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ABSTRACT

Geometry-aware optimization algorithms, such as Muon, have achieved remark-
able success in training deep neural networks (DNNs). These methods leverage
the underlying geometry of DNNs by selecting appropriate norms for different
layers and updating parameters via norm-constrained linear minimization ora-
cles (LMOs). However, even within a group of layers associated with the same
norm, the local curvature can be heterogeneous across layers and vary dynami-
cally over the course of training. For example, recent work shows that sharpness
varies substantially across transformer layers and throughout training, yet stan-
dard geometry-aware optimizers impose fixed learning rates to layers within the
same group, which may be inefficient for DNN training.
In this paper, we introduce a noise-adaptive layerwise learning rate scheme on
top of geometry-aware optimization algorithms and substantially accelerate DNN
training compared to methods that use fixed learning rates within each group. Our
method estimates gradient variance in the dual norm induced by the chosen LMO
on the fly, and uses it to assign time-varying noise-adaptive layerwise learning
rates within each group. We provide a theoretical analysis showing that our algo-
rithm achieves a sharp convergence rate. Empirical results on transformer archi-
tectures such as LLaMA and GPT demonstrate that our approach achieves faster
convergence than state-of-the-art optimizers.

1 INTRODUCTION

Optimization algorithms are cornerstones for modern deep learning, enabling the training of increas-
ingly large neural networks, such as LLaMA (Touvron et al., 2023) and GPT (Achiam et al., 2023)
models. While standard optimizers such as SGD (Robbins & Monro, 1951) and Adam (Kingma &
Ba, 2014) remain widely used, they often overlook the geometry of neural network parameter spaces.
Recently, geometry-aware optimization algorithms such as Muon (Jordan et al., 2024) have demon-
strated remarkable empirical success by performing orthogonalized updates on matrix parameters.
Building on this idea, Pethick et al. (2025) developed a framework that selects appropriate norms for
different layers and updates parameters via norm-constrained linear minimization oracles (LMOs).
These methods go beyond standard optimizers by exploiting structural properties (e.g. layer-wise
operator norms) of DNNs rather than treating all parameters uniformly, thus leading to improved
performance and acceleration for large-scale foundation model pretraining (Liu et al., 2025).

Despite their success, existing geometry-aware optimizers simply assign fixed learning rates within
groups of layers associated with the same norm choice. However, these algorithms neglect the het-
erogeneous and dynamic nature of various layers during the neural network training. For example,
recent studies (Wang et al., 2025) have shown that sharpness or local curvature of the objective func-
tion can vary substantially across different types of layers (e.g., query-key (QK) layers, value-output
(VO) layers, and multilayer perceptron (MLP) in transformers). Moreover, these variations evolve
over time, as observed when training with AdamW (Loshchilov & Hutter, 2017). We have observed
similar phenomena in training a LLaMA model with the Muon optimizer1. Figure 1 highlights that

1We follow https://github.com/KellerJordan/modded-nanogpt to apply Muon optimizer
to the transformer hidden layers (including query, key, value, output, MLP layers), and AdamW to the embed-
ding, LM head, normalization layers.
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Figure 1: The stochastic gradient noise is heterogeneous across groups and layers in transformers.
The first subfigure shows that average gradient noise in hidden layers varies across parameter groups
defined by matrix shape and evolves over training. The last three subfigures illustrate that, within
each layer group, the gradient noise varies substantially across layers3.

the stochastic gradient noise differs substantially across layer groups or layers, and shifts through-
out training. Nevertheless, state-of-the-art geometry-aware optimizers such as D-Muon (Liu et al.,
2025) and Scion (Pethick et al., 2025) use the same fixed learning rate for matrices of the same
shape, ignoring the fact that gradient noise on layers with the same shape can vary significantly over
iterations as shown in Figure 1. This mismatch suggests that treating such layers uniformly may
lead to inefficient training, motivating the need for novel layerwise learning rate schemes.

Layerwise adaptive learning rates (You et al., 2017; 2019) are widely used in deep learning under
standard Euclidean spaces. These optimizers automatically rescale updates according to gradient
magnitudes, which reduces manual tuning and often accelerates convergence. However, they dis-
regard the structural geometry of neural networks by treating all parameters as if they belonged to
the same category. In reality, neural networks contain diverse parameter groups such as matrices in
attention layers, vectors in bias terms, and embedding tables. Each group serves a distinct functional
role and exhibits different scales and curvature properties in the loss landscape (Wang et al., 2025).
The key open question is how to design adaptive learning rates beyond standard Euclidean spaces,
enabling geometry-aware optimizers to exploit heterogeneous gradient noise across layers and over
the course of training (as illustrated in Figure 1).

In this paper, we propose a new geometry-aware optimization algorithm named Lanton: LAyer-wise
Noise-adaptive learning raTe scaling with Operator Norms. Our algorithm dynamically estimates
gradient variance in the dual norm induced by the chosen LMO and uses this estimate to assign
layerwise learning rates that adapt over the course of training. Unlike existing approaches, which
treat all layers in a group uniformly, our algorithm accounts for the heterogeneity of gradient noise
across layers, leading to smaller learning rates for layers with larger gradient noise, thereby enabling
finer-grained and more efficient optimization. Importantly, the proposed mechanism is compatible
with the geometry-aware optimizers, such as Muon (Jordan et al., 2024) and D-Muon (Liu et al.,
2025). Our contribution can be summarized as follows.

• We propose a new optimization algorithm named LANTON: LAyer-wise Noise-adaptive
learning raTe scaling with Operator Norms, which can dynamically capture the gradient
noise of each layer and thus accordingly rescale the learning rate of each layer.

• We prove that our method achieves a sharp convergence rate of Õ(1/
√
T+
√∑

ℓ σ̄ℓ/T
1/4),

where σ̄ℓ denotes an upper bound on the gradient noise of the layer ℓ. Our bound shows im-
proved noise dependence under the layer-wise noise assumption. By explicitly accounting
for the heterogeneous noise levels across layers, our analysis demonstrates the advantage
of noise-adaptive layer-wise learning rates.

• Empirically, we evaluate our approach from small to large-scale language model training,
including LLaMA and GPT2, and show that it substantially accelerates training compared
to state-of-the-art optimizers. For example, LANTON achieves ∼ 1.5× training speedup
compared to the state-of-the-art algorithm D-Muon when reaching comparable training or
validation loss. Our results indicate that dynamically adapting learning rates at the layer
level can better capture the evolving optimization landscape, leading to faster convergence
and improved training efficiency. Together, these contributions highlight the importance of
integrating noise adaptivity into geometry-aware optimization and open new directions for
scalable and effective training of deep neural networks.

3See Appendix D for the implementation details.
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2 RELATED WORK

A long line of work has studied optimization for deep learning. The most classical method is SGD
(Robbins & Monro, 1951). Early advances focused on adaptive learning rates, including Adagrad
(Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012), Adadelta (Zeiler, 2012), and the widely
used Adam (Kingma & Ba, 2014). Later developments improved Adam in various ways: AdamW
(Loshchilov & Hutter, 2017) introduced decoupled weight decay and has become the default choice
for deep learning; several variants incorporate variance reduction, such as AdEMAMix (Pagliardini
et al., 2024) and MARS-AdamW (Yuan et al., 2024); others target memory efficiency, including
Adafactor (Shazeer & Stern, 2018), Lion (Chen et al., 2023), MeZO (Malladi et al., 2023), GaLore
(Zhao et al., 2024a), Adam-mini (Zhang et al., 2024), and Signum (Zhao et al., 2024b).

Another line of work approximates or leverages second-order information. K-FAC (Martens &
Grosse, 2015) and Shampoo (Gupta et al., 2018) are classical examples. The substantial compute
and memory overheads of second-order optimizers have motivated distributed implementations of
Shampoo (Anil et al., 2020; Shi et al., 2023). More recently, lightweight preconditioned optimizers
such as Sophia (Liu et al., 2023a) and SOAP (Vyas et al., 2024) have been proposed, achieving
substantial speedups over AdamW in large-scale language model pretraining.

A third research direction focuses on layer-wise or block-wise learning rates to accelerate training.
LARS (You et al., 2017) and LAMB (You et al., 2019) are widely used for large-batch training,
while more recent approaches extend AdamW with blockwise learning rates (Wang et al., 2025).

Several parameter-free or schedule-free optimizers aim to reduce the burden of hyperparameter tun-
ing, including Dog (Ivgi et al., 2023), Prodigy (Mishchenko & Defazio, 2023), and Schedule-Free
AdamW (Defazio et al., 2024).

Most recently, the theory of modular duality in optimization and the perspective of steepest descent
under different operator norms (Bernstein & Newhouse, 2024a;b; Large et al., 2024) have inspired
the design of matrix-based and geometry-aware optimizers, including Muon (Jordan et al., 2024)
and Scion (Pethick et al., 2025), as well as distributed implementations such as D-Muon (Liu et al.,
2025) and Dion (Ahn et al., 2025), which further improve training efficiency and stability at scale.

3 PRELIMINARIES

In this work, we consider the stochastic optimization problem minX f(X) := Eξ∈D[F (X; ξ)],
where ξ is random noise sampled from an unknown distribution D, and X ∈ Rm×n is the model
parameter. We assume that the objective is bounded from below, i.e., f∗ := infX f(X) > −∞.

Notations. Let ∥ · ∥ denote an arbitrary (not necessarily Euclidean) vector/matrix norm with as-
sociated dual norm ∥ · ∥∗, and let ∥ · ∥nuc denote the nuclear norm. We use ⟨·, ·⟩ for the trace inner
product, defined as ⟨A,B⟩ = tr(A⊤B) for A,B ∈ Rm×n. For two positive functions f and g, we
write f ≲ g (resp. f ≳ g) if there exists c > 0 such that f(x) ≤ cg(x) (resp. f(x) ≥ cg(x)) for all
x. We use standard big-O notation, with Õ and Ω̃ used to hide polylogarithmic factors, respectively.

Linear Minimization Oracle (LMO). The LMO is a fundamental concept in convex optimization
(Frank et al., 1956), particularly in the context of algorithms like the Frank-Wolfe algorithm (also
known as the conditional gradient method (Jaggi, 2013)). Given a convex feasible set K and a
direction vector/matrix u, the LMO returns an extreme point of K that minimizes the linear function
⟨u, x⟩ over K. Mathematically, this can be expressed as: LMO(u) = argminx∈K⟨u, x⟩.
Throughout this paper, we focus on the special case where K := {x | ∥x∥ ≤ 1} for some chosen
(not necessarily Euclidean) norm ∥ · ∥ (Pethick et al., 2025), unless specified otherwise.

Operator Norm and RMS Norm. Given a matrix A ∈ Rm×n and two normed vector spaces
(Rn, ∥ · ∥a) and (Rm, ∥ · ∥b), the “a to b” induced operator norm is defined as

∥A∥a→b := max
x∈Rn,x̸=0

∥Ax∥b
∥x∥a

= sup
∥x∥a=1

∥Ax∥b.

Given a vector x ∈ Rd, the RMS norm is defined as ∥x∥RMS := 1√
d
∥x∥2.

3
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Algorithm 1 LANTON: LAyer-wise Noise-adaptive raTe scaling with Operator Norms
1: Input: X0, α, β1, β2, γ, η, G0 = ∇F (X0; ξ0), B0 = G0

2: while t < T do
3: for each layer ℓ do
4: Gℓ

t = ∇F (Xℓ
t ; ξ

ℓ
t ), G̃

ℓ
t = ∇F (Xℓ

t ; ξ̃
ℓ
t ) (G̃ℓ

t is used only in Option II)
5: Bℓ

t = β1B
ℓ
t−1 + (1− β1)G

ℓ
t

6: Oℓ
t = LMO(Bℓ

t ) (choose norm based on ℓ’s group Gℓ, Table 1 line 5)

7: Hℓ
t = β2H

ℓ
t−1 + (1− β2) ·

{
∥Gℓ

t −Gℓ
t−1∥2∗ Option I (practical)

∥Gℓ
t − G̃ℓ

t∥2∗ Option II (theoretical)
(Table 1 line 4)

8: αℓ
t = α/

√
α2 +Hℓ

t , αm
t = maxℓ∈Gℓ

αℓ
t (max is over ℓ’s group Gℓ, Table 1 line 1)

9: ηℓt = ηt
√
αℓ
t/α

m
t (ηt ∈ [ηmin, ηmax] follows a cosine decay schedule)

10: Xℓ
t+1 = Xℓ

t − ηℓtO
ℓ
t

11: end for
12: end while

Table 1: The choice of LMO can be different between layers. We use W ∈ Rdout×din to denote a
matrix and w ∈ Rd to denote a vector. Write the SVD as W = UΣV ⊤.

Parameter Group Hidden layers (query, key, value, output, mlp) Embedding, LM head layers RMS norm

Size Matrix ∈ Rdout×din Matrix ∈ Rdout×din Vector ∈ Rd

Norm ∥ · ∥ RMS → RMS 1 → ∞ RMS

Dual Norm ∥ · ∥∗
√

dout/din∥ · ∥nuc ∥ · ∥1→1

√
d∥ · ∥2

LMO −
√

dout/dinUV ⊤ − 1
din

sign(W ) −
√
d w
∥w∥2

LMO Implementation Newton-Schulz Signum RMS Normalization

4 OUR METHOD

Algorithmic Framework. Our proposed algorithmic framework (Algorithm 1) consists of three
main stages at each iteration. First (lines 4-6), we compute the stochastic gradient Gℓ

t for each layer,
accumulate its momentum Bℓ

t , and then obtain the direction Oℓ
t = LMO(Bℓ

t ) by invoking a LMO,
where the choice of norm depends on the structural group of layer ℓ (embedding/LM head layers,
hidden layers, or non-matrix layers; see Table 1). Second (lines 7-9), the key novelty of our frame-
work is to incorporate noise-adaptive layer-wise learning rate scaling. We maintain a momentum
buffer Hℓ

t to track the moving average of the estimated noise level for each layer. This buffer can be
updated in two ways: a practical option (using Gℓ

t and Gℓ
t−1 and avoiding extra computation) and

a theoretical option (using two independent stochastic gradients Gℓ
t and G̃ℓ

t at each step). Based on
Hℓ

t , the layer-wise scaling αℓ
t is computed, and the effective learning rate is adjusted proportionally

through the ratio αℓ
t/α

m
t , ensuring that layers with larger noise magnitudes employ smaller learn-

ing rates. Finally (lines 10-11), we update the model parameters with the scaled stepsize and the
direction given by LMO.

Choice of Norm Constraint and LMO Implementation. To determine appropriate norm con-
straints for different types of parameters in deep neural networks, we adopt the operator norm per-
spective recently advanced in (Large et al., 2024; Bernstein & Newhouse, 2024a; Pethick et al.,
2025). As summarized in Table 1, parameters naturally fall into three groups: (i) hidden layers (e.g.,
query, key, value, output, and MLP weights), which are represented as matrices and we use the RMS
→ RMS operator norm with dual nuclear norm (scaled by

√
dout/din); (ii) weight-sharing layers

such as embedding and LM head matrices, where the ℓ1 → ℓ∞ operator norm is used with dual
ℓ1 → ℓ1 norm; and (iii) non-matrix parameters like RMS normalization vectors, where the RMS
norm with dual ℓ2 norm (scaled by

√
dmodel) is adopted. These dual norms are critical in line 7 of

Algorithm 1 for estimating the layer-wise gradient noise magnitude. Based on the chosen norms,
the corresponding LMOs in line 6 of Algorithm 1 also differ across parameter types: for hidden
layers, the LMO corresponds to a scaled UV ⊤ computed efficiently via Newton-Schulz iterations;
for embedding and LM head layers, the LMO reduces to a scaled element-wise sign operator; and
for RMS normalization vectors, the LMO is implemented by RMS normalization. This unified de-

4
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sign of norm constraints, dual norms, and LMOs with their implementations ensures both theoretical
consistency with our algorithmic framework and practical efficiency in large-scale deep learning.

Noise-Adaptive Layer-wise Learning Rates. To capture the heterogeneous noise levels across
different layers, we introduce noise-adaptive layer-wise learning rates, which dynamically scale
the stepsize of each layer according to its estimated stochastic gradient variance. Specifically, we
maintain a variance tracker Hℓ

t = β2H
ℓ
t−1 +(1−β2)∥Gℓ

t − G̃ℓ
t∥2∗ (line 7), where β2 ∈ (0, 1) serves

as a momentum-like parameter that smooths the estimate, akin to second-moment accumulation in
adaptive optimizers. The resulting adaptive scaling factor αℓ

t = α/
√
α2 +Hℓ

t (line 8) ensures that
layers subject to higher noise levels (large Hℓ

t ) receive proportionally smaller effective learning rates,
consistent with classical stochastic optimization theory. We implement this by reweighting the base
learning rate with the ratio αℓ

t/α
m
t (where αm

t = maxℓ∈Gℓ
αℓ
t), thereby aligning the updates across

layers under a unified theoretical principle. While our theoretical framework (see Section 5) assumes
two independent gradient estimates Gℓ

t and G̃ℓ
t , in practice we approximate G̃ℓ

t by the previous step
gradient Gℓ

t−1. This avoids doubling the batch size and keeps the total number of sampled data
consistent with standard baselines, thus ensuring fair comparisons in empirical evaluation.

Comparison with Other Optimizers. Compared to Muon (Jordan et al., 2024), Scion (Pethick
et al., 2025), and D-Muon (Liu et al., 2025), our method introduces noise-adaptive layer-wise learn-
ing rates by estimating gradient variance in the dual norm induced by the chosen LMO. Unlike Muon
and D-Muon, which use AdamW for embedding and LM head layers, we adopt a geometry-aware
framework (similar to Scion) and update these weight-sharing layers with Signum (see Table 1).

Optimizers such as LARS (You et al., 2017) and LAMB (You et al., 2019) also use layer-wise rescal-
ing to stabilize large-batch training. However, these methods treat all layers uniformly. In contrast,
our algorithm is geometry-aware, selecting norms tailored to hidden, embedding, and normalization
layers, and updating them through LMOs with noise-adaptive scaling.

Finally, although Algorithm 1 resembles Gong et al. (2025) in estimating noise magnitude, there
are key differences. Our method is LMO-based and works under arbitrary norms, while Gong et al.
(2025) is restricted to the Euclidean space. Our noise adaptivity refers to per-layer scaling based on
estimated variance, whereas theirs targets convergence without prior noise knowledge. Moreover,
our moving-average variance estimator Hℓ

t remains O(1) with high probability, in contrast to their
cumulative estimator

∑t
k=1 ∥Gk − G̃k∥2 which grows as O(

√
t).

5 ANALYSIS

In this section, we provide theoretical convergence guarantees for Algorithm 1. Let ∥ · ∥(ℓ) denote
the chosen norm of layer ℓ with dual norm ∥ · ∥(ℓ)∗, and let p be the number of layers. We begin by
presenting the assumption of layer-wise L-smoothness. Importantly, we do not assume that either
the primal norm ∥ · ∥(ℓ) or the dual norm ∥ · ∥(ℓ)∗ is Euclidean. A similar layer-wise smoothness
assumption is also imposed in Riabinin et al. (2025) to capture the geometry of neural networks.
Assumption 5.1. The objective f is layer-wise L-smooth with constants L := (L1, . . . , Lp) ∈ Rp

+,
i.e., for all ℓ = 1, . . . , p, X = [X1, . . . , Xp], and Y = [Y1, . . . , Yp], ∥∇ℓf(X) − ∇ℓf(Y )∥(ℓ)∗ ≤
Lℓ∥Xℓ − Yℓ∥(ℓ).

Our second assumption states that the stochastic gradient oracle is unbiased and the layer-wise gra-
dient noise is almost surely bounded both above and below in the dual space.
Assumption 5.2. (i) The stochastic gradient oracle is unbiased, i.e., E[∇F (X, ξ) | X] = ∇f(X).
(ii) It holds with probability one for all ℓ that

¯
σℓ ≤ ∥∇ℓF (X, ξ)−∇ℓf(X)∥(ℓ)∗ ≤ σ̄ℓ with

¯
σℓ ≥ 0.

Compared to the standard bounded variance assumption (used for expectation-based analysis) or
the almost surely bounded-noise assumption (used for high-probability analysis) in stochastic op-
timization, Assumption 5.2 additionally requires that the stochastic gradient noise is almost surely
lower bounded. A similar assumption is also made in (Gong et al., 2025). In the noiseless setting,
σ̄ℓ =

¯
σℓ = 0. From a technical perspective, this assumption is crucial for establishing a tight lower

bound on αℓ
t/α

m
t . For further proof details, see Lemma 5.5.

We now present our main result. Here C1, C2 (with C2 ≥ 1) are the universal constants defined
in Lemma A.3, which may depend on the dimension of the model parameters. Depending on the

5
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choice of norm constraint, one may select different C1, C2 to obtain tighter dimension-dependent
bounds, rather than applying a uniform choice. A detailed discussion is provided in Remark A.4.

Theorem 5.3. Suppose Assumptions 5.1 and 5.2 hold. Let ∆1 = maxℓ f(X
ℓ
1)−f∗. Set β1 = 1−α

with α = min

(√
∆1

∑
ℓ Lℓ∑

ℓ σ̄ℓ

√
T

, 1

)
, 1 − minℓ ¯

σ4
ℓ

32(2C2σ̄2
ℓ−¯

σ2
ℓ )

2 log(4T/δ)
≤ β2 < 1, ηmax =

√
∆1α∑
ℓ LℓT

,

and ηmin = ηmax/κη with 1 ≤ κη ≤ O(1). With probability at least 1− δ, we have

1

T

T∑
t=1

p∑
ℓ=1

∥∇ℓf(Xt)∥(ℓ)∗ ≲

√
C2(
∑

ℓ σ̄ℓ)
2√

∆1

∑
ℓ LℓT

+
C

3/2
2

C1

√
log

T

δ

(√
∆1

∑
ℓ Lℓ√

T
+

√∑
ℓ σ̄ℓ(∆1

∑
ℓ Lℓ)

1/4

T 1/4

)
.

Theorem 5.3 shows that Algorithm 1 achieves a convergence rate of Õ(1/
√
T +

√∑
ℓ σ̄ℓ/T

1/4).
Our bound highlights the advantage of adopting a layer-wise noise assumption. It achieves improved
noise dependence compared to the O(1/T 3/4 +

∑
ℓ σ̄max/T

1/4)4 bound established in (Pethick
et al., 2025, Theorem 5.7), where σ̄max is the uniform noise bound assumed in prior work (Pethick
et al., 2025). This improvement arises from recognizing that different layers exhibit distinct noise
levels during training, and thus should not be treated uniformly. Empirically, we observe noise
heterogeneity across layer groups (see Figure 1 and Table 2). Moreover, we compute that

√∑
ℓ σ̄ℓ =

3.654, which is significantly smaller than
∑

ℓ σ̄max = 18.018 in the LLaMA-1.1B pretraining on C4
dataset (Dodge et al., 2021), thereby validating our theoretical gain in both analysis and experiments.

5.1 PROOF OUTLINE

Here we give an outline of the proof of Theorem 5.3, containing the main components of our anal-
ysis; see Appendices B and C for full details. The proof sketch below is based on the setting of
Theorem 5.3. To start, we introduce a few key definitions (with the convention 0/0 := 1):

κℓ
σ =

{
σ̄ℓ/

¯
σℓ

¯
σℓ > 0

1 σ̄ℓ = 0
, κσ = max

ℓ
κℓ
σ, σ̄max = max

ℓ
σ̄ℓ, and t0 =

log 2

log(1/β2)
. (1)

The following lemma provides high-probability two-sided bounds for Hℓ
t , which in turn allow us

to derive tight upper and lower bounds for αℓ
t . The key to the analysis is an application of the

Azuma-Hoeffding inequality (see Lemma A.1).

Lemma 5.4. With probability at least 1−δ, for all ℓ and t0 ≤ t ≤ T , ¯
σ2
ℓ (1−βt

2)
C2

≤ Hℓ
t ≤ 4σ̄2

ℓ (1−βt
2).

With Lemma 5.4, we can effectively lower bound the noise ratio term αℓ
t/α

m
t with high probability.

Our next lemma shows that αℓ
t/α

m
t is both upper and lower bounded throughout training under our

assumptions. Consequently, the learning rate ηℓt is bounded on both sides with high probability.
Lemma 5.5. With probability at least 1− δ, for all ℓ and t ≤ T ,

min

{
α√

α2 + 4σ̄2
max

,
1

2
√
C2κσ

}
=: αr ≤ αℓ

t

αm
t

≤ 1, (2)

and therefore, with probability at least 1− δ, we have αrηmin ≤ ηℓt ≤ ηmax for all ℓ and t ≤ T .

We now provide a high-level proof sketch of our main result. See Appendix C for full proof details.

Proof sketch of Theorem 5.3. The proof proceeds similarly to that of (Cutkosky & Mehta, 2020,
Theorem 1). Define ϵ̂ℓt = Bℓ

t −∇ℓf(Xt) and ϵℓt = Gℓ
t −∇ℓf(Xt). We begin with a generalization

of the descent lemma (see Lemma C.1), rearranging to obtain:∑T
t=1

∑p
ℓ=1 η

ℓ
t∥∇ℓf(Xt)∥(ℓ)∗ ≤ ∆1 +

∑T
t=1

∑p
ℓ=1

(
2ηℓt∥ϵ̂ℓt∥(ℓ)∗ + Lℓ

2 (ηℓt )
2
)
.

Using L-smoothness (Assumption 5.1) and standard calculations, we have

∥ϵ̂ℓt+1∥(ℓ)∗ ≤ βt
1∥ϵ̂ℓ1∥(ℓ)∗ + (1− β1)

∥∥∥∑t−1
τ=0 β

τ
1 ϵ

ℓ
t−τ

∥∥∥
(ℓ)∗

+ ηmaxLℓ

∑t−1
τ=0 β

τ
1 . (3)

4This rate is obtained by replacing the global variance in (Pethick et al., 2025) with the layer-wise variance.
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Next, we apply the concentration inequality introduced in (Liu et al., 2023b, Lemma 2.4) to bound
∥
∑t−1

τ=0 β
τ
1 ϵ

ℓ
t−τ∥F , and then use the equivalence of norms (see Lemma A.3) to derive that, with

probability at least 1− δ,∥∥∥∑t−1
τ=0 β

τ
1 ϵ

ℓ
t−τ

∥∥∥
(ℓ)∗

≤ 1
C1

∥∥∥∑t−1
τ=0 β

τ
1 ϵ

ℓ
t−τ

∥∥∥
F
≤ 4C2σ̄

C1

√
log(2T/δ)

1−β1
. (4)

Substituting Equation (4) back into Equation (3) gives the bound for ∥ϵ̂ℓt∥(ℓ)∗. With suitable param-
eter choices as specified in Theorem 5.3, this concludes the proof.

6 EXPERIMENTS

In this section, we present the empirical results in comparison with the state-of-the-art optimizers
by pretraining two mainstream transformer architectures GPT (Radford et al., 2019) and LLaMA
(Touvron et al., 2023) series. All experiments were run on 4× NVIDIA H200 graphic cards with
Intel XEON Platinum 8558 CPU.

6.1 EXPERIMENTAL SETTINGS

Baselines We compare our LANTON with AdamW (Loshchilov & Hutter, 2017), Muon (Jordan
et al., 2024), MARS (short for MARS-AdamW) (Yuan et al., 2024), SCION (Pethick et al., 2025),
D-Muon (Liu et al., 2025), the layer-wise learning rate algorithm LAMB (You et al., 2019), and
block-wise learning rate algorithm BW-AdamW (Wang et al., 2025). SCION and D-Muon apply
the Muon optimizer to matrix parameters in hidden layers (e.g., query, key, value, mlp), and all
these algorithms use Newton-Schulz iteration (Bernstein & Newhouse, 2024b) to approximately
orthogonalize the update matrix, i.e., UV ⊤ in Table 1.

Models We evaluate on both GPT and LLaMA-style decoders. For GPT we use the HuggingFace
GPT2 family: GPT2-small (124M parameters) and GPT2-medium (355M parameters). For LLaMA
we configure two sizes: LLaMA-0.5B and LLaMA-1.1B. Unless noted, all models are decoder-only
with rotary positional embeddings and RMSNorm/LayerNorm per architecture defaults. Refer to
Table 3 for detailed model configuration.

Datasets We pretrain GPT2 and LLaMA models on three datasets. OpenWebText-100k is used
for GPT-small/medium models, and it is a subset of Openwebtext dataset (Gokaslan et al., 2019).
As there is no validation set in OpenWebText-100k, we split 90%/10% into training/validation set
and train models with teacher forcing. MiniPile (Kaddour, 2023) is used for LLaMA-0.5B, where
minipile is a subset of the deduplicated Pile corpus (Gao et al., 2020). C4 (Colossal Clean Crawled
Corpus) (Dodge et al., 2021) is a large-scale English text corpus constructed by aggressively cleaning
Common Crawl webpages, and we use it to pretrain LLaMA-1.1B following the standard text-to-
token pipeline. All corpora are tokenized with the model’s native tokenizer.

6.2 TRAINING SETUP AND RESULTS

6.2.1 IMPLEMENTATION OF LANTON

We implement LANTON on top of the D-Muon (Liu et al., 2025), which carefully adjusts the update
magnitudes between hidden layers and non-hidden layers (embedding and LM head layers). Let ηt
denote the base learning rate at iteration t, which is compatible with annealing techniques (e.g.,
cosine decay). For layer ℓ, D-Muon updates the non-hidden layers using AdamW with learning
rate ηt, and the hidden layers parameters Wℓ ∈ Rdℓ

out×dℓ
in (i.e., QK, VO, MLP) with a rescaled

learning rate 0.2ηt

√
max(dℓin, d

ℓ
out). LANTON further rescales the hidden-layer learning rate to

0.2ηt

√
max(dℓin, d

ℓ
out)α

ℓ
t/α

m
t , where αm

t = maxℓ∈Gℓ
αℓ
t and Gℓ denotes the group of layer ℓ. This

is the practical instantiation of line 9 in Algorithm 1. In our implementation, there are three layer
groups, i.e., {QK, VO, MLP}, {Embedding, LM-Head}, {LayerNorm}, so there are three noise
factors αm

t accordingly. For the first layer group (hidden layers), LANTON applies Newton-Schultz
iterations with 5 steps (Jordan et al., 2024) to approximate the LMO update for matrix layers. For
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Figure 2: Training/validation loss on Openwebtext-100k datasets.
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Figure 3: Training/validation loss on C4 and Minipile datasets.

embedding and LM head layers, LANTON uses Signum (signed momentum) with a scaled base
learning rate r1 ηt. For LayerNorm (vector) parameters, LANTON applies RMS-normalized updates
with a scaled base learning rate r2 ηt. Similar to SCION, which requires two distinct update scales
for layer groups, LANTON also specifies two update scales r1 and r2, with a base learning rate ηt.

6.2.2 GPT2 ON OPENWEBTEXT

We begin with small-scale experiments by pretraining GPT2 from scratch on OpenWebText-100k.
All baselines (AdamW, MARS, Muon, SCION, D-Muon), and our method LANTON are trained
for a single epoch with context length 512 and batch size 16. Unless otherwise specified, for all
methods, we fix the random seed to 42 and weight decay parameter γ = 0.1. We apply a cosine
learning-rate schedule to the base step size ηmax with a linear warmup of 300 steps. After warmup,
the per-step learning rate is ηt = ηmin +1/2(ηmax − ηmin)(1+ cos( tπT )), where t is the step index, T
is the number of training steps, and by default ηmin = 0. The detailed hyperparameter settings for
every algorithm are summarized in Table 4 in Appendix F.

As shown in Figure 2, LANTON consistently dominates all baselines (AdamW, MARS, Muon,
SCION, D-Muon). Its training loss drops fastest from the earliest iterations and stays below com-
peting methods across the entire training, indicating superior convergence speed. LANTON also
achieves the lowest validation loss, exhibit superior performance.

6.2.3 LLAMA ON C4 AND MINIPILE

We assess large-scale training by pretraining a LLaMA-1.1B model on C4 and a LLaMA-0.5B
model on MiniPile with a total budget of 20B training tokens. We use the pretrained LLaMA tok-
enizer and set the sequence length to 256 on C4 and 512 on MiniPile. The batch size is 1024 for C4
and 300 for MiniPile. We employ a cosine learning rate schedule with a uniform warmup of 1,000
steps for all methods. Full hyperparameter settings for every baseline are reported in Tables 5 and 6
in Appendix F.

On C4, LANTON exhibits a significantly steeper loss descent in the early phase and maintains a
consistent lead throughout training, while ultimately reaching validation losses comparable to other
baselines (see Figure 3). On Minipile, although LANTON does not exhibit the lowest loss in the
middle of training, it achieves the best final training loss and maintains consistently strong valida-
tion performance. This supports our claim that a noise-adaptive layer-wise learning rate schedule
improves sample efficiency and accelerates training under the same token budget.

6.3 COMPARISON WITH ALGORITHMS USING LAYER-WISE/BLOCK-WISE LEARNING RATES

To highlight the benefit of our noise-adaptive layer-wise learning rate schedule, we compare with
LAMB (You et al., 2019) and the recent block-wise scheme BW-AdamW (Wang et al., 2025).
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(a) Comparison with layer-/block-wise methods.
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Figure 4: Training/validation loss on C4 datasets. (a) Comparison with algorithms using layer-
wise/block-wise learning rates. (b) LANTON shows higher sample efficiency than D-Muon.

LAMB modifies Adam by applying a per-layer “trust ratio” to rescale the base learning rate in
each layer. BW-AdamW manually tunes the best block-specific update ratio for each parame-
ter block. Following the original best tuned ratio, we use r(Emb) = 10, r(QK) = 8, r(VO) =
4, r(MLP/LM-Head) = 6, r(Layer norm) = 1 in the experiment. The compared training and vali-
dation curves are presented in Figure 4(a). LANTON achieves much faster training speed with the
same budget of training tokens, and exhibits 0.1 lower validation loss than BW-AdamW. LANTON
adapts the noise-adaptive layer-wise learning rate on the fly by monitoring gradient noise, whereas
BW-AdamW uses fixed step sizes per parameter group. Moreover, neither baseline explicitly con-
siders the parameter geometry properties.

6.4 SAMPLE EFFICIENCY WITH FIXED TOKEN BUDGET

To study the sample efficiency of our algorithm under various token budgets, we double the bud-
get of tokens for D-Muon (i.e., 40B tokens) as that in LANTON (i.e., 20B tokens), and keep other
experimental settings the same as that in Section 6.2.3, including the base learning rate, scale hyper-
parameters and batch size. Both algorithms use cosine learning rate decay, but the difference is that
D-Muon has 2× total training steps since it has 2× more training tokens. Figure 4(b) shows that
D-Muon and LANTON reach comparable training/validation losses when D-Muon uses about 1.5×
more tokens than LANTON (i.e., 30B tokens for D-Muon and 20B tokens for LANTON for reaching
∼ 2.57 loss), demonstrating that the noise-adaptive learning rates can improve sample efficiency.

6.5 ROBUSTNESS TO BASE LEARNING RATE CHOICE

To evaluate sensitivity to the base learning rate, we keep the model (LLaMA-1.1B), dataset (C4),
batch size (1024), optimizer settings, and cosine schedule fixed, then train LANTON with various
base learning rates ηmax ∈ {0.001, 0.003, 0.005}. We compare against the best tuned D-MUON
under the same setup. As shown in Figure 5 in Appendix G, we find that for all learning rates
except for ηmax = 0.001, LANTON consistently achieves equal or lower loss with fewer training
tokens, i.e., converges faster. With ηmax = 0.001, LANTON’s loss still decreases faster for most
(70%) of the training trajectory, with the two methods becoming close only toward the end. Overall,
LANTON demonstrates robust performance across base learning rates and superior convergence
speed in most hyperparameter settings.

7 CONCLUSION

We propose LANTON, a geometry-aware optimizer that incorporates noise-adaptive layer-wise
learning-rate scaling on the top of LMO-based updates. By estimating gradient variance in the dual
norm space and rescaling learning rate across layers, LANTON accelerates the transformer training
hindered by heterogeneous and evolving noise. Theoretically, we obtain a sharp convergence rate
of Õ(1/

√
T +

√∑
ℓ σ̄ℓ/T

1/4) with improved noise dependence across layers. Empirically, LAN-
TON accelerates pretraining and improves validation metrics on GPT2 and LLaMA under a fixed
token budget. One limitation of our work is that the theoretical results may depend on the parameter
dimension. Another limitation is that our experiments are conducted on moderately sized models;
extending and validating the approach at larger scales is an important direction for future work.
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REPRODUCIBILITY STATEMENT

We state the formal assumptions and results in the main text (Assumptions 5.1 and 5.2 and The-
orem 5.3) and provide complete proofs of Theorem 5.3 in Appendices B and C. An anonymized
code with training/evaluation scripts, configurations, seeds, and environment files is included in the
supplementary materials. All base models are publicly available: LLaMA and GPT2-small/medium
(used under their official research/community license; license text cited in Appendix H). Datasets
C4, MiniPile, and OpenWebText are accessible on HuggingFace under the licenses stated on their
corresponding Hugging Face dataset cards. We include download scripts, preprocessing/splits, and
references to their dataset cards and licences (cited in Appendix H). These materials sufficiently
support the reproduction of our results.
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A TECHNICAL LEMMAS

In this section, we state several standard probabilistic and norm-equivalence lemmas without proof.
Lemma A.1 (Azuma-Hoeffding inequality). Let {Zt}t≥0 be a martingale with respect to filtration
{Ft}t≥0. Assume that |Zt − Zt−1| ≤ ct almost surely for all t ≥ 0. Then for any fixed T , with
probability at least 1− δ,

|ZT − Z0| ≤

√√√√2

T∑
t=1

c2t log(2/δ).

Lemma A.2 ((Liu et al., 2023c, Lemma 2.4)). Suppose X1, . . . , XT is a martingale difference
sequence adapted to a filtration F1, . . . ,FT in a Hilbert space such that ∥Xt∥F ≤ Rt almost surely
for some Rt ≥ 0. Then for any δ ∈ (0, 1), with probability at least 1− δ, for any fixed t we have∥∥∥∥∥

t∑
s=1

Xs

∥∥∥∥∥
F

≤ 4

√√√√log
2

δ

T∑
s=1

R2
s.

Proof of Lemma A.2. Since ∥ · ∥F satisfies ∥X + Y ∥2F ≤ ∥X∥2F + ⟨∇∥X∥2F , Y ⟩ + ∥Y ∥2F for all
X,Y , the condition for applying (Cutkosky & Mehta, 2021, Lemma 10) is satisfied, and therefore
(Liu et al., 2023c, Lemma 2.4) holds.

Lemma A.3 (Equivalence of norms). For any two matrix norms ∥ · ∥a and ∥ · ∥b, there exists
0 < C1 ≤ C2 (with C2 ≥ 1) such that C1∥A∥a ≤ ∥A∥b ≤ C2∥A∥a for all matrices A ∈ Rm×n.
Remark A.4. In the subsequent analysis, we will use the relationship among Frobenius norm ∥ · ∥F ,
spectral norm ∥ · ∥2, and nuclear norm ∥ · ∥nuc. Specifically, for A ∈ Rm×n we have

• ∥A∥2 ≤ ∥A∥F ≤
√

rank(A)∥A∥2 =⇒ C1 ≤ 1, C2 ≥ max{m,n}.

• ∥A∥nuc/
√
rank(A) ≤ ∥A∥F ≤ ∥A∥nuc =⇒ C1 ≤ 1/

√
max{m,n}, C2 ≥ 1.

B PROOFS OF SECTION 5.1

We first recall a few key definitions from Equation (1) (with the convention 0/0 := 1):

κℓ
σ =

{
σ̄ℓ/

¯
σℓ

¯
σℓ > 0

1 σ̄ℓ = 0
, κσ = max

ℓ
κℓ
σ, σ̄max = max

ℓ
σ̄ℓ, and t0 =

log 2

log(1/β2)
. (5)

The following proofs are based on Assumptions 5.1 and 5.2 and the setting of Theorem 5.3. For
simplicity, we omit the ℓ superscript/subscript whenever the context is clear.

Lemma 5.4. With probability at least 1−δ, for all ℓ and t0 ≤ t ≤ T , ¯
σ2
ℓ (1−βt

2)
C2

≤ Hℓ
t ≤ 4σ̄2

ℓ (1−βt
2).

Proof of Lemma 5.4. Consider the case where 0 <
¯
σ ≤ σ̄. Denote ct,k = βt−k

2 (1 − β2). By
Assumption 5.2 and Young’s inequality,

Ht =

t∑
k=1

ct,k∥Gk − G̃k∥2∗ ≤ 2

t∑
k=1

ct,k

(
∥Gk −∇f(Xt)∥2∗ + ∥G̃t −∇f(Xt)∥2∗

)
≤ 4σ̄2

t∑
k=1

ct,k = 4σ̄2
t∑

k=1

βt−k
2 (1− β2) = 4σ̄2(1− βt

2). (6)

We proceed to derive high probability lower bound for
∑t

k=1 ct,k∥Gk − G̃k∥2F . Denote σ2
k =

Ek−1[∥Gk − ∇f(Xk)∥2F ]. Let Zk = ct,k(∥Gk − G̃k∥2F − 2σ2
k), then {Zk}k≥1 is a martingale

difference sequence since

Ek−1[Zk] = Et−1[∥Gk − G̃k∥2F − 2σ2
k]

13
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= Et−1[∥Gk −∇f(Xk)∥2F + ∥G̃k −∇f(Xk)∥2F − 2⟨Gk −∇f(Xk), G̃k −∇f(Xk)⟩]− 2σ2
k

= 0.

Using Assumption 5.2 and Lemma A.3 and Young’s inequality, we have Zk ≥ −2ct,kσ
2
k and

Zk ≤ ct,k

(
2C2

(
∥Gk −∇f(Xk)∥2∗ + ∥G̃k −∇f(Xk)∥2∗

)
− 2σ2

k

)
≤ ct,k(4C2σ̄

2 − 2σ2
k).

This implies that

|Zk| ≤ ct,k ·max
{
2σ2

k, 4C2σ̄
2 − 2σ2

k

}
= ct,k(4C2σ̄

2 − 2σ2
k),

where the last equality is due to C2 ≥ 1 and σk ≤ σ̄ almost surely. Then by the Azuma-Hoeffding
inequality (Lemma A.1) and a union bound over t, for any δ ∈ (0, 1), with probability at least 1− δ,
for all t ≤ T ,∣∣∣∣∣

t∑
k=1

Zk

∣∣∣∣∣ ≤
√√√√2

t∑
k=1

(ct,k(4C2σ̄2 − 2σ2
k))

2 log
2T

δ
≤ (4C2σ̄

2 − 2
¯
σ2)

√
2(1− β2)

1 + β2
log

2T

δ
. (7)

Rearranging Equation (7) yields that, with probability at least 1− δ, for all t ≤ T ,

t∑
k=1

ct,k∥Gk − G̃k∥2F ≥ 2

t∑
k=1

ct,kσ
2
k − (4C2σ̄

2 − 2
¯
σ2)

√
2(1− β2)

1 + β2
log

2T

δ

≥ 2
¯
σ2(1− βt

2)− (4C2σ̄
2 − 2

¯
σ2)

√
2(1− β2)

1 + β2
log

2T

δ
.

By the choice of β2 in Theorem 5.3 and the definition of t0, for all t ≥ t0 we have

4C2σ̄
2 − 2

¯
σ2

¯
σ2

√
2(1− β2)

1 + β2
log

2T

δ
≤ 1

2
and (4C2σ̄

2 − 2
¯
σ2)

√
2(1− β2)

1 + β2
log

2T

δ
≤

¯
σ2(1− βt

2).

Therefore, by Lemma A.3, with probability at least 1− δ, for all t0 ≤ t ≤ T ,
t∑

k=1

ct,k∥Gk − G̃k∥2F ≥
¯
σ2(1− βt

2) =⇒
t∑

k=1

ct,k∥Gk − G̃k∥2∗ ≥ ¯
σ2(1− βt

2)

C2
. (8)

We conclude the proof by combining Equations (6) and (8) and noting that the results also hold for
the case

¯
σ = σ̄ = 0.

Lemma 5.5. With probability at least 1− δ, for all ℓ and t ≤ T ,

min

{
α√

α2 + 4σ̄2
max

,
1

2
√
C2κσ

}
=: αr ≤ αℓ

t

αm
t

≤ 1, (2)

and therefore, with probability at least 1− δ, we have αrηmin ≤ ηℓt ≤ ηmax for all ℓ and t ≤ T .

Proof of Lemma 5.5. By Lemma 5.4, for all t0 ≤ t ≤ T , it holds with probability at least 1− δ that

¯
σ2(1− βt

2)

C2
≤

t∑
k=1

βt−k
2 (1− β2)∥Gk − G̃k∥2∗ ≤ 4σ̄2(1− βt

2).

Therefore, with probability at least 1− δ, for all ℓ and t ≤ T ,
α√

α2 + 4σ̄2(1− βt
2)

≤ αℓ
t ≤ I(t < t0) +

α√
α2 +

¯
σ2(1− βt

2)/C2

I(t ≥ t0). (9)

Using Equation (9), we have

αℓ
t

αm
t

≥ α√
α2 + 4σ̄2(1− βt

2)

(
I(t < t0) +

α√
α2 +

¯
σ2(1− βt

2)/C2

I(t ≥ t0)

)−1
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=
α√

α2 + 4σ̄2(1− βt
2)
I(t < t0) +

√
α2 +

¯
σ2(1− βt

2)/C2√
α2 + 4σ̄2(1− βt

2)
I(t ≥ t0)

≥ α√
α2 + 4σ̄2(1− βt

2)
I(t < t0) + ¯

σ

2
√
C2σ̄

I(t ≥ t0) ≥ min

{
α√

α2 + 4σ̄2
, ¯

σ

2
√
C2σ̄

}
,

that is (we add back the subscript ℓ here),

min

{
α√

α2 + 4σ̄2
ℓ

, ¯
σℓ

2
√
C2σ̄ℓ

}
=: αℓ

r ≤ αℓ
t

αm
t

≤ 1.

Let αr = minℓ α
ℓ
r, and recall the definitions of σ̄max and κσ in Equation (5), then for all ℓ,

min

{
α√

α2 + 4σ̄2
max

,
1

2
√
C2κσ

}
=: αr ≤ αℓ

t

αm
t

≤ 1,

which gives Equation (2). The proof is completed.

C PROOF OF THEOREM 5.3

Before proving Theorem 5.3, we first provide a descent lemma for Algorithm 1.
Lemma C.1. For the update in Algorithm 1, we have

f(Xt+1) ≤ f(Xt) +

p∑
ℓ=1

(
−ηℓt∥∇ℓf(Xt)∥(ℓ)∗ + 2ηℓt∥Bℓ

t −∇ℓf(Xt)∥(ℓ)∗ +
Lℓ

2
(ηℓt )

2

)
.

Moreover, we have
T∑

t=1

p∑
ℓ=1

ηℓt∥∇ℓf(Xt)∥(ℓ)∗ ≤ f(X1)− f∗ +

T∑
t=1

p∑
ℓ=1

(
2ηℓt∥Bℓ

t −∇ℓf(Xt)∥(ℓ)∗ +
Lℓ

2
(ηℓt )

2

)
.

Proof of Lemma C.1. Applying (Riabinin et al., 2025, Lemma 1) with X = Xt and Y = Xt+1,

f(Xt+1) ≤ f(Xt) + ⟨∇f(Xt), Xt+1 −Xt⟩+
p∑

ℓ=1

Lℓ

2
∥Xℓ

t+1 −Xℓ
t ∥2(ℓ)

= f(Xt) +

p∑
ℓ=1

(
⟨∇ℓf(Xt), X

ℓ
t+1 −Xℓ

t ⟩+
Lℓ

2
(ηℓt )

2

)
.

For the second term, using the update of Xℓ
t+1 and the Cauchy-Schwarz inequality we have

⟨∇ℓf(Xt), X
ℓ
t+1 −Xℓ

t ⟩ = ⟨Bℓ
t , X

ℓ
t+1 −Xℓ

t ⟩+ ⟨∇ℓf(Xt)−Bℓ
t , X

ℓ
t+1 −Xℓ

t ⟩
≤ −ηℓt∥Bℓ

t∥(ℓ)∗ + ηℓt∥∇ℓf(Xt)−Bℓ
t∥(ℓ)∗

≤ −ηℓt∥∇ℓf(Xt)∥(ℓ)∗ + 2ηℓt∥Bℓ
t −∇ℓf(Xt)∥(ℓ)∗.

Therefore, we obtain

f(Xt+1) ≤ f(Xt) +

p∑
ℓ=1

(
−ηℓt∥∇ℓf(Xt)∥(ℓ)∗ + 2ηℓt∥Bℓ

t −∇ℓf(Xt)∥(ℓ)∗ +
Lℓ

2
(ηℓt )

2

)
.

Rearranging the terms and taking summation over t gives the result.

Theorem 5.3. Suppose Assumptions 5.1 and 5.2 hold. Let ∆1 = maxℓ f(X
ℓ
1)−f∗. Set β1 = 1−α

with α = min

(√
∆1

∑
ℓ Lℓ∑

ℓ σ̄ℓ

√
T

, 1

)
, 1 − minℓ ¯

σ4
ℓ

32(2C2σ̄2
ℓ−¯

σ2
ℓ )

2 log(4T/δ)
≤ β2 < 1, ηmax =

√
∆1α∑
ℓ LℓT

,

and ηmin = ηmax/κη with 1 ≤ κη ≤ O(1). With probability at least 1− δ, we have

1

T

T∑
t=1

p∑
ℓ=1

∥∇ℓf(Xt)∥(ℓ)∗ ≲

√
C2(
∑

ℓ σ̄ℓ)
2√

∆1

∑
ℓ LℓT

+
C

3/2
2

C1

√
log

T

δ

(√
∆1

∑
ℓ Lℓ√

T
+

√∑
ℓ σ̄ℓ(∆1

∑
ℓ Lℓ)

1/4

T 1/4

)
.
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Proof of Theorem 5.3. Define ϵ̂ℓt = Bℓ
t −∇ℓf(Xt), ϵℓt = Gℓ

t−∇ℓf(Xt), and S(X,Y ) = ∇f(X)−
∇f(Y ). Check that

ϵ̂ℓt+1 = β1ϵ̂
ℓ
t + (1− β1)ϵ

ℓ
t + S(Xℓ

t , X
ℓ
t+1)

= βt
1ϵ̂

ℓ
1 + (1− β1)

t−1∑
τ=0

βτ
1 ϵ

ℓ
t−τ +

t−1∑
τ=0

βτ
1S(X

ℓ
t−τ , X

ℓ
t+1−τ ).

Using L-smoothness, ∥S(Xℓ
t )− S(Xℓ

t+1)∥(ℓ)∗ ≤ Lℓ∥Xℓ
t+1 −Xℓ

t ∥(ℓ) = Lℓη
ℓ
t∥Oℓ

t∥(ℓ) = Lℓη
ℓ
t , and

ηℓt ≤ ηmax by Lemma 5.5,

∥ϵ̂ℓt+1∥(ℓ)∗ ≤ βt
1∥ϵ̂ℓ1∥(ℓ)∗ + (1− β1)

∥∥∥∥∥
t−1∑
τ=0

βτ
1 ϵ

ℓ
t−τ

∥∥∥∥∥
(ℓ)∗

+ ηmaxLℓ

t−1∑
τ=0

βτ
1 .

Applying Lemma A.2 with Rτ = C2β
τ
1 σ̄ℓ since ∥βτ

1 ϵ
ℓ
t−τ∥F ≤ C2∥βτ

1 ϵ
ℓ
t−τ∥(ℓ)∗ ≤ C2β

τ
1 σ̄ℓ, a union

bound over t, and Lemma A.3, with probability at least 1− δ, for all t ≤ T ,∥∥∥∥∥
t−1∑
τ=0

βτ
1 ϵ

ℓ
t−τ

∥∥∥∥∥
(ℓ)∗

≤ 1

C1

∥∥∥∥∥
t−1∑
τ=0

βτ
1 ϵ

ℓ
t−τ

∥∥∥∥∥
F

≤ 4

C1

√√√√log
2T

δ

t−1∑
τ=0

(C2βτ
1 σ̄ℓ)2 ≤ 4C2σ̄ℓ

C1

√
log(2T/δ)

1− β1
.

Therefore, observing that ϵ̂ℓ1 = ϵℓ1 and plugging in the concentration bound yields

∥ϵ̂ℓt+1∥(ℓ)∗ ≤ βt
1σ̄ℓ +

4C2

C1
(1− β1)σ̄ℓ

√
log(2T/δ)

1− β1
+

ηmaxLℓ

1− β1
.

Taking summation, with probability at least 1− δ we have
T∑

t=1

∥ϵ̂ℓt∥(ℓ)∗ ≤ σ̄ℓ

1− β1
+

4C2

C1
T
√

1− β1σ̄ℓ

√
log

2T

δ
+

TηmaxLℓ

1− β1
. (10)

Recall Lemma C.1 and the definitions of ∆1 and ϵ̂ℓt ,
T∑

t=1

p∑
ℓ=1

ηℓt∥∇ℓf(Xt)∥(ℓ)∗ ≤ ∆1 +

T∑
t=1

p∑
ℓ=1

(
2ηℓt∥ϵ̂ℓt∥(ℓ)∗ +

Lℓ

2
(ηℓt )

2

)
.

By Lemma 5.5 and a union bound (with Equation (10)), with probability at least 1− 2δ,
T∑

t=1

p∑
ℓ=1

∥∇ℓf(Xt)∥(ℓ)∗ ≤ ∆1

αrηmin
+

p∑
ℓ=1

(
2ηmax

αrηmin

T∑
t=1

∥∇ℓf(Xt)−Bℓ
t∥+

η2max

2αrηmin
LℓT

)

≤ κη∆1

αrηmax
+

p∑
ℓ=1

(
2κη

αr

(
σ̄ℓ

1− β1
+

4C2

C1
T
√
1− β1σ̄ℓ

√
log

2T

δ

)
+

κηηmax

αr

(
2TLℓ

1− β1
+

LℓT

2

))

≤ κη∆1

αrηmax
+

2κη

αr

(∑
ℓ σ̄ℓ

1− β1
+

4C2

C1
T
√
1− β1

∑
ℓ

σ̄ℓ

√
log

2T

δ

)
+

5κηηmaxT
∑

ℓ Lℓ

αr(1− β1)

≤ 6κη

αr

√
∆1

∑
ℓ LℓT

1− β1
+

2κη

αr

(∑
ℓ σ̄ℓ

1− β1
+

4C2

C1
T
√

1− β1

∑
ℓ

σ̄ℓ

√
log

2T

δ

)

≤

(
6κη

αr
+

2κη

αr

(
1 +

4C2

C1

√
log

2T

δ

))√
∆1

∑
ℓ

LℓT +
2κη(

∑
ℓ σ̄ℓ)

2
√
T

αr

√
∆1

∑
ℓ Lℓ

+

(
6κη

αr
+

8C2κη

C1αr

√
log

2T

δ

)√∑
ℓ

σ̄ℓ

(
∆1

∑
ℓ

Lℓ

)1/4

T 3/4,

where the last two inequalities use the choice of ηmax and β1 as stated in Theorem 5.3. Therefore,
we obtain with probability at least 1− 2δ that

1

T

T∑
t=1

p∑
ℓ=1

∥∇ℓf(Xt)∥(ℓ)∗ ≤

(
6κη

αr
+

2κη

αr

(
1 +

4C2

C1

√
log

2T

δ

)) √
∆1

∑
ℓ Lℓ√

T
+

2κη(
∑

ℓ σ̄ℓ)
2

αr

√
∆1

∑
ℓ LℓT
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+

(
6κη

αr
+

8C2κη

C1αr

√
log

2T

δ

) √∑
ℓ σ̄ℓ(∆1

∑
ℓ Lℓ)

1/4

T 1/4
.

Recall the definition of κσ and αr in Equations (2) and (5), with probability at least 1− 2δ,

1

T

T∑
t=1

p∑
ℓ=1

∥∇ℓf(Xt)∥(ℓ)∗ ≤ κη max

{√
1 +

4σ̄2
max

α2
, 2
√
C2κσ

}((
8 +

8C2

C1

√
log

2T

δ

) √
∆1

∑
ℓ Lℓ√

T

+
2(
∑

ℓ σ̄ℓ)
2√

∆1

∑
ℓ LℓT

+

(
6 +

8C2

C1

√
log

2T

δ

) √∑
ℓ σ̄ℓ(∆1

∑
ℓ Lℓ)

1/4

T 1/4

)
.

Replacing δ with δ/2 completes the proof.

D NOISE HETEROGENEITY

D.1 IMPLEMENTATION DETAILS OF FIGURE 1

In this section, we provide implementation details of Figure 1. We pretrain LLaMA-1.1B model on
C4 dataset for 10k steps, and apply momentum orthogonalized update to the matrix parameters Wℓ ∈
Rdout×din in the hidden layers (Query, Key, Value, MLP) and AdamW optimizer to the embedding
and last layers. We first estimate gradient noise for two parameter groups, formed by matrix shape.
For each weight matrix, we compute max(dout, din) and bucket it accordingly. We then aggregate
the gradient-noise measure within each bucket over training (e.g., averaging across parameters in
the group at each iteration) to obtain group-wise trajectories, which is shown in subfigure 1. Then
we measure the layer-wise gradient noise within QK, VO, and MLP layer group in the last three
subfigures.

The stochastic gradient noise is estimated by the nuclear norm (for parameters in Muon optimizer) or
ℓ1 → ℓ1 operator norm (for parameters in AdamW optimizer) of the difference between the current
step’s gradient and the previous step’s gradient. The implementation follows Option I of line 7 in
Algorithm 1 and line 4 in Table 1.

D.2 NOISE MAGNITUDE ACROSS DIFFERENT LAYER GROUPS

We estimate the layer-wise gradient noise within the QK, VO, and MLP layer groups at the midpoint
of training (5,000 steps). We find large layer-to-layer disparities within each group, indicating that
gradient noise is far from uniform within a group. The statistics is presented in Table 2.

Table 2: The statistics of stochastic gradient noise in different layer groups of LLaMA.
Layer Group #Layers σ̄

¯
σ σmean

QK 44 0.026 0.003 0.014
VO 44 0.117 0.009 0.046
MLP 66 0.107 0.018 0.038

E MODEL CONFIGURATIONS

We pretrain two types of model, GPT2 and LLaMA, the model configurations are listed in Table 3.

F HYPERPARAMETER SETTINGS

F.1 HYPERPARAMETER SETTINGS IN GPT2 EXPERIMENTS

We tune the base learning rate ηmax for each method via a grid search over {1×10−4, 3×10−4, 5×
10−4, 3 × 10−3, 5 × 10−3}. For Muon baseline, we additionally sweep a separate base learn-
ing rate for non-hidden (embedding/output) layers. All runs use cosine decay from ηmax down to
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Table 3: Model configurations (dmodel denotes the hidden dimension, dFF denotes the feed-forward
dimension, and nhead denotes the number of attention head in transformer).

Model Size dmodel dFF nhead depth
GPT-2 (small) 124M 768 3072 12 12
GPT-2 (medium) 355M 1024 4096 16 24
LLaMA (0.5B) 522M 1280 5120 20 15
LLaMA (1.1B) 1175M 2048 5632 32 22

ηmin = 0.0. Muon and D-Muon use three momentum hyperparameters: (β1, β2) for the AdamW
auxiliary optimizer and β3 for orthogonalized momentum updates. LANTON uses two momentum
parameters: β1 for the gradient momentum and β2 for the gradient noise momentum. All LMO-
based methods (SCION, D-Muon, LANTON) apply layer-group learning-rate scaling; for SCION
and D-Muon we adopt the best tuned scales reported in their original papers. All the hyperparameter
settings are summarized in Table 4.

Table 4: The hyperparameter settings in GPT2 Experiments.
Method ηmax Moment Scale
AdamW 1× 10−4 β1 = 0.9, β2 = 0.95 -
Muon (3× 10−3, 3× 10−4) β1 = 0.9, β2 = 0.95, β3 = 0.95 -
MARS 1× 10−3 β1 = 0.9, β2 = 0.95 -
SCION 3× 10−4 β = 0.9 r1 = 50, r2 = 3000

D-Muon 1× 10−3 β1 = 0.9, β2 = 0.95, β3 = 0.95 r = 0.2

LANTON 5× 10−3 β1 = 0.95, β2 = 0.9 r1 = 300, r2 = 1.0

F.2 HYPERPARAMETER SETTINGS IN LLAMA EXPERIMENTS

The best base learning rate for each algorithm is grid searched over {1 × 10−4, 3 × 10−4, 5 ×
10−4, 1 × 10−3, 3 × 10−3, 5 × 10−3}. The decayed layer rate is set as ηmin = 1/10ηmax on C4
and ηmin = 1/20ηmax on Minipile. We keep the momentum and scale parameters as that in GPT2
experiments. The hyperparameter choices on C4 and Minipile are summarized in Tables 5 and 6,
respectively.

Table 5: The hyperparameter settings on C4.
Method ηmax ηmin Moment Scale
AdamW 3× 10−4 3× 10−5 β1 = 0.9, β2 = 0.95 -
Muon (5× 10−3, 3× 10−4) (5× 10−4, 3× 10−5) β1 = 0.9, β2 = 0.95, β3 = 0.95 -
MARS 1× 10−3 1× 10−4 β1 = 0.9, β2 = 0.95 -
SCION 5× 10−4 5× 10−5 β = 0.9 r1 = 50, r2 = 3000

D-Muon 5× 10−3 5× 10−4 β1 = 0.9, β2 = 0.95, β3 = 0.95 r = 0.2

LANTON 5× 10−3 5× 10−4 β1 = 0.95, β2 = 0.9 r1 = 300, r2 = 1.0

Table 6: The hyperparameter settings on Minipile.
Method ηmax ηmin Moment Scale
AdamW 8× 10−4 4× 10−5 β1 = 0.9, β2 = 0.95 -
Muon (5× 10−3, 5× 10−4) (2.5× 10−4, 2.5× 10−5) β1 = 0.9, β2 = 0.95, β3 = 0.95 -
MARS 1× 10−3 5× 10−5 β1 = 0.9, β2 = 0.95 -
SCION 5× 10−4 2.5× 10−5 β = 0.9 r1 = 50, r2 = 3000

D-Muon 5× 10−3 2.5× 10−4 β1 = 0.9, β2 = 0.95, β3 = 0.95 r = 0.2

LANTON 5× 10−3 2.5× 10−4 β1 = 0.95, β2 = 0.9 r1 = 300, r2 = 1.0
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G ROBUSTNESS

The training and validation loss curves with different base learning rates are presented in Figure 5.
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Figure 5: LANTON is robust to the choices of base learning rates.

H LICENSE OF MODELS AND DATASETS

GPT2 OpenAI’s GPT2 models are distributed by MIT License. We use only the open-source
implementation of the GPT2 architecture in Hugging Face Transformers and do not redistribute
Meta’s model weights.

LLaMA We follow Meta Llama 2 Community License Agreement. We use only the open-source
implementation of the LLaMA architecture in Hugging Face Transformers and do not redistribute
Meta’s model weights.

C4 The English portion of the C4 (Colossal Clean Crawled Corpus) dataset comes from Hugging
Face (allenai/c4), which is distributed under the Open Data Commons Attribution (ODC-By 1.0)
license.

Minipile It can be accessed from Hugging Face (JeanKaddour/minipile), which is distributed un-
der MIT License.

Openwebtext It can be accessed from Hugging Face (Skylion007/openwebtext), which is dis-
tributed under Creative Commons cc0-1.0 license.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are not involved in our research methodology. Their use is limited to polish the writing.
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