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Abstract
Open-vocabulary detection (OVD) aims to detect novel objects
without instance-level annotations to achieve open-world object
detection at a lower cost. Existing OVD methods mainly rely on
the powerful open-vocabulary image-text alignment capability of
Vision-Language Pretrained Models (VLM) such as CLIP. However,
CLIP is trained on image-text pairs and lacks the perceptual ability
for local regions within an image, resulting in the gap between
image and region representations. Directly using CLIP for OVD
causes inaccurate region classification. We find the image-region
gap is primarily caused by the deformation of region feature maps
during region of interest (RoI) extraction. To mitigate the inaccurate
region classification in OVD, we propose a new Shape-Invariant
Adapter named SIA-OVD to bridge the image-region gap in the
OVD task. SIA-OVD learns a set of feature adapters for regions with
different shapes and designs a new adapter allocation mechanism
to select the optimal adapter for each region. The adapted region
representations can align better with text representations learned by
CLIP. Extensive experiments demonstrate that SIA-OVD effectively
improves the classification accuracy for regions by addressing the
gap between images and regions caused by shape deformation.
SIA-OVD achieves substantial improvements over representative
methods on the COCO-OVD benchmark. The code is available at
https://github.com/PKU-ICST-MIPL/SIA-OVD_ACMMM2024.

CCS Concepts
• Computing methodologies → Artificial intelligence; Com-
puter vision; Computer vision problems; Object detection;
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1 Introduction
Object detection is a fundamental visual task that requires a mas-
sive amount of annotated bounding boxes for training, which limits
the ability of traditional object detectors to cope with the continual
emergence of novel objects. Therefore, OVR-CNN [37] proposes an
Open-Vocabulary Detection (OVD) setting, which trains object de-
tectors without bounding box annotations for target objects. Subse-
quently, models are tested on object detection for target categories,
thereby achieving the capability to detect newly introduced objects
without the need for additional annotations. The OVD framework
enables versatile real-world applications.

Most OVDmethods leverage the powerful visual-languagemodel
CLIP [24] pre-trained on large image-text datasets to achieve open-
vocabulary detection capabilities. CLIP embeds texts and images
into a common feature space and shows remarkable zero-shot abil-
ity in open-vocabulary vision tasks. Mainstream OVD methods
divide detection into localization and classification, and mainly
focus on the classification stage. In this stage, CLIP is treated as the
open-vocabulary classifier. The CLIP text encoder calculates textual
embeddings of each category, and the CLIP image encoder calcu-
lates visual embeddings of each region proposal. Then, the final
OVD results are gained from the cosine similarity of the category
embeddings and region proposal embeddings.

However, applying CLIP to OVD may raise a fundamental chal-
lenge: CLIP is pre-trained on image-text pairs, and the CLIP im-
age encoder can effectively extract features from entire images,
while OVD requires to capture visual features of regions containing
objects of interest within an image. To this end, previous efforts
[1, 2, 11, 20, 34] employed RoIAlign [10] to crop regions from entire
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Figure 1: Comparison between Close-Set Object Detection and Open-Vocabulary Object Detection. The Close-Set detector learns
object knowledge from instance-level supervision, where RoIAlign deforms the regions of objects. The OVD detector learns
from image-level supervision, where the regions of objects keep the original shape. This difference causes the gap between the
image and region in OVD, especially for deformed object regions.

images. However, the image-text alignment via CLIP was corrupted
after using RoIAlign [40], resulting in a gap between the image
and region. Such a gap leads to poor classification accuracy for
novel objects. Recent works have further attempted to eliminate
this gap to improve the accuracy of region classification by region-
level knowledge-distillation[6, 9, 21], region-text pre-training/fine-
tuning [16, 22, 32, 40], and visual/textual prompting [5, 7, 33]. How-
ever, these methods fail to find the fundamental reason for this gap.
In this work, we argue that object shape deformation brought
by RoIAlign is the main cause of the image-region gap. Fig-
ure 1 intuitively illustrates how the image-region gap is caused
by object shape deformation. This gap has brought an obsta-
cle to transferring the open-vocabulary ability of VLMs to
dense prediction tasks such as object detection and semantic
segmentation. Specifically, this obstacle is reflected in the low
classification accuracy for regions in the OVD task. Therefore, ad-
dressing this issue in the OVD task is urgent.

In this work, we propose a new Shape-Invariant Adapter (SIA) to
bridge the gap between the image and region caused by the object
shape deformation. Specifically, SIA consists of a set of independent
adapters that transform the object region’s features into shape-
invariant region features to mitigate the image-region gap. Each
SIA adapter is a lightweight bottleneck network to prevent the
potential over-fitting problem on base categories since the shapes of
object regions are a long-tailed distribution. In addition, we design

a new adapter allocation mechanism in SIA to adaptively adjust the
weights of different adapters according to objects’ shapes. Thus,
each adapter only needs to cope with regions with similar shapes,
which reduces the image-region gap caused by shape variance. So
far, SIA can better align the shape-invariant region features with
text features to improve region classification accuracy in the OVD
task. It is worth mentioning that SIA allows us to use the frozen
CLIP image encoder as the backbone of our OVD model without
fine-tuning its parameters, which brings the benefits of CLIP’s
open-vocabulary knowledge directly into the OVD task, especially
in scenarios where traditional object detection models struggle
with novel objects. This incorporation will lead to more robust and
adaptable detection systems.

The contributions of this work are summarized as follows:
• We propose a new Shape-Invariant Adapter (SIA) by explor-
ing the fundamental cause of the gap between image and
local region in the OVD task to bridge this gap and improve
region classification accuracy effectively.

• We design a new Adapter Allocation Mechanism that ad-
justs the weights for adapters in SIA according to objects’
shapes, helping mitigate the image-region gap caused by
shape variance.

• We evaluate our SIA on the COCO-OVD benchmark, which
achieves improvements over representative methods on both
open-vocabulary detection and region classification.
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2 Related Works
2.1 Open-Vocabulary Detection
Knowledge-Distillation based OVD methods tend to distill the
open-vocabulary knowledge of vision-language pre-trained models
(VLM), e.g., CLIP, into traditional close-set object detectors. ViLD
[9] designs a distillation loss between CLIP image embeddings
and image features obtained by the detector’s backbone to trans-
fer CLIP’s visual capabilities to the object detector and leverages
the CLIP text encoder for efficient classification within the object
detection framework. HierKD [21] proposes a global-level knowl-
edge distillation method and combines it with instance-level knowl-
edge distillation to simultaneously learn base and target categories.
OADP [30] proposes an Object-Aware Distillation Pyramid to miti-
gate the information destruction and inefficient knowledge transfer
in distillation-based OVD methods. MM-OVOD [13] leverages the
powerful generative ability of LLMs to enrich the textual descrip-
tions of unseen categories. Then, it constructs a multi-modal classi-
fier by combining image exemplars and textual descriptions, which
achieves higher classification performance for novel categories. VL-
PLM [39] and SAS-Det [38] introduce a self-training strategy into
OVD, using CLIP to generate pseudo labels for novel categories
based on the region proposals predicted by a class-agnostic proposal
generator. Then a close-set detector is trained on the pseudo-labels
for novel categories generated by CLIP. SIC-CADS [6] refines the
object classification scores of an existing OVD model by leverag-
ing global knowledge distilled from a frozen CLIP model. These
knowledge-distillation-based OVD methods attempt to equip close-
set detectors with the ability to detect open-vocabulary words. In
contrast, we utilize the frozen CLIP image encoder as the backbone
of our detector, which directly incorporates CLIP’s open-vocabulary
knowledge into the OVD task.
Region-Text Pretraining based OVD methods tend to fine-tune
visual encoders on region-text pairs to enhance the alignment be-
tween region and text features for more precise object classification.
RegionCLIP [40] presents a two-stage training strategy, which in-
volves pretraining by aligning region-text pairs, followed by trans-
ferring the acquired knowledge to an object detector. GLIP [16]
unifies the formulation of object detection and phrase grounding,
which learns the correlation between regions and sub-words. OWL-
ViT [22] first conducts image-level contrastive pretraining and then
transfers to object-level with a bipartite matching loss. RO-ViT [14]
employs region positional embeddings that are randomly cropped
and resized instead of using positional embeddings for the entire
image to bridge the image-region gap. Edadet [26] proposes Early
Dense Alignment to improve the generalization of local semantics
and maintain the local fine-grained semantics. CLIM [32] aggre-
gates multiple images and treats each image as a pseudo-region to
form region-text pairs for fine-tuning CLIP. Moreover, it can seam-
lessly integrate with other OVD models as a versatile framework.
YOLO-World [4] is pre-trained on large-scale datasets, which main-
tains powerful zero-shot recognition capabilities while still having
efficient inference speed. Some of these methods suffer from the
noisy pseudo-region-text pairs [12]. Additionally, fine-tuning the
parameters of CLIP is likely to destroy its open-vocabulary ability
to generalize to novel objects. In contrast, we keep the CLIP image
encoder frozen to maintain CLIP’s generalization ability.

Prompt-Learning based OVD methods usually keep the CLIP
image encoder frozen and introduce learnable prompts to adapt
CLIP to the object detection task. DetPro [5] learns context tokens
as input to the text encoder. It learns different prompts for proposals
of different IoU with ground-truth boxes to address the variances
among proposals. PromptDet [7] incorporates learnable prompt vec-
tors into textual input, which are unrelated to categories, enabling
generalization from base classes to target classes. Prompt-OVD
[27] propose a prompt-based decoding module, in which both the
image embedding and text embedding from CLIP are regarded as
class prompts for each self-attention module of the decoder. CORA
[33] utilizes ground truth bounding boxes from base classes to train
position-embedding modules within the RN50 backbone, aiming
to adapt CLIP to the OVD task better. According to the section 2.1,
these prompt-learning-based OVD methods learn fixed prompts for
all samples, which may limit their generalization ability for unseen
categories. In contrast, we learn conditional adapters for different
samples for better generalization performance.

2.2 Multi-Modal Prompt Tuning
Large-scale vision-language pre-trained model (VLM), e.g., CLIP,
demonstrates impressive zero-shot performance across various
downstream tasks [17, 18, 29, 35]. Adapting VLMs to a specific
task commonly involves two approaches: fine-tuning or prompt
tuning. Recently, the focus of research has gradually shifted towards
prompt tuning, which keeps VLM encoders frozen and learns addi-
tional prompts as input to VLMs. CoOp [42] replaces the manual
template of textual prompts with learnable context tokens, which
are trained with all categories. However, such fixed context tokens
result in poor zero-shot capabilities and generalization to unseen
categories, so CoOp is not compatible with the OVD task. CoCoOp
[41] integrates image features into the learning process by adding
a lightweight meta-net to generate instance-conditional textual to-
kens to mitigate this issue. CoCoOp improves the open-vocabulary
ability, but the memory consumption and computational cost are
extremely high because the meta-net does not support batch pro-
cessing. UPT [36] developed a modality-agnostic prompt tuning
method, leveraging a lightweight transformer layer to concurrently
fine-tune both the visual and textual branches. CLIP-Adapter [8]
adapts the original clip model to downstream tasks by adding train-
able linear layers after the vision encoder and text encoder. CLIP-
Adapter achieves higher efficiency because the adapters are inserted
after encoders, and the back-propagate paths are much shorter. FG-
VPL [28] explores the potential for fine-grained image recognition
of CLIP by introducing fine-grained visual prompts. In this paper,
we follow these prompt tuning methods with frozen backbones to
maintain the generalization ability of CLIP.

3 Methodology
3.1 Overview
Open-vocabulary detection (OVD) aims to train an object detector
D to detect objects of novel categories C𝑁 without the instance-
level annotations for them. During the training phase, only instance-
level annotations for objects of base categories C𝐵 and the pre-
trained CLIP model are available. During the inference phase, the
detector is tested on a set of novel categories C𝑁 , where C𝐵∩C𝑉 = ∅.
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Figure 2: Overview of the SIA-OVD framework. It takes image and prompt templates filled in with class names as input and
outputs the bounding boxes of objects in the whole image along with prediction classification.

Extra training datasets of image-text pairs (e.g., COCO Captions
[3] and CC3M [25]) are also available, but in this work, we do not
utilize any extra datasets to train our model.

Specifically, our open-vocabulary object detection process is di-
vided into two branches: object localization and region classification.
We mainly focus on improving the accuracy of region classification
in this work. For object localization, we use DAB-DETR [19] as
the localizer, which learns object queries with bounding boxes as
input. DAB-DETR encodes the feature map output by the 3𝑟𝑑 layer
of the CLIP image encoder and decodes the outputs of the bound-
ing boxes of detected objects in both base and novel categories.
For region classification, given a region proposal of 4 dimensions
(𝑥𝑖 , 𝑦𝑖 , ℎ𝑖 ,𝑤𝑖 ) with its confidence score 𝑐𝑜𝑛𝑓𝑖 decoded from DAB-
DETR, we utilize RoIAlign [10] to obtain the region feature from
CLIP’s image feature map. Then, we feed the region feature and
the bounding box into the Shape-Invariant Adapter (SIA). SIA gen-
erates the weights for different adapters according to the shape of
the bounding boxes and transforms the region features into shape-
invariant ones that are better aligned with text embeddings. We
perform region classification by calculating the cosine similarities
between region embeddings and text embeddings of all categories.
The overall framework is illustrated in Figure 2.

3.2 Shape-Invariant Adapter (SIA)
Structure of SIA. In this section, we introduce our Shape-Invariant
Adapter illustrated in Figure 3. To mitigate the image-region gap in
OVD, SIA aims to learn a mapping from the region feature space
obtained by RoIAlign to the common space, which is aligned with
CLIP visual and textual features. We are inspired by the fact that
CoOp [42] learns fixed context tokens for all samples and performs
poorly on unseen categories, while CoCoOp [41] learns conditional
context tokens based on each sample and achieves better perfor-
mance on unseen categories. Therefore, we try to learn conditional
feature transformation based on the shapes of region proposals.

Luckily, the shape information of a region is much simpler than
its semantic information. We do not have to rely on the generative
network of CoCoOp to generate conditional context, which results

in a high computational cost. Specifically, SIA keeps a set of 𝑁 in-
dependent adapters {𝐴𝑑𝑎𝑝𝑡𝑒𝑟 𝑗 , 𝑗 = 1, ..., 𝑁 }. Each adapter consists
of two fully connected layers W𝑗

1 and W𝑗

2, a ReLU activation layer,
and a residual factor 𝜆. When the 𝑖𝑡ℎ region feature 𝑓 𝑖𝑟 ∈ R𝐷×1 is
input to SIA, we obtain the adapted region embedding 𝑓 𝑖𝑟 through
a residual connection:

𝐴𝑑𝑎𝑝𝑡𝑒𝑟 𝑗 (𝑓 𝑖𝑟 ) = ReLU(𝑓 𝑖𝑟W
𝑗

1)W
𝑗

2, (1)

𝑓
𝑖, 𝑗
𝑟 = 𝜆 ∗𝐴𝑑𝑎𝑝𝑡𝑒𝑟 𝑗 (𝑓 𝑖𝑟 ) + (1 − 𝜆) ∗ 𝑓 𝑖𝑟 . (2)

For the 𝑖𝑡ℎ region proposal R𝑖 , SIA outputs 𝑁 adapted region fea-
tures:

𝐹 𝑖𝑟 = (𝑓 𝑖,1𝑟 , ..., 𝑓
𝑖,𝑁
𝑟 ) ∈ R𝐷×𝑁 . (3)

Adapter Allocation Mechanism. To mitigate the image-region
gap caused by shape variance, we design an Adapter Allocation
Mechanism, which generates weights for the 𝑁 adapter in SIA
so that each adapter only needs to cope with regions with similar
shapes.We quantize the region shapes as aspect ratios (height/width).
Then we manually partition the real number axis of different aspect
ratios into 𝑁 discrete intervals by 𝑁 +1 points {𝑠0, 𝑠1, ..., 𝑠𝑁 } (𝑠0 = 0
and 𝑠𝑁 → +∞). Given a region proposal R𝑖 with a height of ℎ𝑖
and a width of𝑤𝑖 from the object query of DETR, we compute the
one-hot allocation weight according to its shape ℎ𝑖/𝑤𝑖 :

𝑌𝑖 = (𝑦 (1) , ..., 𝑦 (𝑁 ) ) ∈ {0, 1}1×𝑁

𝑤𝑖𝑡ℎ 𝑦 (𝑘 ) = 1[𝑠𝑘−1 < ℎ𝑖/𝑤𝑖 ≤ 𝑠𝑘 ], 1 ≤ 𝑘 ≤ 𝑁 .
(4)

Given the adapter allocation weights 𝑌𝑖 for the 𝑖𝑡ℎ region pro-
posal and the region features adapted by all adapters in SIA 𝐹 𝑖𝑟 , we
multiply the region features by the weights to select the optimal
adapter:

𝛽𝑖𝑟 = 𝐹
𝑖
𝑟 × 𝑌T

𝑖 ∈ R𝐷×1 . (5)
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Figure 3: Illustration of Shape-Invariant Adapter.

Finally, to perform classification, the adapted region feature 𝛽𝑖𝑟
is multiplied by the CLIP text embeddings for each category name.
The text embeddings are denoted as:

{𝛼𝑘𝑡 , 𝑘 = 1, ..., 𝐾} ∈ R𝐷×𝐾 , (6)

where 𝐾 is the number of categories. The probability that region
R𝑖 belongs to category 𝑘 is denoted as:

𝑝𝑘𝑖 =

exp
(
(𝛽𝑖𝑟 )T (𝛼𝑘𝑡 )/𝜏

)
∑𝐾
𝑗=1 exp

(
(𝛽𝑖𝑟 )T (𝛼

𝑗
𝑡 )/𝜏

) (7)

3.3 Training and Inference
Training. We adopt a two-stage training process. In the first stage,
we freeze all parameters except the adapters in SIA. For a training
sample R𝑖 , the ground-truth bounding boxes are input to the clas-
sification branch, and we optimize SIA with Cross-Entropy Loss:

L𝑐𝑙𝑠 = − 1
𝐾

𝐾∑︁
𝑘=1

log𝑝𝑘𝑖 (8)

Then we keep the classification branch frozen and train the
transformer encoder and decoder in the localization branch. Our
localizer shares the same DAB-DETR structure as CORA [33], so
we utilize the same training object.
Inference. During inference, for the 𝑖𝑡ℎ object query, the bound-
ing box is refined by the transformer decoder and then fed to SIA
for classification. We obtain a localization score 𝑠𝑐𝑜𝑟𝑒𝑙 and a clas-
sification score 𝑠𝑐𝑜𝑟𝑒𝑐 respectively for the region proposal. The
classification score denoted the probability that this proposal be-
longs to a certain category:

𝑠𝑐𝑜𝑟𝑒𝑐 = 𝑚𝑎𝑥
𝑘=1,...,𝐾

𝑝𝑘𝑖 . (9)

The localization score is from the anchor pre-matching strategy
of CORA. We multiply 𝑠𝑐𝑜𝑟𝑒𝑐 with 𝑠𝑐𝑜𝑟𝑒𝑙 as the confidence of this
region proposal:

𝑠𝑐𝑜𝑟𝑒𝑏𝑜𝑥 = 𝑠𝑐𝑜𝑟𝑒𝑐 · 𝑠𝑐𝑜𝑟𝑒𝑙 (10)

4 Experiments
4.1 Dataset and Evaluation Metrics
COCO-OVD Benchmark. COCO-OVD benchmark is proposed
by OVR-CNN [37], which splits the COCO categories into 48 base
categories and 17 novel categories. Under the OVD setting, object
detectors are trained on the bounding box annotations of 48 base
categories in the training set. Detectors are evaluated on the vali-
dation set, which contains 28,538 instances of base categories and
4,614 instances of novel categories.
OV-LVIS Benchmark. Following [40], we also conduct experi-
ments on the OV-LVIS benchmark, which has 1023 categories in
total. The model is trained on the common and frequent categories
and tested on the rare categories.
Evaluation Protocol. We mainly evaluate the model under the
generalized setting, which demands the model to detect objects of
both base and novel categories at the same time. We take AP50
(average precision with an IoU threshold of 0.5) as the evaluation
metric and report the metric on base categories and novel categories
separately. Additionally, to directly reflect the classification perfor-
mance for objects, we also calculate AP50 and box classification
accuracy (denoted as Acc.) with a ground-truth bounding box as
input.

4.2 Implementation Details
Model Architecture. The architecture of the object localizer is
identical to CORA, which is a DAB-DETR [19] consisting of a
3-layer transformer encoder, a 6-layer transformer decoder, and
1,000 learnable object queries as input. We utilize the 80 prompt
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Table 1: Experimental results on the COCO-OVD benchmark.

Method Publication Backbone Supervision AP50 (Generalized)
Extra Dataset Pretrained Model Require Novel Class Novel Base All

OVR-CNN [37] CVPR 21 RN50 COCO-Captions BERT-base No 22.8 46.0 39.9
Detic [43] ECCV 22 RN50 COCO Captions CLIP (Text Encoder) No 27.8 47.1 45.0
RegionCLIP [40] CVPR 22 RN50 CC3M CLIP (RN50) No 31.4 57.1 50.4
VL-PLM [39] ECCV 22 RN50 - CLIP (RN50) Yes 34.4 60.2 53.5
PromptDet [7] ECCV 22 RN50 LAION-400M CLIP (Text Encoder) Yes 26.6 - 50.6
F-VLM [15] ICLR 23 RN50 - CLIP (RN50) No 28.0 - 39.6
BARON [31] CVPR 23 RN50 - CLIP (RN50) No 34.0 60.4 53.5
CORA [33] CVPR 23 RN50 - CLIP (RN50) No 35.1 35.5 35.4
SIA (Ours) - RN50 - CLIP (RN50) No 35.5 40.3 39.3
RegionCLIP [40] CVPR 22 RN50x4 CC3M CLIP (RN50x4) No 39.3 61.6 55.7
CORA [33] CVPR 23 RN50x4 - CLIP (RN50x4) No 41.7 44.5 43.8
ProxyDet [12] AAAI 24 RN50x4 COCO Captions - No 30.4 52.6 46.8
SIA (Ours) - RN50x4 - CLIP (RN50x4) No 41.9 48.8 40.5

Table 2: AP50 and Classification Accuracy on ground-truth
bounding boxes from the COCO-OVD dataset.

Methods Backbone AP50 AccNovel Base
CLIP [24] RN50 58.2 58.9 44.0
CoOp [42] RN50 64.4 75.7 -
CLIP-Adapter [8] RN50 63.0 80.6 -
CORA [33] RN50 65.1 70.0 74.3
SIA (Ours) RN50 68.6 79.5 81.3
CLIP [24] RN50x4 63.9 62.7 51.9
CORA [33] RN50x4 74.1 76.0 78.3
SIA (Ours) RN50x4 75.8 85.4 83.0

templates provided by CLIP to calculate the text embeddings for
each category.
Training & Hyperparameters. As described in section 3.2, we
adopt a two-stage training process. First, we take the ground-truth
bounding boxes as input, freeze the backbone, and only update
the parameter of 𝑁 adapters. According to the ablation studies
in section 4.3, our model achieves the best performance when 𝑁
equals to 10. We train the adapters for 5 epochs with a base learning
rate of 10−4, which decays after 4 epochs by a factor of 0.1. In the
second stage, we freeze the adapters and update the localizer for 35
epochs with a learning rate of 10−4. The first training stage takes 4
GPUs with a batch size set to 16. The second training stage is the
same as CORA does, which takes 8 GPUs with batch size set to 16.

4.3 Results and Analysis
Comparison with State-of-the-Art. Table 1 presents our main re-
sults on the COCO-OVD benchmark. The compared OVD methods
include knowledge-distillation based methods (F-VLM [15], SIC-
CADS [6]), region-text pretraining based methods (RegionCLIP
[40], BARON [31], CLIM [32]), pseudo-labeling methods (VL-PLM
[39]) and prompt-learning methods (PromptDet [7], DetPro [5],
CORA [33]). We do not compare SIA with SIC-CADS and CLIM,
which are attached to an existing OVD model.

To conduct a fair comparison, we separately compare the afore-
mentioned methods with different visual backbones: RN50 and
RN50x4. For each method, we list its supervision from three as-
pects: Extra Dataset (data beyond the instance-level annotation for
base categories), Pretrained Model (the CLIP image encoder and
text encoder), and Require Novel Class (whether the names of novel
categories is needed during training).

Among these baselines, SIA outperforms CORA [33] by 0.4 AP50
on novel categories with RN50 backbone, and 0.3 AP50 with RN50x4
backbone. SIA only utilizes the pre-trained CLIPmodel and instance-
level annotations for base categories, without the need for any extra
dataset. Moreover, during the training phase, novel class names are
not required either, which makes it more convenient to train the
model and easier to expand to unseen categories.
Experiments on Ground-Truth Bounding Boxes. To verify the
effectiveness of SIA on region classification, we take the ground-
truth bounding boxes for novel categories as input and calculate
AP50 and average classification accuracy. The results are shown in
Table 2. We compare SIA with CLIP [24], CoOp [42], CLIP-Adapter
[8], RegionCLIP [40], and CORA [33]. Due to the noises in pseudo-
labels, pseudo-labels-basedmethods RegionCLIP andVL-PLM strug-
gle to improve region classification to a higher level. CoOp and
CLIP-Adapter suffer from the significant gap between Novel and
Base. CoOp learns optimal context tokens for base categories, which
are suboptimal for novel categories. Similarly, CLIP-Adapter learns
optimal feature transformation for base categories, which are sub-
optimal for novel categories. Both the context tokens and the linear
feature transformation are fixed, facing different objects, resulting
in the overfitting of base categories. CORA learns region prompts
from base categories and adds the prompts to the visual feature
map, which has reduced the performance gap between novel and
base categories, but this gap still exists.

To further demonstrate that SIA effectively improves the classi-
fication accuracy for regions with extreme aspect ratios, we report
the classification performance of regions with different shapes in
Figure 4. As shown in the figure, the original CLIP exhibits unsatis-
factory classification accuracy for all shapes. CORA improves the
overall performance of region classification, but there is still an
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(a) CLIP (b) CORA (c) SIA (Ours)

Figure 4: Classification accuracy for regions with different shapes of CLIP, CORA, and our SIA with RN50 backbone on COCO-
OVD validation set with ground-truth bounding boxes.

Table 3: Detection performance (i.e., AP50) of each target category on COCO-OVD validation set.

Method Airplane Bus Cat Dog Cow Elephant Umbrella Tie Snowboard
CLIP 92.44 72.13 84.89 75.03 70.76 89.97 63.29 63.58 12.19
CORA 92.34 80.96 86.04 79.17 73.86 91.40 69.43 74.51 26.66
SIA 94.95 83.39 84.79 81.29 75.49 93.56 68.06 82.02 31.20
Δ +2.61 +2.43 -1.25 +2.12 +1.63 +2.16 -1.37 +7.51 +4.54

Method Skateboard Cup Knife Cake Couch Keyboard Sink Sicssors
CLIP 40.99 56.99 18.98 67.37 37.11 62.16 56.57 16.80
CORA 70.00 65.70 28.51 73.12 54.34 62.32 61.75 14.76
SIA 77.69 71.25 28.85 73.03 58.51 75.58 62.46 18.16
Δ +7.69 +5.55 +0.34 -0.09 +4.17 +13.26 +0.71 +3.40
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Figure 5: Effect of the number of adapters on detection per-
formance (AP50) for all and rare categories in LVIS.
obvious gap between regions with aspect ratios far smaller or larger
than 1:1 and regions with aspect ratios close to 1:1. Our proposed
approach, SIA, effectively enhances the classification performance
of regions with extreme aspect ratios. We also report AP50 scores
achieved by CLIP, CORA, and SIA (Ours) across each novel category,
as illustrated in Table 3, where 𝛿 denotes the difference between
AP50 scores of SIA and CORA. SIA achieves improvements over
CORA across most categories, particularly for tie (+7.51%), skate-
board (+7.69%), and keyboard (+13.26%). For cat, umbrella, and cake
categories, SIA exhibits slight decreases compared to CORA.
Ablation Study.We conduct ablation studies of AP50 with ground-
truth bounding boxes as input and RN50 as the backbone on the

OV-LVIS benchmark. Figure 5 shows the effect of adapter numbers
within SIA architecture. The numbers are selected as 1, 2, 4, 10,
and 20. As illustrated in Figure 3, the AP50 initially increases and
then decreases as the adapter number increases, reaching its opti-
mal value at 10 adapters. This phenomenon arises because, with
fewer adapters, each adapter needs to handle regions with signifi-
cantly variant shapes, resulting in a relatively severe misalignment
between regions and texts. Conversely, with more adapters, each
adapter only has a limited number of training samples, especially
for regions with extreme aspect ratios.

4.4 Visualization.
Classification Results for Region Proposals. Figure 6 shows the
region classification results in the COCO-OVD validation set. SIA
predicts more reasonable classification results than CLIP and CORA
for region proposals, especially for regions containing severely
deformed objects, e.g., surfboards, ties, and knives. For example, in
the first column, SIA successfully identifies the surfboard, while
CLIP and CORA misclassify it as an airplane.
Distribution of Adapted Region Features Figure 7 shows the re-
gion features adapted by SIA for 17 novel categories in COCO-OVD
validation set using t-SNE [23]. It is illustrated that SIA achieves
a more obvious separation of embeddings belonging to different
categories than CLIP and CORA. In (a) CLIP and (b) CORA, feature
points of different categories near the center tend to intermingle
with each other, making it hard to classify these regions. In (c)
SIA, there are relatively more distinct boundaries among feature
points of different categories near the center, which verifies that
SIA achieves higher classification accuracy for novel categories.
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Figure 6: Visualization of region classification results and confidence scores for ground-truth bounding boxes from COCO-OVD
validation set. (Image IDs: 45090, 11051, 52591, 277051)

(a) CLIP (b) CORA (c) SIA (Ours)
Figure 7: Visualization of the region features belong to 17 novel categories in the COCO-OVD validation set encoded by CLIP,
CORA, and our SIA with RN50 backbone via t-SNE.

5 Conclusion
In this paper, we identify one of the fundamental challenges cur-
rently faced by the OVD task: the low region classification accuracy
resulting from the gap between the image and the local region, pri-
marily attributed to the shape deformation of region feature maps
after RoIAlign cropping operations. To tackle this issue, we pro-
pose the Shape-Invariant Adaptor (SIA), which aims to mitigate
the misalignment between region features and CLIP’s image/text
features. SIA maintains a set of feature adapters and assigns differ-
ent adapters to region proposals with varying shapes through the
adapter allocation mechanism. Experimental results demonstrate
that SIA effectively enhances the accuracy of region classification,

particularly for regions with deformed object shapes. Our SIA has
the potential to inspire and support further research in the OVD
field.
Limitations & FutureWork. SIA focuses on the problem of region
classification in the OVD task. However, existing OVD methods
still encounter the challenge of localizing novel objects. Accord-
ing to our experimental observations, the RPN network trained on
only base categories often fails to accurately and comprehensively
generate bounding boxes for objects belonging to novel categories.
Therefore, addressing the localization problem of novel categories
and exploring one-stage open-vocabulary detectors show signifi-
cant value for future research.
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