1) cannot be directly optimized
since the optimal comparator π∗ is not known. Our main
idea is that we can minimize cumulative regret over episodes
produced by π if we maximize “progress” of policy µ as
more episodes are produced. To see why intuitively, we
provide a simple analogy with a multi-armed bandit learning
problem where we must learn to discover the optimal arm
and rewards are not noisy. There are two behaviors that
we must tradeoff to minimize cumulative regret in a bandit
problem: 1) stumbling upon promising but risky arms, and
2) continuing to exploit the best arm known so far. In either
case, each subsequent arm pull should lead to non-zero
and ideally positive improvement in the performance of an
“exploitation” policy that aims to simply produce the best
guess estimate of the optimal arm given the episodes so far.

We use this framework to build a simple surrogate objective.
The episodes z0:k are analogous to “arm pulls” in our setting,
with the meta-prover policy µ, serving the role of the policy
which aims to estimate best arm. We can hope to see regret
minimized as long as the meta-prover µ makes progress, i.e.,
Jr(µ(·|x, z0:j)) increases with more episodes zj . Note that
this does not mean that each subsequent episode zj must
itself contain a better solution like SCoRe (Kumar et al.,
2024) or RISE (Qu et al., 2024), but only that it should
ideally increase the probability that µ arrives at the right
answer (Figure 4). Following the formalism in Setlur et al.
(2024b), we capture this notion of progress made by µ via
advantage of an episode zi under µ.

Definition 4.1 (Progress). Given prior context c and
episode zj ∼ π(·|c), and another meta-prover LLM µ
that computes an estimate of the correct response, we
define progress made by zj as

rµprg(zj ; c) = Jr(µ(·|zj , c))− Jr(µ(·|c)).

4.2. Incorporating Progress as a Dense Reward Bonus
Defining the standard fine-tuning loss function based on
the expected final reward attained by the last episode as the
following objective, ℓFT:

ℓFT(π) := Ex∼Dtrain,z∼π(·|x) [r(x, z)] , (2)

we can train the LLM π either with the policy gradient
obtained by differentiating Equation 2 or with SFT on self-
generated data (Singh et al., 2023). We can extend Equa-

tion 2 to incorporate progress, giving rise to the abstract
training objective (c is the sequence of tokens generated
so far), ℓMRT(π;πold) := ℓFT(π) + α · ℓPRG(π), where
ℓPRG(π) is defined as:

E x∼Dtrain

k−1∑
j=0

Ecj−1∼πold(·|x)
zj∼π(·|cj−1)

[rµprg(zj ; cj−1)]

 . (3)

The term in red corresponds to the reward bonus and it is
provided under the distribution of contexts cj−1 consist-
ing of prefixes produced by the previous LLM checkpoint,
shown as πold. The meta prover policy µ can be any other
LLM (e.g., an “-instruct” model which is told to utilize
episodes so far to guess the best answer) or the same LLM
π itself after its thought block has terminated.

Utilizing the previous policy πold in place of the current pol-
icy π serves dual purpose: (1) akin to trust-region methods
in RL (Schulman et al., 2015; Peng et al., 2019), it allows
us to improve over the previous policy provably, and (2)
it lends MRT amenable to a more convenient implemen-
tation on top of RL or STaR infrastructure that need not
run “branched” rollouts (Kazemnejad et al., 2024), and can
use an off-policy or stale distribution of contexts. Prior
work (Setlur et al., 2024b) alleviates the need for branched
rollouts by training an explicit value function, but often in-
duces errors. Therefore, we opt to use off-policy contexts
but provide additional rewards. We also remark that this
additional reward can be provided to the segment of tokens
spanning a particular episode (“per-episode” reward) or as a
cumulative bonus at the end of the entire test-time thinking
trace, with alternatives resulting in different variance for the
gradient update. Unlike traditional RL that optimizes out-
come rewards and recent approaches that provide step-level
supervision, MRT aligns with meta-RL by operating at the
meta-step (episode) level, assessing progress across com-
plete reasoning trajectories rather than individual actions.

Finally, while this objective might appear similar to that of
Setlur et al. (2024b), we crucially note that the progress is
not computed over steps appearing within one attempt but
rather over episodes. With this abstract objective in place,
we now write down concrete instantiations for SFT and RL.

5. Practical Instantiations: Dense Rewards for
Optimizing Test-Time Compute

We now instantiate MRT to train an LLM in a way that en-
ables it to learn to use test-time compute effectively and ef-
ficiently. We parameterize each episode as a logical thought
block enclosed in between the <think> markers, akin to
the DeepSeek-R1 model. As shown in Figure 5 (Left), we
refer to this as an “open-ended parameterization” since it
does not constrain the content of each episode. With this
parameterization, we optimize the objective in Definition 3
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with STaR (Zelikman et al., 2022) and RL (Shao et al.,
2024). With STaR, this involves sampling on-policy traces,
followed by behavior cloning the ones that not only succeed
under the outcome reward, but also attain high progress.
With RL, this involves either explicitly or implicitly adding
a reward bonus that corresponds to progress.

Figure 5. The two settings we study. Left: open-ended
parametrization. The model uses explicit thinking markers
(<think> and </think>) to work through a problem with multiple
strategies. Right: backtracking search. The model directly solves
the problem with a step-by-step solution. In each episode, the
model identifies errors at specific steps and backtracks to correct
them (returning to step 3, then later to step 7) until reaching the
correct answer.
We also study a “backtracking search” parameterization
(Figure 5, Right) where the model alternates between full
solution attempts and backtracking; details of this approach
along with empirical results are provided in Appendix C.

5.1. STaR and RL Variants of MRT
We build two MRT variants that optimize test-time compute
via on-policy rollouts and dense progress rewards: one based
on STaR, the other on RL.

The STaR variant of MRT leverages self-generated roll-
outs from the base model πb to create a filtered dataset of
high-quality traces for SFT. For each input prompt x, we
sample an initial trace z between <think> tags. We then
segment the reasoning trace z into episodes z0, z1, · · · , zn.
The meta-prover policy µ is implemented as the policy that
forcefully terminates the thought block with the “time is up”
prompt (Appendix I; used in our analysis) and forcing the
model to produce a solution given prefix:

µ(·|x, z0:j)
def
= πb(·|x, z0:j , [time is up], </think>) (4)

We compute progress rµprg(zj ,x) according to Definition

4.1. Now, we filter for episodes z0:j that satisfy two
criteria: (1) they achieve maximum progress, i.e., j =
argmaxj

∑j
k=0 r

µ
prg(zk; ck−1), where ck−1 ≡ (x, z0:k−1)

and (2) they eventually succeed, i.e., if y ∼ µ(·|x, z0:j)
then r(x;y) = 1. And finally, we run SFT on these traces,
and repeat the process for multiple iterations.

The RL variant of MRT using online RL methods (e.g.,
GRPO (Shao et al., 2024) or PPO (Schulman et al., 2017))
to optimize progress-based rewards. For each episode, we
compute prefix rewards using the meta-prover µ (Equation 4,
Figure 6). The model then samples multiple on-policy roll-
outs conditioned on this prefix, evenly divided between
continuing to reason and terminating right after the prefix
of the thinking trace and producing the best-guess solution.
During training, we optimize the reward defined in Equa-
tion 3 rather than just the binary outcome reward. While
this procedure can be implemented with episode-specific
reward bonuses or a single progress adjusted reward, we
opt for the latter approach due to its plug-and-play nature in
current outcome-reward RL implementations.

6. Experimental Evaluation
We now evaluate how effectively MRT optimizes test-time
compute—focusing on maximizing accuracy while mini-
mizing compute. We discuss our main results below, then
compare the efficiency of MRT against other prior meth-
ods, and finally end with ablation experiments studying the
relationship between token budget and progress.

6.1. Experimental Setup
We use MRT to fine-tune base models that can already pro-
duce traces with <think> markers. For the STaR variant, we
use DeepSeek-R1-Distill-Qwen-7B and 1.5B, fine-tuned on
10K randomly sampled problem-solution pairs from Numi-
naMath (Li et al., 2024) and estimate the progress bonus for
backtracking by rolling out each prefix 20 times. Here, we
compare MRT, which incorporates progress as a bonus, ver-
sus vanilla STaR which only uses outcome reward. For the
RL variant, we utilized DeepSeek-R1-Distill-Qwen-1.5B
and DeepScaleR-1.5B-Preview as base models (omitting
the 7B model due to higher training compute requirements),
where we compare MRT with outcome-reward RL (vanilla
GRPO (Shao et al., 2024)). We finetuned DeepSeek-R1-
Distill-Qwen-1.5B with MRT on 4,000 NuminaMath prob-
lems, while DeepScaleR-1.5B-Preview, which had already
undergone one round of outcome-reward RL finetuning on
40K MATH problem-answer pairs, was finetuned only on
919 AIME problems from 1989-2023. We also compare
MRT to an RL approach that explicitly penalizes the token
length. The average number of tokens in a response on eval-
uation prompts is around 8k, therefore, we fine-tune with a
16K maximum token budget and evaluate at the same budget.
More details are outlined in Appendix G.1, and a complete
set of hyperparameters can be found in Appendix G.2.
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Figure 6. MRT implementation. Left: The STaR variant begins by generating a complete rollout for each query x sampled from dataset
Dtrain. Then, MRT segments thinking traces into distinct episodes zj akin to our analysis in Section 3. For each prefix z0:j , we estimate
reward Jr(µ(·|z0:j ,x)) by evaluating the average accuracy of solutions produced after terminating the thought block at this prefix. After
computing rewards across all prefixes, we calculate progress rµprg(z0:j ;x) using Definition 4.1. The STaR variant selectively retains only
reasoning traces that maximize progress and are also followed by correct solutions once thinking terminates. Right: The RL variant
initiates by generating a partial rollout for each query x sampled from Dtrain, terminating after a random number of episodes. Then it
generates m on-policy rollouts that terminate reasoning at the prefix and immediately produce final solutions as well as rollouts that
continue reasoning. Normalizing rewards across this set of traces allows us to implicitly compute the progress bonus. Finally, we update
the policy with an aggregation of this dense reward and the final 0/1 outcome reward.

Base model + Approach AIME 2024 AIME 2025 AMC 2023 MinervaMATH MATH500 Avg.

DeepScaleR-1.5B-Preview 42.8 36.7 83.0 24.6 85.2 54.5
outcome-reward RL (GRPO) 44.5 (+1.7) 39.3 (+2.6) 81.5 (−1.5) 24.7 84.9 55.0 (+0.5)
length penalty 40.3 (−2.5) 30.3 (−6.4) 77.3 (−5.7) 23.0 83.2 50.8 (−3.7)
MRT (Ours) 47.2 (+4.4) 39.7 (+3.0) 83.1 (+0.1) 24.2 85.1 55.9 (+1.4)

R1-Distill-Qwen-1.5B 28.7 26.0 69.9 19.8 80.1 44.9
outcome-reward RL (GRPO) 29.8 (+1.1) 27.3 (+1.3) 70.5 (+0.6) 22.1 80.3 46.0 (+1.1)
MRT (Ours) 30.3 (+1.6) 29.3 (+3.3) 72.9 (+3.0) 22.5 80.4 47.1 (+2.2)

Table 1. Pass@1 performance of RL-trained MRT models on various math reasoning benchmarks. We compare MRT, outcome-reward
RL (GRPO), and length-penalized RL against strong base models. MRT consistently outperforms all methods, achieving state-of-the-art
results in its size class. MRT leads to a 2-3x improvement in accuracy over the base model compared to that of outcome-reward GRPO.
Note that both base models are already trained with RL on a potentially a larger superset of prompts, or distilled from RL trained models,
and thus we should expect the gains from any subsequent fine-tuning to be small in absolute magnitude. Despite this, we observe a
statistically significant and systematic gain with MRT, which is 2− 3× of the gain from outcome-reward training.

6.2. Results for MRT
Following the protocol in Luo et al. (2025), we report the
pass@1 performance of outcome-reward RL and MRT on
multiple math reasoning datasets: AIME 2025, AIME 2024,
AMC 2023, MinervaMATH, and MATH500, using 20 sam-
ples per problem to reduce noise due to limited size.

As shown in Table 1, MRT outperforms training on the same
dataset without the dense reward bonus. We additionally
make a number of interesting observations and draw the
following takeaways: (a) State-of-the-art results. To the
best of our knowledge, our models fine-tuned on top of the
DeepScaleR-1.5B-Preview base model achieve state-of-the-
art performance for their size. The absolute performance
gains are small because we train on top of distilled or already
RL-trained base models. However, the relative performance
improvement from using MRT is about 2-3x compared
to the performance improvement obtained from running
outcome-reward RL (GRPO). (b) Better out-of-distribution
robustness. When fine-tuned on a narrow dataset of AIME

problems with the DeepScaleR-1.5B model, MRT not only
attains better performance on AIME 2024 and AIME 2025
evaluation sets (which is perhaps expected), but MRT also
preserves performance on the AMC 2023 dataset that is
somewhat out-of-distribution compared to outcome-reward
RL. (c) Larger gains with weaker models and broader
training data. The gains in performance are further exag-
gerated on the DeepSeek-R1-Distill-Qwen-1.5B model in
comparison, since the DeepScaleR base model is already
trained with RL, whereas the latter is not.

We also evaluate DeepScaleR-1.5B with an explicit length
penalty to improve token efficiency, following Arora &
Zanette (2025). Consistent with their findings, we observe
that the length penalty reduces pass@1 accuracy.

6.3. Token Efficiency of MRT
So far we have seen that MRT can improve performance
beyond standard outcome-reward RL in terms of pass@1
accuracy. Next, we try to evaluate whether MRT (RL) also
leads to an improvement in the token efficiency needed to
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solve these problems. To plot token efficiency, we train the
model with a 16K context window and compute maj@K
on multiple reasoning and solution traces sampled from
the LLM. Plotting maj@K against token usage provides us
with an estimate of the model performance per token. As
shown in Figure 7, in both STaR and RL settings, MRT
outperforms the base model by an average of 5% accuracy
given the same number of tokens on AIME 2024. More-
over, MRT (RL) requires 5x fewer tokens on AIME 2024
and around 4x fewer tokens on MATH 500 to achieve the
same performance as the base model (DeepSeek-R1 distilled
Qwen-1.5B model in this example). In a similar vein, MRT
improves over outcome-reward RL by 1.2-1.6x in token ef-
ficiency. These results demonstrate that MRT significantly
improves token efficiency while maintaining or improving
accuracy. We also evaluated training 7B base models MRT
(STaR). We present these results in Appendix H.1. A de-
tailed analysis of the computational cost trade-offs, showing
only 1.01× and 1.08× overhead in FLOPs compared to
STaR and GRPO respectively, is provided in Appendix E.

Figure 7. MRT (RL and STaR) results on DeepSeek-R1-Distill-
Qwen-1.5B. We plot maj@k for k = 1, 2, ..., 10 on AIME 2024
(left) and MATH500 (right). The orange lines correspond to MRT
and the green lines correspond to outcome-reward training, with
⋆ denoting RL and • denoting STaR / SFT training.

6.4. Ablation Studies and Diagnostic Experiments
Next, we perform controlled experiments to better under-
stand the reasons behind the efficacy of MRT. We aim
to answer the following question: Do MRT (RL) and
MRT (STaR) reduce cumulative regret and make more
progress compared to outcome-reward RL and STaR?
In the main text, we focus on this core question by analyz-
ing regret reduction as a function of token budget. Addi-
tional diagnostic experiments examining the relationship
between token length and progress—including how length
evolves over training and how curriculum strategies influ-
ence performance—are presented in Appendix D.

6.4.1. PROGRESS MADE BY MRT COMPARED TO
OUTCOME-REWARD TRAINING

We measure the regret from Definition 2.1 against an opti-
mal “theoretical” policy π∗ that achieves perfect accuracy
in one episode. While Definition 2.1 measures regret ∆µ

k as
a function of the number of episodes k, to fairly compare
different fine-tuning algorithms, we instead reparameterize
regret to be a function of token budget C0 for this study.
Since traces from different algorithms can differ in the num-

ber of episodes, cumulative regret per token provide a more
apples-to-apples comparison of progress. Specifically, we
measure the scaling curve (blue curve in Figure 1) and cut
it off at varying budgets of C0. We then measure the area
ratio between the scaling curve at different values of C0 and
the constant oracle performance of 1.0 (visually depicted
as the shaded red area in Figure 1). Finally, we report this
regret normalized by C0 in Figure 8.

o
Figure 8. Normalized regret of different algorithms at different
deployment @token budgets C0. The first four points correspond
to budgets of 4096–16384 tokens; the next four (dashed) are ex-
trapolations to 20480–32768 using the budget-forcing method
from s1 (Muennighoff et al., 2025). The left plot shows the STaR
variant of MRT, and the right shows the RL variant on DeepScaleR-
1.5B-Preview, both evaluated on AIME 2025. MRT consistently
achieves the lowest normalized regret, even as outcome-reward
methods plateau or regress at higher budgets.
A low and steadily decreasing normalized regret indicates
the “red” area in Figure 1 narrows as token usage grows.
Empirically, we see in Figure 8 that the normalized regret
for MRT decreases faster compared to both the base model
and outcome-reward RL when the total token budget C0 ≤
16384, the token budget used for training.

In Figure 8, we also include token budgets that extrapolate
beyond training budget, shown in the dashed lines. To do so,
we force the model to continue thinking using the budget
forcing approach of Muennighoff et al. (2025). Even in
extrapolation, MRT continues to have the lowest normalized
regret, indicating better progress at larger budgets. We
present a detailed version of this study in Appendix K.

7. Conclusion
We introduce MRT, a framework for optimizing test-time
compute in LLMs via meta reinforcement learning. By min-
imizing cumulative regret—a measure of how efficiently
a model uses its available compute—MRT overcomes the
limitations of outcome-reward RL, which fails to reward par-
tial progress and often misallocates test-time tokens. MRT
introduces a dense reward bonus that quantifies incremental
progress during generation and enables learning policies
that better utilize the test-time budget. Empirically, this
leads to stronger performance, lower regret, and more effec-
tive extrapolation beyond the training budget. We believe
this formulation opens several exciting directions for future
work, including improvements in meta-prover design, base
model diversity, rollout strategies, and systematic evaluation
under compute-matched regimes. We elaborate on these
open questions and challenges in Appendix F.
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Gallouédec, Q. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl,
2020.

Wang, S., Yu, L., Gao, C., Zheng, C., Liu, S., Lu, R., Dang,
K., Chen, X., Yang, J., Zhang, Z., Liu, Y., Yang, A., Zhao,
A., Yue, Y., Song, S., Yu, B., Huang, G., and Lin, J. Be-
yond the 80/20 rule: High-entropy minority tokens drive

12

https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2505.13438
https://arxiv.org/abs/2505.13438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2406.14532
https://arxiv.org/abs/1803.01118
https://arxiv.org/abs/1803.01118
https://arxiv.org/abs/2505.10832
https://github.com/huggingface/trl


Optimizing Test-Time Compute via Meta Reinforcement Finetuning

effective reinforcement learning for llm reasoning, 2025.
URL https://arxiv.org/abs/2506.01939.

Welleck, S., Bertsch, A., Finlayson, M., Schoelkopf, H., Xie,
A., Neubig, G., Kulikov, I., and Harchaoui, Z. From de-
coding to meta-generation: Inference-time algorithms for
large language models. arXiv preprint arXiv:2406.16838,
2024.

Weng, L. Meta reinforcement learning. lilianweng.github.io,
2019. URL https://lilianweng.github.io/
posts/2019-06-23-meta-rl/.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. Infer-
ence scaling laws: An empirical analysis of compute-
optimal inference for problem-solving with language
models. arXiv preprint arXiv:2408.00724, 2024.

Xiang, V., Snell, C., Gandhi, K., Albalak, A., Singh, A.,
Blagden, C., Phung, D., Rafailov, R., Lile, N., Mahan,
D., et al. Towards system 2 reasoning in llms: Learning
how to think with meta chain-of-though. arXiv preprint
arXiv:2501.04682, 2025.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate prob-
lem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

Ye, G., Pham, K. D., Zhang, X., Gopi, S., Peng, B., Li,
B., Kulkarni, J., and Inan, H. A. On the emergence of
thinking in llms i: Searching for the right intuition, 2025a.
URL https://arxiv.org/abs/2502.06773.

Ye, Y., Huang, Z., Xiao, Y., Chern, E., Xia, S., and Liu, P.
Limo: Less is more for reasoning, 2025b. URL https:
//arxiv.org/abs/2502.03387.

Yeo, E., Tong, Y., Niu, M., Neubig, G., and Yue, X. Demys-
tifying long chain-of-thought reasoning in llms. arXiv
preprint arXiv:2502.03373, 2025a.

Yeo, E., Tong, Y., Niu, M., Neubig, G., and Yue, X. Demys-
tifying long chain-of-thought reasoning in llms, 2025b.
URL https://arxiv.org/abs/2502.03373.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zeng, W., Huang, Y., Liu, W., He, K., Liu, Q., Ma, Z.,
and He, J. 7b model and 8k examples: Emerging rea-
soning with reinforcement learning is both effective and
efficient. https://hkust-nlp.notion.site/
simplerl-reason, 2025. Notion Blog.

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Ku-
mar, A., and Agarwal, R. Generative verifiers: Re-
ward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

13

https://arxiv.org/abs/2506.01939
https://lilianweng.github.io/posts/2019-06-23-meta-rl/
https://lilianweng.github.io/posts/2019-06-23-meta-rl/
https://arxiv.org/abs/2502.06773
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03373
https://hkust-nlp.notion.site/simplerl-reason
https://hkust-nlp.notion.site/simplerl-reason


Optimizing Test-Time Compute via Meta Reinforcement Finetuning

Appendices
A. Related Work
Scaling test-time compute. Earlier works (Wu et al., 2024; Welleck et al., 2024) scale up test-time compute by training
separate verifiers (Setlur et al., 2024b; Chow et al., 2024) for best-of-N (Cobbe et al., 2021) or beam search (Beeching et al.,
2024), which can be more optimal than scaling data or model parameters (Snell et al., 2024; Jones, 2021). Building on this,
recent works (Gandhi et al., 2024; Moon et al., 2024) train LLMs to “simulate” in-context test-time search by fine-tuning on
search traces. However, gains from such approaches are limited since fine-tuning on search traces that are unfamiliar to the
base model can lead to memorization (Kumar et al., 2024; Kang et al., 2024; Setlur et al., 2024a). To prevent this in our
setting, we apply a warmstart procedure before running on-policy STaR/RL.

Reasoning with long chains of thought (CoT). RL with outcome rewards has shown promise for finetuning LLMs
to produce long CoTs that can search (Lehnert et al., 2024), plan (Yao et al., 2023), introspect (Qu et al., 2024) and
correct (DeepSeek-AI et al., 2025; Kimi-Team, 2025). More recently, several works have considered adding length penalties
to the outcome reward objective to discourage length for easier problems (Arora & Zanette, 2025) and encourage length for
harder problems (Yeo et al., 2025b; Ye et al., 2025a). However, recent work has shown that length may not have a direct
correlation with accuracy (Zeng et al., 2025; Liu et al., 2025; Luo et al., 2025), and that existing long CoT models tend to
use too many tokens (Chen et al., 2024). In our work, we tie this inefficiency to the inability of outcome-reward RL to learn
to output solutions that make steady progress. Similar to our approach, concurrent works also leverage dense rewards. For
example, (Cui et al., 2025), which maximizes the likelihood of generating successful traces given a partial solution, and (Ye
et al., 2025a), which obtains the exploration bonus from a length penalty or an LLM judge. However, the dense reward
design in MRT is inspired by regret minimization and does not require an LLM judge. There have also been efforts to distill
the traces generated from existing reasoning models via SFT (Muennighoff et al., 2025; Ye et al., 2025b; Team, 2025b;a),
however, these are orthogonal to our work which focuses on improving RL directly. In addition, recent work shows that
RL-trained policies scale test-time compute better than SFT (Setlur et al., 2025).

Meta RL. We formulate optimizing test-time compute as a meta RL problem (Beck et al., 2023; Gupta et al., 2018b;a).
Concurrently, a recent survey (Xiang et al., 2025) posits “how-to-think” with meta chain-of-thought as a promising direction
for training the next frontier of reasoning models. In fact, prior work in RL (Ghosh et al., 2021; Rakelly et al., 2019) shows
that it is necessary to solve a meta RL problem to effectively generalize to unseen initial contexts (i.e., new problems), with
a little bit of interaction (i.e., initial episodes or attempts). Most work in meta RL (Finn et al., 2017a; Agarwal et al., 2019;
Mendonca et al., 2019) differs in the design of the adaptation procedure. MRT is closest to meta RL methods that use
in-context histories (Duan et al., 2016; Stadie et al., 2019), but differs in the design of rewards, striking a balance between
E-RL2 (Stadie et al., 2019) that does not reward all but the last episode (only exploration), and RL2 (Duan et al., 2016) that
rewards each episode (only exploitation).

B. Preliminaries and Background
Problem setup. Our goal is to optimize LLMs to effectively use test-time compute to tackle difficult problems. We assume
access to a reward function r(x, ·) : Z 7→ {0, 1} that we can query on any output stream of tokens z. For example, on
a math problem x with token output stream z, reward r(x, z) can check if z is correct. We are given a training dataset
Dtrain = {(xi,y

∗
i )}Ni=1 of problems xi and oracle solution traces y∗

i that ends in the correct answer. Our goal is to use this
dataset to train an LLM, which we model as an RL policy, π(·|x). We want to train LLM π to produce a stream of tokens z
on that achieves a large r(x, z) on test problem x ∼ Ptest.

Meta RL primer. RL trains a policy to maximize the reward function. In contrast, the meta RL problem setting assumes
access to a distribution of tasks with different reward functions and dynamics. The goal in meta RL is to train a policy on
tasks from the training distribution such that it can do well on the test task. We do not evaluate this policy in terms of its
zero-shot performance, but let it adapt by executing “adaptation” episodes at test time. Most meta RL methods differ in
the design of this adaptation procedure (e.g., in-context RL such as RL2 (Duan et al., 2016), explicit training (Finn et al.,
2017b), and latent inference (Rakelly et al., 2019)).

C. MRT with the Backtracking Search Parameterization
In addition to the open-ended parameterization discussed in the main text, we explore a more structured approach to episode
parameterization that we call “backtracking search”. In this setting, we design episodes to alternate between: (1) an attempt
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to solve the problem, and (2) an attempt to discover errors in the preceding attempt, followed by determining an appropriate
step to backtrack to. This parameterization explicitly encourages the model to develop error detection capabilities and
strategic backtracking, without the use of any <think> markers. Note that the use of no specific <think> marker, and the
requirement for each alternate episode to end in some estimate of a solution makes this parameterization be substantially
restricted compared to the open-ended setting. That said, this structural constraint of alternating between generation and
verification enables us to extrapolate indefinitely by simply filling the context window with the last few related episodes and
letting the model run on these. We refered to this as a “sliding window” based linearized evaluation in the main text.

…
Question Step 1 Step 2 Step n Answer 1

Question       → [ Step 1       → … → Answer 1       ] → Backtrack → [Step 2       → Answer 2        ]

Answer 2

(Maximize Progress)

Figure 9. On-policy rollout generation for MRT in the back-
tracking search setting. MRT allows the model to learn to
backtrack (z1) and generate the corrected attempt (z2) with a
progress-adjusted reward.
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Figure 10. Different data construction schemes for obtaining
warmstart SFT data for the backtracking search setting. MRT
traverses two paths with the shared prefix, making use of back-
tracking, which RISE style approaches.

C.1. STaR and RL Variants of MRT in the Backtracking Search Setting

In this setting, episodes explicitly alternate between generation a solution trace and explicitly implementing a process
to implement a form of error correction and backtracking procedure (Figure 5). Concretely, given an initial response
z0 ∼ πb(·|x), the subsequent episode z1 is a backtracking episode where the model identifies errors in z0, followed by
a corrected attempt z2. Similar to the open-ended setting, in the backtracking search setting, the STaR variant filters
on-policy traces (generation of on-policy data depicted in Figure 9) based on (1) correctness of z2, i.e., r(x; z2) = 1, and
(2) high progress backtracks, as measured by a large value of rµprg(zj ; c). The RL variant follows a similar principle but
directly optimizes the progress-adjusted reward rather than the binary outcome, ensuring backtracking leads to meaningful
improvements. Finally, we note that although we only train the LLM to optimize for one backtrack, one can run several
rounds of backtracks iteratively.

C.2. Initialization with Warmstart SFT

Figure 11. Training loss for warmstart SFT on multiple data
configurations: random stitching (“RISE” (Qu et al., 2024)),
STaR (“rejection sampling”), and our warmstart SFT data
(“Backtrack”). A lower loss implies ease of fitting this data.

For the backtracking search setting, we found that base pre-
trained LLMs lacked the ability to sample meaningful back-
tracking operations due to low coverage over such behavior
in the pre-training data. This inability to sample backtracks
at all, will severely inhibit learning during RL and STaR that
rely on self-generated rollouts. Therefore, before running MRT
in the backtracking setting, we had to run an initial phase of
“warmstart” supervised finetuning (SFT) to imbue the LLM
with a basis of backtracking behavior. To do so without human
supervision, we generated multiple solution traces by running
beam search against the 0/1 outcome reward on every train-
ing problem, using rollouts to replace a process reward model
(PRM) (Snell et al., 2024). We then generated SFT traces by
traversing this tree using a number of heuristics (see Figure 10).
We found that backtracking to nodes in the prefix of an attempt that attain a high estimated success rate, followed by
completing the solution from there on, resulted in an SFT dataset that was easy to fit without memorization, when normalized
for the same token budget. On the other hand, SFT datasets generated by stitching arbitrary incorrect solutions from the
beam search tree with a correct solution (e.g., RISE) and direct answer traces were both harder to fit as evidenced by the
trend in the training loss in Figure 11. Warmstart SFT was not needed for open-ended parameterizations from R1-distilled
checkpoints.

15



Optimizing Test-Time Compute via Meta Reinforcement Finetuning

C.3. Progress Made by MRT Compared to Outcome-Reward Training
We plot the histograms of the progress estimates (Definition 4.1) on episodes obtained by running evaluation rollouts from
MRT. We compare them with the progress made by outcome-reward training in Figure 12. Observe that MRT exhibits a net
positive and higher progress over the backtracking episode compared to RISE and outcome-reward RL respectively. This
corroborates the idea that MRT does enhance the progress made by the algorithm.

Figure 12. Progress histograms in the backtracking search setting over the backtracking episode for RISE and MRT (STaR) on the left
and GRPO and MRT (RL) on right, computed on the evaluation set. In each case, using reward values prescribed by MRT amplifies
information gain on the test-time trace, enabling it to make consistent progress.

C.4. Linearized Evaluations in the Backtracking Search Setting
Recall that in this setting the model is constrained to producing a solution followed by explicit error detection followed
by a revision (Figure 5). The details for how the method is implemented is shown in Appendices G.1 and G.3. When
training with MRT, we used Llama-3.1-8B and 3B base models. To generate the training data, we use 20K ranomly-sampled
question-solution tuples from the NuminaMath dataset, and sample responses and backtracks from a Llama-3.1-8B model for
a “warmstart” SFT phase before running RL training. Our evaluation uses AIME problems from 1989-2023 as a challenging
hold-out dataset, where Llama-3.1 8B achieves pass@10 ≈ 30%, much lower than the ≈ 60% on NuminaMATH training
set. We compare to outcome-reward RL, but also compare MRT (STaR) to RISE (Qu et al., 2024), a self-correction approach
which does not utilize backtracking but just revises the solution.

Figure 13. Left: MRT (STaR) with 8B base. We plot maj@K performance of models on AIME for K ∈ [1, 10] against the total tokens
spent. We also run linearized search (dashed line) for MRT (rest are parallel). Right: MRT (RL) with 3B base. Similarly to the left plot,
we report maj@K against the total tokens spent.

Evaluation protocol. Following prior work (Qu et al., 2024), in this setting, we evaluate MRT in two modes: (i) parallel
mode: sampling N independent three-episode traces (generate-backtrack-revise) per problem and computing maj@N
for evaluation; and (ii) linearized mode: running N sequential episodes of backtracking in a sliding window fashion
while retaining the last 2048 tokens, which allows for generating very long but coherent outputs, much longer than the
allowed context length for training. Note that this kind of a sliding window evaluation was not possible for the open-ended
parameterization, but the use of a more rigid definition of episodes and the Markov property allows us to extrapolate far
beyond here.

Results for MRT (STaR). We first evaluate the STaR variant of MRT when fine-tuning a Llama-3.1-8B model. As shown in
Figure 13 (left), MRT achieves the highest test-time efficiency in both evaluation modes (parallel in solid lines; linearized in
dashed lines) and improves efficiency by over 30% in the linearized evaluation mode. While RISE (Qu et al., 2024)–which
does not explicitly model backtracking and does not account for progress–also improves performance, it does so inefficiently,
trailing behind MRT in both the peak performance attained and the number of tokens needed to attain this performance.
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Results for MRT (RL). Finally, we evaluate the RL variant of MRT on top of GRPO (Shao et al., 2024) when fine-tuning a
3B model after warmstart SFT (Section C.2). Figure 13 (right) shows that MRT (RL) improves linearized efficiency by
reducing tokens by 1.6x compared to outcome-reward GRPO.

D. Evolution of Length and Progress over Training

Figure 14. Evolution of length during RL training.
Length largely oscillates around similar values for the
most part of training, after an initial increase from the
initialization length.

Finally, we study the relationship between progress and response
length, which is believed to be a crucial enabling factor behind the
recent results from DeepSeek (DeepSeek-AI et al., 2025) and oth-
ers (Kimi-Team, 2025). We are interested in understanding: a) how
does length evolve during training with MRT and outcome-reward
RL, over an i.i.d. prompt distribution? And b) Can the benefits of
increasing output token budget be explained by implicitly improving
progress? We present results to answer these questions below.

a) Evolution of completion length during training. As shown in
Figure 14, we find that in general, the average completion length
roughly oscillates around a given range of ∼5000 tokens during train-
ing with both MRT (RL) and GRPO on the AIME dataset (same setup
as Table 1). We also note that compared to GRPO, MRT slightly
reduces length (i.e., the orange curve generally falls below the green
curve), which aligns with our expectation that optimizing for progress
should lead to some amount of reduction in token length (consistent
with Figure 7). However, this decrease in response length is not as large as the one seen from an explicit length penalty,
which reduces length at the cost of worse performance as shown in Table 1. We observe a similar result in the backtracking
setting in Figure 20.

Figure 15. (Source: (Luo et al., 2025)) DeepScaleR’s
average response length and training rewards as train-
ing progresses.

Figure 16. Regret for 8K and 16K DeepScaleR check-
points at different budgets C0. For budgets beyond
8192, we calculate the normalized regret of the 8K
checkpoint by extrapolating it with budget forcing. At
nearly all budgets, the 8K checkpoint shows lower nor-
malized regret, indicating better progress.

b) Progress explains the benefits of increasing output token budget
during training. Despite the supposed gains from running RL training
with a large output budget right from the beginning (DeepSeek-AI
et al., 2025; Kimi-Team, 2025), several analyses and reproduction
studies (Yeo et al., 2025a; Liu et al., 2025; Zeng et al., 2025; Luo et al.,
2025) have found that that training at higher budgets (e.g., a budget
of 16K for AIME evaluations) results in inefficient use of compute.
Concurrent work, Luo et al. (2025), finds that a more performant
approach is to instead initialize RL training with a smaller output
token budget of 8K tokens and then expand this budget to 16K after
training for some time. This raises the question: what benefits does
a “curriculum” over output token budget provide in this setup? In the
following discussion, we argue that the benefits of such a curriculum
can be explained by increased progress or lower cumulative regret in
our formulation.

We start by revisiting the trend in completion length and performance
observed by DeepScaleR (Luo et al., 2025) in Figure 15. Observe
that when fine-tuning with an 8K context window (training steps
0 to 1000), performance increases while length reduces, implying
that an increase in length is not necessary for performance to go up.
More interestingly, this trend also indicates that the LLM makes better
progress on average during this phase. In particular, the change in
accuracy per token/episode is higher than when the token budget
is 16K in the next phase, in which both performance and length
increase. To corroborate this claim, we compute the normalized regret
in Figure 16. We observe that the 8K checkpoint indeed attains a
lower regret, meaning each episode in this LLM makes more progress
compared to the model trained on 16K.
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In fact, even when we extrapolate the budget for the 8K checkpoint to 16K evaluation tokens via budget forcing, we attain a
normalized regret similar to the subsequent checkpoint obtained after growing the budget to 16K tokens. Concurrent work
(Yeo et al., 2025a; Luo et al., 2025) observes that training with a length curriculum achieves better performance than training
with a budget of 16K from scratch. So, the first phase of training on a smaller (8K) token budget results in a) higher progress
(lower cumulative regret) and b) better performance than training with a larger context length, because the latter does not
explicitly maximize progress. All of this implies that progress is critical towards driving the benefits of long lengths.

Our main takeaway is that while training with long completion length alone does not always encourage steady progress
Liu et al. (2025); Yeo et al. (2025a), some form of an iterative budget curriculum or the dense reward bonus in MRT can
optimize progress. Similar multi-stage training strategies were found critical by prior work training for self-correction (Qu
et al., 2024; Kumar et al., 2024). Of course, it is an open question as to how we should instantiate such an iterative training
procedure to maximize progress more directly.

Insights from ablations: Progress vs length in optimizing test-time compute

Simple length penalties improve token efficiency but ultimately sacrifice peak performance. Using dense rewards in
MRT increases performance while slightly reducing length, which is a net positive on token efficiency. Existing
approaches for using curricula over the training budget or multi-stage training serve as an implicit way to encourage
progress during RL training.

E. Total Computation Cost of MRT

We performed a detailed analysis of the computational costs associated with our proposed MRT method compared to classical
approaches like STaR and GRPO. The analysis quantifies both forward generation and training costs using established FLOP
estimation formulas. To estimate computation costs, we employ two key formulas:

Forward Generation Cost: X = 2×N ×Drollout

Training Cost: Y = 6×N ×Dtrain

N represents the number of model parameters, Drolluts is the total number of tokens generated during inference, and Dtrain is
the total number of tokens used during training.

For the STaR baseline, we sampled 200 full rollouts per problem and selected solutions that correctly solved each problem.
In contrast, for MRT (STaR), we generated just 1 complete rollout per problem, then selected 10 prefixes from this rollout
and sampled 20 continuations for each prefix to approximate the information gain.

When applied to the NuminaMATH dataset containing 20,000 problems, using Llama-3.1-8B-Instruct with 4,000 token
completions, this approach yielded 12,000 correct solutions for training (with incorrect solutions discarded). Training
proceeded for three epochs. The total FLOP calculations are:

STaR: 2× 8 B× 200× 20 K× 4 K + 6× 8 B× 12 K× 4 K× 3

= 256× 1018 + 6912× 1015

= 2.62912× 1020FLOPs

MRT (STaR): 2× 8 B× (1 + 20× 10)× 20 K× 4 K + 6× 8 B× 12 K× 4 K× 3

= 25728× 1016 + 6912× 1015

= 2.64192× 1020FLOPs

For the GRPO baseline and MRT (RL), we used a different sampling strategy. In MRT (RL), we first generated 1 complete
rollout per problem, then selected a prefix and sampled 10 rollouts to approximate information gain. In both methods, given
a prompt, we sampled 4 responses and maximized their group advantage estimations. The resulting FLOP calculations are:
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GRPO: 2× 3 B× 20 K× 4× 4 K + 6× 8 B× 20 K× 4× 4 K× 4

= 192× 1016 + 6144× 1016

= 6.336× 1019FLOPs

MRT (RL): 2× 3 B× 20 K× (1 + 10 + 4)× 4 K + 6× 8 B× 20 K× 4× 4 K× 4

= 720× 1016 + 6144× 1016

= 6.864× 1019FLOPs

Our analysis reveals that MRT (STaR) requires only 1.01× more FLOPs (2.64192× 1020/2.62912× 1020) than STaR to
achieve comparable performance, while using 1.7× fewer tokens during inference. Similarly, MRT (RL) uses just 1.08×
more FLOPs than GRPO to achieve equivalent performance, while requiring 1.6× fewer tokens during inference.

These results demonstrate that our MRT approach achieves a favorable trade-off between computational cost and token
efficiency, making it particularly valuable for deployment scenarios where inference efficiency is critical.

F. Discussion and Future Work
While MRT shows strong empirical results, it raises a number of important questions that merit further study:

• Choice of µ in MRT. We choose µ as a greedy guesser based on the trace so far. Are there better meta-provers or
reward parameterizations that can improve performance?

• Characteristics of the base model. All base models used here exhibit limited strategy diversity. Would models with
broader reasoning strategies further amplify the benefits of regret minimization?

• Branched rollout implementation. Our reward is computed at the end of traces. Could more efficient implementations
of branched rollouts reduce variance and improve learning?

• Train-time vs test-time compute tradeoff. While MRT uses more train-time compute, we hypothesize that it provides
better test-time efficiency. We provide an initial “back-of-the-envelope” cost analysis in Appendix E. However, a formal,
FLOPs-matched evaluation in the full online RL implementation of our approach remains an important direction.

Follow-up work in the community on progress-based dense rewards. Since our paper, more recent work in the community
such as (Wang et al., 2025; An et al., 2025; Qi et al., 2025; Tu et al., 2025; Guo et al., 2025) also highlights the importance
of utilizing dense rewards. In particular, the approach of focuses on identifying “critical” tokens (the authors call it “forking”
tokens) based on per-token entropy of the next token distribution, but these are precisely tokens where advantages will be
non-zero. Within our formulation, forking tokens will likely correspond to tokens that appear at the beginning of an episode
that makes non-trivial progress towards or away from the solution the solution (and hence attains non-zero advantages).
It appears that selectively modifying rewards on these tokens results in much larger performance improvements than 0/1
outcome-reward RL, further strengthening the point that dense reward signals of some form, applied to important tokens
can be beneficial. Not only is the performance higher, but the gap between performance of this dense reward inspired
approach and 0/1 outcome-reward RL increases as model size grows, further corroborating the promise of such approaches
asymptotically. We believe that MRT should enjoy similar properties.
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G. Implementation Details
G.1. Pseudocode

Algorithm 1 MRT (STaR)
1: Input base model πθb ; problems D; reward function r
2: model πθ ← πθb , fine-tuning dataset Dft ← ∅
3: for iteration = 1, ..., T do
4: for x ∈ D do
5: Sample one rollout z0:j ∼ πθ(·|x)
6: Compute rewards {rµprg,i}

j
i=1 for each prefix z0:i using Definition 4.1 for progress.

7: if {rµprg,i}
j
i=1 > 0 then

8: i← argmaxji=0{r
µ
prg,i}

9: Sample y ∼ πθ(·|x, z0:i) s.t. r(x, y) = 1
10: Dft ← Dft ∪ {(x, z0:i, y)}
11: end if
12: end for
13: πθ ← Fine-tune πθ with Dft and a negative log likelihood loss
14: end for

Algorithm 2 MRT (RL)
1: Input base model πθb ; problems D; initialize model πθ ← πθb

2: for iteration = 1, ..., T do
3: πref ← πθ

4: for step = 1, ..., k do
5: Sample a batch Db from D
6: for q ∈ Db do
7: Sample one partial rollout z0:j ∼ πref(·|q), where j is selected randomly
8: Sample G rollouts {zij+1:, y

i}Gi=1 ∼ πθ(·|q, z0:j)
9: Compute rewards {ri + α · rµprg,i}Gi=1 for each sampled output (zij+1:, y

i) using Definition 4.1 for progress
and 0/1 correctness reward. The progress reward is computed using an additional set of G rollouts that force the model
to terminate.

10: end for
11: Update the policy πθ via GRPO (Shao et al., 2024) with {ri + α · rµprg,i} in place of Âi

12: end for
13: end for
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G.2. Hyperparameters for Open-ended Parameterizations

For MRT (STaR), we utilize the TRL codebase, but we customize the loss function to be weighted by progress defined in
Definition 4.1. The base models are directly loaded from Hugging Face: DeepSeek-R1-Distill-Qwen-7B.

Hyperparameter Values

learning rate 1.0e-6
num train epochs 3
batch size 256
gradient checkpointing True
max seq length 16384
bf16 True
num gpus 8
learning rate 1e-6
warmup ratio 0.1

Table 2. Hyperparameters used for MRT (STaR)

For MRT (RL), we utilize the open-r1 codebase, but we customize the loss function to be weighted by progress defined in
Definition 4.1. The base models are directly loaded from Hugging Face: DeepSeek-R1-Distill-Qwen-1.5B and DeepScaleR-
1.5B-Preview.

Hyperparameter Values

learning rate 1.0e-6
lr scheduler type cosine
warmup ratio 0.1
weight decay 0.01
num train epochs 1
batch size 256
max prompt length 4096
max completion length 24576
num generations 4
use vllm True
vllm gpu memory utilization 0.8
temperature 0.9
bf16 True
num gpus 8
deepspeed multinode launcher standard
zero3 init flag true
zero stage 3

Table 3. Hyperparameters used for MRT (RL)
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G.3. Hyperparameters for Backtracking Search

For MRT (STaR), we utilize the trl codebase, but we customize the loss function to be weighted by information gain defined
in Definition 4.1. The base models are directly loaded from Hugging Face: Llama-3.1-8B-Instruct.

Hyperparameter Values

learning rate 1.0e-6
num train epochs 3
batch size 256
gradient checkpointing True
max seq length 4096
bf16 True
num gpus 8
learning rate 1e-6
warmup ratio 0.1

Table 4. Hyperparameters used for MRT (STaR)

For MRT (RL), we utilize the open-r1 codebase, but we customize the loss function to be weighted by information gain
defined in Definition 4.1. The base models are directly loaded from Hugging Face: Llama-3.2-3B-Instruct.

Hyperparameter Values

learning rate 1.0e-6
lr scheduler type cosine
warmup ratio 0.1
weight decay 0.01
num train epochs 1
batch size 256
max prompt length 1500
max completion length 1024
num generations 4
use vllm True
vllm gpu memory utilization 0.8
temperature 0.9
bf16 True
num gpus 8
deepspeed multinode launcher standard
zero3 init flag true
zero stage 3

Table 5. Hyperparameters used for MRT (RL)
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H. Additional Results
H.1. More Results for Open-ended Parameterizations

Figure 17. MRT pass@k performance of R1-Distill-Qwen-1.5B with RL on (Left) AIME; (Right) MATH500.

Figure 18. MRT pass@k performance of R1-Distill-Qwen-7B with STaR, on (Left) AIME; (Right) MATH500.

Figure 19. MRT maj@k performance of R1-Distill-Qwen-7B with STaR on (Left) AIME; (Right) MATH500.

H.2. More Results for Backtracking Search
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Figure 20. MRT pass@k performance of R1-Distill-Qwen-1.5B for k = 1, 2, ..., 10 on AIME (Left) STaR; (Right) RL. Observe that
MRT attains the best performance as more tokens are sampled.

I. Full Analysis of DeepSeek-R1
In this section we will give a more detailed outline on our analysis of DeepSeek-R1 derivates from Section I. We focus our
analysis primarily on a subset of 40 problems taken from Omni-MATH. We chose Omni-MATH because it is not an explicit
benchmark that DeepSeek-R1 reports (DeepSeek-AI et al., 2025) and is still challenging for many models. We chose 10
problems from each of the difficulty levels 4, 4.5, 5, and 5.5. The reason for doing this is to better capture the model’s ability
to make progress, which would not be apparent if the model got an accuracy near 0 or 100. We additionally also performed
our analysis on the 30 problems from AIME 2024, which is a commonly-studied benchmark that we also report on in the
main text.

The first step in our analysis is to generate solutions to problems with DeepSeek-R1-Distill-Qwen-32B, the model in the
R1 family that we analyze. For each problem, we sample 4 responses at a temperature of 0.7 and 8192 maximum token
length. We obtain our direct pass@k baseline with the same settings on Qwen2.5-32B-Instruct, except that we obtain 32
responses to simulate pass@32. Qwen2.5-32B-Instruct shares the same base model as DeepSeek-R1-Distill-Qwen-32B, but
it is fine-tuned only on direct reasoning chains that do not employ thinking strategies such as backtracking and verification.

Construction of episodes. After we have obtained these initial completions, we separate them into episodes by filtering for
explicit phrases that indicate a disruption in the natural flow of logic. We further constrain each episode to be at least three
steps (each “step” is an entry separated by the delimiter “\n\n”) to avoid consecutive trivial episodes. The explicit phrases
are listed in Figure 21. If a step begins with one of these phrases, then we consider it to be the beginning of a new episode.
The number of episodes depends on the problem and particular solution that was sampled. The distribution is shown in
Figure 23. Due to the large number of episodes, we group the episodes into groups of 5 for Omni-MATH and groups of 3
for AIME, so each point on the blue curve in Figures 24 and 25 represents 5 or 3 episodes.

Experimental setup. For each prefix of episodes z0:j−1, where j is a multiple of 5 or 3 respectively (as discussed in the
previous paragraph), we ask the model to terminate its thinking, summarize its existing work, and give an answer. This is the
way we approximate the computation of the best-guess policy µ(·|x, z0:j−1), as discussed in Section I. To ensure a natural
termination, we append the prompt shown in Figure 22 to the end of the prefix so that the model computes µ(·|x, z0:j−1).
This is repeated 8 times on every prefix to simulate maj@8, at temperature 0.7 and 4096 max tokens. Finally, we compute
blue ([maj@1]j at j values) and green curves (for each j, [maj@p]j at p = 1, 2, 4, 8) in Figures 24 and 25.
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Explicit step prefixes for separating episodes in R1 solution

Wait
But wait
Alternatively
Is there another way to think about this?
But let me double-check
But hold on

Figure 21. Explicit step prefixes for separating episodes in R1 solution. This is a list of phrases that indicate a disturbance in the natural
flow of logic under R1. If a step begins with one of these phrases, we consider it the start of a new episode.

Prompt used to extract answer from R1

{Insert x, z0:j−1 here (⟨think⟩ tag will be part of z0:j−1)}

Time is up.

Given the time I’ve spent and the approaches I’ve tried, I should stop thinking and formulate a final answer
based on what I already have.
⟨\think⟩

**Step-by-Step Explanation and Answer:**

1. **

Figure 22. Prompt used to extract answer from R1. We use the prompt above to simulate µ(·|x, z0:j−1) and extract an answer after j
episodes.

Figure 23. Distribution of the number of episodes generated by R1 responses on AIME and Omni-MATH.
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Figure 24. DeepSeek-R1-Distill-Qwen-32B scaling curve on Omni-MATH subset across different episodes. We compare scaling up
the test-time compute for the R1-32B distilled model with direct pass@k for k = 1, 2, 8, 16, 32 against [maj@p]j for p = 1, 2, 4, 8 and
varying levels of j. Note that the total episodes matches the length of the blue curve. It is a range rather than a single number due to the
concatenation of episodes into groups of 5 as mentioned in the full analysis.
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Figure 25. DeepSeek-R1-Distill-Qwen-32B scaling curve on AIME 2024 across different episodes. We compare scaling up R1
compute with direct pass@k for k = 1, 2, 8, 16, 32 against [maj@p]j for p = 1, 2, 4, 8 and varying levels of j. It is a range rather than a
single number due to the concatenation of episodes into groups of 3 as mentioned in the full analysis.
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J. Additional regret analysis of MRT models
In this section, we perform the analysis in the previous section on our own MRT STaR model fine-tuned from DeepSeek-
R1-Distill-Qwen-7B to get a sense of its ability to make steady progress (Figure 27) and contrast it against the baseline of
tuning DeepSeek-R1-Distill-Qwen-7B with STaR (Figure 28) (we repeat the same analysis in the RL setting but omit the
intermediate figures since we already show the final results in Figure 26). We further condense these figures and extend the
normalized regret analysis in Section 6.4.1 to answer the following question: On different LLMs, how well does [maj@1]j
(blue curves in Figure 27) with more episodes j perform compared to [maj@k]j′ (green curves in Figure 27) with fewer
episodes j′? In other words, do LLMs make meaningful progress through more sequential episodes compared to the
alternative of stopping at an earlier episode and running maj@k?

To answer this, we augment the setting in our original regret analysis. Instead of using the theoretically optimal policy
that achieves perfect accuracy in one episode, we take the optimal policy to be the best of maj@k from an earlier episode
(green curve) and maj@1 from a later episode (blue curve). With this optimal policy, the regret is nonzero whenever a green
curve lies above the blue curve, and zero otherwise (since, in regret, we subtract the optimal policy by the blue curve). The
resulting regret measures the difference in performance between [maj@k]j′ with fewer episodes j′ and [maj@1]j with more
episodes j. Additionally, to get a sense of how each reasoning episode contributes to progress, we choose to look at the
compute budget in episodes rather than tokens.

In both STaR and RL settings, we see that MRT gives the lowest normalized regret compared to the other approaches,
implying more progress made in sequential episodes compared to maj@k on fewer episodes.

Figure 26. Normalized regret of different algorithms at different episode budgets. Left: MRT (STaR) on DeepSeek-R1-Distill-Qwen-7B
has a lower curve than STaR and Base models, indicating better progress in more sequential episodes compared to maj@k on fewer
episodes. Right: MRT (RL) on DeepScaleR-1.5B-Preview also shows a lower curve compared to Base and GRPO, again demonstrating
better progress in more sequential episodes.
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Figure 27. MRT STaR (on DeepSeek-R1-Distill-Qwen-7B) scaling curve on Omni-MATH subset across different episodes. We
compare scaling up compute with the direct base model Qwen2.5-Math-7B-Instruct (orange curve) pass@k for k = 1, 2, 8, 16, 32 against
[maj@p]j for p = 1, 2, 4, 8 and varying levels of j (blue curve and green curves).
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Figure 28. STaR (on DeepSeek-R1-Distill-Qwen-7B) scaling curve on Omni-MATH subset across different episodes. We compare
scaling up compute with the direct base model Qwen2.5-Math-7B-Instruct (orange curve) pass@k for k = 1, 2, 8, 16, 32 against [maj@p]j
for p = 1, 2, 4, 8 and varying levels of j (blue curve and green curves).
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K. Extrapolation Analysis
In this section, we extrapolate our model’s test-time compute by using the budget-forcing technique from Muennighoff
et al. (2025). This requires appending the token “Wait” to the end of the thought block to push the model to think more.
For a given thought block, we experiment with doing this procedure 0/2/4/6/8 times, each time stopping when the closing
⟨\think⟩ tag is produced or when we reach a maximum budget of 2048 tokens. To ensure that the model does not run into
the scenario of endless repeating a phrase, we iterate through the options ”Wait”, ”Alternatively”, ”But hold on”, ”But wait”
as the ”Wait” phrase to append to the end of the thought block. The results for the extrapolation on the Qwen-7B MRT
(STaR) model and for the DeepScaleR-1.5B MRT (RL) model as shown in Figure 29. Note that the numbers do not exactly
match the numbers in Table 1 due to randomness.

Figure 29. Extrapolation by pushing the model to think more with ”Wait”. Left: MRT (STaR). MRT (STaR) on DeepSeek-R1-Distill-
Qwen-7B extrapolates better than the other two approaches when budget forcing 2/4/6 times, but the performance dips at 8 times, that said
the performance of STaR decreases throughout. Right: MRT (RL) on DeepScaleR-1.5B-Preview without any extrapolation begins at a
higher accuracy, but all approaches extrapolate similarly.
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L. Some Concrete Examples
L.1. Backtracking Search

Example of Backtrack

Query: A type of operation is defined as follows:
([

a b
c d

]
= ad− bc

)
. The conjugate of the complex number([

1 + i −1
2 3i

])
is .

Solution:
([

a b
c d

])
is defined as (ad− bc), but this doesn’t appear to be a matrix operation. Instead, it seems to

be a determinant operation. The problem statement seems to be a bit unclear, but if we consider the given complex

number
([

1 + i −1
2 3i

])
as a 2× 2 matrix, we can calculate its determinant, which would be the conjugate.

Step 1: To find the conjugate of the complex number
([

1 + i −1
2 3i

])
, we first need to calculate the determinant of

this matrix using the formula: (ad− bc).
Step 2: From the given matrix, we have a = 1 + i, b = −1, c = 2, and d = 3i.
Step 3: The determinant of the matrix is ((1 + i)(3i)− (−1)(2)) =

(
3i2 + 2

)
.

Step 4: Simplify the expression by substituting
(
i2
)

with −1: (3(−1) + 2) = (−3 + 2).
Step 5: Calculate the expression: (−3 + 2 = −1).
Step 6: The conjugate of a complex number (a+ bi) is (a− bi), so the conjugate of (−1) is (−1).
Answer: −1 ✗

Wait, this seems off. Let’s try something else.
Step 3: Plugging these values into the determinant formula, we get (1 + i)(3i)− (−1)(2) = 3i2 + 3i+ 2 = −3 +
3i+ 2 = −1 + 3i.
Step 4: However, the conjugate of a complex number is obtained by changing the sign of the imaginary part. Therefore,

the conjugate of −1 + 3i is −1− 3i. Step 5: Therefore, the conjugate of the given complex number
([

1 + i −1
2 3i

])
is (−1− 3i)).
Answer: −1− 3i ✓

Figure 30. Example of backtrack trajectory used to train the model. The trajectory shows that the model first try to solve the problem,
then it recognized that the prior solution is wrong from step 3, therefore, the model backtrack to step 2 in the prior solution and redo step 3
with correction. The mistake is highlighted in red, the correction is highlighted in green, and the backtracking step detection is highlighted
in yellow.
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L.2. Open-Ended Parameterizations

Example of Open-Ended Parameterizations

Query: Point (x, y) is randomly picked from the rectangular region with vertices at (0, 0), (2008, 0), (2008, 2009),
and (0, 2009). What is the probability that x > 2y? Express your answer as a common fraction.
Solution:
¡think¿
Okay, so I have this problem where a point (x, y) is randomly picked from a rectangular region with vertices at (0, 0),
(2008, 0), (2008, 2009), and (0, 2009). I need to find the probability that x > 2y.
Hmm, maybe I should think of it as the area above the line x = 2y within the rectangle. But actually, when x > 2y,
for each y, x starts from 2y up to 2008. So, the region is a trapezoid or a triangle?
Let me think. The line x = 2y goes from (0, 0) to (2008, 1004). So, above this line, within the rectangle, is a region
that is a triangle with vertices at (0, 0), (2008, 1004), and (2008, 2009). Is that right?
Wait, no. If I consider x > 2y, then for each y, x starts at 2y and goes to 2008. So, the region is actually a trapezoid
with vertices at (0, 0), (2008, 1004), (2008, 2009), and (0, 2009). Hmm, but (0, 2009) is not on the line x = 2y, so
maybe it’s a trapezoid.
Alternatively, when integrating over the region, you can think of slicing horizontally. For each y in [0, 1004], x runs
from 2y to 2008. For y in [1004, 2009], there are no x satisfying x >= 2y because 2y >= 2008.
Therefore, the area where x > 2y is the integral from y = 0 to y = 1004 of (2008− 2y)dy
Time is up. Given the time I’ve spent and the approaches I’ve tried, I should stop thinking and formulate a final
answer based on what I already have.
¡/think¿
First, total area is 2008 ∗ 2009.
Favorable area is the integral from 0 to 1004 of (2008− 2y)dy.
Calculating the integral:
The integral of 2008dy is 2008y.
The integral of −2ydy is −y2.
Therefore, evaluated from 0 to 1004:
[2008 ∗ (1004)− (1004)2]− [0− 0] = 2008 ∗ 1004− (1004)2 = (2008− 1004)1004 = 1004 · 1004.
Hold on, that’s clever, it factors into 1004 squared.
So the favorable area is 10042.
Therefore, the probability is (10042)/(2008 ∗ 2009).
The probability is 502/2009 ✓

Figure 31. Example of trajectory generated in the open-ended setting. The trajectory shows how the model initially tries to conceptual-
ize the problem within the ”think” section. It changes its logical approach several times, and ultimately is forced to stop thinking and
generate a solution.
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