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Abstract
State-of-the-art neural models typically001
encode document-query pairs using cross-002
attention for re-ranking. To this end, models003
generally utilize an encoder-only (like BERT)004
paradigm or an encoder-decoder (like T5)005
approach. These paradigms, however, are006
not without flaws, i.e., running the model on007
all query-document pairs at inference-time008
incurs a significant computational cost. This009
paper proposes a new training and inference010
paradigm for re-ranking. We propose to011
finetune a pretrained encoder-decoder model012
using in the form of document to query013
generation. Subsequently, we show that014
this encoder-decoder architecture can be015
decomposed into a decoder-only language016
model during inference. This results in017
significant inference time speedups since the018
decoder-only architecture only needs to learn019
to interpret static encoder embeddings during020
inference. Our experiments show that this new021
paradigm achieves results that are comparable022
to the more expensive cross-attention ranking023
approaches while being up to 6.8X faster. We024
believe this work paves the way for more025
efficient neural rankers that leverage large026
pretrained models.027

1 Introduction028

Leveraging transformer architecture to model the029

concatenation of a query-document pair is a030

well-established approach for document ranking031

(Nogueira et al., 2020). Today, modern neural032

methods for re-ranking are based on the encoder-033

only (e.g., BERT (Devlin et al., 2019)) or encoder-034

decoder (e.g., T5 (Raffel et al., 2020)) paradigm035

where query-document interactions are modeled036

by the encoder’s attention mechanism. Unfortu-037

nately, these paradigms are computationally pro-038

hibitive given that the model has to be run on all039

document-query pairs during inference. To this040

end, it is commonplace to use less powerful but041

computationally lightweight dual encoder models042

(Nogueira et al., 2019a; Karpukhin et al., 2020; 043

Xiong et al., 2020; Qu et al., 2021; Gao et al., 2021) 044

for first-pass retrieval and to only run the more ex- 045

pensive re-ranker on a small subset of retrieved can- 046

didates. Even with this setup, cross-attention-based 047

re-ranking can still be expensive, especially when 048

larger pretrained Transformer models are used. As 049

such, this paper is primarily concerned with im- 050

proving inference-time re-ranking efficiency while 051

maintaining comparable effectiveness to existing 052

cross-attention models. 053

The novelty of this paper lies in a new paradigm 054

for re-ranking that provides up to 6.8X speedup 055

without any degradation in shallow-pool effective- 056

ness. Concretely, we propose a new method for 057

inference-time decomposition of encoder-decoder 058

architectures into decoder-only language models. 059

Given a pretrained sequence-to-sequence model, 060

we finetune the encoder-decoder model using a 061

document-to-query multi-task loss. At inference, 062

we decompose the encoder-decoder architecture 063

into a decoder-only language model (LM) that 064

learns to interpret from a memory store of encoded 065

document tokens representations using attention. 066

The document-query pair score can be interpreted 067

as the likelihood of generating the query given the 068

encoded document term representations. 069

There are multiple efficiency benefits to our 070

proposed design. First, significant inference-time 071

cost savings are unlocked since the document term 072

memory store can be pre-computed in advance 073

and act as a read-only memory. Second, our re- 074

design also exploits the fact that queries are gen- 075

erally much shorter than documents. During in- 076

ference time, only query tokens have to be passed 077

through the decoder stack when attending to the 078

pre-computed document representations which al- 079

lows us to also obtain an additional speed advan- 080

tage over encoder-only BERT-like models. Third, 081

computing the query likelihood is computationally 082

simple and does not require the typical costs asso- 083
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ciated with autoregressive generation models.084

The overall contributions of this work can be085

summarized as follows:086

• We propose a new re-ranking paradigm,087

ED2LM (Encoder-Decoder to Language088

Model) for fast and efficient inference-time089

re-ranking. Our method is based on inference-090

time decomposition of an encoder-decoder091

model into a decoder-only language model.092

• The proposed method utilizes a new fine-093

tuning paradigm by incorporating a new ob-094

jective function that combines the generative095

query likelihood and the discriminative cross-096

entropy loss.097

• Via extensive experiments, we show that the098

proposed method performs competitively with099

T5-based cross-attention re-rankers (Nogueira100

et al., 2020) while being up to more than 6.8X101

faster during inference.102

2 Related Work103

Neural text ranking. A number of so-called104

cross-attention models concatenate a query and105

a candidate document into a string and feed it106

into the model (Han et al., 2020; Nogueira et al.,107

2020), which allows the attention mechanism of108

the model to capture interactions across query and109

document terms. However, deploying such mod-110

els to millions or billions of documents is usu-111

ally intractable due to the exorbitant computational112

cost. To combat this cost, other studies have ex-113

plored more efficient models, e.g., dual-encoder114

models (Karpukhin et al., 2020; Qu et al., 2021;115

Ren et al., 2021), BERT with late interaction (Khat-116

tab and Zaharia, 2020), or using contextual lan-117

guage models to improve term weighting in tradi-118

tional inverted indexes (Nogueira et al., 2019a; Dai119

and Callan, 2020; Gao et al., 2021).120

A few studies that are most closely related to121

this work focus on leveraging the generative nature122

of pretrained encoder-decoder language models. A123

natural practice is to directly use the likelihood124

of generating the query given a document to rank125

the documents (Zhuang and Zuccon, 2021; Zhuang126

et al., 2021b; Lesota et al., 2021). However, these127

methods mostly perform substantially worse than128

cross-attention ranking models. Another work (dos129

Santos et al., 2020) transforms the likelihood of130

generating the query into a discriminative loss,131

where an “unlikelihood” loss is introduced for neg- 132

ative query-document pairs. Despite relatively bet- 133

ter performance than using vanilla maximum likeli- 134

hood estimation (MLE), we found that their method 135

still underperforms cross-attention ranking models. 136

Our proposed method uses a combination of query 137

generation loss and a cross-entropy loss on a spe- 138

cific token, which is capable of achieving compara- 139

ble performance to cross-attention models. 140

Other work (Ju et al., 2021) uses query genera- 141

tion as an auxiliary task during training and shows 142

improved performance. However, the proposed 143

model still takes both a query and a document as 144

input in the main ranking task and hence would be 145

as costly as cross-attention ranking models during 146

inference. 147

Efficient neural IR. Due to the excessive com- 148

putational cost of inference in pretrained language 149

models, there is a series of studies aiming to im- 150

prove the efficiency. 151

A major trend is to distill expensive models into 152

cheaper ones (Hinton et al., 2015; Sanh et al., 2019). 153

Some distillation approaches have specifically fo- 154

cused on text ranking applications (Zhang et al., 155

2020; Zhuang et al., 2021a; Chen et al., 2021a; 156

Hofstätter et al., 2021). 157

Another trend is to improve model efficiency by 158

modifying the model architecture. A typical ap- 159

proach used by ColBERT (Khattab and Zaharia, 160

2020) and PreTTR (MacAvaney et al., 2020) de- 161

fer query-document interactions to upper layers so 162

that part of the model can be pre-computed. Our 163

model can be categorized into this class of models, 164

except that the late interaction is naturally aligned 165

with the decomposition of encoder-decoder models. 166

This alignment allows us to better leverage knowl- 167

edge learned by the model during pretraining, and 168

can be the reason behind our stronger performance 169

compared to ColBERT and PreTTR. 170

There are a couple of other efficient model struc- 171

tures, such as early exiting (Soldaini and Moschitti, 172

2020; Xin et al., 2020), Transformer-Kernel (TK) 173

model (Hofstätter et al., 2020), and contextualized 174

offline relevance weighting (Chen et al., 2021b). 175

In terms of storage cost, Cohen et al. (2021) pro- 176

posed the succinct document representation which 177

reduces the dimension of token representation to 178

compress document representations. These tech- 179

niques are orthogonal to our study and can be com- 180

bined with our work to further improve the time 181

and storage efficiency. 182
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Figure 1: Overview of the proposed ED2LM.

3 The Proposed Method183

This section describes the ED2LM model. See184

Fig. 1 for an overview of the approach.185

3.1 Overview186

The proposed ED2LM model is based on the T5187

encoder-decoder architecture. It encodes the docu-188

ments without looking at the queries and produces189

ranking scores by decoding the queries and attend-190

ing to the document representations.191

In particular, for a query-document pair, the doc-192

ument tokens are encoded with a stack of Trans-193

former layers as in BERT (Devlin et al., 2019),194

where the tokens attend to one another before go-195

ing through the position-wise feed-forward layer.196

The output of the encoder is in the form of dense197

representations for the document tokens. During198

decoding, the query tokens are decoded with a stack199

of decoder layers, where the query tokens first at-200

tend to other query tokens before going through a201

multi-head attention block to attend to the docu-202

ment tokens from the encoder.203

Inspired by T5 (Nogueira et al., 2020) for rank-204

ing and the use of BART for discrimination (dos205

Santos et al., 2020; Lewis et al., 2020), a special206

true/false token is appended to the end of the query207

before the end of the query sequence (EOS). During208

training, inspired by (Ju et al., 2021), the model is209

trained to generate the query tokens and determine210

the relevance of the query-document pair. During211

inference, only the score for the true/false token is212

used for ranking.213

3.2 ED2LM for Re-ranking 214

In this section, we describe the details of training 215

and inference for ED2LM. 216

3.2.1 Fine-tuning 217

During fine-tuning, ED2LM involves an encoder- 218

decoder architecture which maps RLD discrete 219

symbols to RLQ discrete symbols. Here, LD refers 220

to the length of the document and LQ refers to the 221

query length. 222

Task Formulation The input to the model is a 223

sequence of document tokens and the output of the 224

model is a sequence of query tokens. In order to im- 225

bue our model with discriminative capabilities, we 226

append the class token (true/false) that represents 227

the query-document pair at the end of the query. 228

The ranking score of a query-document pair is the 229

normalised probability of the true token at the end 230

of the query. Given a query q and a document d, 231

the ground-truth correctness of d relative to q is 232

denoted as a binary label y. 233

Loss function. The loss function optimized for 234

fine-tuning has two components. The first compo- 235

nent is the maximum likelihood estimation (MLE) 236

loss of the individual question tokens, which is 237

defined as: 238

LossQL = −
∑

i∈0···LQ−1
log(P (qi|q:i; d)) (1) 239

Since we want the model to learn the correctness
of the question using the trailing true/false tokens,
we also compute the likelihood of those tokens as
follows.

p+ = P (true,eos|q; d)

p− = P (false,eos|q; d)

The cross-entropy loss LossCE can then be written 240

as: 241

LossCE = −ylogp+ − (1− y)logp− (2) 242

The final training loss can the be written as: 243

Loss = LossCE + yLossQL (3) 244

The cross-entropy loss is applied to all examples 245

whereas the query likelihood loss only applies to 246

the positive examples. Our fine-tuning loss is 247

trained with teacher forcing. 248

Scoring. The normalised scores from the true 249

and false tokens are combined as in (Nogueira et al., 250

2020). 251
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3.3 Efficient Re-ranker252

This section discusses using ED2LM for more effi-253

cient inference, by decoupling the encoder-decoder254

into a decoder-only language model.255

3.3.1 Decomposing Encoder-Decoder to256

Decoder-only LM257

The key idea for fast inference is to only extract258

the decoder from the trained Encoder-Decoder259

model. Recall a decoder-stack is comprised of260

decoder-side causal self-attention and encoder-261

decoder cross-attention.262

X ′` = CausalSelfAttention(X`, X`) (4)263

Y` = MultiheadAttention(M`, X
′
`) (5)264

where X ∈ RLQ×dmodel is the input to the de-265

coder stack at layer `. M refers to a sequence266

of memory tokens. In this case, we note that M267

here refers to computed encoder representations268

that pass through the encoder-stack. During fine-269

tuning, this encoder-stack is trained end-to-end.270

However, this paradigm generalizes these embed-271

dings as “memory”, which can be extended to other272

use cases or applications. We can also interpret this273

memory as a form of soft prompt.274

3.3.2 Reading from Memory275

The decoder reads from M . In the standard setup,276

M are static representations that originate from the277

final output of the encoder in the Seq2Seq architec-278

ture and the MultiheadAttention is the encoder-279

decoder cross attention. Here, M can be com-280

pressed along the presentation dimension (dmodel)281

as in (MacAvaney et al., 2020; Gao et al., 2021; Co-282

hen et al., 2021), which is orthogonal to our studies,283

or along the sequence dimension (LD), which is in-284

troduced below. We find that this generalization is285

a practically useful way to interpret the ED2LM ar-286

chitecture. We propose to explore not only standard287

M from encoder outputs but also compressed mem-288

ory stores from Funnel Transformers (Dai et al.,289

2020). Herein, we employ the Funnel Transformer290

with b blocks in the encoder, leading to 2b storage291

compression, by reducing the RLD for 2b. Between292

each block, a mean-pooling layer is used to down-293

sample the input sequence by two in the sequence294

length dimension.295

4 Experiment Setup296

This section describes our experimental setup.297

Dataset and metrics. We employ the MS 298

MARCO (Nguyen et al., 2016) passage re-ranking 299

task, for which we report the official evaluation 300

metric MRR@10 on the 6980 development queries 301

using the binary labels from the dev dataset. We 302

also use the 43 test queries from the TREC Deep 303

Learning (DL) Track 2019 (Craswell et al., 2020) 304

and the 54 test queries from 2020 (Craswell et al., 305

2021). The TREC data sets include graded rele- 306

vance judgments. We report the official evaluation 307

metrics NDCG@10 as well as mean average preci- 308

sion (MAP). When computing MAP, following the 309

official TREC setup, we map passage judgments 310

2 and 3 to relevant and 0 and 1 to non-relevant. 311

Statistical significance is reported using a paired 312

two-tailed t-test. We use a maximum sequence 313

length of 256 tokens for paragraphs and 32 tokens 314

in our experiments, similar to (Hofstätter et al., 315

2020; Hofstätter et al., 2021). 316

We employ the training data from Rock- 317

etQA (Qu et al., 2021), which is derived from the 318

MS MARCO training dataset as dual-encoder mod- 319

els trained on it demonstrate strong performance. 320

Specifically, we use the hard-question split (“RQA- 321

Hard”), which only includes the hard-negative sam- 322

ples and positive samples from MS MARCO, and 323

the merge split (“RQA-Merge”), which includes 324

extra unlabeled questions from Yahoo! Answers1, 325

ORCAS (Fisch et al., 2019), and Natural Ques- 326

tions (Kwiatkowski et al., 2019) on top of “RQA- 327

Hard”. We also train all models on the original MS 328

MARCO training dataset, where the positive and 329

negative classes are balanced by up-sampling the 330

positive training samples. For validation purposes, 331

we use the 1500 dev2 validation queries with at 332

least one relevance judgment from the TREC DL 333

Track 20212. Given our focus on shallow-pool ef- 334

fectiveness, the model with highest MRR@10 on 335

the validation dataset is selected. We employ Mesh 336

Tensorflow (Shazeer et al., 2018) for training and 337

evaluation. The T5 models have been trained and 338

inferred as in (Nogueira et al., 2020), and ED2LM 339

has been primarily trained using the loss defined 340

in Eq. 3. We train models for ablation study by 341

using Eq. 1 and Eq. 2 separately. During training, 342

a constant learning rate of 1e-3 is used. 343

1http://answers.yahhoo.com
2https://msmarco.blob.core.windows.

net/msmarcoranking/passv2_dev2_queries.
tsv
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Baselines. ED2LM is compared to ranking mod-344

els using four variants of T5 (T5-small, T5-base,345

T5-large, and T5-xl), BERT-base, BERT-large,346

and PreTTR (MacAvaney et al., 2020). The347

PreTTR (MacAvaney et al., 2020) model decou-348

ples the encoding of the query and the document349

on top of the BERT architecture and is directly350

comparable to the T5-based ED2LM. We fine-351

tune BERT-base and BERT-large models using TF-352

ranking (Pasumarthi et al., 2019) and achieve sim-353

ilar results with the results reported in (Nogueira354

et al., 2020). The BERT-base is included in our355

result table, and the comparisons relative to BERT-356

large are available in the appendix (Table 4). We357

also re-implement the PreTTR model using TF-358

ranking (Pasumarthi et al., 2019). Therein, fol-359

lowing the configurations in (MacAvaney et al.,360

2020), a query and a document are encoded inde-361

pendently in the first l-layers using the BERT-base362

configuration before interacting via cross-attention.363

The BERT-base pre-trained checkpoint is used for364

initialisation. We report the results by setting365

l = 6, which leads to similar FLOPs and latency366

as ED2LM-base (26.1T vs 20.6T). We also experi-367

ment with l = 3 and 9, whose results are included368

in the appendix (Table 4).369

Variants of ED2LM. We investigate the effec-370

tiveness and inference efficiency of ED2LM based371

on T5-small, T5-base, T5-large, and T5-xl archi-372

tectures, leading to ED2LM-small, ED2LM-base,373

ED2LM-large, and ED2LM-xl, respectively. We374

experiment with two Funnel-Transformer variants,375

where two six-layers funnel blocks (b = 2) and376

three eight-layers funnel blocks (b = 3) are used in377

the encoder, respectively. They are named ED2LM-378

F-6L×2 and ED2LM-F-8L×3, correspondingly.379

These configurations lead to a 4X (when b = 2)380

and a 8X (when b = 3) reduction in the sequence381

length. The Funnel-Transformer variants are pre-382

trained using the same task as in T5 on top of the383

C4 corpus (Raffel et al., 2020).384

Initial rankings. Since we primarily focus on385

the re-ranking setting, we consider several retrieval386

models to generate initial ranking candidates. For387

the MS MARCO passage re-ranking task, we388

use BM25 (an implementation from Terrier (Mac-389

donald et al., 2012)) to generate the top-1K pas-390

sages per query. In addition, we implemented391

the docT5query model (Nogueira et al., 2019b,a)392

by training a T5 seq2seq model to generate 40393

questions (i.e., expansions) per paragraph and use 394

BM25 to retrieve top-1K passages. This serves as a 395

high-recall initial ranking, wherein the recall@1K 396

increases from 86.7 (MRR@10=19.3) in the base 397

BM25 ranking to 93.76 (MRR@10=25.3) with 398

document expansion. For the TREC DL Track, 399

we use the official top-1k initial rankings from 400

BM25 (Craswell et al., 2020, 2021). 401

Efficiency metrics. To compare inference effi- 402

ciency, we report FLOPs and latency as encouraged 403

by Dehghani et al. (2021). To compute FLOPs we 404

make use of a public repository 3. To compute la- 405

tency, we do as follows: each model is exported in 406

the Tensorflow Saved Model format before serving 407

via the Tensorflow Model Server 4 on a Intel Xeon 408

CPU desktop with 8 CPU cores, 16 CPU threads, 409

and 132 GB RAM. We randomly select 500 queries 410

and passages from the MS MARCO dataset. As 411

for PreTTR (MacAvaney et al., 2020), to enable 412

fair comparisons, we add an additional 500 queries, 413

leading to a total of 1000 query-passages pairs, to 414

fully utilise the shared computation of the query 415

encoder. For each query-passage pair, we time the 416

inference call to the model server 10 times and 417

record the minimum. For each model, we report 418

the 50 and 95-percentile of the 500 timing (1000 419

for PreTTR) as a two-number summary of latency. 420

The time for tokenization is included for all models. 421

For PreTTR and ED2LM, we assume the token rep- 422

resentations of passages have already been loaded 423

in the memory akin to (MacAvaney et al., 2020; 424

Gao et al., 2021). 425

5 Results 426

In this section, we examine the effectiveness- 427

efficiency trade-off of ED2LM on the passage re- 428

ranking task. The results of T5, ED2LM, BERT, 429

and PreTTR have been displayed in Table 1. In 430

Table 2, we further summarise the comparisons 431

(ED2LM vs. baseline models) from Table 1 and 432

highlight the results that ED2LM provides a bet- 433

ter trade-off. We also visualise the results from 434

different models on the MS MARCO benchmark 435

in Fig. 2 when using docT5query (Nogueira et al., 436

2019a) as the initial ranking. 437

Results for the baseline models. We achieve 438

comparable results as previous studies on all three 439

3https://github.com/google-research/
electra/blob/master/flops_computation.py

4https://www.tensorflow.org/tfx/
tutorials/serving/rest_simple
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Models
MS MARCO (MRR@10) Trec DL Track 2019 Trec DL Track 2020 FLOPs Latency (ms)

BM25+ docT5query+ nDCG@10 MAP nDCG@10 MAP (T) P50 P95

ColBERT (Khattab and Zaharia, 2020) 34.9 - - - - -
COIL (Gao et al., 2021) 34.8 - - - - -

Baseline Models

PreTTR (p) 36.7 37.4 70.0 39.8 71.5 45.5 26 159 189
BERT-base (b) 36.5 37.2 68.5 41.9 71.9 45.7 52 309 443
T5-small (t5s) 35.9 36.6 68.8 42.3 68.1 42.1 22 123 127
T5-base (t5b) 38.3 39.2 71.1 43.1 73.7 48.6 67 405 425
T5-large (t5l) 39.4 40.3 72.0 42.9 73.0 48.0 202 1111 1140
T5-xl (t5x) 39.6 40.6 71.8 42.2 74.6 49.2 752 2490 2515

Variants of ED2LM

ED2LM-small 37.2 (↑t5s↓t5blx↑b) 37.9 (↑t5s↓t5blx↑b) 69.5 (↓t5l) 40.8 69.6 (↓t5blx) 43.3 (↓t5blx↓b) 5 60 65
ED2LM-base 38.7 (↑t5s↓t5lx↑b↑p) 39.6 (↑t5s↓t5lx↑b↑p) 70.2 42.5 (↑p) 71.5 (↑t5s↓t5x) 47.2 (↑t5s↓t5x) 21 157 185
ED2LM-large 38.0 (↑t5s↓t5lx↑b↑p) 39.0 (↑t5s↓t5lx↑b↑p) 70.3 42.3 (↑p) 72.8 (↑t5s) 47.6 (↑t5s) 73 317 336

ED2LM-xl 39.4 (↑t5sb↑b↑p) 40.4 (↑t5sb↑b↑p) 71.4 44.8 (↑t5sbx↑b↑p) 71.6 (↑t5s↓t5x) 48.2 (↑t5s↑b↑p) 287 811 834

ED2LM with Funnel Blocks

ED2LM-F-6L×2 36.5 (↓t5blx) 37.4 (↑t5s↓t5blx) 68.0 (↓t5blx) 40.5 (↓t5b) 70.4 (↓t5bx) 44.1 (↓t5blx) 9 130 151
ED2LM-F-8L×3 35.4 (↓t5blx↓b↓p) 36.2 (↓t5blx↓b↓p) 69.2 (↓t5l) 40.2 (↓t5bl) 70.5 (↓t5bx) 44.7 (↓t5blx) 7 108 126

Table 1: The re-ranking performance when re-ranking top-1K paragraphs. We note down the significant difference
at 0.05 level with ↑ and ↓ for the variants of ED2LM. The comparisons are relative to T5-small, T5-base, T5-large,
and, T5-xl (with subscriptions t5s, t5b, t5l, t5x), BERT-base (with subscriptions b), PreTTR with six layers of
decoupled encoding (with subscriptions p).
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Figure 2: MRR@10 on MS MARCO dev small (6980 test queries) after re-ranking top-1K documents from
docT5query (Nogueira et al., 2019a) vs. latency. The x-axis is the latency (95 percentile out of 500 calls); y-
axis is the MRR@10 score. The point (ED2LM models) and the cross (baseline models) are the mean MRR@10
and the bar indicates the 95% confidence interval.

benchmarks. In particular, (Nogueira et al., 2020)440

reports MRR@10 = 37.2, 38.1, 39.3, and 39.8441

when using BERT-large, T5-base, T5-large, and442

T5-xl to re-rank top-1K paragraphs from BM25 on443

MS MARCO passage re-ranking benchmark. Be-444

sides, we also include the re-ranking results from445

COIL (Gao et al., 2021) and ColBERT (Khattab446

and Zaharia, 2020). For the TREC DL Track, we447

select the submitted runs that are most compara-448

ble to ours, namely, the top re-ranking run (Yan449

et al., 2019) in 2019 (nDCG@10 = 72.5 and450

MAP = 45.3) and the 4th best re-ranking451

run (Cao et al., 2020)5 for 2020 (nDCG@10 =452

73.7 and MAP = 48.8). It is worth mention-453

ing that the former run employs customised pre-454

training methods for BERT-large, whereas the lat-455

5The 1st-3rd best runs (Qiao et al., 2021) in 2020 used
TREC DL 2019 data for fine-tuning.

ter uses ensemble models, thus achieving slightly 456

higher results than our T5-variants. 457

Effectiveness-efficiency trade-off. ED2LM de- 458

couples the encoding of the document and query, 459

thereby allowing for caching the document repre- 460

sentation offline. After pre-computing the docu- 461

ment presentation as in PreTTR (MacAvaney et al., 462

2020), ED2LM achieves a highly favorable trade- 463

off. From Table 1 and 2, we make the following 464

observations. (1) ED2LM-small and ED2LM-base 465

perform at least as good as T5-small and T5-base, 466

respectively, while providing more than a 2X speed 467

up. For ED2LM-base, its effectiveness is not signif- 468

icantly different from T5-large on both TREC DL 469

Tracks and under-performs by 0.7 (38.7 vs 39.4) 470

on MS MARCO, while providing a 6.2X speed up. 471

When comparing with BERT-base and PreTTR, 472
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ED2LM→ Small Base Large xl F-6L×2 F-8L×2

T5-small
F:4.4x/L:2.0x

- - -
F:2.4x/L:0.8x F:3.1x/L:1.0x

r:↑/n:~/m:~ r:~/n:~/m:~ r:~/n:~/m:~

PreTTR
F:5.2x/L:2.9x F:1.2x/L:1.0x

- -
F:2.9x/L:1.3x F:3.7x/L:1.5x

r:~/n:~/m:~ r:↑/n:~/m:↑ r:~/n:~/m:~ r:↓/n:~/m:~

BERT-base
F:10.4x/L:6.8x F:2.5x/L:2.4x

- -
F:5.8x/L:2.9x F:7.4x/L:3.5x

r:↑/n:~/m:↓ r:↑/n:~/m:~ r:~/n:~/m:~ r:↓/n:~/m:~

T5-base -
F:3.2x/L:2.3x

- - - -r:~/n:~/m:~

T5-large -
F:9.6x/L:6.2x F:2.8x/L:3.4x

- - -
r:↓/n:~/m:~ r:↓/n:~/m:~

T5-xl - -
F:10.3x/L:7.5x F:2.6x/L:3.0x

- -
r:↓/n:~/m:~ r:~/n:↓/m:~

Table 2: The comparison of the effectiveness-efficiency trade-off for ED2LM derived from Table 1. Each row
includes one baseline model, and individual columns are one of the ED2LM variants. In each comparison (cell),
the upper part is the efficiency comparison, where F indicates FLOPs and L is the latency (P95). In the lower
part, the comparisons for the effectiveness are summarised. ↑, ↓, and, ~ denote the significant better, worse, and,
no significant difference (at level 0.05) when comparing ED2LM models with the baseline. Herein, r indicates
MRR@10 on MS Marco dev small dataset (re-ranking top-1k from BM25); n and m denote nDCG@10 and MAP,
respectively, on TREC DL Track. We list comparisons that ED2LM could provide better effectiveness (MRR@10
or nDCG@10) or smaller latency. The full results can be found in Table 1 and in the Appendix (Table 4).

both ED2LM-small and ED2LM-base perform at473

least as good (for MRR@10 and nDCG@10) and474

are up to 6.8X faster. (2) ED2LM-large performs475

on par with T5-large on the TREC DL Tracks, but476

under performs on MS MARCO by 1.4; whereas477

ED2LM-xl achieves similar MRR@10 on MS478

MARCO (39.4 vs 39.6), but performs worse in479

terms of nDCG@10 on TREC DL Track 2020. Fur-480

thermore, in Fig. 2 (MRR@10 on MS MARCO vs481

the latency (P95) by re-ranking the top-1K from482

docT5query) the leftmost ED2LM-small achieves483

better effectiveness than T5-small, PreTTR, and484

BERT-base. Likewise, ED2LM-base achieves sim-485

ilar latency as PreTTR and is 2.3X more efficient486

than BERT-base but achieves higher MRR@10. In487

the meantime, though more efficient, ED2LM-xl488

and ED2LM-large perform close to their counter-489

parts, once again confirming the observations. We490

argue that, on the one hand, co-training of query491

likelihood and the discriminative cross-entropy492

leads to better ranking quality, which is especially493

true for the smaller variants (small and base); On494

the other hand, not attending to the query dur-495

ing document encoding leads to performance de-496

creases, which dominates the outcomes in larger497

model variants (like large and xl).498

ED2LM-F: Storage compression with Funnel499

Transformer. The results for the two variants500

of ED2LM with Funnel blocks are summarised 501

in the bottom block of Table 1 and the rightmost 502

columns in Table 2. In terms of storage, ED2LM- 503

F-6L×2 provides 4X compression and ED2LM-F- 504

8L×3 provides 8X compression by reducing the 505

sequence length in the encoder. It can be seen that, 506

ED2LM-F-6L×2 outperforms T5-small and per- 507

forms as well as BERT-base and PreTTR. Further- 508

more, while ED2LM-F-8L×3 provides 8X com- 509

pression, the effectiveness drops below that of T5- 510

small and BERT-base on the MS MARCO bench- 511

mark. However, it achieves on-par results relative 512

to T5-small and BERT-base on the TREC DL Track 513

in terms of both nDCG@10 and MAP. As for effi- 514

ciency, ED2LM-F-8L×3 is similar to T5-small and 515

PreTTR, but is 3.5X faster than BERT-base. 516

5.1 Analysis 517

The use of RocketQA-Merge dataset for train- 518

ing. In our experiments, we find that the rank- 519

ing quality of the proposed ED2LM, as well 520

as PreTTR model, benefit considerably from 521

RocketQA-Merge. We demonstrate the training 522

performance (upper part) in Table 3 on Rock- 523

etQA and the MS MARCO training dataset. It 524

can be seen that T5 achieves similar performance 525

on both training data sets. In the meantime, 526

ED2LM achieves MRR@10=37.5 when trained 527

on the MS MARCO training dataset, and can 528
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Models MS Marco
Training Data Loss MRR@10

PreTTR MS Marco - 35.2
T5-base MS Marco - 38.4
T5-base RQA-Hard - 38.0

ED2LM-base MS Marco - 37.5
ED2LM-base RQA-Hard - 37.3

ED2LM-base MS Marco LUL (dos Santos et al., 2020) 31.2
ED2LM-base RQA-Merge LUL (dos Santos et al., 2020) 33.6
ED2LM-base RQA-Merge MLE (Eq. 1) 30.2
ED2LM-base RQA-Merge CE (Eq. 2) 38.2

Table 3: Ablation study. In the upper half, the
uses of alternative training data are explored. In the
lower half, different loss functions are used to train
ED2LM, including the LUL loss from (dos Santos
et al., 2020), negative log-likelihood loss on questions
as in (Nogueira et al., 2019a), and the cross-entropy
loss on true/false token as in (Nogueira et al., 2020).

achieve 38.7 when trained on the “RQA-Merge”529

dataset. This is also true for PreTTR, which sees530

an MRR@10 increase from 35.2 to 36.7. We con-531

jecture that the decoupled encoding of query and532

documents, as in ED2LM and PreTTR, requires533

more queries for training whereas models that use534

full cross-attention benefit less from the extra train-535

ing data. The training performance of ED2LM-536

base on RocketQA-Hard in Table 3 provides evi-537

dences for this, where ED2LM-base achieves an538

even lower MRR@10. RocketQA-Hard is a subset539

of RocketQA-Merge and includes hard negative540

samples but without the extra queries. Therefore,541

we conclude that more unique questions for train-542

ing is one of the ED2LM’s key ingredients.543

Alternative loss functions for training. In (dos544

Santos et al., 2020), the unlikelihood loss (re-545

ferred as LUL) was used to train a BART (Lewis546

et al., 2020) model for question answering. In547

this section, we train ED2LM using the LUL loss548

from (dos Santos et al., 2020) on both the MS549

MARCO and RQA-Merge training sets. We also550

use the negative log-likelihood loss in Eq. 1 (as in551

docT5query (Nogueira et al., 2019a)) and the cross-552

entropy loss in Eq. 2 (as in (Nogueira et al., 2020))553

to train ED2LM separately. From Table 3 (lower554

part), LUL leads to significantly worse MRR@10555

than using the loss in Eq. 3 (33.6 vs 38.7), but out-556

performs the use of negative log-likelihood loss557

from Eq. 1 as in (Zhuang et al., 2021b). When only558

using the cross-entropy loss of the true/false token559

(Eq. 2), effectiveness is slightly worse than when560

using the loss in combination with query likelihood561

(38.2 vs 38.7), mirroring the findings from (Ju et al.,562

2021). Therefore, we conclude that the use of both 563

true/false tokens and query likelihood for training 564

(as in Eq. 3) is another key ingredient for ED2LM. 565

Manual inspection of the generated questions. 566

We further investigate the reasons why ED2LM 567

can significantly outperform deep query likelihood 568

(MRR@10=38.7 vs 30.2 from Table 3) by a big 569

margin. We compare the questions generated by 570

ED2LM and T5 trained with query likelihood as 571

in Eq. 1. We sample 66 documents from the 572

MS MARCO passage corpus with at least one 573

correct query in the MS MARCO development 574

dataset, and collect 10 unique generated queries 575

from both ED2LM and T5, ending up with 660 576

query-documents pairs for annotation. These pairs 577

are labeled by eight annotators with a single bi- 578

nary question: “Is the generated query (question) 579

answered by the given document (passage)?”. We 580

avoid potential bias during annotation by not in- 581

forming the annotators which system generated 582

which questions. According to the annotated data, 583

70.6% of the queries generated by ED2LM are an- 584

swerable by the source document, while 52.1% of 585

the queries generated by T5 are answerable. We 586

conjecture that the use of Eq. 3 for training makes 587

the query generator stick to the document better, 588

leading to fewer hallucinations, thus producing bet- 589

ter ranking when the decoder is used as a ranker. 590

Configuration details and more analyses for the 591

question generation can be found in the Appendix 592

(Section A.2). 593

6 Conclusion 594

In this work, we propose a novel re-ranking 595

model named ED2LM, that works by finetuning 596

an encoder-decoder model. ED2LM encodes docu- 597

ments and decodes the query using a trailing binary 598

class token appended to the query for ranking. By 599

training on a dataset with more unique questions 600

(namely, “RocketQA-Merge” (Qu et al., 2021)) and 601

optimizing both query likelihood and a discrimina- 602

tive loss over the true/false token, ED2LM achieves 603

competitive results compared to corresponding T5 604

models. When used as a decoder-only language 605

model during inference, ED2LM provides up to 606

6.8X speedup without sacrificing effectiveness. It 607

was also shown that Funnel-Transformer (Dai et al., 608

2020), when used in conjunction with ED2LM, can 609

compress the storage of the pre-computed memory, 610

making ED2LM a good modeling choice when it 611

comes to the efficiency and effectiveness tradeoff. 612
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A Appendix849

A.1 Full Results for Re-ranking850

The full results of our re-ranking experiments using851

both MS MARCO and RocketQA-Merge dataset852

for training can be found in Table 4 with the test853

of statistical significance at a significance level of854

0.05.855

A.2 Analysis of Question Generation856

For the generation task, we train the generation857

models, namely, ED2LM-base and T5-base, on858

MS MARCO training dataset, following the same859

setting as in (Lu et al., 2021), to enable fair com-860

parisons. Both models employ the top-k decoding861

with k = 10. During the decoding, we employ862

top-k random sampling decoding and set k = 10,863

where the top-k tokens with highest probability ac-864

cording to the decoder are sampled. To compare865

the quality of the generations from ED2LM and866

T5, we conduct manual annotations (as described867

in Section 5.1), calculate token overlaps, and em-868

ploy the generated questions to train a dual-encoder869

based passage retrieval model following the config-870

urations from (Lu et al., 2021).871

Question vs. paragraph overlap. Beside the872

manual annotation in the end of Section 5, we873

further measured the overlap between generated874

questions and their respective source passages us-875

ing a set of 3k generated questions from each sys-876

tem. Intuitively, question generators that halluci-877

nate less are more likely to stick to the text from878

the source paragraph. The overlap is computed as879

the macro-average of the question-paragraph word-880

level overlap, and is normalised using the length881

of the question. While T5-base has an overlap rate882

of 55.62% (i.e., 55.62% of question tokens also883

appear in the source paragraph), ED2LM-base has884

an overlap rate of 62.14%, which is more than 6%885

higher than T5 model. This result is further ev-886

idence that ED2LM sticks to the paragraph text887

more frequently. Although this can be seen as a888

problem if one wants a more diverse set of ques-889

tions, it avoids hallucinations and allows for more890

accurate questions, as demonstrated in the manual891

inspection. In Table 5, we present some exam-892

ples of typical questions generated by both T5 are893

ED2LM and the respective source paragraph. Al-894

though T5 questions are somewhat related to the895

paragraph, the paragraph is not a good answer for896

them. Notice that in the first question T5 halluci-897

nates the word English, which completely compro- 898

mises the question quality. 899

Synthetic Training Data for Retrieval Finally, 900

we demonstrate the advantages of the generated 901

questions from ED2LM by using them to train a 902

dual-encoder based passage retrieval model, follow- 903

ing the configurations in (Lu et al., 2021). Specif- 904

ically, we train a BERTlarge dual encoder model 905

using the synthetic question-passage pairs gener- 906

ated by ED2LM-base and T5-base respectively and 907

report the results on MS MARCO dev set. For 908

each passage, we generate three synthetic ques- 909

tions. We also extract hard negatives by randomly 910

sample passages from the same document. Dur- 911

ing training, we use both in-batch negatives and 912

hard negatives. During inference, we retrieve top- 913

1K passages for each question from the passage 914

collection containing about 8.8 million passages 915

and report MRR@10. The model using gener- 916

ated data from ED2LM achieves MRR@10=30.4, 917

whereas the model using generated data from T5 918

gets MRR@10=26.5. We argue that the boost is 919

due to that the synthetic training data from ED2LM 920

is with less generation hallucination (18% accord- 921

ing to the manual annotation), thus including few 922

training noise. 923

A.3 Configuration Details for Latency 924

Computation 925

To compute latency, individual models are exported 926

in the Tensorflow Saved Model format before be- 927

ing served via the Tensorflow Model Server 6 on 928

a Intel Xeon CPU desktop with 8 CPU cores, 16 929

CPU threads, and 132 GB RAM. We randomly se- 930

lect 500 queries and passages from the MS Marco 931

dataset. We observe the character length distribu- 932

tion for queries and passages from this sample. For 933

queries, the [25, 50, 75, 90, 95, 99]-percentiles are 934

[24.75, 31.5, 39.25, 49.0, 56.0, 80.04] characters, 935

whereas the same percentiles for documents are 936

[278.0, 318.0, 447.75, 572.1, 628.15, 838.05] char- 937

acters. As for PreTTR (MacAvaney et al., 2020), 938

to enable fair comparisons, we add an additional 939

500 passages per query, leading to a total of 1000 940

query-passages pairs, to fully utilise the shared 941

computation of the query encoder. For each of 942

these document/query pairs, we time the inference 943

call to the model server 10 times and record the 944

minimum time t across the 10 runs. Let L(`e, `d, s) 945

6https://www.tensorflow.org/tfx/
tutorials/serving/rest_simple
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Models
MS MARCO (MRR@10) Trec DL Track 2019 Trec DL Track 2020

FLOPs(T)
Latency (ms)

BM25+ docT5query+ nDCG@10 MAP nDCG@10 MAP P50 P95

ColBERT (Khattab and Zaharia, 2020) 34.9 - - - - -
COIL (Gao et al., 2021) 34.8 - - - - -

(Nogueira et al., 2020)

BERT-large 37.2 - - - - - - - -
T5-base 38.1 - - - - - - - -
T5-large 39.3 - - - - - - - -

T5-xl 39.8 - - - - - - - -

2019 Top Run (Yan
et al., 2019)

- - 72.5 45.3 - - -
2020 Top Run (Cao
et al., 2020)

- - - - 73.7 48.8 - - -

Training Data: MS MARCO (Nguyen et al., 2016) balanced triplet training data w/ 503k unique questions.

BERT-base 36.2 36.8 68.8 41.7 69.5 45.9 52 309 443
BERT-large 37.1 37.8 71.5 45.0 71.0 48.2 114 886 929

PreTTR (l=3) 35.8 36.0 69.8 43.2 68.4 45.7 39 - -
PreTTR (l=6) 35.2 35.6 70.1 43.2 68.6 44.9 26 159 189
PreTTR (l=9) 34.8 35.2 68.5 42.4 66.6 43.9 13 - -

T5-small 36.3 36.5 65.6 45.0 68.7 44.6 22 123 127
T5-base 38.4 39.0 71.0 45.3 72.4 48.8 67 405 425
T5-large 39.7 40.4 72.2 46.6 73.5 50.6 202 1111 1140

T5-xl 40.3 41.2 71.8 45.8 74.6 50.6 752 2490 2515

ED2LM-small 35.5 (↓t5sblx↓bl↑p9) 35.9 (↓t5sblx↓bbl↑p9) 68.8 (↑t5s↓t5lx↓bl) 42.3 (↓t5sblx↓bl) 68.4 (↓t5blx) 44.8 (↓t5blx↓bl) 5 60 65
ED2LM-base 37.5 (↑t5s↓t5blx↑bb↑p369) 38.0 (↑t5s↓t5blx↑bb↑p369) 71.0 43.5 (↓t5blx) 68.9 (↓t5blx) 46.2 (↓t5blx) 21 157 185
ED2LM-large 37.5 (↑t5s↓t5blx↑bb↑p369) 37.9 (↑t5s↓t5blx↑bb↑p369) 70.1 44.6 (↓t5l↑bb↑p9) 71.5 (↑p9) 50.3 (↑t5s↑bb↑p369) 73 317 336

ED2LM-xl 37.8 (↑t5s↓t5lx↑bb↑p369) 38.5 (↑t5s↓t5lx↑bbl↑p369) 70.8 42.6 (↓t5blx↓bl) 69.6 (↓t5lx↓bl) 47.1 (↓t5lx↑p9) 287 811 834

ED2LM-F-6L×2 34.2 (↓t5sblx↓bbl↓p36) 34.5 (↓t5sblx↓bbl↓p36) 65.6 (↓t5blx↓bl) 41.6 (↓t5sblx↓bl) 67.8 (↓t5blx) 45.1 (↓t5blx↓bl) 9 130 151
ED2LM-F-8L×3 33.5 (↓t5sblx↓bbl↓p369) 33.7 (↓t5sblx↓bbl↓p369) 65.7 (↓t5blx↓bl↓p36) 40.5 (↓t5sblx↓bl↓p36) 66.9 (↓t5blx↓bl) 43.9 (↓t5blx↓bl) 7 108 126

Training Data: RocketQA-Merge (Qu et al., 2021) w/ 1.4M unique questions.

BERT-base 36.5 37.2 68.5 41.9 71.9 45.7 52 309 443
BERT-large 36.7 37.3 69.3 39.6 70.9 45.6 114 886 929

PreTTR (l=3) 37.5 38.2 68.7 40.5 71.4 45.8 39 - -
PreTTR (l=6) 36.7 37.4 70.0 39.8 71.5 45.5 26 159 189
PreTTR (l=9) 36.6 37.3 71.2 41.4 70.4 44.0 13 - -

T5-small 35.9 36.6 68.8 42.3 68.1 42.1 22 123 127
T5-base 38.3 39.2 71.1 43.1 73.7 48.6 67 405 425
T5-large 39.4 40.3 72.0 42.9 73.0 48.0 202 1111 1140

T5-xl 39.6 40.6 71.8 42.2 74.6 49.2 752 2490 2515

ED2LM-small 37.2 (↑t5s↓t5blx↑bb↑p9) 37.9 (↑t5s↓t5blx↑bb) 69.5 (↓t5l) 40.8 69.6 (↓t5blx) 43.3 (↓t5blx↓bb↓p3) 5 60 65
ED2LM-base 38.7 (↑t5s↓t5lx↑bbl↑p369) 39.6 (↑t5s↓t5lx↑bbl↑p369) 70.2 42.5 (↑bl↑p6) 71.5 (↑t5s↓t5x) 47.2 (↑t5s↓t5x) 21 157 185
ED2LM-large 38.0 (↑t5s↓t5lx↑bbl↑p69) 39.0 (↑t5s↓t5lx↑bbl↑p369) 70.3 42.3 (↑bl↑p6) 72.8 (↑t5s) 47.6 (↑t5s↑p9) 73 317 336

ED2LM-xl 39.4 (↑t5sb↑bbl↑p369) 40.4 (↑t5sb↑bbl↑p369) 71.4 44.8 (↑t5sbx↑bbl↑p369) 71.6 (↑t5s↓t5x) 48.2 (↑t5s↑bbl↑p369) 287 811 834

ED2LM-F-6L×2 36.5 (↓t5blx↓p3) 37.4 (↑t5s↓t5blx↓p3) 68.0 (↓t5blx↓p9) 40.5 (↓t5b) 70.4 (↓t5bx) 44.1 (↓t5blx) 9 130 151
ED2LM-F-8L×3 35.4 (↓t5blx↓bbl↓p369) 36.2 (↓t5blx↓bbl↓p369) 69.2 (↓t5l) 40.2 (↓t5bl) 70.5 (↓t5bx) 44.7 (↓t5blx) 7 108 126

Table 4: The re-ranking performance when re-ranking top-1000 documents from BM25 (Robertson and Zaragoza,
2009) and docT5query (Nogueira et al., 2019a). The official initial rankings from Trec DL Track 2019 and 2020
are used, whereas the initial ranking in MS MARCO is created using Terrier (Macdonald et al., 2012). We also
note down the significant difference at a significance level of 0.05 with ↑ and ↓. The comparisons are relative to
T5-small, base, large, and, xl (with subscriptions t5s, b, l, x), BERT-base and large (with subscriptions bb and bl),
PreTTR with l = 3, 6, 9 layers of decoupled encoding (with subscriptions p3, 6, 9).
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Paragraph

An experience modifier is an adjustment factor assigned to an Employer’s FEIN by the rating bureau
(NCCI or State Bureau). The factor compares your loss data to other employers with the same class
codes, and is expressed as a credit or debit on your policy.

Model Question Answerable ?

T5 is a modifier factor English No
T5 what is experience modifier rating No

ED2LM what is an experience modifier in an insurance policy Yes
ED2LM experience modifier definition Yes

Table 5: Example generations from ED2LM-base and T5-base.

represent the latency of a model with `e encoder946

and `d decoder layers, for any particular input with947

max sequence length s. For BERT-based models948

(which have no decoder layers) we set `d = 0.949

For PreTTR, we compute an amortized latency.950

Concretely, letting N = 1000 be the number of951

samples, the amortized latency is computed as:952

NL(6, 0, 256 + 32, 0) + L(6, 32, 0) +NL(6, 0, 256, 0)

N
.953

For encoder-decoder models we estimate954

L(0, `d, s) as955

L(1, `d, s)− [L(2, `d, s)− L(1, `d, s)]

2
956

Here, we estimate L(6, 0, s) as L(12, 0, s)/2, us-957

ing Bert Base for the latter. For each model, we958

report the 50 and 95-percentile of L the inputs as959

a two-number summary of latency. For BERT, we960

use the official cased English Base and Large model961

checkpoints. The time for tokenization is included962

for all models, where the official vocabularies (Sen-963

tencePiece for T5-based models and WordPiece for964

BERT-based ones) are used. We use a maximum965

sequence lengths of 256 tokens for paragraphs and966

32 tokens for queries.967
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