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ABSTRACT

Long iterative training processes for Deep Neural Networks (DNNs) are commonly
required to achieve state-of-the-art performance in many computer vision tasks.
Core-set selection and importance sampling approaches might play a key role in
budgeted training regimes, i.e. when limiting the number of training iterations.
The former demonstrate that retaining informative samples is important to avoid
large drops in accuracy, and the later aim at dynamically estimating the sample
importance to speed-up convergence. This work explores this paradigm and how a
budget constraint interacts with importance sampling approaches and data augmen-
tation techniques. We show that under budget restrictions, importance sampling
approaches do not provide a consistent improvement over uniform sampling. We
suggest that, given a specific budget, the best course of action is to disregard the
importance and introduce adequate data augmentation. For example, training in
CIFAR-10/100 with 30% of the full training budget, a uniform sampling strategy
with certain data augmentation surpasses the performance of 100% budget models
trained with standard data augmentation. We conclude from our work that DNNs
under budget restrictions benefit greatly from variety in the samples and that finding
the right samples to train is not the most effective strategy when balancing high
performance with low computational requirements. The code will be released after
the review process.

1 INTRODUCTION

The availability of vast amounts of labeled data is crucial in training deep neural networks
(DNNs) (Mahajan et al., 2018; Xie et al., 2020). Despite prompting considerable advances in
many computer vision tasks (Yao et al., 2018; Sun et al., 2019a), this dependence poses two chal-
lenges: the generation of the datasets and the large computation requirements that arise as a result.
Research addressing the former has experienced great progress in recent years via novel techniques
that reduce the strong supervision required to achieve top results (Tan & Le, 2019; Touvron et al.,
2019) by, e.g. improving semi-supervised learning (Berthelot et al., 2019; Arazo et al., 2020), few-
shot learning (Zhang et al., 2018b; Sun et al., 2019b), self-supervised learning (He et al., 2020;
Misra & Maaten, 2020), or training with noisy web labels (Arazo et al., 2019; Li et al., 2020a). The
latter challenge has also experienced many advances from the side of network efficiency via DNN
compression (Dai et al., 2018; Lin et al., 2019) or, neural architecture search (Tan & Le, 2019; Cai
et al., 2019); and optimization efficiency by better exploiting the embedding space (Khosla et al.,
2020; Kim et al., 2020). All these approaches are designed under a common constraint: the large
dataset size needed to achieve top results (Xie et al., 2020), which conditions the success of the
training process on computational resources. Conversely, a smart reduction of the amount of samples
used during training can alleviate this constraint (Katharopoulos & Fleuret, 2018; Mirzasoleiman
et al., 2020).

The selection of samples plays an important role in the optimization of DNN parameters during
training, where Stochastic Gradient Descent (SGD) (Dean et al., 2012; Bottou et al., 2018) is often
used. SGD guides the parameter updates using the estimation of model error gradients over sets of
samples (mini-batches) that are uniformly randomly selected in an iterative fashion. This strategy
assumes equal importance across samples, whereas other works suggest that alternative strategies for
revisiting samples are more effective in achieving better performance (Chang et al., 2017; Kawaguchi
& Lu, 2020) and faster convergence (Katharopoulos & Fleuret, 2018; Jiang et al., 2019). Similarly, the
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selection of a unique and informative subset of samples (core-set) (Toneva et al., 2018; Coleman et al.,
2020) can alleviate the computation requirements during training, while reducing the performance
drop with respect to training on all data. However, while removing data samples speeds-up the
training, a precise sample selection often requires a pretraining stage that hinders the ability to reduce
computation (Mirzasoleiman et al., 2020; Sener & Savarese, 2018).

A possible solution to this limitation might be to dynamically change the important subset during
training as done by importance sampling methods (Amiri et al., 2017; Zhang et al., 2019b), which
select the samples based on a sampling probability distribution that evolves with the model and
often changes based on the loss or network logits (Loshchilov & Hutter, 2015; Johnson & Guestrin,
2018). An up-to-date importance estimation is key for current methods to succeed but, in practice, is
infeasible to compute (Katharopoulos & Fleuret, 2018). The real importance of a sample changes
after every iteration and estimations become out-dated, yielding considerable drops in performance
(Chang et al., 2017; Zhang et al., 2019b). Importance sampling methods, then, focus on selecting
samples and achieve a speed-up during training as a side effect. They do not, however, strictly study
possible benefits on DNN training when restricting the number of iterations used for training, i.e. the
budget.

Budgeted training (Nan & Saligrama, 2017; Kachuee et al., 2019; Li et al., 2020b) imposes an
additional constraint on the optimization of a DNN: a maximum number of iterations. Defining this
budget provides a concise notion of the limited training resources. Li et al. (2020b) propose to address
the budget limitation using specific learning rate schedules that better suit this scenario. Despite the
standardized scenario that budgeted training poses to evaluate methods when reducing the computation
requirements, there are few works to date in this direction (Li et al., 2020b; Katharopoulos & Fleuret,
2018). As mentioned, importance sampling methods are closely related, but the avoidance of budget
restrictions makes it difficult to understand their utility given the sensitivity to hyperparamenters that
they often exhibit (Chang et al., 2017; Loshchilov & Hutter, 2015).

In this paper, we overcome the limitations outlined above by analyzing the effectiveness of importance
sampling methods when a budget restriction is imposed (Li et al., 2020b). Given a budget restriction,
we study synergies among important sampling, and data augmentation (Takahashi et al., 2018; Cubuk
et al., 2020; Zhang et al., 2018a). We find the improvements of importance sampling approaches
over uniform random sampling are not always consistent across budgets and datasets. We argue
and experimentally confirm (see Section 4.4) that when using certain data augmentation (Takahashi
et al., 2018; Cubuk et al., 2020; Zhang et al., 2018a), existing importance sampling techniques do
not provide further benefits, making data augmentation the most effective strategy to exploit a given
budget.

2 RELATED WORK

Few works exploit a budgeted training paradigm (Li et al., 2020b). Instead, many approaches aim to
speed up the training convergence to a given performance by computing a better sampling strategy or
carefully organizing the samples to allow the CNN to learn faster and generalize better. Other works,
however, explore how to improve model performance by labeling the most important samples from
an unlabeled set of data (Yoo & Kweon, 2019; Ash et al., 2020; Ren et al., 2020) or how to better
train DNNs when a limited number of samples per class is available (Chen et al., 2019; Zhou et al.,
2020; Albert et al., 2020). This section reviews relevant works aiming to improve the efficiency of
the DNN training.

Self-paced learning (SPL) and curriculum learning (CL) aim to optimize the training process
and improve model performance by ordering the samples from easy to difficult (Weinshall et al., 2018;
Bengio et al., 2009; Hacohen & Weinshall, 2019; Cheng et al., 2019). For instance, CL manages
to speed the convergence of the training at the initial stages due to focusing on samples whose
gradients are better estimations of the real gradient (Weinshall et al., 2018). The main drawback of
these methods is that, in most of the cases, the order of the samples (curriculum) has to be defined
before training, which is already a costly task that requires manually assessing the sample difficulty,
transferring knowledge from a fully trained model, or pre-training the model on the given dataset.
Some approaches remedy this drawback with a simple curriculum (Lin et al., 2017) or by learning the
curriculum during the training (Jiang et al., 2018); these methods, however, do not aim to speed up
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the training by ordering the samples, but to improve network convergence by weighting the sample
contribution to the loss.

Core-set selection approaches aim to find the subset of samples that is most useful (Toneva et al.,
2018; Coleman et al., 2020; Mirzasoleiman et al., 2020). By identifying the most useful samples
from a dataset, these methods aim at maintaining accuracy despite training in a subset of the data.
The ability of these methods to reduce the training cost is very limited, since they require pre-training
the model. However, these methods demonstrate that DNNs only need a portion of the samples to
achieve peak performance. For example, Toneva et al. (2018) define “forgetting events” as the count
of times that samples are miss-classified after being correctly predicted during training. They show
that higher forgetting and importance are related, as removing samples with lower forgetting events
damages the model less than removing the more forgotten ones. Mirzasoleiman et al. (2020) build
clusters with the features from the model and use the centroids as the most informative samples.
Coleman et al. (2020) demonstrate that the difficulty of a sample is invariant to the model capacity
and show that they can speed up several sample selection tasks by reducing the size of the model.

Importance sampling approaches lie in the middle ground between the previous two: they aim
to speed up training convergence by leveraging the most useful samples at every training stage
(Katharopoulos & Fleuret, 2018; Jiang et al., 2019; Zhang et al., 2019b) – which correspond to
sample losses with highest gradient magnitude (Needell et al., 2014; Zhao & Zhang, 2015; Alain
et al., 2016). More recently, Johnson & Guestrin (2018) has shown that the last layer gradients are a
good approximation and are easier to obtain in deep learning frameworks. Alternative importance
measures often used include the loss (Jiang et al., 2019), the probability predicted for the true class
(Chang et al., 2017), or the ranking order of these probabilities (Loshchilov & Hutter, 2015).

The approximation of the optimal distribution by importance sampling approaches avoids the cost
of computing each sample importance at every iteration. However, they face one main challenge:
the optimal sampling distribution changes very rapidly between iterations, leading to outdated
estimations. Initial attempts on addressing this challenge included several hyper-parameters to
smooth the estimated distribution (Chang et al., 2017), more frequent distribution updates via
additional forward passes (Loshchilov & Hutter, 2015), or different alternative measures to estimate
the sampling distribution (Amiri et al., 2017). Several works added complex support techniques
to the training that aimed to estimate a better distribution: using robust optimization (Johnson &
Guestrin, 2018), introducing repulsive point techniques (Zhang et al., 2019a), or adding a second
network to be trained in parallel with the main model Zhang et al. (2019b). More recent methods
leverage the random-then-greedy technique (Lu & Mazumder, 2018), where a random initial batch
of samples is selected and then the probabilities of those samples are computed and used to select
a secondary batch that is used for training. Within this scheme, (Katharopoulos & Fleuret, 2018)
define a theoretical bound for the magnitude of the gradients that allows for faster computation
of the sampling probabilities and (Jiang et al., 2019) and (Ioannou et al., 2019) use the loss as
a measure of sample importance to keep the sampling distribution updated through the training.
Finally, (Kawaguchi & Lu, 2020) introduces the top-k loss from (Fan et al., 2017) to perform the
back-propagation step using the samples with highest losses only. Note that none of these methods
avoids doing a full forward pass every epoch to update the sampling probabilities.

Learning rate schedules have proven to be useful alternatives for faster convergence. The authors
in (Smith & Topin, 2019; Smith, 2017) propose a cyclic learning rate schedule to reach faster
convergence by using larger learning rates at intermediate training stages and very low rates at the
end. Li et al. (Li et al., 2020b) also study the importance of the learning rate schedules to accelerate
the training of DNNs. In particular, they explore budgeted training and propose a linearly decaying
learning rate schedule that approaches zero at the end of the training, which without additional
hyper-parameters, improves the standard learning rate schedules.

Data augmentation techniques, generally, aim to increase the variance of the data to achieve better
generalization. Recent approaches, however, go a step further and target specific weaknesses from
CNNs: cutout (DeVries & Taylor, 2017) drops contiguous patches of data from the input to force the
network to spread its attention over the entire object, mixup (Zhang et al., 2018a) proposes to train
using convex combinations of images and label pairs which smooth class boundaries and improve
model calibration (Thulasidasan et al., 2019), and RICAP (Takahashi et al., 2018) combines the
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advantages of the two previous techniques by training on images generated from joining multiple
patches and doing the corresponding convex combination of labels. More generally, RandAugment
(Cubuk et al., 2020) randomly combines commonly used data augmentation techniques as a reduction
of the search space of the recently proposed methods that find automated augmentation policies (Ho
et al., 2019; Cubuk et al., 2019).

3 BUDGETED TRAINING

The standard way of training DNNs is by gradient based minimization of cross-entropy

`(θ) = − 1

N

N∑
i=1

yTi log hθ(y|xi), (1)

where N is the number of samples in the dataset D = {xi, yi}Ni=1 and yi ∈ {0, 1}C is the one-hot
encoding ground-truth label for sample xi, C is the number of classes, hθ(y|xi) is the predicted
posterior probability of a DNN model given xi (i.e. prediction after a softmax normalization), and
θ are the parameters of the model. Convergence to a reasonable performance usually determines
the end of the training, whereas in budgeted training there is a fixed iteration budget. We adopt the
setting by Li et al. (2020b), where the budget is defined as a percentage of the full training setup.
Formally, we define the budget B ∈ [0, 1] as the fraction of forward and backward passes used for
training the model hθ(x) with respect to a standard full training. As we aim at analyzing importance
sampling, the budget restriction will be mainly applied to the amount of data N ×B shown every
epoch. However, a reduction on the number of epochs T to T ×B (where an epoch T is considered
a pass over all samples) is also considered as truncated training for budgeted training.

Truncated training is the simplest approach to budgeted training: keep the standard SGD opti-
mization and reduce the number of epochs trained by the model to T ×B. We call this strategy, where
the model sees all the samples every epoch, scan-SGD. While seeing all the samples is common
practice, we remove this constraint and draw the samples from a uniform probability distribution at
every iteration and call this strategy unif-SGD. In this approach the budget is defined by randomly
selecting N ×B samples every epoch (and still training for T epochs).

Importance sampling aims to accelerate the convergence of SGD by sampling the most difficult
samples DS = {xi, yi}NS

i=1 more often, where NS = N ×B (the number of samples selected given
a certain budget). Loshchilov & Hutter (2015) proposed a simple approach for importance sampling
that uses the loss of every sample as a measure of the sample importance. Chang et al. (2017) adapts
this approach to avoid additional forward passes by using as importance:

pti =
1

t

t∑
k=1

(
1− yTi hkθ(y|xi)

)
+ εt, (2)

where hkθ(y|xi) is the prediction of the model given the sample xi in epoch k, and t is the current
epoch. Therefore, the average predicted probability across previous epochs associated to the ground-
truth class of each sample defines the importance of sample xi. The smoothing constant εt is defined
as the mean per sample importance up to the current epoch: 1

N

∑N
i=1 p

t
i.

The sampling distribution P t at a particular epoch t is then given by:

P ti =
pti∑N
j=1 pj

. (3)

By drawing samples from the distribution P t this approach biases the training towards the most
difficult samples, and selects those samples with highest loss value; we name this method p-SGD.
Similarly, (Chang et al., 2017) propose to select those samples that are closer to the decision
boundaries and favors the samples with higher uncertainty by defining the importance measure as
cti = pti × (1− pti); we name this approach c-SGD.

Both p-SGD and c-SGD are very computationally efficient as the importance estimation only requires
information available during training. Conversely, Jiang et al. (2019) propose to perform forward
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passes on all the samples to determine the most important ones and later reduce the amount of
backward passes; they name this method selective backpropagation (SB). At every forward pass, SB
stores the sample xi with probability:

sti =
[
FR(`(h

t
θ(xi), yi))

]b
, (4)

where FR is the cumulative distribution function from a history of the last R samples seen by the
model and b > 0 is a constant that determines the selectivity of the method, i.e. the budget used during
the training. In practice, SB does as many forward passes as needed until it has enough samples to
form a full a mini-batch. It then performs the training forward and backward passes with the selected
samples to update the model.

Finally, as an alternative training paradigm to prioritize the most important samples, Kawaguchi & Lu
(2020) propose to use only the q samples with highest loss from a mini-batch in the backward pass.
As the training accuracy increases, q decreases until only 1/16 th of the images in the mini-batch are
used in the backward pass. The authors name this approach ordered SGD (OSGD) and provide a
default setting for the adaptive values of q depending on the training accuracy.

Importance sampling methods under budgeted training give a precise notion of the training
budget. For unif-SGD, p-SGD, and c-SGD the adaptation needed consists of selecting a fixed number
of samples per epoch N ×B based on the corresponding sampling probability distribution Pt and
still train the full T epochs. For SB, the parameter b determines the selectivity of the algorithm:
higher values will reject more samples. Note that this method requires additional forward passes
that we exclude from the budget as they do not induce the backward passes used for training. We
adapt OSGD by truncating the training as in scan-SGD: all the parameters are kept constant but the
total number of epochs is reduced to T ×B. Additionally, we consider the wall-clock time of each
method with respect to a full budget training as a metric to evaluate the approaches.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL FRAMEWORK

Datasets We experiment on image classification tasks using CIFAR-10/100 (Krizhevsky et al.,
2009), SVHN (Netzer et al., 2011), and mini-ImageNet (Vinyals et al., 2016) datasets. CIFAR-
10/100 consist of 50K samples for training and 10K for testing; each divided into 10(100) classes
for CIFAR-10(100). The samples are images extracted from ImageNet (Deng et al., 2009) and
down-sampled to 32×32. SVHN contains 32×32 RGB images of real-world house numbers divided
into 10 classes, 73257 for training and 26032 for testing. Mini-ImageNet is a subset of ImageNet with
50K samples for training and 10K for testing divided into 10 classes and down-sampled to 84×84.
Unless otherwise stated, all the experiments use standard data augmentation: random cropping with
padding of 4 pixels per side and random horizontal flip.

Training details We train a ResNet-18 architecture (He et al., 2016) for 200 epochs with SGD with
momentum of 0.9 and a batch size of 128. We use two learning rate schedules: step-wise and linear
decay. For both schedules we adopt the budget-aware version proposed by Li et al. (2020b) and use
an initial learning rate of 0.1. In the step-wise case, the learning rate is divided by 10 at 1/3 (epoch
66) and 2/3 (epoch 133) of the training. The linear schedule decreases the learning rate value at every
iteration linearly from the initial value to approximately zero (10−6) at the end of the training. We
always report the average accuracy and standard deviation of the model across 3 independent runs
trained on a GeForce GTX 1080Ti GPU.

4.2 BUDGET-FREE TRAINING FOR IMPORTANCE SAMPLING

Current methods from the state-of-the-art are optimized with no restriction in the number of training
iterations. While this allows the methods to better exploit the training process, it makes it difficult to
evaluate their computational benefit. Therefore, Table 1 presents the performance, wall-clock time,
and speed-up relative to a full training of the methods presented in Section 3. While the simpler
approaches to importance sampling, p-SGD and c-SGD, achieve similar performance to SGD and
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Table 1: Test accuracy, time and speed-up (reduction with respect SGD) in CIFAR-10/100 under a
budget-free training. (*) denotes that we have used the official code.

CIFAR-10 CIFAR-100

Method Accuracy (%) Time (min) Speed-up (%) Acuracy Time Speed-up

SGD 94.58 ± 0.33 141 0.00% 74.56 ± 0.06 141 0.00%
p-SGD 94.41 ± 0.19 113 19.86% 74.44 ± 0.06 127 9.93%
c-SGD 94.17 ± 0.11 100 29.08% 74.40 ± 0.06 127 9.93%
SB (*) 93.90 ± 0.16 85 39.72% 73.39 ± 0.37 119 15.60%
OSGD (*) 94.34 ± 0.07 139 0.07% 74.22 ± 0.21 141 0.00%

reduce the computational time up to 29.08 % (9.93%) in CIFAR-10 (CIFAR-100), SB reduces the
training time 39.72% (15.60%) in CIFAR-10 (CIFAR-100) with very small drops in accuracy.

All methods train with a step-wise linear learning rate schedule. SGD corresponds to a standard
training as described in Subsection 4.1. p-SGD and c-SGD correspond to the methods described in
Section 3 introduced by (Chang et al., 2017) that for the experiments in Table 1 train for 200 epochs
where the first 70 epochs consist of a warm-up stage with a uniform sampling strategy as done in
the original paper. For CIFAR-10 we use a budget of 0.8 for p-SGD and 0.7 for c-SGD, and for
CIFAR-100 a budget of 0.9 for both approaches (budgets retaining most accuracy were selected).
Finally, SB and OSGD follow the setups described in the corresponding papers, (Jiang et al., 2019)
and (Kawaguchi & Lu, 2020), and run on the official code.

4.3 BUDGETED TRAINING FOR IMPORTANCE SAMPLING

We adapt importance sampling approaches as described in Section 3 and configure each method to
constrain its computation to the given budget. Table 2 shows the analyzed methods performance
under the same budget for a step-wise learning rate (SLR) decay and the linear decay (LLR) proposed
by Li et al. (2020b) for budgeted training (described in Section 4.1). Surprisingly, this setup shows
that most methods achieve very similar performance given a predefined budget, thus not observing
faster convergence when using importance sampling. Both p-SGD and c-SGD provide marginal or no
improvements: p-SGD improves unif-SGD in CIFAR-10 with a step-wise schedule of the learning
rate, but fails to do so in CIFAR-100, and in the LLR setup only improves for certain budgets. Similar
behaviour is observed in the results from c-SGD. Conversely, SB surpasses the other approaches
consistently for SLR and in most cases in the LLR setup. However, SB introduces additional forward
passes not considered as budget, while the other methods do not.

We consider scan-SGD and unif-SGD, as two naive baselines for budgeted training. Despite having
similar results (scan-SGD seems to be marginally better than unif-SGD), we use unif-SGD for further
experimentation in the following subsections as it adopts a uniform random sampling distribution,
which contrast alternative sampling distributions of importance sampling methods.

Additionally, Table 2 confirms the effectiveness of a linear learning rate schedule as proposed in (Li
et al., 2020b): all methods consistently improve with this schedule and in most of the cases unif-SGD
and LLR performs on par with SB and SLR and surpasses all the other methods when using SLR.

4.4 DATA VARIABILITY IMPORTANCE DURING TRAINING

Core-set selection approaches (Toneva et al., 2018; Coleman et al., 2020) aim to find the most
representative samples in the dataset to make training more efficient, while keeping accuracy as
high as possible. Figure 1 (top) presents how core-set selection and a randomly chosen subset
(Random) both under-perform randomly sampling from a uniform distribution a different subset
every epoch (unif-SGD), which approaches a standard training (black dashed line). Therefore, this
experiment shows that varying the important subset during training (unif-SGD) is equally efficient
from a training computation perspective, while bringing substantially better accuracy. Moreover, we
find data variability to play an important role within importance sampling. We report our experiments
comparing data variability in Figure 1 (bottom), where data variability is measured using the entropy
H (c) of the number of times that a sample is presented to the network during training, being c
the normalized N -dimension vector with the counts of each sample. Figure 1 (bottom) shows how
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Table 2: Test accuracy with a step-wise and a linear learning rate decay under different budgets.
Note that SB requires additional computation (forward passes).

CIFAR-10 CIFAR-100

SGD - SLR 94.58 ± 0.33 74.56 ± 0.06
SGD - LLR 94.80 ± 0.08 75.44 ± 0.16

Budget: 0.2 0.3 0.5 0.2 0.3 0.5

Step-wise decay of the learning rate (SLR)

scan-SGD 92.03 ± 0.24 93.06 ± 0.15 93.80 ± 0.15 70.89 ± 0.23 72.31 ± 0.22 73.49 ± 0.20
unif-SGD 92.04 ± 0.14 92.86 ± 0.25 93.80 ± 0.21 70.46 ± 0.39 71.71 ± 0.05 73.23 ± 0.47
p-SGD 92.28 ± 0.05 92.91 ± 0.18 93.85 ± 0.07 70.24 ± 0.28 72.11 ± 0.39 72.94 ± 0.36
c-SGD 91.70 ± 0.25 92.83 ± 0.30 93.71 ± 0.15 69.86 ± 0.36 71.56 ± 0.27 73.02 ± 0.34
SB 93.37 ± 0.11 93.86 ± 0.27 94.21 ± 0.13 70.94 ± 0.38 72.25 ± 0.68 73.39 ± 0.37
OSGD 90.61 ± 0.31 91.78 ± 0.30 93.45 ± 0.10 70.09 ± 0.25 72.18 ± 0.35 73.39 ± 0.22

Linear decay of the learning rate (LLR)

scan-SGD 92.95 ± 0.07 93.55 ± 0.21 94.22 ± 0.16 72.04 ± 0.42 72.97 ± 0.07 73.90 ± 0.43
unif-SGD 92.94 ± 0.19 93.66 ± 0.16 94.19 ± 0.12 71.71 ± 0.11 72.59 ± 0.14 73.99 ± 0.27
p-SGD 93.23 ± 0.14 93.63 ± 0.04 94.14 ± 0.11 71.72 ± 0.37 72.94 ± 0.37 74.06 ± 0.10
c-SGD 92.95 ± 0.17 93.54 ± 0.07 94.11 ± 0.24 71.37 ± 0.49 72.33 ± 0.18 73.93 ± 0.35
SB 93.78 ± 0.11 94.06 ± 0.37 94.57 ± 0.18 71.96 ± 0.67 73.11 ± 0.42 74.35 ± 0.34
OSGD 91.87 ± 0.36 93.00 ± 0.08 93.93 ± 0.22 71.25 ± 0.11 72.56 ± 0.36 73.40 ± 0.14
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Figure 1: Importance of data variability in CIFAR-10 (left) and CIFAR-100 (right). Top: randomly
selecting samples at every epoch (unif-SGD) outperforms fixed core-set or random subsets. Bottom:
the entropy of sample counts during training (0.3 budget) demonstrates that importance sampling,
linear learning rate, and data augmentation contribute to higher data variability (entropy).

improvements in p-SGD relate to higher data variability (higher entropy): adding to the P sampling
distribution from p-SGD the LLR, the smoothing constant, the average of the predictions across
epochs, and data augmentation.

4.5 DATA AUGMENTATION FOR IMPORTANCE SAMPLING

Importance sampling approaches usually do not explore the interaction of sampling strategies with
data augmentation techniques (Loshchilov & Hutter, 2015; Katharopoulos & Fleuret, 2018; Jiang
et al., 2019). To better understand this interaction, we explore interpolation-based augmentations via
RICAP (Takahashi et al., 2018) and mixup (Zhang et al., 2018a); and non-interpolation augmentations
using RandAugment (Cubuk et al., 2020). We implemented these data augmentation policies as
reported in the original papers (see Table 3 for the hyperparameters used in our experiments). Note
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Table 3: Data augmentation for budgeted importance sampling. N and M are the number and strength
of RandAugment augmentations, and α controls the interpolation in mixup and RICAP. Note that
SGD corresponds to the full training.

CIFAR-10 CIFAR-100

Budget: 0.2 0.3 0.5 0.2 0.3 0.5

Standard data augmentation

SGD (B = 1) 94.80 ± 0.08 75.44 ± 0.16
unif-SGD 92.94 ± 0.19 93.66 ± 0.16 94.19 ± 0.12 71.71 ± 0.11 72.59 ± 0.14 73.99 ± 0.27
p-SGD 93.23 ± 0.14 93.63 ± 0.04 94.14 ± 0.11 71.72 ± 0.37 72.94 ± 0.37 74.06 ± 0.10
SB 93.78 ± 0.11 94.06 ± 0.37 94.57 ± 0.18 71.96 ± 0.67 73.11 ± 0.42 74.35 ± 0.34

RandAugment data augmentation (N = 2, M = 4)

SGD (B = 1) 95.56 ± 0.12 75.52 ± 0.17
unif-SGD 92.68 ± 0.17 94.06 ± 0.15 94.83 ± 0.10 71.31 ± 0.35 73.68 ± 0.15 74.61 ± 0.23
p-SGD 92.95 ± 0.31 93.99 ± 0.28 94.91 ± 0.18 71.63 ± 0.27 72.91 ± 0.13 74.30 ± 0.04
SB 93.27 ± 0.38 94.64 ± 0.07 95.27 ± 0.26 66.84 ± 1.15 73.79 ± 0.40 74.87 ± 0.18

mixup data augmentation (α = 0.3)

SGD (B = 1) 95.82 ± 0.17 77.62 ± 0.40
unif-SGD 93.64 ± 0.27 94.49 ± 0.04 95.18 ± 0.05 73.28 ± 0.51 75.13 ± 0.52 75.80 ± 0.34
p-SGD 93.78 ± 0.04 94.41 ± 0.16 95.26 ± 0.06 73.35 ± 0.29 75.05 ± 0.15 75.87 ± 0.15
SB 93.62 ± 0.36 93.92 ± 0.08 94.51 ± 0.17 73.38 ± 0.13 74.88 ± 0.31 75.57 ± 0.23

RICAP data augmentation (α = 0.3)

SGD (B = 1) 96.17 ± 0.09 78.91 ± 0.07
unif-SGD 94.00 ± 0.19 94.85 ± 0.14 95.58 ± 0.06 74.86 ± 0.10 76.65 ± 0.05 77.74 ± 0.17
p-SGD 94.02 ± 0.18 94.79 ± 0.18 95.63 ± 0.15 74.59 ± 0.15 76.50 ± 0.22 77.58 ± 0.49
SB 89.93 ± 0.84 93.64 ± 0.42 94.76 ± 0.02 56.66 ± 0.65 72.24 ± 0.58 76.26 ± 0.22

Table 4: Data augmentation for budgeted importance sampling in SVHN and mini-ImageNet. Note
that SGD corresponds to the full training.

SVHN mini-ImageNet

Budget: 0.2 0.3 0.5 0.3

Standard data augmentation

SGD (B = 1) 97.02 ± 0.05 75.19 ± 0.16
unif-SGD 96.56 ± 0.12 96.78 ± 0.13 96.95 ± 0.07 72.19 ± 0.43
p-SGD 96.56 ± 0.12 96.77 ± 0.01 96.87 ± 0.05 72.39 ± 0.45
SB 96.93 ± 0.07 96.85 ± 0.01 96.97 ± 0.06 71.46 ± 0.15

RICAP data augmentation (α = 0.3)

SGD (B = 1) 97.61 ± 0.06 78.75 ± 0.40
unif-SGD 97.47 ± 0.04 97.62 ± 0.16 97.55 ± 0.04 75.15 ± 0.45
p-SGD 97.48 ± 0.08 97.50 ± 0.05 97.51 ± 0.08 75.46 ± 0.27
SB 97.34 ± 0.03 97.40 ± 0.06 97.45 ± 0.01 71.75 ± 0.67

that in mixup and RICAP we combine 2 and 4 images respectively within each minibatch, which
results in the same number of samples being shown to the network (T ×B).

Table 3 and 4 show that data augmentation is beneficial in a budgeted training scenario, in most
cases all strategies studied increase performance of the different methods compared to the standard
data augmentation. The main exception is in the lowest budget for SB where in some cases data
augmentation damages performance. In particular, with RICAP and mixup, the improvements from
importance sampling approaches are marginal and the naive unif-SGD provides results close to
full training with standard data augmentation. In some cases unif-SGD surpasses full-training with
standard augmentations, e.g. RICAP with 0.3 and 0.5 of budget in CIFAR-100, and both mixup and
RICAP with 0.3 of budget in CIFAR-10. Note that this is even more evident in SVHN where all
the budgets in Table 4 for unif-SGD with RICAP surpass the full training (SGD) with standard data
augmentation.
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Given the cost of the data augmentation policies considered is negligible (see Appendix B for details
on wall-clock times), our results show that an adequate data augmentation can reduce the training
time at no cost of accuracy and in some cases with a considerable increase in accuracy. For example,
a 70% reduction of the training time (0.3 budget) corresponds to an increase in accuracy from 75.44%
to 76.65% in CIFAR-100 and from 94.80% to 94.85% in CIFAR-10. Also, a 50% reduction (0.5
budget) corresponds to an increase in accuracy from 75.44% to 77.78% in CIFAR-100 and from
94.80% to 95.58% in CIFAR-10.

We also experimented with extremely low budgets (0.05 and 0.1) and found that data augmentation
damages the training of DNNs (see Appendix A). For example, with B = 0.05 there is a drop of
approximately 3 points in accuracy in CIFAR-10 and 5 points in CIFAR-100 with respect 88.34%
and 62.84% for unif-SGD with standard data augmentation.

5 CONCLUSION

This paper studies DNN training when the number of iterations is fixed (i.e. budgeted training) and
explores the interaction of importance sampling techniques and data augmentation in this setup.
Our experimental results suggest that, in budgeted training, DNNs prefer variability over selection
of important samples: adequate data augmentation surpasses state-of-the-art importance sampling
methods and allows for up to a 70% reduction of the training time (budget) with no loss or even
increase in accuracy. Given the strong impact that data augmentation has in improving performance
of budgeted training, we consider as interesting future work, exploring the limitations found in
extreme budgets and in extending the study to large-scale datasets where training DNNs becomes a
long-lasting process. Finally, the results presented in this paper motivate research in the direction of
exploring training techniques and methodologies to further exploit budgeted training.
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Table 5: Test accuracy for CIFAR-10/100 under extreme budgets.

CIFAR-10 CIFAR-100

Budget: 0.05 0.1 0.05 0.1

Standard data augmentation

unif-SGD 88.34 ± 0.26 91.19 ± 0.11 62.84 ± 0.07 69.25 ± 0.51
p-SGD 88.86 ± 0.17 91.66 ± 0.11 62.69 ± 0.33 69.62 ± 0.50
SB 79.45 ± 4.31 92.66 ± 0.14 50.53 ± 2.27 68.29 ± 0.68

RICAP data augmentation (α = 0.3)

unif-SGD 85.54 ± 0.40 91.27 ± 0.18 57.55 ± 0.60 69.38 ± 0.58
p-SGD 85.57 ± 0.70 90.94 ± 0.16 56.09 ± 0.71 70.05 ± 0.07
SB 44.93 ± 2.67 54.76 ± 4.31 10.75 ± 0.72 13.33 ± 0.39

Table 6: Wall-clock time (minutes) in CIFAR-100 for a training of 0.3 of budget.

Approaches: unif-SGD p-SGD SB

Standard data augmentation 47 48 91
RICAP 49 49 95

A EXTREME BUDGETS

Table 5 shows the performance of the different approaches when the budget is further reduced to 0.05
and 0.1. These results show that in this extreme scenario, importance sampling approaches (s-SGD
and SB) still bring little improvement over randomly selecting the training samples (unif-SGD).
However, additional data augmentation does not bring a significant improvement in accuracy and in
the most challenging cases, hinders convergence.

B WALL-CLOCK TIME

Table 6 shows the wall-clock time in minutes corresponding to 0.3 of budget in CIFAR-100 for
unif-SGD, p-SGD, and SB under different data augmentation policies. Note that SB has higher training
times due to the additional forward passes introduced to compute the sample importance.
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