
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NOISE-ADAPTIVE LAYERWISE LEARNING RATES:
ACCELERATING GEOMETRY-AWARE OPTIMIZATION
FOR DEEP NEURAL NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Geometry-aware optimization algorithms, such as Muon, have achieved remark-
able success in training deep neural networks (DNNs). These methods leverage
the underlying geometry of DNNs by selecting appropriate norms for different
layers and updating parameters via norm-constrained linear minimization ora-
cles (LMOs). However, even within a group of layers associated with the same
norm, the local curvature can be heterogeneous across layers and vary dynami-
cally over the course of training. For example, recent work shows that sharpness
varies substantially across transformer layers and throughout training, yet stan-
dard geometry-aware optimizers impose fixed learning rates to layers within the
same group, which may be inefficient for DNN training.
In this paper, we introduce a noise-adaptive layerwise learning rate scheme on
top of geometry-aware optimization algorithms and substantially accelerate DNN
training compared to methods that use fixed learning rates within each group. Our
method estimates gradient variance in the dual norm induced by the chosen LMO
on the fly, and uses it to assign time-varying noise-adaptive layerwise learning
rates within each group. We provide a theoretical analysis showing that our algo-
rithm achieves a sharp convergence rate. Empirical results on transformer archi-
tectures such as LLaMA and GPT demonstrate that our approach achieves faster
convergence than state-of-the-art optimizers.

1 INTRODUCTION

Optimization algorithms are cornerstones for modern deep learning, enabling the training of increas-
ingly large neural networks, such as LLaMA (Touvron et al., 2023) and GPT (Achiam et al., 2023)
models. While standard optimizers such as SGD (Robbins & Monro, 1951) and Adam (Kingma &
Ba, 2014) remain widely used, they often overlook the geometry of neural network parameter spaces.
Recently, geometry-aware optimization algorithms such as Muon (Jordan et al., 2024) have demon-
strated remarkable empirical success by performing orthogonalized updates on matrix parameters.
Building on this idea, Pethick et al. (2025) developed a framework that selects appropriate norms for
different layers and updates parameters via norm-constrained linear minimization oracles (LMOs).
These methods go beyond standard optimizers by exploiting structural properties (e.g. layer-wise
operator norms) of DNNs rather than treating all parameters uniformly, thus leading to improved
performance and acceleration for large-scale foundation model pretraining (Liu et al., 2025).

Despite their success, most of the existing geometry-aware optimizers simply assign fixed learning
rates within groups of layers associated with the same norm choice. However, these algorithms
neglect the heterogeneous and dynamic nature of various layers during the neural network training.
For example, recent studies (Wang et al., 2025) have shown that sharpness or local curvature of
the objective function can vary substantially across different types of layers (e.g., query-key (QK)
layers, value-output (VO) layers, and multilayer perceptron (MLP) in transformers). Moreover, these
variations evolve over time, as observed when training with AdamW (Loshchilov & Hutter, 2017).
(Riabinin et al., 2025) firstly proposed layerwise learning rates for the geometry-aware optimization
methods based on smoothness parameters. In contrast, we focused on the noise magnitude of each
layer instead of the smoothness parameters. In particular, we have observed similar phenomena in
training a LLaMA model with the Muon optimizer1. Figure 1 highlights that the stochastic gradient

1We follow https://github.com/KellerJordan/modded-nanogpt to apply Muon optimizer
to the transformer hidden layers (including query, key, value, output, MLP layers), and AdamW to the embed-
ding, LM head, normalization layers.

1

https://github.com/KellerJordan/modded-nanogpt

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2000 4000 6000 8000 10000
Iteration

0.02

0.03

0.04

0.05

G
ra

di
en

t
N

oi
se

Gradient Noise (hidden layers) grouped by shape
Shape A
Shape B

0 10 20 30 40
Layer index

0.000

0.005

0.010

0.015

0.020

0.025

0.030

G
ra

di
en

t
no

is
e

Gradient noise within QK layer group

0 10 20 30 40
Layer index

0.000

0.025

0.050

0.075

0.100

G
ra

di
en

t
no

is
e

Gradient noise within VO layer group

0 10 20 30 40 50 60
Layer index

0.000

0.025

0.050

0.075

0.100

G
ra

di
en

t
no

is
e

Gradient noise within MLP layer group

Figure 1: The stochastic gradient noise is heterogeneous across groups and layers in transformers.
The first subfigure shows that average gradient noise in hidden layers varies across parameter groups
defined by matrix shape and evolves over training. The last three subfigures illustrate that, within
each layer group, the gradient noise varies substantially across layers3.

noise differs substantially across layer groups or layers, and shifts throughout training. Nevertheless,
state-of-the-art geometry-aware optimizers such as D-Muon (Liu et al., 2025) and Scion (Pethick
et al., 2025) use the same fixed learning rate for matrices of the same shape, ignoring the fact
that gradient noise on layers with the same shape can vary significantly over iterations as shown in
Figure 1. This mismatch suggests that treating such layers uniformly may lead to inefficient training,
motivating the need for novel layerwise learning rate schemes.
Layerwise adaptive learning rates (You et al., 2017; 2019) are widely used in deep learning under
standard Euclidean spaces. These optimizers automatically rescale updates according to gradient
magnitudes, which reduces manual tuning and often accelerates convergence. However, they dis-
regard the structural geometry of neural networks by treating all parameters as if they belonged
to the same category. In reality, neural networks contain diverse parameter groups such as matri-
ces in attention layers, vectors in bias terms, and embedding tables, where different layers in each
group exhibit vastly different noise profiles as illustrated in our Figure 1. The key open question is
how to design adaptive learning rates beyond standard Euclidean spaces, enabling geometry-aware
optimizers to exploit heterogeneous gradient noise across layers and over the course of training.

In this paper, we propose a new geometry-aware optimization algorithm named Lanton: LAyer-wise
Noise-adaptive learning raTe scaling with Operator Norms. Our algorithm dynamically estimates
gradient variance in the dual norm induced by the chosen LMO and uses this estimate to assign
layerwise learning rates that adapt over the course of training. Unlike existing approaches, which
treat all layers in a group uniformly, our algorithm accounts for the heterogeneity of gradient noise
across layers, leading to smaller learning rates for layers with larger gradient noise, thereby enabling
finer-grained and more efficient optimization. Importantly, the proposed mechanism is compatible
with the geometry-aware optimizers, such as Muon (Jordan et al., 2024) and D-Muon (Liu et al.,
2025). Our contribution can be summarized as follows.

• We propose a new optimization algorithm named LANTON: LAyer-wise Noise-adaptive
learning raTe scaling with Operator Norms, which can dynamically capture the gradient
noise of each layer and thus accordingly rescale the learning rate of each layer.

• We prove that our method achieves a sharp convergence rate of Õ(1/
√
T+
√∑

ℓ σ̄ℓ/T
1/4),

where σ̄ℓ denotes an upper bound on the gradient noise of the layer ℓ. Our bound shows im-
proved noise dependence under the layer-wise noise assumption. By explicitly accounting
for the heterogeneous noise levels across layers, our analysis demonstrates the advantage
of noise-adaptive layer-wise learning rates.

• Empirically, we evaluate our approach on language model training and image classification,
including LLaMA, GPT2 and convolutional neural network, and show that it substantially
accelerates training and improves sample efficiency compared to state-of-the-art optimiz-
ers. Our results indicate that dynamically adapting learning rates at the layer level can better
capture the evolving optimization landscape, leading to faster convergence and improved
training efficiency. Together, these contributions highlight the importance of integrating
noise adaptivity into geometry-aware optimization and open new directions for scalable
and effective training of deep neural networks.

2 RELATED WORK

A long line of work has studied optimization for deep learning. The most classical method is SGD
(Robbins & Monro, 1951). Early advances focused on adaptive learning rates, including Adagrad

3See Appendix F for the implementation details.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012), Adadelta (Zeiler, 2012), and the widely
used Adam (Kingma & Ba, 2014). Later developments improved Adam in various ways: AdamW
(Loshchilov & Hutter, 2017) introduced decoupled weight decay and has become the default choice
for deep learning; several variants incorporate variance reduction, such as AdEMAMix (Pagliardini
et al., 2024) and MARS-AdamW (Yuan et al., 2024); others target memory efficiency, including
Adafactor (Shazeer & Stern, 2018), Lion (Chen et al., 2023), MeZO (Malladi et al., 2023), GaLore
(Zhao et al., 2024a), Adam-mini (Zhang et al., 2024), and Signum (Zhao et al., 2024b).

Another line of work approximates or leverages second-order information. K-FAC (Martens &
Grosse, 2015) and Shampoo (Gupta et al., 2018) are classical examples. The substantial compute
and memory overheads of second-order optimizers have motivated distributed implementations of
Shampoo (Anil et al., 2020; Shi et al., 2023). More recently, lightweight preconditioned optimizers
such as Sophia (Liu et al., 2023a) and SOAP (Vyas et al., 2024) have been proposed, achieving
substantial speedups over AdamW in large-scale language model pretraining.

A third research direction focuses on layer-wise or block-wise learning rates to accelerate training.
LARS (You et al., 2017) and LAMB (You et al., 2019) are widely used for large-batch training,
while more recent approaches extend AdamW with blockwise learning rates (Wang et al., 2025).

Several parameter-free or schedule-free optimizers aim to reduce the burden of hyperparameter tun-
ing, including Dog (Ivgi et al., 2023), Prodigy (Mishchenko & Defazio, 2023), and Schedule-Free
AdamW (Defazio et al., 2024).

Most recently, the theory of modular duality in optimization and the perspective of steepest descent
under different operator norms (Bernstein & Newhouse, 2024a;b; Large et al., 2024) have inspired
the design of matrix-based and geometry-aware optimizers, including Muon (Jordan et al., 2024)
and Scion (Pethick et al., 2025), as well as distributed implementations such as D-Muon (Liu et al.,
2025) and Dion (Ahn et al., 2025), which further improve training efficiency and stability at scale.

3 PRELIMINARIES

In this work, we consider the stochastic optimization problem minX f(X) := Eξ∈D[F (X; ξ)],
where ξ is random noise sampled from an unknown distribution D, and X ∈ S is the model pa-
rameter, where X = [X1, . . . , Xp], Xi ∈ Si := Rmi×ni , and S :=

⊗p
i=1 Si. Similarly, write the

gradient as ∇f(X) = [∇1f(X), . . . ,∇pf(X)] ∈ S, and the stochastic gradient as ∇F (X; ξ) =
[∇1F (X; ξ), . . . ,∇pF (X; ξ)] ∈ S (here we adopt the notation and setup from (Riabinin et al.,
2025). We assume that the objective is bounded from below, i.e., f∗ := infX f(X) > −∞.

Notations. Let ∥ · ∥ denote an arbitrary (not necessarily Euclidean) vector/matrix norm with asso-
ciated dual norm ∥ · ∥∗, and let ∥ · ∥nuc denote the nuclear norm. We use ⟨·, ·⟩ for the trace inner
product, defined as ⟨A,B⟩ = tr(A⊤B) for A,B ∈ Rm×n. For two positive functions f and g, we
write f ≲ g (resp. f ≳ g) if there exists c > 0 such that f(x) ≤ cg(x) (resp. f(x) ≥ cg(x)) for all
x. We use standard big-O notation, with Õ and Ω̃ used to hide polylogarithmic factors, respectively.

Linear Minimization Oracle (LMO). The LMO is a fundamental concept in convex optimization
(Frank et al., 1956), particularly in the context of algorithms like the Frank-Wolfe algorithm (also
known as the conditional gradient method (Jaggi, 2013)). Given a convex feasible set K and a
direction vector/matrix u, the LMO returns an extreme point of K that minimizes the linear function
⟨u, x⟩ over K. Mathematically, this can be expressed as: LMO(u) = argminx∈K⟨u, x⟩.
Throughout this paper, we focus on the special case where K := {x | ∥x∥ ≤ 1} for some chosen
(not necessarily Euclidean) norm ∥ · ∥ (Pethick et al., 2025), unless specified otherwise.

Operator Norm and RMS Norm. Given a matrix A ∈ Rm×n and two normed vector spaces
(Rn, ∥ · ∥a) and (Rm, ∥ · ∥b), the “a to b” induced operator norm is defined as ∥A∥a→b :=

maxx∈Rn,x̸=0
∥Ax∥b

∥x∥a
= sup∥x∥a=1 ∥Ax∥b. Given a vector x ∈ Rd, the RMS norm is defined as

∥x∥RMS := 1√
d
∥x∥2.

4 OUR METHOD

Algorithmic Framework. Our proposed algorithmic framework (Algorithm 1) consists of three
main stages at each iteration. First (lines 4-6), we compute the stochastic gradient Gℓ

t for each layer,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 LANTON: LAyer-wise Noise-adaptive raTe scaling with Operator Norms
1: Input: X0, α, β1, β2, γ, η, G0 = ∇F (X0; ξ0), B0 = G0

2: while t < T do
3: for each layer ℓ do
4: Gℓ

t = ∇ℓF (Xt; ξt), G̃ℓ
t = ∇ℓF (Xt; ξ̃t) (G̃ℓ

t is used only in Option II)
5: Bℓ

t = β1B
ℓ
t−1 + (1− β1)G

ℓ
t

6: Oℓ
t = LMO(Bℓ

t) (choose norm based on ℓ’s group Gℓ, Table 1 line 5)

7: Hℓ
t = β2H

ℓ
t−1 + (1− β2) ·

{
∥Gℓ

t −Gℓ
t−1∥2∗ Option I (practical)

∥Gℓ
t − G̃ℓ

t∥2∗ Option II (theoretical)
(Table 1 line 4)

8: αℓ
t = α/

√
α2 +Hℓ

t , αm
t = maxℓ∈Gℓ

αℓ
t (max is over ℓ’s group Gℓ, Table 1 line 1)

9: ηℓt = ηt
√
αℓ
t/α

m
t (ηt ∈ [ηmin, ηmax] follows a cosine decay schedule)

10: Xℓ
t+1 = Xℓ

t − ηℓtO
ℓ
t

11: end for
12: end while

Table 1: The choice of LMO can be different between layers. We use W ∈ Rdout×din to denote a
matrix and w ∈ Rd to denote a vector. Write the SVD as W = UΣV ⊤.

Parameter Group Hidden layers (query, key, value, output, mlp) Embedding, LM head layers RMS norm

Size Matrix ∈ Rdout×din Matrix ∈ Rdout×din Vector ∈ Rd

Norm ∥ · ∥ RMS → RMS 1 → ∞ RMS

Dual Norm ∥ · ∥∗
√

dout/din∥ · ∥nuc ∥ · ∥1→1

√
d∥ · ∥2

LMO −
√

dout/dinUV ⊤ − 1
din

sign(W) −
√
d w
∥w∥2

LMO Implementation Newton-Schulz Signum RMS Normalization

accumulate its momentum Bℓ
t , and then obtain the direction Oℓ

t = LMO(Bℓ
t) by invoking a LMO,

where the choice of norm depends on the structural group of layer ℓ (embedding/LM head layers,
hidden layers, or non-matrix layers; see Table 1). Note that line 4-6 is the same as the work of
Scion (Pethick et al., 2025) and Gluon (Riabinin et al., 2025). Second (lines 7-9), the key novelty
of our framework is to incorporate noise-adaptive layer-wise learning rate scaling. We maintain
a momentum buffer Hℓ

t to track the moving average of the estimated noise level for each layer.
This buffer can be updated in two ways: a practical option (using Gℓ

t and Gℓ
t−1 and avoiding extra

computation) and a theoretical option (using two independent stochastic gradients Gℓ
t and G̃ℓ

t at
each step). Based on Hℓ

t , the layer-wise scaling αℓ
t is computed, and the effective learning rate is

adjusted proportionally through the ratio αℓ
t/α

m
t , ensuring that layers with larger noise magnitudes

employ smaller learning rates. Finally (lines 10-11), we update the model parameters with the scaled
stepsize and the direction given by LMO.

Choice of Norm Constraint and LMO Implementation. To determine appropriate norm con-
straints for different types of parameters in deep neural networks, we adopt the operator norm per-
spective recently advanced in (Large et al., 2024; Bernstein & Newhouse, 2024a; Pethick et al.,
2025). As summarized in Table 1, parameters naturally fall into three groups: (i) hidden layers (e.g.,
query, key, value, output, and MLP weights), which are represented as matrices and we use the RMS
→ RMS operator norm with dual nuclear norm (scaled by

√
dout/din); (ii) weight-sharing layers

such as embedding and LM head matrices, where the ℓ1 → ℓ∞ operator norm is used with dual
ℓ1 → ℓ1 norm; and (iii) non-matrix parameters like RMS normalization vectors, where the RMS
norm with dual ℓ2 norm (scaled by

√
dmodel) is adopted. These dual norms are critical in line 7 of

Algorithm 1 for estimating the layer-wise gradient noise magnitude. Based on the chosen norms,
the corresponding LMOs in line 6 of Algorithm 1 also differ across parameter types: for hidden
layers, the LMO corresponds to a scaled UV ⊤ computed efficiently via Newton-Schulz iterations;
for embedding and LM head layers, the LMO reduces to a scaled element-wise sign operator; and
for RMS normalization vectors, the LMO is implemented by RMS normalization. This unified de-
sign of norm constraints, dual norms, and LMOs with their implementations ensures both theoretical
consistency with our algorithmic framework and practical efficiency in large-scale deep learning.

Noise-Adaptive Layer-wise Learning Rates. To capture the heterogeneous noise levels across
different layers, we introduce noise-adaptive layer-wise learning rates, which dynamically scale

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the stepsize of each layer according to its estimated stochastic gradient variance. Specifically, we
maintain a variance tracker Hℓ

t = β2H
ℓ
t−1 +(1−β2)∥Gℓ

t − G̃ℓ
t∥2∗ (line 7), where β2 ∈ (0, 1) serves

as a momentum-like parameter that smooths the estimate, akin to second-moment accumulation in
adaptive optimizers. The resulting adaptive scaling factor αℓ

t = α/
√
α2 +Hℓ

t (line 8) ensures that
layers subject to higher noise levels (large Hℓ

t) receive proportionally smaller effective learning rates,
consistent with classical stochastic optimization theory. We implement this by reweighting the base
learning rate with the ratio αℓ

t/α
m
t (where αm

t = maxℓ∈Gℓ
αℓ
t), thereby aligning the updates across

layers under a unified theoretical principle. While our theoretical framework (see Section 5) assumes
two independent gradient estimates Gℓ

t and G̃ℓ
t , in practice we approximate G̃ℓ

t by the previous step
gradient Gℓ

t−1. This avoids doubling the batch size and keeps the total number of sampled data
consistent with standard baselines, thus ensuring fair comparisons in empirical evaluation.

Comparison with Other Optimizers. Compared to Muon (Jordan et al., 2024), Scion (Pethick
et al., 2025), Gloun (Riabinin et al., 2025), and D-Muon (Liu et al., 2025), our method introduces
noise-adaptive layer-wise learning rates by estimating gradient variance in the dual norm induced
by the chosen LMO. Unlike Muon and D-Muon, which use AdamW for embedding and LM head
layers, we adopt a geometry-aware framework (similar to Scion) and update these weight-sharing
layers with Signum (see Table 1).

Optimizers such as LARS (You et al., 2017) and LAMB (You et al., 2019) also use layer-wise rescal-
ing to stabilize large-batch training. However, these methods treat all layers uniformly. In contrast,
our algorithm is geometry-aware, selecting norms tailored to hidden, embedding, and normalization
layers, and updating them through LMOs with noise-adaptive scaling.

Finally, although Algorithm 1 resembles Gong et al. (2025) in estimating noise magnitude, there
are key differences. Our method is LMO-based and works under arbitrary norms, while Gong et al.
(2025) is restricted to the Euclidean space. Our noise adaptivity refers to per-layer scaling based on
estimated variance, whereas theirs targets convergence without prior noise knowledge. Moreover,
our moving-average variance estimator Hℓ

t remains O(1) with high probability, in contrast to their
cumulative estimator

∑t
k=1 ∥Gk − G̃k∥2 which grows as O(

√
t).

5 ANALYSIS

In this section, we provide theoretical convergence guarantees for Algorithm 1. Let ∥ · ∥(ℓ) denote
the chosen norm of layer ℓ with dual norm ∥ · ∥(ℓ)∗, and let p be the number of layers. We begin by
presenting the assumption of layer-wise L-smoothness. Importantly, we do not assume that either
the primal norm ∥ · ∥(ℓ) or the dual norm ∥ · ∥(ℓ)∗ is Euclidean. A similar layer-wise smoothness
assumption is also imposed in Riabinin et al. (2025) to capture the geometry of neural networks.
Assumption 5.1. The objective f is layer-wise L-smooth with constants L := (L1, . . . , Lp) ∈ Rp

+,
i.e., for all ℓ = 1, . . . , p, X = [X1, . . . , Xp], and Y = [Y1, . . . , Yp], ∥∇ℓf(X) − ∇ℓf(Y)∥(ℓ)∗ ≤
Lℓ∥Xℓ − Yℓ∥(ℓ).

Our second assumption states that the stochastic gradient oracle is unbiased and the layer-wise gra-
dient noise is almost surely bounded both above and below in the dual space.
Assumption 5.2. (i) The stochastic gradient oracle is unbiased, i.e., E[∇F (X, ξ) | X] = ∇f(X).
(ii) It holds with probability one for all ℓ that

¯
σℓ ≤ ∥∇ℓF (X, ξ)−∇ℓf(X)∥(ℓ)∗ ≤ σ̄ℓ with

¯
σℓ ≥ 0.

Compared to the standard bounded variance assumption (used for expectation-based analysis) or
the almost surely bounded-noise assumption (used for high-probability analysis) in stochastic op-
timization, Assumption 5.2 additionally requires that the stochastic gradient noise is almost surely
lower bounded. A similar assumption is also made in (Gong et al., 2025). In the noisy setting, we
assume 0 <

¯
σℓ ≤ σ̄ℓ, while in the noiseless setting we have σ̄ℓ =

¯
σℓ = 0. Note that in practice,

we are always in the noisy setting where 0 <
¯
σℓ ≤ σ̄ℓ, as illustrated in Figure 1. From a technical

perspective, this assumption is crucial for establishing a tight lower bound on αℓ
t/α

m
t . For further

proof details, see Lemma 5.5.

We now present our main result. Here C1, C2 (with C2 ≥ 1) are the universal constants defined
in Lemma A.3, which may depend on the dimension of the model parameters. Depending on the
choice of norm constraint, one may select different C1, C2 to obtain tighter dimension-dependent
bounds, rather than applying a uniform choice. A detailed discussion is provided in Remark A.4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 5.3. Suppose Assumptions 5.1 and 5.2 hold. Let ∆1 = f(X1)− f∗. Set β1 = 1− α with

α = min

(√
∆1

∑
ℓ Lℓ∑

ℓ σ̄ℓ

√
T

, 1

)
, 1 − minℓ ¯

σ4
ℓ

32(2C2σ̄2
ℓ−¯

σ2
ℓ)

2 log(4T/δ)
≤ β2 < 1, ηmax =

√
∆1α∑
ℓ LℓT

, and

ηmin = ηmax/κη with 1 ≤ κη ≤ O(1). With probability at least 1− δ, we have

1

T

T∑
t=1

p∑
ℓ=1

∥∇ℓf(Xt)∥(ℓ)∗ ≲

√
C2(
∑

ℓ σ̄ℓ)
2√

∆1

∑
ℓ LℓT

+
C

3/2
2

C1

√
log

T

δ

(√
∆1

∑
ℓ Lℓ√

T
+

√∑
ℓ σ̄ℓ(∆1

∑
ℓ Lℓ)

1/4

T 1/4

)
.

Theorem 5.3 shows that Algorithm 1 achieves a convergence rate of Õ(1/
√
T +

√∑
ℓ σ̄ℓ/T

1/4).
Our bound highlights the advantage of adopting a layer-wise noise assumption. It achieves improved
noise dependence compared to the O(1/T 3/4 +

∑
ℓ σ̄max/T

1/4)4 bound established in (Pethick
et al., 2025, Theorem 5.7), where σ̄max is the uniform noise bound assumed in prior work (Pethick
et al., 2025). This improvement arises from recognizing that different layers exhibit distinct noise
levels during training, and thus should not be treated uniformly. Empirically, we observe noise
heterogeneity across layer groups (see Figure 1 and Table 3). Moreover, we compute that

√∑
ℓ σ̄ℓ =

3.654, which is significantly smaller than
∑

ℓ σ̄max = 18.018 in the LLaMA-1.1B pretraining on C4
dataset (Dodge et al., 2021), thereby validating our theoretical gain in both analysis and experiments.

5.1 PROOF OUTLINE

Here we give an outline of the proof of Theorem 5.3, containing the main components of our anal-
ysis; see Appendices B and C for full details. The proof sketch below is based on the setting of
Theorem 5.3. To start, we introduce a few key definitions (with the convention 0/0 := 1):

κℓ
σ =

{
σ̄ℓ/

¯
σℓ

¯
σℓ > 0

1 σ̄ℓ = 0
, κσ = max

ℓ
κℓ
σ, σ̄max = max

ℓ
σ̄ℓ, and t0 =

log 2

log(1/β2)
. (1)

The following lemma provides high-probability two-sided bounds for the variance tracker Hℓ
t , which

in turn allow us to derive tight upper and lower bounds for αℓ
t (numerator of the noise ratio term).

The key to the analysis is an application of the Azuma-Hoeffding inequality (see Lemma A.1).

Lemma 5.4. With probability at least 1−δ, for all ℓ and t0 ≤ t ≤ T , ¯
σ2
ℓ (1−βt

2)
C2

≤ Hℓ
t ≤ 4σ̄2

ℓ (1−βt
2).

With Lemma 5.4, we can effectively lower bound the noise ratio term αℓ
t/α

m
t , which is used to

assign layerwise learning rates in line 9 of Algorithm 1, with high probability. Our next lemma
shows that αℓ

t/α
m
t is both upper and lower bounded throughout training under our assumptions.

Consequently, the learning rate ηℓt is bounded on both sides with high probability.
Lemma 5.5. With probability at least 1− δ, for all ℓ and t ≤ T ,

min

{
α√

α2 + 4σ̄2
max

,
1

2
√
C2κσ

}
=: αr ≤ αℓ

t

αm
t

≤ 1, (2)

and therefore, with probability at least 1− δ, we have αrηmin ≤ ηℓt ≤ ηmax for all ℓ and t ≤ T .

We now provide a high-level proof sketch of our main result. See Appendix C for full proof details.

Proof sketch of Theorem 5.3. The main novelty in the proof is to leverage the magnitude of Hℓ
t

(Lemma 5.4) as a surrogate for the true stochastic gradient variance, ensuring that the noise-adaptive
layerwise learning rate αℓ

t has roughly the same magnitude as if the stochastic gradient noise were
known (Lemma 5.5). The rest of the proof proceeds similarly to that of (Cutkosky & Mehta, 2020,
Theorem 1) and (Li & Hong, 2025; Shen et al., 2025; Riabinin et al., 2025). Define ϵ̂ℓt = Bℓ

t −
∇ℓf(Xt) and ϵℓt = Gℓ

t − ∇ℓf(Xt). We begin by applying Lemma 5.5 to the descent lemma (see
Lemma C.1), rearranging to obtain:∑T

t=1

∑p
ℓ=1 η

ℓ
t∥∇ℓf(Xt)∥(ℓ)∗ ≤ ∆1

αrηmin
+
∑p

ℓ=1

(
2ηmax

αrηmin

∑T
t=1 ∥ϵ̂ℓt∥+

η2
max

2αrηmin
LℓT

)
.

4This rate is obtained by replacing the global variance in (Pethick et al., 2025) with the layer-wise variance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Using L-smoothness (Assumption 5.1) and standard calculations, we have

∥ϵ̂ℓt+1∥(ℓ)∗ ≤ βt
1∥ϵ̂ℓ1∥(ℓ)∗ + (1− β1)

∥∥∥∑t−1
τ=0 β

τ
1 ϵ

ℓ
t−τ

∥∥∥
(ℓ)∗

+ ηmaxLℓ

∑t−1
τ=0 β

τ
1 . (3)

Next, we apply the concentration inequality introduced in (Liu et al., 2023b, Lemma 2.4) to bound
∥
∑t−1

τ=0 β
τ
1 ϵ

ℓ
t−τ∥F , and then use the equivalence of norms (see Lemma A.3) to derive that, with

probability at least 1− δ,∥∥∥∑t−1
τ=0 β

τ
1 ϵ

ℓ
t−τ

∥∥∥
(ℓ)∗

≤ 1
C1

∥∥∥∑t−1
τ=0 β

τ
1 ϵ

ℓ
t−τ

∥∥∥
F
≤ 4C2σ̄

C1

√
log(2T/δ)

1−β1
. (4)

Substituting Equation (4) back into Equation (3) gives the bound for ∥ϵ̂ℓt∥(ℓ)∗. With suitable param-
eter choices as specified in Theorem 5.3, this concludes the proof.

6 EXPERIMENTS

In this section, we present the empirical results in comparison with the state-of-the-art optimizers
by pretraining two mainstream transformer architectures GPT (Radford et al., 2019) and LLaMA
(Touvron et al., 2023) series. The experiment of image classification is deferred to Appendix D.
We include the analysis of running time in Appendix J, the ablation studies about batch size in
Appendix L, the estimation method of gradient noise in Appendix M. All experiments were run on
4× NVIDIA H200 graphic cards with Intel XEON Platinum 8558 CPU.

6.1 EXPERIMENTAL SETTINGS

Baselines We compare our LANTON with AdamW (Loshchilov & Hutter, 2017), Muon (Jordan
et al., 2024), MARS (short for MARS-AdamW) (Yuan et al., 2024), SCION (Pethick et al., 2025),
D-Muon (Liu et al., 2025), the layer-wise learning rate algorithm LAMB (You et al., 2019), and
block-wise learning rate algorithm BW-AdamW (Wang et al., 2025). SCION and D-Muon apply
the Muon optimizer to matrix parameters in hidden layers (e.g., query, key, value, mlp), and all
these algorithms use Newton-Schulz iteration (Bernstein & Newhouse, 2024b) to approximately
orthogonalize the update matrix, i.e., UV ⊤ in Table 1.

Models We evaluate on both GPT and LLaMA-style decoders. For GPT we use the HuggingFace
GPT2 family: GPT2-small (124M parameters) and GPT2-medium (355M parameters). For LLaMA
we configure two sizes: LLaMA-0.5B and LLaMA-1.1B. Unless noted, all models are decoder-only
with rotary positional embeddings and RMSNorm/LayerNorm per architecture defaults. Refer to
Table 4 for detailed model configuration.

Datasets We pretrain GPT2 and LLaMA models on three datasets. OpenWebText-100k is used
for GPT-small/medium models, and it is a subset of Openwebtext dataset (Gokaslan et al., 2019).
As there is no validation set in OpenWebText-100k, we split 90%/10% into training/validation set
and train models with teacher forcing. MiniPile (Kaddour, 2023) is used for LLaMA-0.5B, where
minipile is a subset of the deduplicated Pile corpus (Gao et al., 2020). C4 (Colossal Clean Crawled
Corpus) (Dodge et al., 2021) is a large-scale English text corpus constructed by aggressively cleaning
Common Crawl webpages, and we use it to pretrain LLaMA-1.1B following the standard text-to-
token pipeline. All corpora are tokenized with the model’s native tokenizer.

6.2 TRAINING SETUP AND RESULTS

6.2.1 IMPLEMENTATION OF LANTON

We implement LANTON on top of the D-Muon (Liu et al., 2025), which carefully adjusts the update
magnitudes between hidden layers and non-hidden layers (embedding and LM head layers). Let ηt
denote the base learning rate at iteration t, which is compatible with annealing techniques (e.g.,
cosine decay). For layer ℓ, D-Muon updates the non-hidden layers using AdamW with learning
rate ηt, and the hidden layers parameters Wℓ ∈ Rdℓ

out×dℓ
in (i.e., QK, VO, MLP) with a rescaled

learning rate 0.2ηt

√
max(dℓin, d

ℓ
out). LANTON further rescales the hidden-layer learning rate to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
Number of training steps

3.5

4.0

4.5

5.0

5.5

6.0

Tr
ai

ni
ng

 L
os

s

GPT-Small (124M) on Openwebtext-100k
AdamW
MARS
Muon
SCION
D-Muon
LANTON

0 500 1000 1500 2000 2500 3000
Number of training steps

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n
Lo

ss

GPT-Small (124M) on Openwebtext-100k
AdamW
MARS
Muon
SCION
D-Muon
LANTON

0 500 1000 1500 2000 2500 3000
Number of training steps

3.5

4.0

4.5

5.0

5.5

6.0

Tr
ai

ni
ng

 L
os

s

GPT-Medium (355M) on Openwebtext-100k
AdamW
MARS
Muon
SCION
D-Muon
LANTON

0 500 1000 1500 2000 2500 3000
Number of training steps

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n
Lo

ss

GPT-Medium (355M) on Openwebtext-100k
AdamW
MARS
Muon
SCION
D-Muon
LANTON

Figure 2: Training/validation loss on Openwebtext-100k datasets.

0.2ηt

√
max(dℓin, d

ℓ
out)α

ℓ
t/α

m
t , where αm

t = maxℓ∈Gℓ
αℓ
t and Gℓ denotes the group of layer ℓ. This

is the practical instantiation of line 9 in Algorithm 1. In our implementation, there are three layer
groups, i.e., {QK, VO, MLP}, {Embedding, LM-Head}, {LayerNorm}, so there are three noise
factors αm

t accordingly. For the first layer group (hidden layers), LANTON applies Newton-Schultz
iterations with 5 steps (Jordan et al., 2024) to approximate the LMO update for matrix layers. For
embedding and LM head layers, LANTON uses Signum (signed momentum) with a scaled base
learning rate r1 ηt. For LayerNorm (vector) parameters, LANTON applies RMS-normalized updates
with a scaled base learning rate r2 ηt. Similar to SCION, which requires two distinct update scales
for layer groups, LANTON also specifies two update scales r1 and r2, with a base learning rate ηt.

6.2.2 GPT2 ON OPENWEBTEXT

We begin with small-scale experiments by pretraining GPT2 from scratch on OpenWebText-100k.
All baselines (AdamW, MARS, Muon, SCION, D-Muon), and our method LANTON are trained
for a single epoch with context length 512 and batch size 16. Unless otherwise specified, for all
methods, we fix the random seed to 42 and weight decay parameter γ = 0.1. We apply a cosine
learning-rate schedule to the base step size ηmax with a linear warmup of 300 steps. After warmup,
the per-step learning rate is ηt = ηmin +1/2(ηmax − ηmin)(1+ cos(tπT)), where t is the step index, T
is the number of training steps, and by default ηmin = 0. The detailed hyperparameter settings for
every algorithm are summarized in 5 and Table 6 in Appendix H.

As shown in Figure 2, LANTON consistently dominates all baselines (AdamW, MARS, Muon,
SCION, D-Muon). Its training loss drops fastest from the earliest iterations and stays below com-
peting methods across the entire training, indicating superior convergence speed. LANTON also
achieves the lowest validation loss, exhibit superior performance.

6.2.3 LLAMA ON C4 AND MINIPILE

We assess large-scale training by pretraining a LLaMA-1.1B model on C4 and a LLaMA-0.5B
model on MiniPile with a total budget of 20B training tokens. We use the pretrained LLaMA tok-
enizer and set the sequence length to 256 on C4 and 512 on MiniPile. The batch size is 1024 for C4
and 300 for MiniPile. We employ a cosine learning rate schedule with a uniform warmup of 1,000
steps for all methods. Full hyperparameter settings for every baseline are reported in Tables 7 and 8
in Appendix H.

On C4, LANTON exhibits a significantly steeper loss descent in the early phase and maintains a
consistent lead throughout training, while ultimately reaching validation losses comparable to other
baselines (see Figure 3). We track the averaged effective learning rates within each layer group
and provide the explanations for training acceleration of LANTON in Appendix K. On Minipile,
although LANTON does not exhibit the lowest loss in the middle of training, it achieves the best
final training loss and maintains consistently strong validation performance.

6.3 COMPARISON WITH ALGORITHMS USING LAYER-WISE/BLOCK-WISE LEARNING RATES

To highlight the benefit of our noise-adaptive layer-wise learning rate schedule, we compare with
LAMB (You et al., 2019) and the recent block-wise scheme BW-AdamW (Wang et al., 2025).
LAMB modifies Adam by applying a per-layer “trust ratio” to rescale the base learning rate in
each layer. BW-AdamW manually tunes the best block-specific update ratio for each parame-
ter block. Following the original best tuned ratio, we use r(Emb) = 10, r(QK) = 8, r(VO) =
4, r(MLP/LM-Head) = 6, r(Layer norm) = 1 in the experiment. The compared training and vali-
dation curves are presented in Figure 4(a). LANTON achieves much faster training speed with the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of training tokens (Billions)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Tr
ai

ni
ng

 L
os

s

LLaMA (1.1B) on C4
AdamW
MARS
Muon
SCION
D-Muon
LANTON

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of training tokens (Billions)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Va
lid

at
io

n
Lo

ss

LLaMA (1.1B) on C4
AdamW
MARS
Muon
SCION
D-Muon
LANTON

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of training tokens (Billions)

1.8

1.9

2.0

2.1

2.2

2.3

2.4

Tr
ai

ni
ng

 L
os

s

LLaMA (0.5B) on Minipile
AdamW
MARS
Muon
SCION
D-Muon
LANTON

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of training tokens (Billions)

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Va
lid

at
io

n
Lo

ss

LLaMA (0.5B) on Minipile
AdamW
MARS
Muon
SCION
D-Muon
LANTON

Figure 3: Training/validation loss on C4 and Minipile datasets.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of training tokens (Billions)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Tr
ai

ni
ng

 L
os

s

LLaMA (1.1B) on C4
BW-AdamW
LAMB
LANTON

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of training tokens (Billions)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Va
lid

at
io

n
Lo

ss

LLaMA (1.1B) on C4
BW-AdamW
LAMB
LANTON

(a) Comparison with layer-/block-wise methods.

0 5 10 15 20 25 30 35 40
Training Tokens (Billions)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Tr
ai

ni
ng

 L
os

s

Same loss (2.575)
LANTON: 20.0B vs D-Muon: 30.4B
Tokens saved: 10.4B (×1.52 faster)

LLaMA (1.1B) on C4 LANTON vs D-Muon
D-Muon
LANTON

0 5 10 15 20 25 30 35 40
Training Tokens (Billions)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Va
lid

at
io

n
Lo

ss

Same loss (2.572)
LANTON: 20.0B vs D-Muon: 30.8B
Tokens saved: 10.8B (×1.54 faster)

LLaMA (1.1B) on C4 LANTON vs D-Muon
D-Muon
LANTON

(b) Comparison of sample efficiency.

Figure 4: Training/validation loss on C4 datasets. (a) Comparison with algorithms using layer-
wise/block-wise learning rates. (b) LANTON shows higher sample efficiency than D-Muon.

same budget of training tokens, and exhibits 0.1 lower validation loss than BW-AdamW. LANTON
adapts the noise-adaptive layer-wise learning rate on the fly by monitoring gradient noise, whereas
BW-AdamW uses fixed step sizes per parameter group. Moreover, neither baseline explicitly con-
siders the parameter geometry properties.
6.4 SAMPLE EFFICIENCY WITH FIXED TOKEN BUDGET

To study the sample efficiency of our algorithm under various token budgets, we double the bud-
get of tokens for D-Muon (i.e., 40B tokens) as that in LANTON (i.e., 20B tokens), and keep other
experimental settings the same as that in Section 6.2.3, including the base learning rate, scale hyper-
parameters and batch size. Both algorithms use cosine learning rate decay, but the difference is that
D-Muon has 2× total training steps since it has 2× more training tokens. Figure 4(b) shows that
D-Muon and LANTON reach comparable training/validation losses when D-Muon uses about 1.5×
more tokens than LANTON (i.e., 30B tokens for D-Muon and 20B tokens for LANTON for reaching
∼ 2.57 loss), demonstrating that the noise-adaptive learning rates can improve sample efficiency.

6.5 ROBUSTNESS TO BASE LEARNING RATE CHOICE

To evaluate sensitivity to the base learning rate, we keep the model (LLaMA-1.1B), dataset (C4),
batch size (1024), optimizer settings, and cosine schedule fixed, then train LANTON with various
base learning rates ηmax ∈ {0.001, 0.003, 0.005}. We compare against the best tuned D-MUON
under the same setup. As shown in Figure 7 in Appendix I, we find that for all learning rates
except for ηmax = 0.001, LANTON consistently achieves equal or lower loss with fewer training
tokens, i.e., converges faster. With ηmax = 0.001, LANTON’s loss still decreases faster for most
(70%) of the training trajectory, with the two methods becoming close only toward the end. Overall,
LANTON demonstrates robust performance across base learning rates and superior convergence
speed in most hyperparameter settings.

7 CONCLUSION

We propose LANTON, a geometry-aware optimizer that incorporates noise-adaptive layer-wise
learning-rate scaling on the top of LMO-based updates. By estimating gradient variance in the dual
norm space and rescaling learning rate across layers, LANTON accelerates the transformer training
hindered by heterogeneous and evolving noise. Theoretically, we obtain a sharp convergence rate
of Õ(1/

√
T +

√∑
ℓ σ̄ℓ/T

1/4) with improved noise dependence across layers. Empirically, LAN-
TON accelerates pretraining and improves validation metrics on GPT2 and LLaMA under a fixed
token budget. One limitation of our work is that the theoretical results may depend on the parameter
dimension. Another limitation is that our experiments are conducted on moderately sized models;
extending and validating the approach at larger scales is an important direction for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We state the formal assumptions and results in the main text (Assumptions 5.1 and 5.2 and The-
orem 5.3) and provide complete proofs of Theorem 5.3 in Appendices B and C. An anonymized
code with training/evaluation scripts, configurations, seeds, and environment files is included in the
supplementary materials. All base models are publicly available: LLaMA and GPT2-small/medium
(used under their official research/community license; license text cited in Appendix N). Datasets
C4, MiniPile, and OpenWebText are accessible on HuggingFace under the licenses stated on their
corresponding Hugging Face dataset cards. We include download scripts, preprocessing/splits, and
references to their dataset cards and licences (cited in Appendix N). These materials sufficiently
support the reproduction of our results.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized
updates. arXiv preprint arXiv:2504.05295, 2025.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. arXiv preprint
arXiv:2410.21265, 2024a.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024b.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36:49205–49233, 2023.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International Confer-
ence on Machine Learning, pp. 2260–2268. PMLR, 2020.

Ashok Cutkosky and Harsh Mehta. High-probability bounds for non-convex stochastic optimization
with heavy tails. Advances in Neural Information Processing Systems, 34:4883–4895, 2021.

Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and Ashok
Cutkosky. The road less scheduled. Advances in Neural Information Processing Systems, 37:
9974–10007, 2024.

Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
colossal clean crawled corpus. arXiv preprint arXiv:2104.08758, 2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Xiaochuan Gong, Jie Hao, and Mingrui Liu. Adaptive algorithms with sharp convergence rates for
stochastic hierarchical optimization. arXiv preprint arXiv:2509.15399, 2025.

10

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53
(2):217–288, 2011.

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pp. 14465–14499. PMLR,
2023.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
conference on machine learning, pp. 427–435. PMLR, 2013.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Jean Kaddour. The minipile challenge for data-efficient language models. arXiv preprint
arXiv:2304.08442, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2014.

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. Advances in Neural Information Processing Systems, 37:
73501–73548, 2024.

Jiaxiang Li and Mingyi Hong. A note on the convergence of muon. arXiv preprint
arXiv:2502.02900, 2025.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochas-
tic second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342,
2023a.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025.

Zijian Liu, Srikanth Jagabathula, and Zhengyuan Zhou. Near-optimal non-convex stochastic opti-
mization under generalized smoothness. arXiv preprint arXiv:2302.06032, 2023b.

Zijian Liu, Srikanth Jagabathula, and Zhengyuan Zhou. Near-optimal non-convex stochastic opti-
mization under generalized smoothness. arXiv preprint arXiv:2302.0603, 2023c.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Tae-Hyun Oh, Yasuyuki Matsushita, Yu-Wing Tai, and In So Kweon. Fast randomized singular
value thresholding for nuclear norm minimization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4484–4493, 2015.

Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster, older.
arXiv preprint arXiv:2409.03137, 2024.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained lmos. arXiv preprint
arXiv:2502.07529, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter Richtárik. Gluon: Making muon &
scion great again!(bridging theory and practice of lmo-based optimizers for llms). arXiv preprint
arXiv:2505.13416, 2025.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Wei Shen, Ruichuan Huang, Minhui Huang, Cong Shen, and Jiawei Zhang. On the convergence
analysis of muon. arXiv preprint arXiv:2505.23737, 2025.

Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li,
Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel py-
torch implementation of the distributed shampoo optimizer for training neural networks at-scale.
arXiv preprint arXiv:2309.06497, 2023.

Chongjie Si, Debing Zhang, and Wei Shen. Adamuon: Adaptive muon optimizer. arXiv e-prints,
pp. arXiv–2507, 2025.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop, coursera: Neural networks for machine
learning. University of Toronto, Technical Report, 6, 2012.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Jinbo Wang, Mingze Wang, Zhanpeng Zhou, Junchi Yan, Lei Wu, et al. The sharpness dis-
parity principle in transformers for accelerating language model pre-training. arXiv preprint
arXiv:2502.19002, 2025.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 6:12, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
of variance reduction for training large models. arXiv preprint arXiv:2411.10438, 2024.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu
Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv
preprint arXiv:2406.16793, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In International
Conference on Machine Learning, pp. 61121–61143. PMLR, 2024a.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruct-
ing what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TECHNICAL LEMMAS

In this section, we state several standard probabilistic and norm-equivalence lemmas without proof.
Lemma A.1 (Azuma-Hoeffding inequality). Let {Zt}t≥0 be a martingale with respect to filtration
{Ft}t≥0. Assume that |Zt − Zt−1| ≤ ct almost surely for all t ≥ 0. Then for any fixed T , with
probability at least 1− δ,

|ZT − Z0| ≤

√√√√2

T∑
t=1

c2t log(2/δ).

Lemma A.2 ((Liu et al., 2023c, Lemma 2.4)). Suppose X1, . . . , XT is a martingale difference
sequence adapted to a filtration F1, . . . ,FT in a Hilbert space such that ∥Xt∥F ≤ Rt almost surely
for some Rt ≥ 0. Then for any δ ∈ (0, 1), with probability at least 1− δ, for any fixed t we have∥∥∥∥∥

t∑
s=1

Xs

∥∥∥∥∥
F

≤ 4

√√√√log
2

δ

T∑
s=1

R2
s.

Proof of Lemma A.2. Since ∥ · ∥F satisfies ∥X + Y ∥2F ≤ ∥X∥2F + ⟨∇∥X∥2F , Y ⟩ + ∥Y ∥2F for all
X,Y , the condition for applying (Cutkosky & Mehta, 2021, Lemma 10) is satisfied, and therefore
(Liu et al., 2023c, Lemma 2.4) holds.

Lemma A.3 (Equivalence of norms). For any two matrix norms ∥ · ∥a and ∥ · ∥b, there exists
0 < C1 ≤ C2 (with C2 ≥ 1) such that C1∥A∥a ≤ ∥A∥b ≤ C2∥A∥a for all matrices A ∈ Rm×n.
Remark A.4. In the subsequent analysis, we will use the relationship among Frobenius norm ∥ · ∥F ,
spectral norm ∥ · ∥2, and nuclear norm ∥ · ∥nuc. Specifically, for A ∈ Rm×n we have

• ∥A∥2 ≤ ∥A∥F ≤
√

rank(A)∥A∥2 =⇒ C1 ≤ 1, C2 ≥
√

max{m,n}.

• ∥A∥nuc/
√
rank(A) ≤ ∥A∥F ≤ ∥A∥nuc =⇒ C1 ≤ 1/

√
max{m,n}, C2 ≥ 1.

B PROOFS OF SECTION 5.1

We first recall a few key definitions from Equation (1) (with the convention 0/0 := 1):

κℓ
σ =

{
σ̄ℓ/

¯
σℓ

¯
σℓ > 0

1 σ̄ℓ = 0
, κσ = max

ℓ
κℓ
σ, σ̄max = max

ℓ
σ̄ℓ, and t0 =

log 2

log(1/β2)
. (5)

The following proofs are based on Assumptions 5.1 and 5.2 and the setting of Theorem 5.3. For
simplicity, we omit the ℓ superscript/subscript whenever the context is clear.

Lemma 5.4. With probability at least 1−δ, for all ℓ and t0 ≤ t ≤ T , ¯
σ2
ℓ (1−βt

2)
C2

≤ Hℓ
t ≤ 4σ̄2

ℓ (1−βt
2).

Proof of Lemma 5.4. Consider the case where 0 <
¯
σ ≤ σ̄. Denote ct,k = βt−k

2 (1 − β2). By
Assumption 5.2 and Young’s inequality,

Ht =

t∑
k=1

ct,k∥Gk − G̃k∥2∗ ≤ 2

t∑
k=1

ct,k

(
∥Gk −∇f(Xt)∥2∗ + ∥G̃t −∇f(Xt)∥2∗

)
≤ 4σ̄2

t∑
k=1

ct,k = 4σ̄2
t∑

k=1

βt−k
2 (1− β2) = 4σ̄2(1− βt

2). (6)

We proceed to derive high probability lower bound for
∑t

k=1 ct,k∥Gk − G̃k∥2F . Denote σ2
k =

Ek−1[∥Gk − ∇f(Xk)∥2F]. Let Zk = ct,k(∥Gk − G̃k∥2F − 2σ2
k), then {Zk}k≥1 is a martingale

difference sequence since

Ek−1[Zk] = Et−1[∥Gk − G̃k∥2F − 2σ2
k]

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

= Et−1[∥Gk −∇f(Xk)∥2F + ∥G̃k −∇f(Xk)∥2F − 2⟨Gk −∇f(Xk), G̃k −∇f(Xk)⟩]− 2σ2
k

= 0.

Using Assumption 5.2 and Lemma A.3 and Young’s inequality, we have Zk ≥ −2ct,kσ
2
k and

Zk ≤ ct,k

(
2C2

(
∥Gk −∇f(Xk)∥2∗ + ∥G̃k −∇f(Xk)∥2∗

)
− 2σ2

k

)
≤ ct,k(4C2σ̄

2 − 2σ2
k).

This implies that

|Zk| ≤ ct,k ·max
{
2σ2

k, 4C2σ̄
2 − 2σ2

k

}
= ct,k(4C2σ̄

2 − 2σ2
k),

where the last equality is due to C2 ≥ 1 and σk ≤ σ̄ almost surely. Then by the Azuma-Hoeffding
inequality (Lemma A.1) and a union bound over t, for any δ ∈ (0, 1), with probability at least 1− δ,
for all t ≤ T ,∣∣∣∣∣

t∑
k=1

Zk

∣∣∣∣∣ ≤
√√√√2

t∑
k=1

(ct,k(4C2σ̄2 − 2σ2
k))

2 log
2T

δ
≤ (4C2σ̄

2 − 2
¯
σ2)

√
2(1− β2)

1 + β2
log

2T

δ
. (7)

Rearranging Equation (7) yields that, with probability at least 1− δ, for all t ≤ T ,

t∑
k=1

ct,k∥Gk − G̃k∥2F ≥ 2

t∑
k=1

ct,kσ
2
k − (4C2σ̄

2 − 2
¯
σ2)

√
2(1− β2)

1 + β2
log

2T

δ

≥ 2
¯
σ2(1− βt

2)− (4C2σ̄
2 − 2

¯
σ2)

√
2(1− β2)

1 + β2
log

2T

δ
.

By the choice of β2 in Theorem 5.3 and the definition of t0, for all t ≥ t0 we have

4C2σ̄
2 − 2

¯
σ2

¯
σ2

√
2(1− β2)

1 + β2
log

2T

δ
≤ 1

2
and (4C2σ̄

2 − 2
¯
σ2)

√
2(1− β2)

1 + β2
log

2T

δ
≤

¯
σ2(1− βt

2).

Therefore, by Lemma A.3, with probability at least 1− δ, for all t0 ≤ t ≤ T ,
t∑

k=1

ct,k∥Gk − G̃k∥2F ≥
¯
σ2(1− βt

2) =⇒
t∑

k=1

ct,k∥Gk − G̃k∥2∗ ≥ ¯
σ2(1− βt

2)

C2
. (8)

We conclude the proof by combining Equations (6) and (8) and noting that the results also hold for
the case

¯
σ = σ̄ = 0.

Lemma 5.5. With probability at least 1− δ, for all ℓ and t ≤ T ,

min

{
α√

α2 + 4σ̄2
max

,
1

2
√
C2κσ

}
=: αr ≤ αℓ

t

αm
t

≤ 1, (2)

and therefore, with probability at least 1− δ, we have αrηmin ≤ ηℓt ≤ ηmax for all ℓ and t ≤ T .

Proof of Lemma 5.5. By Lemma 5.4, for all t0 ≤ t ≤ T , it holds with probability at least 1− δ that

¯
σ2(1− βt

2)

C2
≤

t∑
k=1

βt−k
2 (1− β2)∥Gk − G̃k∥2∗ ≤ 4σ̄2(1− βt

2).

Therefore, with probability at least 1− δ, for all ℓ and t ≤ T ,
α√

α2 + 4σ̄2(1− βt
2)

≤ αℓ
t ≤ I(t < t0) +

α√
α2 +

¯
σ2(1− βt

2)/C2

I(t ≥ t0). (9)

Using Equation (9), we have

αℓ
t

αm
t

≥ α√
α2 + 4σ̄2(1− βt

2)

(
I(t < t0) +

α√
α2 +

¯
σ2(1− βt

2)/C2

I(t ≥ t0)

)−1

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

=
α√

α2 + 4σ̄2(1− βt
2)
I(t < t0) +

√
α2 +

¯
σ2(1− βt

2)/C2√
α2 + 4σ̄2(1− βt

2)
I(t ≥ t0)

≥ α√
α2 + 4σ̄2(1− βt

2)
I(t < t0) + ¯

σ

2
√
C2σ̄

I(t ≥ t0) ≥ min

{
α√

α2 + 4σ̄2
, ¯

σ

2
√
C2σ̄

}
,

that is (we add back the subscript ℓ here),

min

{
α√

α2 + 4σ̄2
ℓ

, ¯
σℓ

2
√
C2σ̄ℓ

}
=: αℓ

r ≤ αℓ
t

αm
t

≤ 1.

Let αr = minℓ α
ℓ
r, and recall the definitions of σ̄max and κσ in Equation (5), then for all ℓ,

min

{
α√

α2 + 4σ̄2
max

,
1

2
√
C2κσ

}
=: αr ≤ αℓ

t

αm
t

≤ 1,

which gives Equation (2). The proof is completed.

C PROOF OF THEOREM 5.3

Before proving Theorem 5.3, we first provide a descent lemma for Algorithm 1.
Lemma C.1. For the update in Algorithm 1, we have

f(Xt+1) ≤ f(Xt) +

p∑
ℓ=1

(
−ηℓt∥∇ℓf(Xt)∥(ℓ)∗ + 2ηℓt∥Bℓ

t −∇ℓf(Xt)∥(ℓ)∗ +
Lℓ

2
(ηℓt)

2

)
.

Moreover, we have
T∑

t=1

p∑
ℓ=1

ηℓt∥∇ℓf(Xt)∥(ℓ)∗ ≤ f(X1)− f∗ +

T∑
t=1

p∑
ℓ=1

(
2ηℓt∥Bℓ

t −∇ℓf(Xt)∥(ℓ)∗ +
Lℓ

2
(ηℓt)

2

)
.

Proof of Lemma C.1. Applying (Riabinin et al., 2025, Lemma 1) with X = Xt and Y = Xt+1,

f(Xt+1) ≤ f(Xt) + ⟨∇f(Xt), Xt+1 −Xt⟩+
p∑

ℓ=1

Lℓ

2
∥Xℓ

t+1 −Xℓ
t ∥2(ℓ)

= f(Xt) +

p∑
ℓ=1

(
⟨∇ℓf(Xt), X

ℓ
t+1 −Xℓ

t ⟩+
Lℓ

2
(ηℓt)

2

)
.

For the second term, using the update of Xℓ
t+1 and the Cauchy-Schwarz inequality we have

⟨∇ℓf(Xt), X
ℓ
t+1 −Xℓ

t ⟩ = ⟨Bℓ
t , X

ℓ
t+1 −Xℓ

t ⟩+ ⟨∇ℓf(Xt)−Bℓ
t , X

ℓ
t+1 −Xℓ

t ⟩
≤ −ηℓt∥Bℓ

t∥(ℓ)∗ + ηℓt∥∇ℓf(Xt)−Bℓ
t∥(ℓ)∗

≤ −ηℓt∥∇ℓf(Xt)∥(ℓ)∗ + 2ηℓt∥Bℓ
t −∇ℓf(Xt)∥(ℓ)∗.

Therefore, we obtain

f(Xt+1) ≤ f(Xt) +

p∑
ℓ=1

(
−ηℓt∥∇ℓf(Xt)∥(ℓ)∗ + 2ηℓt∥Bℓ

t −∇ℓf(Xt)∥(ℓ)∗ +
Lℓ

2
(ηℓt)

2

)
.

Rearranging the terms and taking summation over t gives the result.

Theorem 5.3. Suppose Assumptions 5.1 and 5.2 hold. Let ∆1 = f(X1)− f∗. Set β1 = 1− α with

α = min

(√
∆1

∑
ℓ Lℓ∑

ℓ σ̄ℓ

√
T

, 1

)
, 1 − minℓ ¯

σ4
ℓ

32(2C2σ̄2
ℓ−¯

σ2
ℓ)

2 log(4T/δ)
≤ β2 < 1, ηmax =

√
∆1α∑
ℓ LℓT

, and

ηmin = ηmax/κη with 1 ≤ κη ≤ O(1). With probability at least 1− δ, we have

1

T

T∑
t=1

p∑
ℓ=1

∥∇ℓf(Xt)∥(ℓ)∗ ≲

√
C2(
∑

ℓ σ̄ℓ)
2√

∆1

∑
ℓ LℓT

+
C

3/2
2

C1

√
log

T

δ

(√
∆1

∑
ℓ Lℓ√

T
+

√∑
ℓ σ̄ℓ(∆1

∑
ℓ Lℓ)

1/4

T 1/4

)
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof of Theorem 5.3. Define ϵ̂ℓt = Bℓ
t −∇ℓf(Xt), ϵℓt = Gℓ

t−∇ℓf(Xt), and S(X,Y) = ∇f(X)−
∇f(Y). Check that

ϵ̂ℓt+1 = β1ϵ̂
ℓ
t + (1− β1)ϵ

ℓ
t + S(Xℓ

t , X
ℓ
t+1)

= βt
1ϵ̂

ℓ
1 + (1− β1)

t−1∑
τ=0

βτ
1 ϵ

ℓ
t−τ +

t−1∑
τ=0

βτ
1S(X

ℓ
t−τ , X

ℓ
t+1−τ).

Using L-smoothness, ∥S(Xℓ
t)− S(Xℓ

t+1)∥(ℓ)∗ ≤ Lℓ∥Xℓ
t+1 −Xℓ

t ∥(ℓ) = Lℓη
ℓ
t∥Oℓ

t∥(ℓ) = Lℓη
ℓ
t , and

ηℓt ≤ ηmax by Lemma 5.5,

∥ϵ̂ℓt+1∥(ℓ)∗ ≤ βt
1∥ϵ̂ℓ1∥(ℓ)∗ + (1− β1)

∥∥∥∥∥
t−1∑
τ=0

βτ
1 ϵ

ℓ
t−τ

∥∥∥∥∥
(ℓ)∗

+ ηmaxLℓ

t−1∑
τ=0

βτ
1 .

Applying Lemma A.2 with Rτ = C2β
τ
1 σ̄ℓ since ∥βτ

1 ϵ
ℓ
t−τ∥F ≤ C2∥βτ

1 ϵ
ℓ
t−τ∥(ℓ)∗ ≤ C2β

τ
1 σ̄ℓ, a union

bound over t, and Lemma A.3, with probability at least 1− δ, for all t ≤ T ,∥∥∥∥∥
t−1∑
τ=0

βτ
1 ϵ

ℓ
t−τ

∥∥∥∥∥
(ℓ)∗

≤ 1

C1

∥∥∥∥∥
t−1∑
τ=0

βτ
1 ϵ

ℓ
t−τ

∥∥∥∥∥
F

≤ 4

C1

√√√√log
2T

δ

t−1∑
τ=0

(C2βτ
1 σ̄ℓ)2 ≤ 4C2σ̄ℓ

C1

√
log(2T/δ)

1− β1
.

Therefore, observing that ϵ̂ℓ1 = ϵℓ1 and plugging in the concentration bound yields

∥ϵ̂ℓt+1∥(ℓ)∗ ≤ βt
1σ̄ℓ +

4C2

C1
(1− β1)σ̄ℓ

√
log(2T/δ)

1− β1
+

ηmaxLℓ

1− β1
.

Taking summation, with probability at least 1− δ we have
T∑

t=1

∥ϵ̂ℓt∥(ℓ)∗ ≤ σ̄ℓ

1− β1
+

4C2

C1
T
√

1− β1σ̄ℓ

√
log

2T

δ
+

TηmaxLℓ

1− β1
. (10)

Recall Lemma C.1 and the definitions of ∆1 and ϵ̂ℓt ,
T∑

t=1

p∑
ℓ=1

ηℓt∥∇ℓf(Xt)∥(ℓ)∗ ≤ ∆1 +

T∑
t=1

p∑
ℓ=1

(
2ηℓt∥ϵ̂ℓt∥(ℓ)∗ +

Lℓ

2
(ηℓt)

2

)
.

By Lemma 5.5 and a union bound (with Equation (10)), with probability at least 1− 2δ,
T∑

t=1

p∑
ℓ=1

∥∇ℓf(Xt)∥(ℓ)∗ ≤ ∆1

αrηmin
+

p∑
ℓ=1

(
2ηmax

αrηmin

T∑
t=1

∥∇ℓf(Xt)−Bℓ
t∥+

η2max

2αrηmin
LℓT

)

≤ κη∆1

αrηmax
+

p∑
ℓ=1

(
2κη

αr

(
σ̄ℓ

1− β1
+

4C2

C1
T
√
1− β1σ̄ℓ

√
log

2T

δ

)
+

κηηmax

αr

(
2TLℓ

1− β1
+

LℓT

2

))

≤ κη∆1

αrηmax
+

2κη

αr

(∑
ℓ σ̄ℓ

1− β1
+

4C2

C1
T
√
1− β1

∑
ℓ

σ̄ℓ

√
log

2T

δ

)
+

5κηηmaxT
∑

ℓ Lℓ

αr(1− β1)

≤ 6κη

αr

√
∆1

∑
ℓ LℓT

1− β1
+

2κη

αr

(∑
ℓ σ̄ℓ

1− β1
+

4C2

C1
T
√

1− β1

∑
ℓ

σ̄ℓ

√
log

2T

δ

)

≤

(
6κη

αr
+

2κη

αr

(
1 +

4C2

C1

√
log

2T

δ

))√
∆1

∑
ℓ

LℓT +
2κη(

∑
ℓ σ̄ℓ)

2
√
T

αr

√
∆1

∑
ℓ Lℓ

+

(
6κη

αr
+

8C2κη

C1αr

√
log

2T

δ

)√∑
ℓ

σ̄ℓ

(
∆1

∑
ℓ

Lℓ

)1/4

T 3/4,

where the last two inequalities use the choice of ηmax and β1 as stated in Theorem 5.3. Therefore,
we obtain with probability at least 1− 2δ that

1

T

T∑
t=1

p∑
ℓ=1

∥∇ℓf(Xt)∥(ℓ)∗ ≤

(
6κη

αr
+

2κη

αr

(
1 +

4C2

C1

√
log

2T

δ

)) √
∆1

∑
ℓ Lℓ√

T
+

2κη(
∑

ℓ σ̄ℓ)
2

αr

√
∆1

∑
ℓ LℓT

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

+

(
6κη

αr
+

8C2κη

C1αr

√
log

2T

δ

) √∑
ℓ σ̄ℓ(∆1

∑
ℓ Lℓ)

1/4

T 1/4
.

Recall the definition of κσ and αr in Equations (2) and (5), with probability at least 1− 2δ,

1

T

T∑
t=1

p∑
ℓ=1

∥∇ℓf(Xt)∥(ℓ)∗ ≤ κη max

{√
1 +

4σ̄2
max

α2
, 2
√
C2κσ

}((
8 +

8C2

C1

√
log

2T

δ

) √
∆1

∑
ℓ Lℓ√

T

+
2(
∑

ℓ σ̄ℓ)
2√

∆1

∑
ℓ LℓT

+

(
6 +

8C2

C1

√
log

2T

δ

) √∑
ℓ σ̄ℓ(∆1

∑
ℓ Lℓ)

1/4

T 1/4

)
.

Replacing δ with δ/2 completes the proof.

D EXPERIMENT OF IMAGE CLASSIFICATION

Following airbench setting in https://github.com/KellerJordan/
cifar10-airbench and https://github.com/LIONS-EPFL/scion/tree/main/
examples/airbench, we evaluate LANTON on CIFAR-100 image classification using an
8-layer convolutional neural network (CNN). Since stochastic gradient descent (SGD) generally
outperforms AdamW on vision tasks, we follow the prior airbench setup and apply SGD to the
norm and bias parameters for both Muon and D-Muon. LANTON partitions the parameters into
two groups: (1) convolutional layers (matrix parameters), and (2) norm-layer and bias parameters.
Newton–Schulz iterations are applied to the convolutional layers, while sign momentum is used for
the norm and bias parameters. The full hyperparameter configuration is provided in Table XXX of
the appendix.

As shown in Figure 5, all optimizers eventually reach nearly 100% training accuracy on airbench
CIFAR-100. However, LANTON exhibits a significantly faster convergence rate than other base-
lines: it reaches almost maximal training accuracy by around 70 epochs. More importantly, LAN-
TON consistently achieves the highest validation accuracy, demonstrating that LANTON not only
accelerates optimization throughout the training process but also yields superior generalization per-
formance compared to all baselines.

0 20 40 60 80 100
Number of training epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

CNN on Airbench CIFAR-100

SGD
MARS
Muon
SCION
D-Muon
LANTON

0 20 40 60 80 100
Number of training epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Va
lid

at
io

n
Ac

c

CNN on Airbench CIFAR-100

SGD
MARS
Muon
SCION
D-Muon
LANTON

Figure 5: Training/validation accuracy on CIFAR-100.

Table 2: The hyperparameter settings in image classification.
Method ηmax Moment
SGD 0.1 β = 0.85

Muon 0.24 β1 = 0.6, β2 = 0.85, β3 = 0.95

MARS 0.1 β1 = 0.9, β2 = 0.95

SCION 0.05 β = 0.5

D-Muon 0.1 β1 = 0.9, β2 = 0.95, β3 = 0.95

LANTON 0.1 β1 = 0.6, β2 = 0.85

E COMPARISON WITH ADAPTIVE VARIANT OF MUON

17

https://github.com/KellerJordan/cifar10-airbench
https://github.com/KellerJordan/cifar10-airbench
https://github.com/LIONS-EPFL/scion/tree/main/examples/airbench
https://github.com/LIONS-EPFL/scion/tree/main/examples/airbench

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We additionally compared our method with the recently proposed adaptive variant AdaMuon (Si
et al., 2025). Unlike LANTON, AdaMuon does not perform gradient noise estimation; instead, it
introduces a momentum-style adaptive scaling on top of Muon and therefore is not noise-adaptive.

In our experiments, AdaMuon achieves slightly better performance than the original Muon but re-
mains worse than LANTON. This matches our design motivation: LANTON is explicitly gradient
noise-adaptive, adjusting each layer’s learning rate based on its noise level. AdaMuon does not
estimate noise and only plug a second-momentum term to Muon, providing limited gains.

0 500 1000 1500 2000 2500 3000
Number of training steps

3.5

4.0

4.5

5.0

5.5

6.0
Tr

ai
ni

ng
 L

os
s

GPT-Small (124M) on Openwebtext-100k
AdamW
MARS
Muon
AdaMuon
SCION
D-Muon
LANTON

0 500 1000 1500 2000 2500 3000
Number of training steps

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n
Lo

ss

GPT-Small (124M) on Openwebtext-100k
AdamW
MARS
Muon
AdaMuon
SCION
D-Muon
LANTON

Figure 6: Training and validation loss on Openwebtext-100k.

F NOISE HETEROGENEITY

F.1 IMPLEMENTATION DETAILS OF FIGURE 1

In this section, we provide implementation details of Figure 1. We pretrain LLaMA-1.1B model on
C4 dataset for 10k steps, and apply momentum orthogonalized update to the matrix parameters Wℓ ∈
Rdout×din in the hidden layers (Query, Key, Value, MLP) and AdamW optimizer to the embedding
and last layers. We first estimate gradient noise for two parameter groups, formed by matrix shape.
For each weight matrix, we compute max(dout, din) and bucket it accordingly. We then aggregate
the gradient-noise measure within each bucket over training (e.g., averaging across parameters in
the group at each iteration) to obtain group-wise trajectories, which is shown in subfigure 1. Then
we measure the layer-wise gradient noise within QK, VO, and MLP layer group in the last three
subfigures.

The stochastic gradient noise is estimated by the nuclear norm (for parameters in Muon optimizer) or
ℓ1 → ℓ1 operator norm (for parameters in AdamW optimizer) of the difference between the current
step’s gradient and the previous step’s gradient. The implementation follows Option I of line 7 in
Algorithm 1 and line 4 in Table 1.

F.2 NOISE MAGNITUDE ACROSS DIFFERENT LAYER GROUPS

We estimate the layer-wise gradient noise within the QK, VO, and MLP layer groups at the midpoint
of training (5,000 steps). We find large layer-to-layer disparities within each group, indicating that
gradient noise is far from uniform within a group. The statistics is presented in Table 3.

Table 3: The statistics of stochastic gradient noise in different layer groups of LLaMA.
Layer Group #Layers σ̄

¯
σ σmean

QK 44 0.026 0.003 0.014
VO 44 0.117 0.009 0.046
MLP 66 0.107 0.018 0.038

G MODEL CONFIGURATIONS

We pretrain two types of model, GPT2 and LLaMA, the model configurations are listed in Table 4.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Model configurations (dmodel denotes the hidden dimension, dFF denotes the feed-forward
dimension, and nhead denotes the number of attention head in transformer).

Model Size dmodel dFF nhead depth
GPT-2 (small) 124M 768 3072 12 12
GPT-2 (medium) 355M 1024 4096 16 24
LLaMA (0.5B) 522M 1280 5120 20 15
LLaMA (1.1B) 1175M 2048 5632 32 22

H HYPERPARAMETER SETTINGS

H.1 HYPERPARAMETER SETTINGS IN GPT2 EXPERIMENTS

We tune the base learning rate ηmax for each method via a grid search in the range of [1×10−4, 5×
10−3]. For Muon baseline, we additionally sweep a separate base learning rate for non-hidden
(embedding/output) layers. All runs use cosine decay from ηmax down to ηmin = 0.0. Muon and
D-Muon use three momentum hyperparameters: (β1, β2) for the AdamW auxiliary optimizer and
β3 for orthogonalized momentum updates. LANTON uses two momentum parameters: β1 for the
gradient momentum and β2 for the gradient noise momentum. All LMO-based methods (SCION,
D-Muon, LANTON) apply layer-group learning-rate scaling; for SCION and D-Muon we adopt the
best tuned scales reported in their original papers. All the hyperparameter settings are summarized
in Table 5 and 6.

Table 5: The hyperparameter settings in GPT2-Small experiments.
Method ηmax Moment Scale
AdamW 1× 10−4 β1 = 0.9, β2 = 0.95 -
Muon (3× 10−3, 3× 10−4) β1 = 0.9, β2 = 0.95, β3 = 0.95 -
MARS 1× 10−3 β1 = 0.9, β2 = 0.95 -
SCION 3× 10−4 β = 0.9 r1 = 50, r2 = 3000

D-Muon 1× 10−3 β1 = 0.9, β2 = 0.95, β3 = 0.95 r = 0.2

LANTON 5× 10−3 β1 = 0.95, β2 = 0.9 r1 = 300, r2 = 1.0

Table 6: The hyperparameter settings in GPT2-Medium experiments.
Method ηmax Moment Scale
AdamW 1× 10−4 β1 = 0.9, β2 = 0.95 -
Muon (3× 10−3, 3× 10−4) β1 = 0.9, β2 = 0.95, β3 = 0.95 -
MARS 1× 10−3 β1 = 0.9, β2 = 0.95 -
SCION 2× 10−4 β = 0.9 r1 = 50, r2 = 3000

D-Muon 5× 10−4 β1 = 0.9, β2 = 0.95, β3 = 0.95 r = 0.2

LANTON 3× 10−3 β1 = 0.95, β2 = 0.9 r1 = 300, r2 = 1.0

H.2 HYPERPARAMETER SETTINGS IN LLAMA EXPERIMENTS

The best base learning rate for each algorithm is grid searched over {1 × 10−4, 3 × 10−4, 5 ×
10−4, 1 × 10−3, 3 × 10−3, 5 × 10−3}. The decayed layer rate is set as ηmin = 1/10ηmax on C4
and ηmin = 1/20ηmax on Minipile. We keep the momentum and scale parameters as that in GPT2
experiments. The hyperparameter choices on C4 and Minipile are summarized in Tables 7 and 8,
respectively.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: The hyperparameter settings on C4.
Method ηmax ηmin Moment Scale
AdamW 3× 10−4 3× 10−5 β1 = 0.9, β2 = 0.95 -
Muon (5× 10−3, 3× 10−4) (5× 10−4, 3× 10−5) β1 = 0.9, β2 = 0.95, β3 = 0.95 -
MARS 1× 10−3 1× 10−4 β1 = 0.9, β2 = 0.95 -
SCION 5× 10−4 5× 10−5 β = 0.9 r1 = 50, r2 = 3000

D-Muon 5× 10−3 5× 10−4 β1 = 0.9, β2 = 0.95, β3 = 0.95 r = 0.2

LANTON 5× 10−3 5× 10−4 β1 = 0.95, β2 = 0.9 r1 = 300, r2 = 1.0

Table 8: The hyperparameter settings on Minipile.
Method ηmax ηmin Moment Scale
AdamW 8× 10−4 4× 10−5 β1 = 0.9, β2 = 0.95 -
Muon (5× 10−3, 5× 10−4) (2.5× 10−4, 2.5× 10−5) β1 = 0.9, β2 = 0.95, β3 = 0.95 -
MARS 1× 10−3 5× 10−5 β1 = 0.9, β2 = 0.95 -
SCION 5× 10−4 2.5× 10−5 β = 0.9 r1 = 50, r2 = 3000

D-Muon 5× 10−3 2.5× 10−4 β1 = 0.9, β2 = 0.95, β3 = 0.95 r = 0.2

LANTON 5× 10−3 2.5× 10−4 β1 = 0.95, β2 = 0.9 r1 = 300, r2 = 1.0

I ROBUSTNESS

The training and validation loss curves with different base learning rates are presented in Figure 7.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of training tokens (Billions)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Tr
ai

ni
ng

 L
os

s

LANTON with different base learning rates
LANTON (lr=0.001)
LANTON (lr=0.003)
LANTON (lr=0.005)
D-MUON (lr=0.005)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of training tokens (Billions)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Va
lid

at
io

n
Lo

ss

LANTON with different base learning rates
LANTON (lr=0.001)
LANTON (lr=0.003)
LANTON (lr=0.005)
D-MUON (lr=0.005)

Figure 7: LANTON is robust to the choices of base learning rates.

J RUNNING TIME

To efficiently estimate the nuclear norm term ∥Gℓ
t − G̃ℓ

t∥2∗ for hidden-layer gradients (QK, VO,
and MLP layers), we adopt the randomized singular value decomposition (R-SVD) method (Halko
et al., 2011; Oh et al., 2015). The nuclear norm of a matrix is defined as the sum of its singular
values, i.e., ∥A∥∗ =

∑
i σi(A), where σi(A) denotes the i-th singular value. Instead of com-

puting a full SVD, we project A = Gℓ
t − G̃ℓ

t onto a randomly generated low-dimensional sub-
space (with empirical dimension d = 100) and perform a small SVD on this reduced matrix to
estimate its leading singular values. This approximation strategy is also used in SCION Pethick
et al. (2025) in their implementation https://github.com/LIONS-EPFL/scion/blob/
main/examples/airbench/airbench_muon.py#L163. The detailed implementation is
provided in lines 44–70 of the submitted code file train llama/lanton.py.

To further reduce computational cost, the gradient-noise estimation step (line 7 in Algorithm 1) is
executed once every 10 iterations. We benchmark the runtime over 10 steps against other baselines,
and the average computation time of each method is summarized in Table 9. Compared with the
state-of-the-art baseline D-Muon, LANTON requires roughly 3 additional seconds per 10 iterations
for gradient-noise estimation, resulting in an extra 0.84 hours of total training time. This corresponds
to an overhead of only about 4% relative to D-Muon. Moreover, Figure 8(a) reports the wall-clock
runtime comparison. As shown, LANTON achieves a noticeably faster early loss decrease and then
maintains a trajectory comparable to D-Muon for the remainder of training. These results demon-

20

https://github.com/LIONS-EPFL/scion/blob/main/examples/airbench/airbench_muon.py#L163
https://github.com/LIONS-EPFL/scion/blob/main/examples/airbench/airbench_muon.py#L163

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

strate that our method introduces only negligible computational overhead and achieves runtime on
par with the SOTA baseline.

Table 9: The comparison of running time.
Method Time (second)/10 steps Total running time (hours)
AdamW 64.55 18.53

Muon 69.62 19.96

MARS 69.01 19.78

SCION 71.53 20.49

D-Muon 70.07 20.08

LANTON 73.08 20.92

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Wall-clock Time (hours)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

Tr
ai

ni
ng

 L
os

s

LLaMA (1.1B) on C4 Loss vs Time
D-Muon
LANTON

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Wall-clock Time (hours)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

Va
lid

at
io

n
Lo

ss

LLaMA (1.1B) on C4 Loss vs Time
D-Muon
LANTON

(a) Running time on 1.1B model.

0 10 20 30 40 50 60
Wall-clock Time (hours)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

Tr
ai

ni
ng

 L
os

s

LLaMA (2B) on C4 Loss vs Time
D-Muon
LANTON

0 10 20 30 40 50 60
Wall-clock Time (hours)

2.5

2.6

2.7

2.8

2.9

3.0

3.1

Va
lid

at
io

n
Lo

ss

LLaMA (2B) on C4 Loss vs Time
D-Muon
LANTON

(b) Running time on 2B model.

Figure 8: Training and validation loss vs. wall-clock time.

K EVOLUTION OF EFFECTIVE LEARNING RATE

The early-stage speedup arises because gradient noise varies significantly across layers at the begin-
ning of training. As shown in Figure 9, the hidden layers (in subfigure (a)) start with an averaged
effective learning-rate mean of 0.0028 and a standard deviation of 0.0007, indicating notable layer-
wise differences that LANTON can exploit to accelerate optimization in the early stage. By the end
of training, cosine decay drives all learning rates toward very small values, and the hidden-layer
learning rates converge to a mean of 0.00016 with a much smaller standard deviation of 0.00008.
The reduced variance shows that layerwise learning rates become nearly uniform in the later stage
of the training, and therefore layerwise learning rate is equivalent to using the same learning rate in
the same group and the benefit diminishes.

Importantly, LANTON achieves faster early loss descent while still reaching comparable or better
final performance, demonstrating that its advantage to accelerate training with noise-adaptive layer-
wise learning rates.

2000 4000 6000 8000 10000
Step

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Av
er

ag
ed

 L
R

in
 la

ye
r

gr
ou

p

Averaged LR (hidden layers) mean ± std

(a)

2000 4000 6000 8000 10000
Step

0.000

0.001

0.002

0.003

0.004

0.005

Av
er

ag
ed

 L
R

in
 la

ye
r

gr
ou

p

Averaged LR (Emb/LM_Head) mean ± std

(b)

2000 4000 6000 8000 10000
Step

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

Av
er

ag
ed

 L
R

in
 la

ye
r

gr
ou

p

Averaged LR (norm layers) mean ± std

(c)

Figure 9: The statistics of learning rate in 3 layer groups: (a) start: 0.0028±0.0007, end: 0.00016±
0.00008; (b) start: 0.0035 ± 0.0015, end: 0.00034 ± 0.00016; (c) start: 0.0017 ± 0.0003, end:
0.0002± 0.00006.

L ABLATION OF BATCH SIZE

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

To assess the influence of batch size on stochastic gradient variance estimation, we trained GPT
(124M) models on openwebtext-100k with batch sizes BS = {8, 16, 32, 48, 64} for one epoch (the
number of training tokens is fixed to 46 million). For each batch size, we independently tuned
the learning rate to its best-performing values (1.0 × 10−2 for BS=8, 5.0 × 10−3 for other BS
settings), ensuring a fair comparison across different settings. As shown in training loss curve in
Figure 10, smaller batches yield noisier trajectories while larger batches produce smoother curves,
yet all settings converge to nearly the same final training and validation loss (approximately 4.0).

These results demonstrate that our method is highly robust to batch-size variation: the convergence
behavior and final performance are reasonably good and consistent across a wide range of batch
sizes. Among the configurations, BS = 16 provides the best model performance, which is used in
the main experimental settings.

0 10 20 30 40 50
Number of training tokens (millions)

3.5

4.0

4.5

5.0

5.5

6.0

Tr
ai

ni
ng

 L
os

s

GPT: Training Loss with Different Batch Sizes
BS=64
BS=48
BS=32
BS=16
BS=8

0 10 20 30 40 50
Training tokens (Millions)

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n
Lo

ss

GPT: Validation Loss with Different Batch Sizes
BS=64
BS=48
BS=32
BS=16
BS=8

Figure 10: Training and validation loss vs. batch sizes (BS).

M GRADIENT NOISE ESTIMATION: OPTION I VS. OPTION II

We compared the performance of Options 1 and 2 in Algorithm 1. As described in line 7, our
main experiments use Option 2 with GPT-124M on Openwebtext-100k. For Option 1, estimating
gradient noise requires two independent mini-batches per iteration; therefore, under a fixed one-
epoch budget, Option 1 performs only half as many optimization steps as Option 2.

Figure 11 reports the training and validation curves for both settings. With the same one-epoch
budget, Option 1 achieves much lower final training and validation loss than Option 2 because it
performs more gradient updates.

0 500 1000 1500 2000 2500 3000
Number of training steps

3.5

4.0

4.5

5.0

5.5

6.0

Tr
ai

ni
ng

 L
os

s

 Option1 min=3.768

 Option2 min=4.296

GPT: Option1 vs Option2 - Training Loss
Option1
Option2

0 500 1000 1500 2000 2500 3000
Number of training steps

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n
Lo

ss

 Option1 min=3.858

 Option2 min=4.272

GPT: Option1 vs Option2 - Validation Loss
Option1
Option2

Figure 11: Training and validation loss with two gradient noise estimation options.

N LICENSE OF MODELS AND DATASETS

GPT2 OpenAI’s GPT2 models are distributed by MIT License. We use only the open-source
implementation of the GPT2 architecture in Hugging Face Transformers and do not redistribute
Meta’s model weights.

LLaMA We follow Meta Llama 2 Community License Agreement. We use only the open-source
implementation of the LLaMA architecture in Hugging Face Transformers and do not redistribute
Meta’s model weights.

C4 The English portion of the C4 (Colossal Clean Crawled Corpus) dataset comes from Hugging
Face (allenai/c4), which is distributed under the Open Data Commons Attribution (ODC-By 1.0)
license.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Minipile It can be accessed from Hugging Face (JeanKaddour/minipile), which is distributed un-
der MIT License.

Openwebtext It can be accessed from Hugging Face (Skylion007/openwebtext), which is dis-
tributed under Creative Commons cc0-1.0 license.

O THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are not involved in our research methodology. Their use is limited to polish the writing.

23

	Introduction
	Related Work
	Preliminaries
	Our Method
	Analysis
	Proof Outline

	Experiments
	Experimental Settings
	Training Setup and Results
	Implementation of LANTON
	GPT2 on Openwebtext
	LLaMA on C4 and MiniPile

	Comparison with Algorithms Using Layer-wise/Block-wise Learning Rates
	Sample Efficiency with Fixed Token Budget
	Robustness to Base Learning Rate Choice

	Conclusion
	Technical Lemmas
	Proofs of sec:proofoutline
	Proof of thm:muon
	Experiment of Image Classification
	Comparison with Adaptive Variant of Muon
	Noise Heterogeneity
	Implementation Details of fig:noiseheterogeneity
	Noise Magnitude across Different Layer Groups

	Model Configurations
	Hyperparameter Settings
	Hyperparameter Settings in GPT2 Experiments
	Hyperparameter Settings in LLaMA Experiments

	Robustness
	Running Time
	Evolution of Effective Learning Rate
	Ablation of Batch Size
	Gradient Noise Estimation: Option I vs. Option II
	License of Models and Datasets
	The Use of Large Language Models (LLMs)

