
SATLM: Satisfiability-Aided Language Models
Using Declarative Prompting

Xi Ye Qiaochu Chen Isil Dillig Greg Durrett
Department of Computer Science
The University of Texas at Austin

{xiye,qchen,isil,gdurrett}@cs.utexas.edu

Abstract

Prior work has combined chain-of-thought prompting in large language models
(LLMs) with programmatic representations to perform effective and transparent
reasoning. While such an approach works well for tasks that only require forward
reasoning (e.g., straightforward arithmetic), it is less effective for constraint solv-
ing problems that require more sophisticated planning and search. In this paper,
we propose a new satisfiability-aided language modeling (SATLM) approach for
improving the reasoning capabilities of LLMs. We use an LLM to generate a
declarative task specification rather than an imperative program and leverage an
off-the-shelf automated theorem prover to derive the final answer. This approach
has two key advantages. The declarative specification is closer to the problem
description than the reasoning steps are, so the LLM can parse it out of the de-
scription more accurately. Furthermore, by offloading the actual reasoning task
to an automated theorem prover, our approach can guarantee the correctness of
the answer with respect to the parsed specification and avoid planning errors in
the solving process. We evaluate SATLM on 8 different datasets and show that
it consistently outperforms program-aided LMs in the imperative paradigm. In
particular, SATLM outperforms program-aided LMs by 23% on a challenging
subset of the GSM arithmetic reasoning dataset; SATLM also achieves a new SoTA
on LSAT and BOARDGAMEQA, surpassing previous models that are trained on
the respective training sets.1

1 Introduction

Using large language models (LLMs) to perform complex reasoning has been a central thrust of
recent research (Brown et al., 2020; Chowdhery et al., 2022; Rae et al., 2021; Zhang et al., 2022b).
Techniques like scratchpads (Nye et al., 2021) or chain-of-thought prompting (CoT) (Wei et al., 2022c)
enable LLMs to follow a sequence of reasoning steps before making a prediction. This paradigm
is effective on various multi-step reasoning tasks, especially those with fixed forward reasoning
procedures (Wei et al., 2022c), e.g., concatenating the last letters of several words. However, CoT
prompting can fall short when scaling to problems that involve intensive computation (Gao et al.,
2023) or long sequences of reasoning steps (Creswell et al., 2023; Saparov and He, 2023; Ribeiro
et al., 2023).

Solving a complex reasoning problem involves three conceptual components: parsing a natural
language description into a representation of the problem, deriving a plan to solve the problem, and
executing that plan to obtain an answer. Recent work on improving CoT prompting focuses on fixing
execution errors by augmenting LLMs with symbolic executors such as a Python interpreter, which

1Code available at https://github.com/xiye17/SAT-LM.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/xiye17/SAT-LM

..
.

..
.

We know each student visits one of the cities with at
least one of the other four students. We know there are
five students and three cities. So there must be three
students visiting the one city and two other students
visiting another city.

Let's consider option (A).
Assume someone visits Montreal, but Lori does not visit
Montreal.
We know Lori visits Montreal or else Toronto. So Lori
visits Toronto.
Assume Sharon visits Toronto with Lori.
We know Sharon visits a different city than Paul. So
Paul has to visit Montreal.
Hubert and Regina can visit Montreal with Paul with no
conflicts. So Lori does not necessarily visit Montreal.
This statement is False.

Each of five students—Hubert, Lori, Paul, Regina, and Sharon—will visit exactly one of three cities—Montreal, Toronto, or Vancouver, according to the
following conditions: Sharon visits a different city than Paul. Hubert visits the same city as Regina. Lori visits Montreal or else Toronto. If Paul visits
Vancouver, Hubert visits Vancouver with him. Each student visits one of the cities with at least one of the other four students.
Question: Which one of the following must be true?

(A) If any of the students visits Montreal, Lori visits Montreal. (B) […]

Input

Specification

Chain-of-Thought Prompting (imperative specification) Satisfiability-Aided LM (ours; declarative specification)

students = [Hubert, Lori, Paul, Regina, Sharon]
cities = [Montreal, Toronto, Vancouver]
visits = Function(students, cities)
Sharon visits a different city than Paul
visits(Sharon) != visits(Paul)
Lori visits Montreal or else Toronto
Or(visits(Lori) == Montreal, visits(Lori) == Toronto)
Each student visits one of the cities with at least one other student
ForAll([s1], Exists([s2], And(s2 != s1, visits(s1) == visits(s2))))
......
(A)
solve(Implies(Exists([s], visits(s) == Montreal), visits(L) == Montreal))

Specification

The LLM parses the question, plans the reasoning, and
executes it all in the CoT (shown by dashed arrows) A SAT solver generates and executes a proof plan using automated theorem proving

1

3

2

SAT Solver
False2

1

3

Q

Q

The LLM only parses
the question to a
problem specification
in this step

Figure 1: Illustration of our Satisfiability-aided Language Modeling approach (right). We first
parse an NL input into a declarative task specification (a set of logical constraints) using prompting
(Section 3.1), then use a SAT solver to solve the problem (Section 3.2). The chain-of-thought strategy
in prior work (left) yields imperative reasoning processes.

leads to improved performance on arithmetic and symbolic reasoning tasks (Gao et al., 2023; Chen
et al., 2022; Lyu et al., 2023). However, CoT prompting (Wei et al., 2022c; Nye et al., 2021) and its
executor-augmented successors (Gao et al., 2023; Chen et al., 2022; Lyu et al., 2023) are oriented
towards imperative solving procedures: a CoT or a program specifies the reasoning procedure as
chained steps (Wei et al., 2022c; Gao et al., 2023) in the order of execution. While this is effective
for problems whose natural language already provides a suitably clear “plan” for the reasoning,
it only leads to limited success for reasoning problems like in Figure 1 that do not outline such a
plan (Ribeiro et al., 2023). These problems often state a set of premises and constraints and ask
questions that require sophisticated planning to deductively reason over the inputs, which is still
challenging even for modern LLMs (Valmeekam et al., 2022).

Our work tackles both execution errors and, more importantly, planning errors. We propose
SATisfiablity-aided Language Modeling (SATLM) using declarative prompting. The core idea
is to cast a natural language (NL) reasoning problem as a satisfiability (SAT for short) problem. As
shown in Figure 1 (right), given a problem in NL, we prompt an LLM to parse it into a SAT problem
specification which consists of a set of logical formulas, then obtain the solution by invoking a SAT
solver.2 The LLM is specialized towards understanding the preconditions stated in the problem, while
the solver is leveraged to plan out the reasoning procedure. In addition, the solver guarantees the
correctness of execution, similar to the interpreter used in program-aided LMs (PROGLM).

We evaluate our approach on 8 datasets spanning 4 tasks, including arithmetic reasoning, logical
reasoning, symbolic reasoning, and a regex synthesis task. Our SATLM consistently outperforms COT
and PROGLM across all datasets, usually by a large margin. On GSM-SYS, SATLM outperforms
PROGLM by a 23%; on GSM, SATLM achieves 84.8% with self-consistency decoding using few-shot
prompting, equaling past work that uses the full training set and the same LLM (Li et al., 2022b; Ni
et al., 2023). SATLM also sets a new SoTA on LSAT (Zhong et al., 2022), BOARDGAMEQA (Kazemi
et al., 2023), and STRUCTUREDREGEX (Ye et al., 2020).

Our analysis illustrates why the combination of SAT solver and declarative prompting is so effective.
We find (1) program-aided LMs often make planning errors (e.g., manipulating equations incorrectly),
which can be remedied by the SAT solver. (2) Forcing LLMs to explicitly state a declarative

2Here, we use SAT solver to refer to any automated reasoning tool for checking the satisfiability of formulas
in formal logic. Hence, “SAT solver” in this paper also includes first-order theorem provers and SMT solvers.

2

specification can even improve vanilla CoT prompting. (3) Our SATLM approach can abstain from
making uncertain predictions if it parses a problem into an unsatisfiable or ambiguous specification,
giving it even higher accuracy in the selective prediction setting (El-Yaniv and Wiener, 2010).

2 Overview

This work addresses the challenge of using LLMs to solve NL reasoning tasks. At a high level, an
NL reasoning task is a natural language description of a collection of facts Φ (such as propositions or
constraints) about some objects and a question Q related to these objects. The goal of the reasoning
task is to find an answer to Q that can be deduced from the information provided in Φ.

We conceptualize the general procedure for solving NL reasoning tasks in three steps: parsing,
planning, and execution. We are given natural language input xtest = (NL(Φ), NL(Q)) which
describes both Φ and Q. Our first step is to parse this natural language into a predicted task
specification (Φ̂, Q̂), which is a formal description of the facts and the query.

Given (Φ̂, Q̂), the planning step then involves determining a sequence of reasoning steps [r1, . . . , rn]
beginning with the task specification and ending with the answer to the question. Each step involves
invoking a function (e.g., arithmetic operator or logical operator) that produces intermediate results
which can be utilized in subsequent steps. A plan can be formulated by an LLM with COT prompting
or by a symbolic solver as in our work here. Finally, we execute the plan systematically with either a
symbolic executor (our method) or an LLM, returning the output of the last step, rn, as the answer.

Our solution approaches the problem using exactly these three steps.

Parsing into declarative specification We prompt an LLM to generate a specification stest for
xtest. Note that the translation from this description into the specification is not straightforward
and cannot be done in a rule-based way for most tasks; Figure 4 shows some particularly complex
examples involving commonsense reasoning. The specification stest is a sequence of interleaved
NL statements and logical formulas (LF): stest = [z1, . . . , zn] and zi ∈ ΣNL ∪ ΣLF , where ΣNL

and ΣLF denote the space of natural language and logical formulas, respectively. We derive the
formal specification (Φ̂, Q̂) by taking all the zi in ΣLF from stest. An example of the specification is
presented on the right of Figure 1. Our specification is declarative since we do not explicitly generate
the ri from the LLM at this stage.

Planning and execution with a SAT solver Given the predicted formal specification (Φ̂, Q̂), we
wish to derive the final answer of the query Q̂ from it. We say that a solution a is correct if Φ̂ logically
entails Q̂ = a, denoted as Φ̂ |= Q̂ = a. The key insight behind our work is to offload both the
planning and execution steps to a SAT solver. Specifically, we use a SAT solver to find a satisfying
assignment for a in the formula:

∀V. (Φ̂ ⇒ Q̂ = a)

where V denotes the set of all variables used in Φ̂ and Q̂ ∈ V is a variable that corresponds to the
solution. Note that the only free variable in this formula is a; hence, the assignment to a returned by
the solver is the final answer to the reasoning problem.

The approach outlined above has two important strengths. First, because the SAT solver is sound
(i.e., any assignment it produces satisfies the formula), the solution is correct by construction. Thus,
assuming that the parsing is correct and Φ̂ and Q̂ match Φ and Q, we have a proof that the solution is
indeed correct. Second, the planning step is done internally to the solver, and the chain of reasoning
steps [r1, . . . , rn] can be obtained by asking the solver to produce a proof of the validity of the
formula Φ̂ ⇒ Q̂ = a∗ where a∗ is the assignment produced by the SAT solver. All solvers we
consider can produce such a proof of validity (e.g., in the form of a resolution refutation (Davis and
Putnam, 1960)).

Comparison with prior work Prior approaches to NL-based reasoning with LLMs can also be
framed in the parse-plan-execute framework proposed above. In particular, the chain-of-thought
paradigm (Nye et al., 2021; Wei et al., 2022c) uses LLMs to perform each of the three steps. Program-
aided language models (Gao et al., 2023; Chen et al., 2022; Lyu et al., 2023) combine the parsing and

3

Let X be the number of Pokemon Stan has
caught. Alex has caught 5 more than Stan, so
Alex has caught X + 5.

Stan has caught 13 less than 4 times as many
as Adelwolfe has caught, so Stan has caught
4X - 13. Together they have caught 339
Pokemon, so X + 5 + 4X - 13 = 339.

Combining like terms produces 5X + 5 = 339.
Subtracting 5 from both sides produces 5X =
334. Dividing both sides by 5 produces X =
$66.80, so Stan has caught 66 Pokemon.

The answer is 66.

Q: Alex, Stan, and Adelwolfe are trying to catch them all, Pokemon that is. Together they have caught 339 Pokemon. Alex has caught 5 more than Stan, and Stan
has caught 13 less than 4 times as many as Adelwolfe has caught. How many Pokemon has Stan caught?

Input

LLM (Parse + Plan + Execute)
total_pokemon = 339
stan_pokemon = Variable()
alex_pokemon = stan_pokemon + 5
stan_pokemon = adelwolfe_pokemon * 4 - 13
total_pokemon = alex_pokemon + stan_pokemon +
adelwolfe_pokemon
result = stan_pokemon
solve(result)

result = 147result = -94

Program FOL Formulas

CoT ProgramLM SatLM
LLM (Parse + Plan)

Interpreter (Execute)

LLM (Parse)

Solver (Plan + Execute)

total_pokemon = 339
alex_pokemon = 5
stan_pokemon = 4
adelwolfe_pokemon = 13
stan_pokemon = (total_pokemon -
alex_pokemon - adelwolfe_pokemon *
stan_pokemon) / (1 - stan_pokemon)
result = stan_pokemon

Figure 2: Exemplar specifications for arithmetic reasoning problems generated by different ap-
proaches. COT makes errors when parsing an equation; PROGLM produces an incorrect reasoning
chain (both errors are highlighted in red). By only using the LLMs to generate declarative specifica-
tions and relying on a solver to handle the reasoning, SATLM generates the correct answer.

planning steps to use an LLM to derive a program that corresponds to the plan.3 The final execution
step is then performed by using the interpreter of the underlying programming language to derive the
final answer. In contrast to these approaches, our work uses an LLM only to perform the parsing step,
which is an easier problem for LLMs than planning.

We show a concrete example comparing COT and PROGLM with our approach in Figure 2. COT
performs all three steps with the LLM. For instance, “Alex has caught X+5” in the output corresponds
to “Alex has caught 5 more than Stan” in the NL input (parsing). Later, COT decides how to solve
for the variable X with “Combining like terms ...” (planning). At the same time, it also derives the
equation “5X = 334” directly in its generation (execution). However, COT incorrectly uses the same
X in the equation “X + 5” and “4X − 13”, when it is supposed to be different. (Note that 4X − 13
would be correct if Stan and Adelwolfe’s roles in the corresponding NL clause were reversed.) By
allowing the LLM to focus only on translation, we find a lower incidence of this kind of error, in
addition to eliminating planning errors. Notably, planning errors are not addressed by PROGLM,
which does not use programmatic manipulation at this stage. Different from PROGLM, SATLM only
parses the information provided in the input question, passes the parsed formulas to a solver for both
planning and execution, and obtains the correct result.

3 SAT-Aided Language Models using Declarative Prompting

3.1 Declarative Prompting

We use few-shot prompting to generate the specification stest for the test input xtest. Specifically, we
include few-shot demonstrations (xi, si)

k
i=1 in the prompt, append test input xtest after the prompt,

and let the LLM complete the specification for xtest, i.e., stest ∼ p(xtest | x1, s1, . . . , xk, sk).

We show an example specification for a logical reasoning task in Figure 1, and an example specifica-
tion for an arithmetic reasoning task in Figure 2. Observe that in both examples, our SAT formulas
(i.e., the logical formulas of [z1, . . . , zn] in ΣLF) are written as code following Python syntax, while
the natural language in ΣNL is written using comment syntax. We found that including the language
here as comments was useful to improve the fidelity of the translation. Our declarative prompts also
use meaningful variable names and descriptive comments following the style of prompts in prior
work (Gao et al., 2023; Lyu et al., 2023). Finally, we use Python rather than a specialized DSL to
be more congruent with our models’ pretraining data (Ouyang et al., 2022; Chen et al., 2021). See
Appendix F for more details on the SAT specification.

3This is true for “faithful chain-of-thought” as well (Lyu et al., 2023). This paper describes a breakdown of
the process into “translation” and “solving” stages, where the translation step corresponds to both our parsing
and planning stages. The solver used in that approach for tasks like CLUTRR does not do additional planning,
but merely executes the steps outlined in CoT. In addition, their approach uses Python for execution, whereas
ours uses SAT and Z3 as the unifying solving framework.

4

3.2 Solving with a SAT Solver

SAT problem A SAT problem is a triple P = (Φ, T , Q) where Φ is a set of first-order logic
formulas in some theory T 4 and Q is the query of interest. We use Variable(P) to denote the
free variables in Φ. Q contains only variables in Variable(P). An example SAT problem is
P = ({x + y = 3, x − y = 1}, TE ∪ TZ, x − 2), where TE ∪ TZ indicates that only equality and
linear arithmetic operations on integers are allowed in the formulas.

Many NL reasoning tasks in the literature can be formulated as SAT problems and solved using
an off-the-shelf solver. For arithmetic reasoning, the SAT formulas Φ are equations encoding the
relationships between variables, and t specifies the target variable asked in the question (see Figure 1).
For logical reasoning, Φ encodes preconditions and t specifies the target statement posed by the
question. We also show that symbolic reasoning, regex synthesis, and other problems involving
reasoning over arrays or strings can be handled in this framework.

Unlike prior work such as Faithful CoT (Lyu et al., 2023) that uses task-specific formulations and
task-specific solvers for different problem types, all the tasks in this paper are formulated as general
SAT instances that can be solved by a single solver (as described later in this section).

Parsing NL to a SAT problem Recall that we obtain a specification stest from a test NL task xtest.
To derive the SAT problem Ptest = (Φ̂test, Ttest, Q̂test) from stest, we extract the constraints
Φ̂test and the target expression Q̂test (marked by solve in our prompt) by taking all the zi in ΣLF

of stest. We identify the theory Ttest by analyzing the formulas in Φ̂test.

Solving the SAT problem Given the SAT problem P , we invoke an automated theorem prover
(such as the Z3 SMT solver (De Moura and Bjørner, 2008) used in our implementation) to obtain a
model M that maps each free variable v ∈ Variable(P) to a concrete value under theory T . The
final answer is obtained by substituting each free variable vi in Q̂ with M [vi]. For example, given
the problem ({x+ y = 3, x− y = 1}, TE ∪ TZ, x− 2), we ask the solver to find a solution to the
constraint x + y = 3 ∧ x − y = 1 in the theory TE ∪ TZ, which yields x = 2 and y = 1. Then,
to obtain the final answer, we substitute x by 2 in the target expression x − 2 to obtain the result
2− 2 = 0.

Feedback signals from the solver Given a set of Φ̂ specified in P , the SAT solver will try to
search for a satisfying assignment M which satisfies all constraint formulas in Φ̂. If the solver
succeeds in finding such an assignment within a certain time limit, it will use M to evaluate the
query Q̂ and return the final result, otherwise it is a timeout. However, the solver may fail to find a
solution for problematic P and provide feedback in one of the following types: (1) error in execution
(ERROR) caused by invalid formulas (e.g., syntax errors) or time-out; (2) unsatisfiable formulas
(UNSAT), caused by conflicting formulas in the Φ̂ (e.g. Φ̂ = {x = y + 1, y = x+ 1}) (no feasible
solution); (3) ambiguous formulas (AMBIG), caused by the existence of multiple feasible solutions
(e.g. Φ̂ = {x = y + 1, x > 0}). Examples of SAT formulas leading to UNSAT or AMBIG can be
found in Appendix G.

Unlike the executor used in PROGLM that can only detect errors in code execution, SAT solver can
spot UNSAT and AMBIG in addition to ERROR. We show this unique characteristic allows our SATLM
to abstain from potentially incorrect predictions much more effectively compared to PROGLM in the
selective prediction setting (El-Yaniv and Wiener, 2010) (Section 4.4).

4 Experiments

4.1 Setup

Tasks Our work investigates 8 datasets covering 4 tasks, with a focus on arithmetic reasoning and
logical reasoning tasks. We list all dataset statistics in Appendix A. For arithmetic reasoning, we
use GSM (Cobbe et al., 2021), GSM-SYS, and ALGEBRA (He-Yueya et al., 2023). GSM-SYS

4The theory defines the meaning of some of the symbols used in the formula. For example, in the theory of
linear arithmetic, axioms of the theory give meaning to operators like addition, less than, etc.

5

Table 1: Comparison of our approach (SATLM) against standard prompting (directly predicting
the answer), COT and PROGLM. Certain settings are not applicable (marked as −) as described in
Appendix B. With greedy decoding, SATLM outperforms COT and PROGLM on all datasets by a
substantial margin except for GSM, where it is on par with PROGLM. With self-consistency decoding,
SATLM is consistently better than PROGLM, giving SoTA accuracy on LSAT and BOARDGAMEQA.

GSM-SYS GSM ALGE LSAT BOARD CLUTRR PROOF COLOR REGEX

code-davinci-002 (greedy decoding)

STANDARD 21.0 22.2 45.9 22.0 44.6 41.2 76.6 75.7 −
COT 46.5 62.7 53.6 23.5 60.7 40.8 80.1 86.3 −
PROGLM 43.4 72.7 52.3 − − 58.9 83.7 95.1 39.1
SATLM 69.4 71.8 77.5 35.0 79.4 68.3 99.7 97.7 41.0

code-davinci-002 (self-consistency decoding)

COT 56.1 77.3 64.9 23.1 62.8 45.7 88.7 90.6 −
PROGLM 53.4 82.4 57.7 − − 71.9 91.2 98.0 56.5
SATLM 80.9 84.8 90.9 37.4 80.7 80.1 99.7 99.4 59.7

is a special subset of GSM containing examples that are paired with human-annotated solutions
involving systems of equations (see Appendix A for more details). For logical reasoning, we use
LSAT (Zhong et al., 2022), BOARDGAMEQA (Kazemi et al., 2023), CLUTRR (Sinha et al., 2019),
and PROOFWRITER (Tafjord et al., 2021). For BOARDGAMEQA, we report the average performance
on the three data splits (depth 1 to depth 3).

For CLUTRR, we use exemplars requiring up to 3 intermediate steps but evaluate on test examples
requiring up to 10 intermediate steps (Sinha et al., 2019), following past work (Lyu et al., 2023). For
PROOFWRITER, we evaluate on the most challenging examples requiring depth-5 proofs (Tafjord
et al., 2021). For symbolic reasoning, we use Colored Object (COLOR) from BIG-bench (et al.,
2022) as an exemplar task. This task can be abstracted as finding elements in a list under certain
constraints. We also evaluate on a regex synthesis dataset, STREGEX (Ye et al., 2020), which requires
synthesizing a regex give NL description. We cast this task into synthesizing the surface form (i.e., a
string) of the target regex, and use SATLM to parse NL description into constraints over the string.

Baselines We compare SATLM against 3 baselines, including standard prompting (directly giving
the answer), chain-of-thought prompting (COT), and executor-augmented LLMs (PROGLM). We do
not compare to zero-shot baselines such as zero-shot CoT, which generally underperform few-shot
CoT by a large margin on the tasks we investigate (Kojima et al., 2022).

For COT and PROGLM, we leverage prompts of existing work (Gao et al., 2023; Lyu et al., 2023;
Creswell et al., 2023) whenever possible. For SATLM, we manually write prompts for the same
exemplar sets used in COT and PROGLM to ensure a fair comparison. We note that some settings,
such as PROGLM for LSAT, are not applicable. Please refer to Appendix B for more discussion
of the setup, including details on the prompts we use. We also include example prompts for all the
datasets in Appendix I.

Language Models & Decoding We conduct our main experiments and analysis on
code-davinci-002 (Chen et al., 2021), a state-of-art LLM for code and code-adjacent tasks.
We evaluate the performance with both greedy decoding and self-consistency decoding (Wang et al.,
2022b). Following past work (Gao et al., 2023), we use 40 samples on all datasets except for LSAT,
BOARDGAMEQA, and PROOFWRITER; we use 5 samples on these datasets involving long prompts
and high computation cost. For COT and PROGLM, we use a temperature of 0.7; for SATLM, we
use a higher temperature of 0.9, which we find to work better.

4.2 Main Results

Table 1 shows the performance of our approach compared to the baselines. In general, our SAT-aided
approach outperforms both COT and PROGLM by a substantial margin except on GSM with greedy
decoding. We perform significance tests via bootstrap resampling, and all improvements of SATLM
over PROGLM are statistically significant (p < 0.05).

6

sara_height = Variable()
joe_height = Variable()
total_height = 120
joe_height = 2 * sara_height + 6
total_height = sara_height + joe_height
solve(joe_height)

Q: Sara and Joe have a combined
height of 120 inches. Joe is 6
inches more than double Sara's
height. How tall is Joe?

We know total_height = sara_height + joe_height, and joe_height = 2 *
sara_height + 6.
So total_height = sara_height + 2 * sara_height + 6 = 3 * sara_height + 6
Therefore, sara_height = (total_height - 6) / 3 = (120 - 6) / 3 = 114 / 3 = 38
joe_height = 2 * sara_height + 6 = 2 * 38 + 6 = 76 + 6 = 82
The answer is 82

The answer is 82

Input SAT Solution

CoT Solver

No Solver

Figure 3: A variant of our approach which re-
places the SAT solver with a “CoT solver” that
takes the SAT problem as input and solves it in
natural language.

Table 2: The performance of variants of our ap-
proach that use CoT Solver or No Solver. Using
declarative prompting with CoT solver is more
effective than imperative CoT prompting.

GSM-SYS GSM CLUTRR

STANDARD 21.0 22.2 41.2
COT 46.5 62.7 40.8
PAL 43.4 72.8 58.9

SATSYMSOLVER 69.4 71.7 68.3
SATCOTSOLVER 54.5 63.2 48.9
SATNOSOLVER 26.6 23.7 40.7

The first two columns show the performance on the GSM dataset. COT and PROGLM achieve
much worse performance on GSM-SYS than on GSM, indicating that GSM-SYS is a challenging
subset. On this subset, SATLM achieves 69.4% and 80.9% with greedy decoding and self-consistency
decoding, surpassing both PROGLM and COT more than by 20%. On the original GSM dataset, the
SATLM model has a slightly lower accuracy than PROGLM with greedy decoding, but outperforms it
with self-consistency decoding by 2.4%; we provide detailed analysis accounting for the differences
later in this section. This self-consistency accuracy of 84.8% even exceeds recent work that uses the
full training set with code-davinci-002 (82.3% in DIVERSE (Li et al., 2022b); 84.5% in LEVER (Ni
et al., 2023)). On ALGEBRA, a challenging dataset of math problems extracted from algebra textbooks,
SATLM also outperforms COT and PROGLM by more than 20%.

On LSAT, CLUTRR, PROOFWRITER, and COLOR, SATLM consistently achieves the best perfor-
mance with either greedy decoding or self-consistency decoding. SATLM also sets the new SoTA on
both LSAT and BOARDGAMEQA, surpassing previous models that are trained on the full training
set. Specifically, SATLM elevates the SoTA from 30.9% (Zhong et al., 2022) to 37.4% on LSAT
and from 73.9% (Kazemi et al., 2023)) to 80.7% on BOARDGAMEQA. See Appendix E for detailed
performance breakdown on depth 1-3.

In the regex synthesis domain, with greedy decoding, directly translating natural language descriptions
to regexes (PROGLM) achieves 37.1%, whereas using declarative prompting achieves 44.0%. With
self-consistency, we surpass the previous SoTA performance of 55.6% (Ye et al., 2021).

4.3 Impact of SAT Solver & Declarative Prompting

We conduct analysis to isolate the effectiveness of the two key components, the SAT solver and
declarative prompting. Specifically, we test a variant of our approach that still uses declarative
prompting but then solves the equations in natural language with CoT rather than using the symbolic
solver (see Figure 3). Essentially, the LLM itself carries out planning and execution. This experiment
helps isolate the benefits of the solver, which will compute an answer without making any mistakes,
from the benefits of the declarative formulation. We also compare to prompting LLMs to directly
give the answer (NOSOLVER).

Table 3: Fraction of planning errors (incor-
rect reasoning chains) and execution errors
(numeric errors) made by COTSOLVER.

GSM-SYS GSM CLUTRR

PLAN ERR 72.5 42.5 47.5
EXEC ERR 27.5 57.5 52.5

Impact of Symbolic Solver As shown in Table 2,
completely ablating the solver and directly predict-
ing the answer (SATNOSOLVER) only yields perfor-
mance that is on par with STANDARD. Interestingly,
SATCOTSOLVER can solve more SAT problems than
NOSOLVER. This partially reflects the effective-
ness of CoT and partially reflects the fact that many
dataset instances require relatively simple planning
and execution, allowing pure forward reasoning
to solve them. However, using a symbolic solver
(SATSYMSOLVER), which guarantees correct planning and execution, leads to further improvements.

7

Table 5: Analysis of accuracy and execution status of SATLM and PROGLM. We present the fraction
of tasks solved correctly or incorrectly in GSM-SYS, GSM, and CLUTRR, along with the breakdown
of feedback from the solver. SATLM generally makes fewer predictions than PROGLM (ANSWERED),
but more frequently makes correct predictions when it returns an answer (SELECTIVE ACC) and
gives a higher absolute number of correct predictions on GSM-SYS and CLUTRR.

GSM-SYS GSM CLUTRR
PROGLM SATLM PROGLM SATLM PROGLM SATLM

CORRECT 43.3 69.4 72.7 71.8 58.9 68.3
INCORRECT 52.5 20.6 25.7 21.2 21.0 7.7

ERROR 4.2 2.6 1.6 2.1 20.1 3.5
UNSAT − 2.4 − 1.5 − 15.5
AMBIG − 5.0 − 3.4 − 5.0

ANSWERED 95.8 90.0 98.4 93.0 79.9 76.0
SELECTIVE ACC 45.2 77.1 73.8 77.2 73.7 89.9

We manually analyzed 40 cases where the symbolic solver yields the correct answer but SATCOTSOLVER

fails to solve them. We categorized the errors as planning errors, where the reasoning chains are
incorrect, and execution errors, where the reasoning chains are correct but computations are incorrect
(see Appendix H for examples). Table 3 shows that most errors by SATCOTSOLVER are planning errors,
especially on GSM-SYS which requires solving complex system of equations.

Table 4: Log likelihood (unnormalized /
normalized) of the generated sequences
(with greedy decoding) of PROGLM and
SATLM on three datasets. Better log like-
lihood indicates higher LLM confidence in
the parsing stage.

GSM-SYS GSM CLUTRR

PAL -9.5/-6.910-2 -9.2/-6.010-2 -3.1/-8.510-3

SAT -8.5/-5.910-2 -9.7/-6.210-2 -2.0/-7.910-3

Impact of Declarative Prompting Table 2 also
shows that decoupling parsing and planning/solving
is still useful, even when not using a symbolic solver:
SATCOTSOLVER outperforms COT by 7.9%, and 8.1% on
GSM-SYS and CLUTRR, respectively. We note that
SATCOTSOLVER can be viewed as a two-stage CoT prompt-
ing strategy, with a prompt showing that the first step is
to formulate declaratively, then the next step is to solve.

We hypothesize that parsing a question into declarative
formulas is more straightforward than parsing it into an
imperative solving procedure. To evaluate this hypoth-
esis, we use log likelihood of the generated tokens to
assess how straightforward the translation is, as higher
log-likelihood typically indicates the outputs are more fluent to LLMs, a connection demonstrated
in recent literature (Gonen et al., 2022; Ye and Durrett, 2023). We show both unnormalized (total)
and normalized log likelihood in Table 4. On GSM-SYS and CLUTRR where SATLM outperforms
PROGLM, its generated outputs are also associated with higher likelihood.

4.4 Advantages of SAT in Selective Prediction

A SAT solver may not always return an answer, particularly if there are parsing errors from the
question. We show that this is an advantage of SATLM: these errors allow us to abstain from making
likely incorrect predictions. Example outputs leading to different errors can be found in Appendix G.

Table 5 shows the fraction of correct predictions and incorrect predictions when the program or SAT
solver successfully returns an answer as well as the fraction of different types of feedback signals.
We report the fraction of questions answered as well as selective accuracy, defined by the fraction of
overall accuracy (% of correct answers) normalized by coverage (% of answered problems). SATLM
makes fewer predictions on all three datasets compared to PROGLM, as it can trigger both UNSAT
and AMBIG errors. However, SATLM’s selective accuracy is consistently better than PROGLM’s,
especially on GSM-SYS (77% vs 45%). As a result, SATLM’s overall performance is significantly
better than PROGLM on GSM-SYS and CLUTRR, even when making fewer predictions.

We note that on GSM, SATLM has slightly lower coverage but higher selective accuracy compared to
PROGLM. This explains why SATLM lags behind PROGLM with greedy decoding but outperforms
PROGLM with self-consistency decoding (Table 1). By drawing multiple samples, SATLM can in-
crease its coverage and achieve higher accuracy than PROGLM since its predictions are more accurate.

8

animals_total = 60
animals_chickens = Variable()
animals_cows = Variable()
animals_chickens = animals_cows * 2
animals_total = animals_chickens + animals_cows
legs_chickens = animals_chickens * 2
legs_cows = animals_cows * 4
legs_total = legs_chickens + legs_cows

Q: Farmer Brown has 60 animals on his farm, all
either chickens or cows. He has twice as many
chickens as cows. How many legs do the animals
have, all together?

Input

SAT Solution
Implies(has_same_first_letter_name(pelikan, llama), create_castle(pelikan, gadwall)) # Rule2
Implies(has_card_with_primary_color(pelikan), create_castle(pelikan, gadwall)) # Rule3
The first letter of Peddi is P. The first letter of Beauty is B. So the pelikan does not
have the same first letter name as the llama.
has_same_first_letter_name(pelikan, llama) == False
The pelikan has a card that is red in color. red is a primary color.
has_card_with_primary_color(pelikan) == True
...

The llama is named Peddi. The pelikan has a card that is red in color, and is named Beauty.
Rule2: If the pelikan has a name whose first letter is the same as the first letter of the llama's name, then the
 pelikan creates a castle for the gadwall.
Rule3: The pelikan will create a castle for the gadwall if it (the pelikan) has a card with a primary color.
. . .

Input

SAT Solution

Figure 4: Examples outputs from GSM (left) and BOARDGAMEQA (right) show that LLMs can
perform commonsense reasoning while parsing.

4.5 Analysis

LLMs Can Perform Commonsense Reasoning While Parsing There are many problems that
do not state premises or constraints in a completely explicit way. Figure 4) shows two examples
where commonsense inferences are required during parsing. For example, on the left, the model must
recognize that animals refers to the chickens and cows collectively. Similarly, knowing that red is a
primary color is needed to successfully apply rules on BOARDGAMEQA (right). We observe from the
outputs in both cases that LLMs are capable of implicitly performing commonsense reasoning and
produce correct logical formulas in the parsing step. As shown in Table 1, SATLM exhibits strong
performance on BOARDGAMEQA, a dataset which requires this implicit background knowledge.

Table 6: Results on gpt-3.5-turbo, text-
davinci-003, and code-davinci-001. The effec-
tiveness of SATLM can generalize across LLMs.

GSM-SYS GSM LSAT CLUTRR PROOF

gpt-3.5-turbo (greedy decoding)
COT 44.8 74.4 23.9 41.2 82.3
PROGLM 51.2 77.9 − 45.9 76.4
SATLM 63.4 76.4 30.0 50.6 96.4

text-davinci-003 (greedy decoding)
COT 42.8 62.5 21.7 34.5 83.5
PROGLM 40.4 71.7 − 41.2 83.7
SATLM 63.6 70.3 30.4 58.2 99.7

code-davinci-001 (greedy decoding)
PROGLM 15.5 35.6 − 22.2 63.8
SATLM 16.5 34.2 19.6 30.2 86.6

Results Across Different Language Models
In addition to the main LLM used in our
work, code-davinci-002, we further test whether
SATLM can generalize to other LLMs. We choose
gpt-3.5-turbo (0613 version), text-davinci-003,
and code-davinci-001. gpt-3.5-turbo is opti-
mized for chat. text-davinci-003 is an LLM pre-
trained on NL, and tuned to align with human feed-
back (Ouyang et al., 2022). code-davinci-001 is
also an LLM pretrained on code, but less capable
compared to 002. As shown in Table 6, SATLM is
better than PROGLM on the arithmetic reasoning
and logical reasoning datasets except for GSM
across these three LLMs. The trend is congruent
with the results on code-davinci-002 (Table 1),
which suggests the approach’s general applica-
bility across different LLMs, regardless of their
varying capabilities.

Table 7: The performance of PROGLM
and SATLM with varying exemplar
sets. SATLM consistently outperforms
PROGLM on GSM-SYS and CLUTRR.

GSM-SYS GSM CLUTRR

Se
t1 PROG 43.4 72.7 58.9

SAT 69.4 71.8 68.3

Se
t2 PROG 41.4 72.5 59.0

SAT 71.8 71.3 67.9

Se
t3 PROG 37.1 70.3 57.2

SAT 66.7 70.0 68.0

Sensitivity to Different Exemplar Sets We test whether
the advantages of SATLM is sensitive to different sets of
exemplars. We experiment with 3 sets of exemplars on
code-davinci-002. As shown in Table 7, SATLM consis-
tently outperforms PROGLM by a large margin on GSM-
SYS and CLUTRR, and achieves comparable performance
on GSM. The results suggest the effectiveness of our ap-
proach is insensitive to varying the choice of exemplars.

5 Related Work

Our work is built on top of few-shot prompting (Brown
et al., 2020), which has proven effective on a wide range
of tasks (Wei et al., 2022b; Liu et al., 2023b; Gehrmann
et al., 2021; Reif et al., 2022; Wei et al., 2022a; Sanh et al., 2022). In particular, we focus on
improving LLMs on reasoning tasks, which are challenging for language models even with recent

9

developments (Marcus, 2020; Garcez and Lamb, 2023). Various techniques have been proposed
for improving reasoning abilities (Nye et al., 2021; Zhou et al., 2022; Kojima et al., 2022; Khot
et al., 2022; Fu et al., 2022; Wang et al., 2022a; Li et al., 2022a; Lyu et al., 2023). They largely
follow a chain-of-thought (Wei et al., 2022c) or scratchpad (Nye et al., 2021) paradigm. Among
them, our work is the most related to the line of work that generates imperative programs to be
executed by a symbolic executor, such as a Python interpreter (Gao et al., 2023; Chen et al., 2022)
or domain-specific executors (Lyu et al., 2023). In this work, we propose a different paradigm that
parses NL problems into declarative SAT problems and offloads the solving procedure to a SAT
solver.

Previous work has also explored equipping LLMs with other tools, including search engines (Yu
et al., 2023; Schick et al., 2023), calculators (Cobbe et al., 2021; Chowdhery et al., 2022), or other
domain-specific special modules (Schick et al., 2023; Demeter and Downey, 2020). A line of work
focuses on using program-related tools such as program executors (Poesia et al., 2022), program
analysis tools (Jain et al., 2022), and synthesis tools (Rahmani et al., 2021) to enhance the quality of
the generated code. Our works further explores improving LLMs with SAT solvers.

Concurrent work explores the intersection of LLMs and planning, parsing planning problems into
PDDL descriptions and leveraging a classical planner to produce the plan (Liu et al., 2023a). Our
work differs in that we use the SAT formulation to solve general reasoning tasks, including arithmetic
reasoning and logical reasoning, which cannot be specified in PDDL.

Also concurrently, He-Yueya et al. (2023) combine LLMs and symbolic solvers for solving math
problems. However, this work only focus on arithmetic reasoning tasks and employs a math-specific
symbolic solver (PySym). Our work takes a more general approach by formulating the problem
within the scope of first-order logic and therefore is domain-agnostic. We also provide results of
SATLM on the ALGEBRA dataset collected by He-Yueya et al. (2023) in Appendix D.

6 Conclusion & Limitations

We have presented a framework for satisfiability-aided language models, casting a wide range of
reasoning tasks into SAT problems under a unified formulation. We use an LLM to parse an NL query
into a declarative specification and leverages a SAT solver to derive the final answer. Evaluation
results on 8 datasets spanning 4 tasks across several LLMs demonstrate the effectiveness of our
approach over program-aided language models.

Limitations Our framework parses an NL problems into a set of declarative formulas. The NL
description of some problems may already be more compatible with an imperative solving procedure,
and our approach is likely to be less effective in these cases (e.g., SATLM slightly lags PROGLM
on GSM). Future research can explore an integration or ensemble of these two prompting styles for
more flexible reasoning.

SATLM heavily relies on the SAT solver and inherits some limitations of the SAT solver itself,
such as computational cost when dealing with complex formulas involving quantifiers or nonlinear
arithmetic. Moreover, SAT solvers can be limited by the expressiveness of the underlying theory, as
not all theories can be easily encoded in first-order logic. Nevertheless, the wide range of tasks that
we can instantiate our SATLM framework on shows its general applicability.

Our current approach parses a problem into a SAT specification, runs the solver, and returns the
answer in a one-round fashion. One can imagine that unsatisfiable formulas or ambiguous formulas
could be improved by re-prompting the model to improve the specification based on the exception
signals, as explored in concurrent work for other problems (Paul et al., 2023; Madaan et al., 2023;
Chen et al., 2023). We believe this is an exciting direction for future work.

Acknowledgments

Thanks to anonymous reviewers for their helpful feedback. This work was partially supported by
National Science Foundation under Grants No.2145280, No.1918889, No.1762299, No.2210831 and
the NSF AI Institute for Foundations of Machine Learning (IFML). We would also like to thank

10

authors of PAL (Gao et al., 2023) and Faithful CoT (Lyu et al., 2023) for providing the prompts used
in the baselines.

References
Aarohi Srivastava et al. 2022. Beyond the imitation game: Quantifying and extrapolating the

capabilities of language models. ArXiv, abs/2206.04615.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language models are few-shot learners. In Proceedings of the Conference
on Advances in Neural Information Processing Systems (NeurIPS).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021.
Evaluating large language models trained on code. CoRR, abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks. arXiv
preprint arXiv:2211.12588.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching large language
models to self-debug. arXiv preprint arXiv:2304.05128.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Baindoor Rao, Parker Barnes, Yi Tay,
Noam M. Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Benton C. Hutchinson, Reiner
Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier García, Vedant
Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark
Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz,
Erica Oliveira Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi
Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S. Meier-
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling Language
Modeling with Pathways. ArXiv, abs/2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. 2021. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168.

Antonia Creswell, Murray Shanahan, and Irina Higgins. 2023. Selection-inference: Exploiting large
language models for interpretable logical reasoning. In The Eleventh International Conference on
Learning Representations.

Martin Davis and Hilary Putnam. 1960. A computing procedure for quantification theory. J. ACM,
7(3):201–215.

11

http://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://doi.org/10.1145/321033.321034

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’08/ETAPS’08, page 337–340, Berlin, Heidelberg.
Springer-Verlag.

David Demeter and Doug Downey. 2020. Just add functions: A neural-symbolic language model.
Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):7634–7642.

Ran El-Yaniv and Yair Wiener. 2010. On the foundations of noise-free selective classification. Journal
of Machine Learning Research, 11(53):1605–1641.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. 2022. Complexity-based
prompting for multi-step reasoning. In Proceedings of the International Conference on Learning
Representations (ICLR).

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. 2023. Pal: Program-aided language models. In Proceedings of the International
Conference on Machine Learning (ICML).

Artur d’Avila Garcez and Luis C Lamb. 2023. Neurosymbolic AI: The 3rd wave. Artificial Intelligence
Review, pages 1–20.

Sebastian Gehrmann, Tosin Adewumi, Karmanya Aggarwal, Pawan Sasanka Ammanamanchi, An-
uoluwapo Aremu, Antoine Bosselut, Khyathi Raghavi Chandu, Miruna-Adriana Clinciu, Dipanjan
Das, Kaustubh Dhole, Wanyu Du, Esin Durmus, Ondřej Dušek, Chris Chinenye Emezue, Varun
Gangal, Cristina Garbacea, Tatsunori Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jhamtani,
Yangfeng Ji, Shailza Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak, Aman Madaan, Mounica
Maddela, Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Majumder, Pedro Henrique
Martins, Angelina McMillan-Major, Simon Mille, Emiel van Miltenburg, Moin Nadeem, Shashi
Narayan, Vitaly Nikolaev, Andre Niyongabo Rubungo, Salomey Osei, Ankur Parikh, Laura
Perez-Beltrachini, Niranjan Ramesh Rao, Vikas Raunak, Juan Diego Rodriguez, Sashank San-
thanam, João Sedoc, Thibault Sellam, Samira Shaikh, Anastasia Shimorina, Marco Antonio
Sobrevilla Cabezudo, Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi Yang, Akhila Yerukola,
and Jiawei Zhou. 2021. The GEM benchmark: Natural language generation, its evaluation and
metrics. In Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and
Metrics (GEM 2021), pages 96–120, Online. Association for Computational Linguistics.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A Smith, and Luke Zettlemoyer. 2022. Demystifying
prompts in language models via perplexity estimation. arXiv preprint arXiv:2212.04037.

Joy He-Yueya, Gabriel Poesia, Rose E. Wang, and Noah D. Goodman. 2023. Solving math word
problems by combining language models with symbolic solvers. ArXiv, abs/2304.09102.

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram
Rajamani, and Rahul Sharma. 2022. Jigsaw: Large language models meet program synthesis.
ICSE.

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and Deepak
Ramachandran. 2023. BoardgameQA: A Dataset for Natural Language Reasoning with Contradic-
tory Information. In Proceedings of the Conference on Advances in Neural Information Processing
Systems (NeurIPS).

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. 2022. Decomposed prompting: A modular approach for solving complex tasks. In
Proceedings of the International Conference on Learning Representations (ICLR).

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022.
Large language models are zero-shot reasoners. In Advances in Neural Information Processing
Systems (NeurIPS).

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen, Xinlu Zhang, Zekun Li, Hong Wang, Jing Qian,
Baolin Peng, Yi Mao, et al. 2022a. Explanations from large language models make small reasoners
better. arXiv preprint arXiv:2210.06726.

12

https://doi.org/10.1609/aaai.v34i05.6264
http://jmlr.org/papers/v11/el-yaniv10a.html
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. 2022b.
On the advance of making language models better reasoners. arXiv preprint arXiv:2206.02336.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan,
Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher R’e, Diana
Acosta-Navas, Drew A. Hudson, E. Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu
Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert Yuksekgonul,
Mirac Suzgun, Nathan S. Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter Henderson,
Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto,
Thomas F. Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui
Zhang, and Yuta Koreeda. 2022. Holistic evaluation of language models. ArXiv, abs/2211.09110.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023a. LLM+ P: Empowering Large Language Models with Optimal Planning Proficiency. arXiv
preprint arXiv:2304.11477.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023b.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Comput. Surv., 55(9).

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-thought reasoning. arXiv preprint arXiv:2301.13379.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. 2023. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651.

Gary Marcus. 2020. The next decade in AI: four steps towards robust artificial intelligence. arXiv
preprint arXiv:2002.06177.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen-tau Yih, Sida I Wang, and Xi Victoria Lin.
2023. LEVER: Learning to Verify Language-to-Code Generation with Execution. In Proceedings
of the International Conference on Machine Learning (ICML).

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and
Augustus Odena. 2021. Show your work: Scratchpads for intermediate computation with language
models. ArXiv, abs/2112.00114.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. 2022. Training language models to follow instructions with human
feedback. In Proceedings of the Conference on Advances in Neural Information Processing Systems
(NeurIPS).

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West, and
Boi Faltings. 2023. Refiner: Reasoning feedback on intermediate representations. arXiv preprint
arXiv:2304.01904.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. 2022. Synchromesh: Reliable code generation from pre-trained language models. In
International Conference on Learning Representations.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John F. J. Mellor, Irina Higgins, Antonia Creswell, Nathan McAleese,
Amy Wu, Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, David Budden, Esme Suther-
land, Karen Simonyan, Michela Paganini, L. Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna
Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur

13

https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://openreview.net/forum?id=KmtVD97J43e

Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, N. K. Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Tobias Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume,
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew G. Johnson, Blake A. Hechtman, Laura
Weidinger, Iason Gabriel, William S. Isaac, Edward Lockhart, Simon Osindero, Laura Rimell,
Chris Dyer, Oriol Vinyals, Kareem W. Ayoub, Jeff Stanway, L. L. Bennett, Demis Hassabis, Koray
Kavukcuoglu, and Geoffrey Irving. 2021. Scaling Language Models: Methods, Analysis & Insights
from Training Gopher. ArXiv, abs/2112.11446.

Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun Radhakrishna, Gustavo
Soares, and Ashish Tiwari. 2021. Multi-modal program inference: A marriage of pre-trained
language models and component-based synthesis. Proc. ACM Program. Lang., 5(OOPSLA).

Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen, Chris Callison-Burch, and Jason Wei. 2022.
A recipe for arbitrary text style transfer with large language models. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
837–848, Dublin, Ireland. Association for Computational Linguistics.

Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma, Henghui Zhu, Rui Dong, Deguang Kong, Juliette
Burger, Anjelica Ramos, zhiheng huang, William Yang Wang, George Karypis, Bing Xiang, and
Dan Roth. 2023. STREET: A multi-task structured reasoning and explanation benchmark. In The
Eleventh International Conference on Learning Representations.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal
Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,
Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan,
Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. 2022. Multitask
prompted training enables zero-shot task generalization. In International Conference on Learning
Representations.

Abulhair Saparov and He He. 2023. Language models are greedy reasoners: A systematic formal
analysis of chain-of-thought. In The Eleventh International Conference on Learning Representa-
tions.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. 2023. Toolformer: Language models can teach themselves
to use tools. arXiv.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning from text. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP).

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021. ProofWriter: Generating implications, proofs,
and abductive statements over natural language. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP (ACL Findings).

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. 2022. Large
Language Models Still Can’t Plan (A Benchmark for LLMs on Planning and Reasoning about
Change). ArXiv, abs/2206.10498.

Peifeng Wang, Aaron Chan, Filip Ilievski, Muhao Chen, and Xiang Ren. 2022a. Pinto: Faithful lan-
guage reasoning using prompt-generated rationales. In Proceedings of the International Conference
on Learning Representations (ICLR).

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny Zhou. 2022b.
Self-consistency improves chain of thought reasoning in language models. In Proceedings of the
International Conference on Learning Representations (ICLR).

14

https://doi.org/10.1145/3485535
https://doi.org/10.1145/3485535
https://doi.org/10.18653/v1/2022.acl-short.94
https://openreview.net/forum?id=1C_kSW1-k0
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://doi.org/10.48550/ARXIV.2302.04761
https://doi.org/10.48550/ARXIV.2302.04761

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. 2022a. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. 2022b. Emergent abilities of large language models.
Transactions on Machine Learning Research. Survey Certification.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou.
2022c. Chain of thought prompting elicits reasoning in large language models. In Proceedings of
the Conference on Advances in Neural Information Processing Systems (NeurIPS).

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2020. Benchmarking multimodal regex syn-
thesis with complex structures. In Proceedings of the Annual Conference of the Association for
Computational Linguistics (ACL).

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2021. Optimal neural program synthesis from
multimodal specifications. In Findings of the Association for Computational Linguistics: EMNLP
(EMNLP Findings).

Xi Ye and Greg Durrett. 2023. Explanation selection using unlabeled data for chain-of-thought
prompting. In Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing (EMNLP).

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. 2023. Generate rather than retrieve: Large language models are
strong context generators. In International Conference for Learning Representation (ICLR).

Hanlin Zhang, Ziyang Li, Jiani Huang, Mayur Naik, and Eric Xing. 2022a. Improved logical
reasoning of language models via differentiable symbolic programming. In First Workshop on
Pre-training: Perspectives, Pitfalls, and Paths Forward at ICML 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
2022b. OPT: Open Pre-trained Transformer Language Models. ArXiv, abs/2205.01068.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, Daya Guo, Yining Chen, Jiahai Wang, Jian
Yin, Ming Zhou, and Nan Duan. 2022. Analytical reasoning of text. In Findings of the Association
for Computational Linguistics: NAACL (NAACL Findings).

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022. Least-to-most prompting enables complex reasoning
in large language models. ArXiv, abs/2205.10625.

15

https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=8lNy3QCaxHX
https://openreview.net/forum?id=8lNy3QCaxHX

A Detailed Statistics of Datasets

We show the statistics of all the datasets used in our paper in Table 8.

For CLUTRR, we follow the setting in FAITHFULCOT (Lyu et al., 2023): we construct the prompt
using exemplars requiring 2-3 reasoning steps and test whether the model can generalize to examples
requiring up to 10 steps. We used the pre-processed test data consisting of 1,042 test examples from
past work (Lyu et al., 2023).

For PROOFWRITER, we use the closed world assumption setting, following past work (Creswell
et al., 2023). We construct our test set by randomly sampling a subset of 1,000 examples (out of
10,000) from the test split of depth-5 setting, the most challenging setting.

For STREGEX, we merge the test and test-E split (see Ye et al. (2020)) to form a test set consisting of
996 examples in total.

Table 8: Number of few-shot exemplars, number of test examples and license for the datasets used in
our paper.

Shot # Test License

GSM (Cobbe et al., 2021) 8 1,319 MIT license
GSM-SYS 8 547 MIT license
ALGEBRA (He-Yueya et al., 2023) 8 222 Creative Commons Attribution Share Alike 4.0

LSAT (Zhong et al., 2022) 8 230 MIT license
BOARDGAMEQA (Kazemi et al., 2023) 5 3,000 CC BY 4.0.
CLUTRR (Sinha et al., 2019) 8 1,042 Attribution-NonCommercial 4.0
PROOFWRITER (Tafjord et al., 2021) 4 1,000 CC BY 4.0.

COLOREDOBJECT (BIG-BENCH) 3 2,000 Apache 2.0

STRUCTUREDREGEX (Ye et al., 2020) 8 996 MIT license

GSM-SYS Dataset We construct GSM-SYS, a special subset consisting of 547 examples extracted
from GSM. Specifically, we filter the entire GSM dataset (train split and test split) to find examples
whose human-annotated explanations involve a system of equations, using patterns like “let [letter]
be”, “assume [letter] be” and “[number][letter]”. We manually inspected 10% of the examples and
found 80% of those samples did involve systems of equations in the explanation. We refer to this
more challenging dataset as GSM-SYS.

B Details of the Prompts

In general, we leverage COT prompts and PROGLM prompts from existing work whenever available,
and manually write SATLM prompts for the same exemplar sets. Prompt examples for all datasets
can be found in Appendix I.

For GSM and GSM-SYS, we adapt the original COT prompt and PROGLM prompt used in program-
aided language models (Gao et al., 2023). Specifically, we replace one random exemplar in the
original prompt with another exemplar sampled from GSM-SYS. This is to improve the performance
of COT and PROGLM on GSM-SYS, as the original exemplar set achieves suboptimal performance
for GSM-SYS. Our adapted COT and PROGLM prompts achieve better performance compared to
the original ones on both GSM and GSM-SYS (see Appendix C for details).

For LSAT, we randomly sample 8 exemplars and write prompts for COT and SATLM. We note that
LSAT is a particularly challenging task: we tried 3 CoT prompts written by 3 different authors of our
paper, which all led to around 20% accuracy. Similar results are reported in other work (Liang et al.,
2022; Ribeiro et al., 2023). In addition, we only report COT results, leaving out PROGLM. This
decision is due to the fact that PROGLM uses Python as its program interpreter. While Python is a
general-purpose programming language, it does not provide native support for formal logic reasoning,
including essential components like logical inference rules and manipulation of logical formulas.
Solving problems from LSAT requires strategies like proof by contradiction (see Appendix I for a
detailed example), which we see no way to represent in the PROGLM framework and is not addressed
in prior work.

16

BOARDGAMEQA contains problems requiring 1-3 steps of reasoning. We sample 5 exemplars from
the training set of depth 1 and depth 2 to construct the prompts for evaluation on the test sets of depth
1 and depth 2, respectively. We used the 5 exemplars of depth 2 to construct the prompt for test set
of depth 3, as using exemplars of depth 3 would lead to prompts that exceed the context window
size of our LLMs. Similarly, we only report COT results as the baselines, leaving out PROGLM for
BOARDGAMEQA. We use the proofs provided by the authors to construct the COT prompts and
manually annotate the SAT specifications to construct the SATLM prompts.

For CLUTRR, we use the COT prompt and PROGLM prompt provided in FAITHFULCOT (Lyu et al.,
2023). For PROOFWRITER, we use the COT prompt from SELECTION-INFERENCE (Creswell
et al., 2023), and adapt it to form the PROGLM prompt. We use the COT prompt and PROGLM from
PAL (Gao et al., 2023) for COLORED OBJECT.

The task of STRUCTUREDREGEX, a regex synthesis dataset, is to parse natural language descriptions
to regexes. This is not a typical reasoning dataset, and there is no COT prompt for this dataset. We
randomly sample 8 exemplars and annotate the prompt for PROGLM and SATLM. In this setting,
PROGLM directly translates NL descriptions into regexes (which are essentially programs), whereas
SATLM parses an NL description into a set of constraints over the surface form of the regex. Note
that this dataset provides multimodal specifications of regexes, featuring both NL descriptions and
examples. The I/O examples can be used to reject synthesized regexes if they do not accept or reject
the correct examples. When we report results for self-consistency inference, we follow past work (Ye
et al., 2021) and filter out incorrect outputs using the I/O examples provided in the dataset (Ye et al.,
2020). This setting therefore checks consistency with something other than the model itself, but uses
a similar computation budget as self-consistency, so we group it with those results.

C Performance of Original COT and PROGLM Prompts on Arithmetic
Reasoning Datasets

Table 9: Performance of different approaches using our adapted exemplar set and the original
exemplar set used in COT and PAL.

ADAPTED (OURS) ORIGINAL
GSM-SYS GSM GSM-SYS GSM

COT 46.5 62.7 35.7 62.4
PROGLM 43.4 72.7 36.1 71.7
SATLM 69.4 71.8 66.7 70.9

Recall that we construct our arithmetic reasoning prompt used in Table 1 by replacing one random
exemplar in the original prompt used in COT and PROGLM with an random example from GSM-SYS.
We show the performance of COT, PROGLM, and our SATLM in Table 9 using our adapted exemplar
set and original exemplar set in Table 9.

Our adaptation significantly improves the performance of COT and PROGLM on GSM-SYS, and
slightly improves the performance on GSM. Furthermore, we still see that SATLM outperforms both
COT and PROGLM by a large margin on GSM, using either our adapted set or the original set.

D Extended Discussion on Concurrent Work

Table 10: Performance of different approaches on ALGEBRA.
ALGEBRA GSM

COT 53.6 62.4
PROGLM 52.3 72.7
SATLM (Ours) 77.5 71.8
MATHSYM (He-Yueya et al., 2023) 76.3 69.4

Similar to our work, He-Yueya et al. (2023) proposes to solve arithmetic reasoning problems by
parsing the problem into a set of variables and equations and using an external solver to derive the

17

final answer. While their formalization is restricted to arithmetic problems, we use SAT problems
encoded with first-order logical formulas, which unify a wide range of reasoning tasks.

In addition, we also evaluate our approach on the ALGEBRA dataset in He-Yueya et al. (2023),
which consists of 222 examples from Algebra textbooks. We note that the results between ours and
MATHSYM are not directly comparable, as MATHSYM picks a different exemplar set. As shown in
Table 10, ALGEBRA is more challenging than GSM, and SATLM outperforms PROGLM and COT
by more than 20%.

E Detailed Performance on the BOARDGAMEQA Dataset

Table 11: Detailed performance on the BOARDGAMEQA dataset.

DEPTH 1 DEPTH 2 DEPTH 3 AGGREGATED

code-davinci-002 (greedy decoding)

STANDARD 52.5 42.8 38.5 44.6
COT 64.7 60.8 56.5 60.1
SATLM 87.6 81.7 69.0 79.4

code-davinci-002 (self consistency decoding)

COT 65.9 63.4 59.0 62.8
SATLM 88.0 84.2 70.1 80.8

Table 11 shows the performance breakdown on depths 1-3 of the BOARDGAMEQA dataset. SATLM
outperforms COT by a substantial margin across all depths. The performance of all approaches
decreases as the depth increases.

F Details of the SAT Specification

To better utilize the parametric knowledge that LLMs have acquired from pretraining on vast amount
of code data, our work uses a specification that largely follows and simplifies the syntax for specifying
constraints used in z3py.5

Example SAT Specification

x = Variable() # declare a variable
People = [Alice, Bob] # declare enum set
Cities = [Austin, Boston] # declare enum set
Food = [Apple, Banana] # declare enum set

visit = Function(People, Cities) # declare function
eats = Function(People, Food) # declare function

visit(Alice) != visit(Bob) # logic
ForAll(x: People, Implies(visit(x) == Austin, eats(x) == Banana)) # quantifier

Figure 5: Example of our SAT specification. The syntax is largely the same as that for specifying
constraints in z3py.

We give an example specification in Figure 5 demonstrating the synax for different types of statements.
See Figure 1, Figure 2, and Appendix I for more examples. These formulas are close to the actual
python code formulas used by z3py but are slightly modified to be more amenable to prompting. As a
result, we use a postprocessing step to form the actual Z3 input. We implemented a simple parser that
transforms these formulas into actual specifications used by z3py via string transformation (using
regexes). For example, we transform [ForAll(x: People, Implies(visit(x, Austin), eats(x,
Banana)))] into [x = Variable(People) ForAll([x], Implies(visit(x) == Austin, eats(x) ==

5https://z3prover.github.io/api/html/namespacez3py.html

18

https://z3prover.github.io/api/html/namespacez3py.html

Banana))], which is the actual z3py code. The transformed code can be executed using z3py to obtain
the final answer.

19

G Examples of Error Cases of SATLM

G.1 Examples of Unsatisfiable and Ambiguous Formulas

We show examples of formulas that are unsatisfiable or have ambiguous answers in Figure 6, Figure 7,
and Figure 8.

UNSAT Formulas: GSM

Q: If a rectangle has a width of 42 inches and an area of 1638, how many rectangles of the same size would
reach a length of 390 inches?

rectangle_width = 42
rectangle_area = 1638
rectangle_length = 390
rectangle_length = rectangle_area / rectangle_width
rectangles_needed = rectangle_length / rectangle_width
result = rectangles_needed
solve(result)

Q: Jason’s dog has a tail that’s half the length of its body, and a head that’s 1/6 the length of its body. If the
dog is 30 inches long overall, how long is its tail?

dog_length = 30
tail_length = Variable()
head_length = Variable()
dog_length = tail_length + head_length
tail_length = dog_length * 1 / 2
head_length = dog_length * 1 / 6
result = tail_length
solver(result)

Figure 6: Examples of UNSAT formulas from GSM. Both examples are generated by
code-davinci-002. UNSAT occurs when LLMs misunderstand the problem and output conflict-
ing constraints (highlighted in red).

AMBIG Formulas: GSM

Q: The sum of the three numbers is 500. If the first number is 200, and the value of the second number is
twice the value of the third number, find the value of the third number.

num1 = 200
num2 = Variable()
num3 = Variable()
num2 = num3 * 2
total = num1 + num2 + num3
result = num3
solve(result)

Q: The total for the sum and product of Elvie’s age and Arielle’s age are 131. If Elvie’s age is 10, how old is
Arielle?

elvie_age = 10
arielle_age = Variable()
sum_age = elvie_age + arielle_age
product_age = elvie_age * arielle_age
total_age = sum_age + product_age
result = arielle_age
solve(result)

Figure 7: Examples of AMBIG solutions from GSM. Both examples are generated by
code-davinci-002. The ambiguous formulas are under-constrained due to failure in encoding certain
constraints specified in the problem (highlighted in red), resulting in multiple possible answers.

20

UNSAT Formulas: CLUTRR

Arlene and her husband Jeff went on a cruise. They had a wonderful time. Stephanie s father Jason loves his
little princess even though she gets into a lot of trouble at school. Gloria’s mother Ruth and brother Jeff were
working in the kitchen, preparing soup. Stephanie, Ruth’s daughter, was working outside in the garden.
Q: How is [Jason] related to [Arlene]?

[Arlene] and her husband [Jeff] went on a cruise. They had a wonderful time.
relation(Arlene, Jeff) = (wife, husband)
[Stephanie]’s father [Jason] loves his little princess even though she gets into a lot of trouble at school.
relation(Stephanie, Jason) = (daughter, father)
[Gloria]’s mother [Ruth] and brother [Jeff] were working in the kitchen, preparing soup.
relation(Gloria, Ruth) = (daughter, mother)
relation(Gloria, Jeff) = (daughter, brother)
[Stephanie], [Ruth]’s daughter, was working outside in the garden.
relation(Stephanie, Ruth) = (daughter, mother)
How is [Jason] related to [Arlene]?
solve(relation(Jason, Arlene))

AMBIG Formulas: CLUTRR

Kirk loves talking to his grandfather Stanley on the phone. Paul’s brother, Kirk, recently made it into town.
Paul and his son Michael went to look at cars. Paul ended up buying the Mustang.
Q: How is [Stanley] related to [Michael]?

[Kirk] loves talking to his grandfather [Stanley] on the phone.
relation(Kirk, Stanley) = (grandson, grandfather)
[Paul]s brother, [Kirk], recently made it into town.
relation(Paul, Kirk) = (brother, brother)
[Paul] and his son [Michael] went to look at cars.
relation(Paul, Michael) = (father, son) note: Michael is Kirk’s son, not Paul’s son
How is [Stanley] related to [Michael]?
solve(relation(Stanley, Michael))

Figure 8: An example of UNSAT formulas (top) and an example of AMBIG formulas (bottom) from
CLUTRR. Both happen when the LLM misparses a constraint (highlighted in red). In particular,
ambiguous formulas usually occur when the language description itself is highly ambiguous (see the
note in the ambiguous formulas for an example).

21

G.2 Examples of Incorrect Answers

We show examples where the SAT solver successfully returns an answer, but the answer is incorrect
in Figure 9.

Examples of Incorrect Answers: GSM

Q: Martin rings the small bell 4 times more than 1/3 as often as the big bell. If he rings both of them a
combined total of 52 times, how many times does he ring the big bell?

small_bell_rings = Variable()
big_bell_rings = Variable()
total_bell_rings = 52
small_bell_rings = big_bell_rings * 1 / 3 * 4
total_bell_rings = small_bell_rings + big_bell_rings
result = big_bell_rings
solve(result)

Q: Jonathan was sad to learn he needed 2 more toys than he already had to have enough toys to make a sorted
play set five times larger than James’s play set, which had 80 toys. How many toys does Jonathan currently
have?

james_toys = 80
jonathan_toys = Variable()
jonathan_toys_needed = james_toys * 5 + 2
result = jonathan_toys_needed - 2
solve(result)

Examples of Incorrect Answers: CLUTRR

Donald and Russell are brothers. Jason is father of their father.
Q: How is [Russell] related to [Jason]?

[Donald] and [Russell] are brothers.
relation(Donald, Russell) = (brother, brother)
[Jason] is father of their father
relation(Jason, Donald) = (father, son)
relation(Jason, Russell) = (father, son)
How is [Russell] related to [Jason]?
solve(relation(Russell, Jason))

Figure 9: Two examples of incorrect answers from GSM (top) and an example of incorrect answer
from CLUTRR (bottom). This occurs when LLMs output incorrect constraints (highlighted in red) but
the incorrect formulas can still derive a non-ambiguous answer.

22

H Examples of Execution Errors and Planning Errors Made by COTSOLVER

We show examples of execution errors and planning errors produced by COTSOLVER in Figure 10,
Figure 11, and Figure 12.

As shown in Figure 10, LLMs can make errors when executing arithmetic operators, resulting in
execution errors. While introducing an interpreter (PROGLM) can help fix such execution errors,
it is not effective for handling planning errors in Figure 11, which involves manipulating symbolic
variables to determine a chain of arithmetic equations leading to the final answer.

We note that for CLUTRR, the atomic function is applying a set of transitivity rules that infer the
relation between A and C based on the relation between A and B and the relation between B and C (e.g.,
A’s son is B, B’s daughter is C. So A’s granddaughter is C). So an execution error in CLUTRR
refers to incorrect outputs when applying transitivity rules (see the top section of Figure 12). The set
of transitivity rules we use are provided in Lyu et al. (2023); Zhang et al. (2022a).

Execution Errors of COTSOLVER: GSM

Q: Carly is thinking about buying a wallet that costs 22 and a purse that costs 3 less than four times the cost
of the wallet. What is the combined cost of both items?

wallet_cost = 22
purse_cost = Variable()
purse_cost = wallet_cost * 4 - 3
total_cost = wallet_cost + purse_cost
result = total_cost
We know purse_cost = wallet_cost * 4 - 3
So total_cost = wallet_cost + purse_cost = 22 + (22 * 4 - 3) = 22 + 87 = 109
result = total_cost = 109
The answer is 109

Q: A person borrowed an amount of money for a year at an interest rate of 12%. If the total interest is $1500,
what was the original borrowed amount?

interest_rate = 12
interest_total = 1500
borrowed_amount = Variable()
interest_total = borrowed_amount * interest_rate / 100 result = borrowed_amount
We know interest_total = borrowed_amount * interest_rate / 100
So borrowed_amount = interest_total / interest_rate * 100 = 1500 / 12 * 100 = 12500
/ 12 = 1041.67
result = borrowed_amount = 1041.67
The answer is 1041.67

Figure 10: Examples of execution errors made by COTSOLVER on arithmetic reasoning tasks. Both
examples are generated by code-davinci-002, which makes mistakes when calculating the final value
of equations.

23

Planning Errors of COTSOLVER: GSM

Q: Griffin had 24 french fries, but Kyle took 5 of them. Billy took twice as many as Kyle. Ginger gave Griffin
a handful of her fries, and then Colby took from Griffin 3 less than the number of fries that Kyle had taken. If
in the end Griffin had 27 fries, how many fries did Ginger give Griffin?

fries_initial = 24
kyle_took = 5
billy_took = kyle_took * 2
ginger_gave = Variable()
colby_took = kyle_took - 3
fries_after = 27
fries_after = fries_initial - kyle_took - billy_took + ginger_gave - colby_took
result = ginger_gave
Solve the value of result
We know fries_after = fries_initial - kyle_took - billy_took + ginger_gave - colby_took
So ginger_gave = fries_after - fries_initial + kyle_took + billy_took - colby_took =
27 - 24 + 5 + 10 - 2 = 16
result = ginger_gave = 16
The answer is 16

Q: The combined age of Peter, Paul and Jean is 100 years old. Find the age of Peter knowing that Paul is 10
years older than John and that Peter’s age is equal to the sum of Paul and John’s age.

john_age = Variable()
total_age = 100
paul_age = john_age + 10
peter_age = paul_age + john_age
total_age = peter_age + paul_age + john_age
result = peter_age
We know paul_age = john_age + 10, and peter_age = paul_age + john_age. So peter_age
= john_age + 10 + john_age = 2 * john_age + 10
We also know total_age = peter_age + paul_age + john_age = 2 * john_age + 10 + john_age
+ 10 = 3 * john_age + 20
Therefore, john_age = (total_age - 20) / 3 = (100 - 20) / 3 = 80 / 3 = 26.67
peter_age = 2 * john_age + 10 = 2 * 26.67 + 10 = 53.33 + 10 = 63.33
result = peter_age = 63.33
The answer is 63.33

Figure 11: Examples of planning errors made by COTSOLVER from GSM. Both examples are
generated by code-davinci-002. In the first example, LLM fails to flip the sign of colby_took. In
the second example, the model drops an occurrence of john_age when expanding out the formula.
In both case, LLM fails to arrange the symbols to derive a chain of numeric equations that gives the
correct answer.

something

24

Execution Errors of COTSOLVER: CLUTRR

[James] was looking forward to dinner with his granddaughter, [Joanne].
relation(James, Joanne) = (grandfather, granddaughter)
[Helen] went to her son [Leo]’s House
relation(Helen, Leo) = (mother, son)
[Gene] bought gifts for his lovely sister, [Joanne]
relation(Gene, Joanne) = (brother, sister)
[Kecia] wanted to visit an art museum, so she asked her father, [James] to take her.
relation(Kecia, James) = (daughter, father)
[Sharon] and her sister, [Kecia], frequently bicker. However, they always make up quickly.
relation(Sharon, Kecia) = (sister, sister)
[Leo] was so happy for his brother, [Gene], getting a promotion.
relation(Leo, Gene) = (brother, brother)
How is [Sharon] related to [Helen]?
answer = relation(Sharon, Helen)
Solve the problem
Helen’s son is Leo, and Leo’s brother is Gene, so Helen’s son is Gene.
Helen’s son is Gene, and Gene’s sister is Joanne, so Helen’s daughter is Joanne.
Helen’s daughter is Joanne, and Joanne’s father is James, so Helen’s son is James.
Helen’s son is James, and James’s daughter is Kecia, so Helen’s granddaughter is Kecia.
Helen’s granddaughter is Kecia, and Kecia’s sister is Sharon, so Helen’s granddaughter is Sharon.
The answer is granddaughter.

Planning Errors of COTSOLVER: CLUTRR

[Rosa] took her daughter [Melissa] to the park.
relation(Rosa, Melissa) = (mother, daughter)
[Melissa] was sad her sister [Annie] could not join.
relation(Melissa, Annie) = (sister, sister)
[Lisa] is having a great day at the playground with her mother [Rosa] and [Rosa]’s sister [Ruth].
relation(Lisa, Rosa) = (daughter, mother)
relation(Rosa, Ruth) = (sister, sister)
[Rosa] asked her daughter, [Lisa], if she would like to go to a movie with her on Saturday night.
relation(Rosa, Lisa) = (mother, daughter)
How is [Ruth] related to [Annie]?
answer = relation(Ruth, Annie)
Solve the problem
Rosa’s daughter is Lisa, and Lisa’s mother is Rosa, so Rosa’s mother is Rosa.
Rosa’s mother is Rosa, and Rosa’s sister is Ruth, so Rosa’s aunt is Ruth.
Rosa’s aunt is Ruth, and Rosa’s daughter is Melissa, so Rosa’s niece is Melissa.
Rosa’s niece is Melissa, and Melissa’s sister is Annie, so Rosa’s niece is Annie.
The answer is niece.

Figure 12: Examples of planning errors made by COTSOLVER on CLUTRR. We omit questions for
brevity. Both examples are generated by code-davinci-002. In the first example, the model outputs an
incorrect value when applying the transitivity rule marked in red (correct output should be husband).
In the second example, the model comes up with an incorrect procedure.

something

25

I Prompt Examples

We show one or two exemplars in the prompt for each dataset. We list prompts for PROGLM for
comparison.

Prompts for GSM and GSM-SYS

SATLM

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

jason_lollipops_initial = 20
lollipops_given = Variable()
jason_lollipops_after = 12
jason_lollipops_after = jason_lollipops_initial - lollipops_given
result = lollipops_given
solve(result)

Q: Jeff bought 6 pairs of shoes and 4 jerseys for $560. Jerseys cost 1/4 price of one pair of shoes. Find the
shoe’s price total price.

shoes_num = 6
jerseys_num = 4
total_cost = 560
shoes_cost_each = Variable()
jerseys_cost_each = Variable()
shoes_cost_each * shoes_num + jerseys_cost_each * jerseys_num = total_cost
jerseys_cost_each = shoes_cost_each * 1 / 4
shoes_cost_total = shoes_cost_each * shoes_num
result = shoes_cost_total
solve(result)

PROGLM from Gao et al. (2023)

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

jason_lollipops_initial = 20
jason_lollipops_after = 12
denny_lollipops = jason_lollipops_initial - jason_lollipops_after
result = denny_lollipops
return result

Q: Jeff bought 6 pairs of shoes and 4 jerseys for $560. Jerseys cost 1/4 price of one pair of shoes. Find the
shoe’s price total price.

shoes_num = 6
jerseys_num = 4
total_cost = 560
jersey_shoes_cost_ratio = 1 / 4
shoes_cost_each = total_cost / (shoes_num + jerseys_num * jersey_shoes_cost_ratio)
shoes_cost_total = shoes_cost_each * shoes_num
result = shoes_cost_total
return result

Figure 13: Prompt (excerpt) used for GSM and GSM-SYS.

26

Prompts for LSAT

SATLM

Nine different treatments are available for a certain illness: three antibiotics—F, G, and H—three dietary
regimens—M, N, and O—and three physical therapies—U, V, and W. For each case of the illness, a doctor
will prescribe exactly five of the treatments, in accordance with the following conditions: If two of the
antibiotics are prescribed, the remaining antibiotic cannot be prescribed. There must be exactly one dietary
regimen prescribed. If O is not prescribed, F cannot be prescribed. If W is prescribed, F cannot be prescribed.
G cannot be prescribed if both N and U are prescribed. V cannot be prescribed unless both H and M are
prescribed.
Question: If O is prescribed for a given case, which one of the following is a pair of treatments both of which
must also be prescribed for that case?
(A) F, M (B) G, V (C) N, U (D) U, V (E) U, W

treatments = [F, G, H, M, N, O, U, V, W]
antibiotics = [F, G, H]
dietary_regimens = [M, N, O]
physical_therapies = [U, V, W]
prescribed = Function(treatments, bool)
Count([t:treatments], prescribed(t)) == 5
Count([a:antibiotics], prescribed(a)) <= 2
Count([d:dietary_regimens], prescribed(d)) == 1
Implies(Not(prescribed(O)), Not(prescribed(F)))
Implies(prescribed(W), Not(prescribed(F)))
Implies(And(prescribed(N), prescribed(U)), Not(prescribed(G)))
Implies(prescribed(V), And(prescribed(H), prescribed(M)))

solve(Implies(prescribed(O), And(prescribed(U), prescribed(V)))) # (A)
solve(Implies(prescribed(O), And(prescribed(G), prescribed(V)))) # (B)
solve(Implies(prescribed(O), And(prescribed(N), prescribed(U)))) # (C)
solve(Implies(prescribed(O), And(prescribed(U), prescribed(V)))) # (D)
solve(Implies(prescribed(O), And(prescribed(U), prescribed(W)))) # (E)

COT (annotated by our authors)

Nine different treatments are available for a certain illness: three antibiotics—F, G, and H—three dietary
regimens—M, N, and O—and three physical therapies—U, V, and W (omitted, see above)
Question: If O is prescribed for a given case, which one of the following is a pair of treatments both of which
must also be prescribed for that case?
(A) F, M (B) G, V (C) N, U (D) U, V (E) U, W

Let’s first analyze the conditions. We know there must be exactly one dietary regimen
prescribed. If O is a prescribed dietary regimen, then M and N must not be prescribed.
We know V cannot be prescribed unless both H and M are prescribed, so V cannot be
prescribed.
Let’s consider option (A). M must not be prescribed. This option is False.
Let’s consider option (B). V cannot be prescribed. This option is False.
Let’s consider option (C). N must not be prescribed. This option is False.
Let’s consider option (D). V cannot be prescribed. This option is False.
Let’s consider option (E). Let’s assume U is not prescribed. Because exactly 5 of the
treatments will be prescribed, they must be F, G, H, O, and W. In this way both F and
W are prescribed, which contradicts the condition that if W is prescribed, F cannot be
prescribed. So U must be prescribed. We can prescribe G, H, O, U, W. This option is
True.
So the answer is (E).

Figure 14: Prompt (excerpt) used for LSAT. Another example can be found in Figure 1. Several of
our authors authored different CoT prompts, leading to similar performance (ranging from 20% to
22%).

27

Prompts for BOARDGAMEQA

SATLM

A few players are playing a boardgame. The current state of the game is as follows. The gecko has 13 friends,
and hates Chris Ronaldo. And the rules of the game are as follows. Rule1: If the gecko has more than 8
friends, then the gecko does not proceed to the spot that is right after the spot of the bat. Rule2: Regarding
the gecko, if it is a fan of Chris Ronaldo, then we can conclude that it does not proceed to the spot that is
right after the spot of the bat. Rule3: If something does not proceed to the spot right after the bat, then it does
not give a magnifier to the swordfish.
Q: Based on the game state and the rules and preferences, does the gecko give a magnifier to the swordfish?

If the gecko has more than 8 friends, then the gecko does not proceed to the spot
that is right after the spot of the bat.
Implies(has_more_than_8_friends(gecko), Not(proceed_to_spot_right_after(gecko, bat)))
Rule2: Regarding the gecko, if it is a fan of Chris Ronaldo, then we can conclude
that it does not proceed to the spot that is right after the spot of the bat.
Implies(is_fan_of_chris_ronaldo(gecko), Not(proceed_to_spot_right_after(gecko, bat)))
Rule3: If something does not proceed to the spot right after the bat, then it does
not give a magnifier to the swordfish.
ForAll([x], Implies(Not(proceed_to_spot_right_after(x, bat)), Not(give_magnifier(x,
swordfish))))

The current state of the game is as follows. The gecko has 13 friends, and hates
Chris Ronaldo.
The gecko has 13 friends.
has_more_than_8_friends(gecko) == True
The gecko hates Chris Ronaldo.
is_fan_of_chris_ronaldo(gecko) == False

question: does the gecko give a magnifier to the swordfish?
solve(give_magnifier(gecko, swordfish))

COT from Kazemi et al. (2023)

A few players are playing a boardgame. The current state of the game is as follows. The gecko has 13 friends,
and hates Chris Ronaldo. And the rules of the game are as follows. Rule1: If the gecko has more than 8
friends, then the gecko does not proceed to the spot that is right after the spot of the bat. Rule2: Regarding
the gecko, if it is a fan of Chris Ronaldo, then we can conclude that it does not proceed to the spot that is
right after the spot of the bat. Rule3: If something does not proceed to the spot right after the bat, then it does
not give a magnifier to the swordfish.
Q: Based on the game state and the rules and preferences, does the gecko give a magnifier to the swordfish?

A: We know the gecko has 13 friends, 13 is more than 8, and according to Rule1 "if the gecko has more than
8 friends, then the gecko does not proceed to the spot right after the bat", so we can conclude "the gecko does
not proceed to the spot right after the bat". We know the gecko does not proceed to the spot right after the
bat, and according to Rule3 "if something does not proceed to the spot right after the bat, then it doesn’t give
a magnifier to the swordfish", so we can conclude "the gecko does not give a magnifier to the swordfish". So
the statement "the gecko gives a magnifier to the swordfish" is disproved. The answer is no.

Figure 15: Prompt (excerpt) used for BOARDGAMEQA.

28

Prompts for CLUTRR

SATLM

Dorothy took her daughter Michelle and her mother Gabrielle car shopping.
Q: How is [Michelle] related to [Gabrielle]?
[Dorothy] took her daughter [Michelle] and her mother [Gabrielle] car shopping.
relation(Dorothy, Michelle) = (mother, daughter)
relation(Dorothy, Gabrielle) = (daughter, mother)
How is [Michelle] related to [Gabrielle]?
solve(relation(Michelle, Gabrielle))

Teresa and her brother Ellis were having a wonderful time at Disneyland. Ellis asked his grandmother, Molly,
to read him a bedtime story. Molly read him Hansel & Gretel, which the boy always loved. Sandra is married
to Thomas, the couple welcomed Teresa into the world.
Q: How is [Molly] related to [Sandra]?
[Teresa] and her brother [Ellis] were having a wonderful time at Disneyland.
relation(Teresa, Ellis) = (sister, brother)
[Ellis] asked his grandmother, [Molly], to read him a bedtime story.
relation(Ellis, Molly) = (grandson, grandmother)
[Sandra] is married to Thomas, the couple welcomed [Teresa] into the world.
relation(Sandra, Teresa) = (mother, daughter)
How is [Molly] related to [Sandra]?
solve (relation(Molly, Sandra))

PROGLM from Lyu et al. (2023)

Dorothy took her daughter Michelle and her mother Gabrielle car shopping.
Q: How is [Michelle] related to [Gabrielle]?
To answer this question, we write a program to answer the following subquestions:
1. How is [Michelle] related to [Dorothy]? (independent, support: "[Dorothy] took
her daughter [Michelle] and her mother [Gabrielle] car shopping.")
relation(Michelle, Dorothy) = daughter
2. How is [Dorothy] related to [Gabrielle]? (independent, support: "[Dorothy] took
her daughter [Michelle] and her mother [Gabrielle] car shopping.")
relation(Dorothy, Gabrielle) = daughter
3. Final answer: How is [Michelle] related to [Gabrielle]? (depends on 1, 2)
relation(Michelle, Gabrielle) = relation(Michelle, Dorothy) @ relation(Dorothy,
Gabrielle)

Teresa and her brother Ellis were having a wonderful time at Disneyland...... (omitted, see above)
Q: How is [Molly] related to [Sandra]?
To answer this question, we write a program to answer the following subquestions:
1. How is [Molly] related to [Ellis]? (independent, support: "[Ellis] asked his
grandmother, [Molly], to read him a bedtime story.")
relation(Molly, Ellis) = grandmother
2. How is [Ellis] related to [Teresa]? (independent, support: "[Teresa] and her
brother [Ellis] were having a wonderful time at Disneyland.")
relation(Ellis, Teresa) = brother
3. How is [Teresa] related to [Sandra]? (independent, support: "[Sandra] is married
to Thomas, the couple welcomed [Teresa] into the world.")
relation(Teresa, Sandra) = daughter
4. Final answer: How is [Molly] related to [Sandra]? (depends on 1, 2, 3)
relation(Molly, Sandra) = relation(Molly, Ellis) @ relation(Ellis, Teresa) @
relation(Teresa, Sandra)

Figure 16: Prompt (excerpt) used for CLUTRR.

29

Prompts for PROOFWRITER

SATLM

Here are some facts and rules:
If someone visits the squirrel and the squirrel visits the rabbit then they are round. All round people are not
kind. If someone is round then they chase the rabbit. If someone is red and they chase the rabbit then they
visit the dog. If someone is red then they visit the squirrel. If someone visits the squirrel then the squirrel
visits the rabbit. the rabbit visits the dog.
the squirrel chases the bald eagle. the squirrel chases the rabbit. the dog sees the bald eagle. the bald eagle
does not chase the dog. the bald eagle is red. the squirrel is round. the rabbit does not see the dog. the rabbit
sees the bald eagle. the rabbit sees the squirrel. the dog does not see the rabbit. the rabbit does not visit the
bald eagle. the dog does not chase the bald eagle.
Q: The statement "The bald eagle visits the dog" is True or False?

ForAll([x], Implies(And(visit(x, squirrel), visit(squirrel, rabbit)), round(x)))
ForAll([x], Implies(round(x), Not(kind(x))))
ForAll([x], Implies(round(x), chase(x, rabbit)))
ForAll([x], Implies(And(red(x), chase(x, rabbit)), visit(x, dog)))
ForAll([x], Implies(red(x), visit(x, squirrel)))
ForAll([x], Implies(visit(x, squirrel), visit(squirrel, rabbit)))
chase(squirrel, rabbit)
see(dog, bald_eagle)
Not(chase(bald_eagle, dog))
red(bald_eagle)
round(squirrel)
Not(see(rabbit, dog))
see(rabbit, bald_eagle)
see(rabbit, squirrel)
Not(see(dog, rabbit))
Not(visit(rabbit, bald_eagle))
Not(chase(dog, bald_eagle))

solve(visit(bald_eagle, dog))

PROGLM adapted from Creswell et al. (2023)

Here are some facts and rules:
If someone visits the squirrel and the squirrel visits the rabbit then they are round...... (omitted, see above)
Q: The statement "The bald eagle visits the dog" is True or False?

the bald eagle is red.
bald_eagle_is_red = True
If someone is red then they visit the squirrel.
bald_eagle_visits_squirrel = bald_eagle_is_red
If someone visits the squirrel then the squirrel visits the rabbit.
squirrel_visits_rabbit = bald_eagle_visits_squirrel
If someone visits the squirrel and the squirrel visits the rabbit then they are round.
bald_eagle_is_round = bald_eagle_visits_squirrel and squirrel_visits_rabbit
If someone is round then they chase the rabbit.
bald_eagle_chases_rabbit = bald_eagle_is_round
If someone is red and they chase the rabbit then they visit the dog.
bald_eagle_visits_dog = bald_eagle_is_red and bald_eagle_chases_rabbit
Question: The statement "The bald eagle visits the dog" is True or False?
return bald_eagle_visits_dog

Figure 17: Prompt (excerpt) used for PROOFWRITER.

30

Prompts for COLOREDOBJECT

SATLM

Q: On the table, you see a bunch of objects arranged in a row: a purple paperclip, a pink stress ball, a brown
keychain, a green scrunchiephone charger, a mauve fidget spinner, and a burgundy pen. What is the color of
the object directly to the right of the stress ball?

What is the color of the object directly to the right of the stress ball?

stress_ball = next(x:objects, name(x) == ’stress ball’)

direct_right = next(x:objects, index(x) - index(stress_ball) == 1)

solve(color(direct_right))

PROGLM from Gao et al. (2023)

Q: On the table, you see a bunch of objects arranged in a row: a purple paperclip, a pink stress ball, a brown
keychain, a green scrunchiephone charger, a mauve fidget spinner, and a burgundy pen. What is the color of
the object directly to the right of the stress ball?

Find the index of the stress ball
stress_ball_idx = None
for i, object in enumerate(objects):

if object[0] == ’stress ball’:
stress_ball_idx = i
break

Find the directly right object
direct_right = objects[i+1]

Check the directly right object’s color
direct_right_color = direct_right[1]
answer = direct_right_color

return answer

Figure 18: Prompt (excerpt) used for COLORED OBJECT.

31

Prompts for STRUCTUREDREGEX

SATLM

Find the regex for the described patterns. Each regex r can be composed using sub-regexes r1, r2, r3, ...

Pattern:
Three strings separated by semicolons. The first string can either be 579 or 719, the second and third are
composed by three digits or three lower case letters that can be followed by a lower case letter, a digit or a
capital letter.
r = concat(r1,concat(<;>,concat(r2,concat(<;>,r2))))
r1 = or(<579>,<719>)
r2 = concat(or(r3,r4),optional(r5))
r3 = repeat(<num>,3)
r4 = repeat(<low>,3)
r5 = or(<low>,or(<num>,<cap>))

PROGLM from Gao et al. (2023)

Find the regex for the described patterns.

Pattern:
Three strings separated by semicolons. The first string can either be 579 or 719, the second and third are
composed by three digits or three lower case letters that can be followed by a lower case letter, a digit or a
capital letter.
Regex:
concat(or(<579>,<719>),concat(<;>,concat(concat(or(repeat(<num>,3),repeat(<low>,3)),
optional(or(<low>,or(<num>,<cap>)))),concat(<;>,concat(or(repeat(<num>,3),repeat(<low>,3)),
optional(or(<low>,or(<num>,<cap>))))))))

Figure 19: Prompt (excerpt) used for STRUCTUREDREGEX.

32

Prompts for SATCOTSOLVER

SATCOTSOLVER for GSM

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

jason_lollipops_initial = 20
lollipops_given = Variable()
jason_lollipops_after = 12
jason_lollipops_after = jason_lollipops_initial - lollipops_given
result = lollipops_given
solve(result)
Solve the value of result
We know jason_lollipops_after = jason_lollipops_initial - lollipops_given
So lollipops_given = jason_lollipops_initial - jason_lollipops_after = 20 - 12 = 8
result = lollipops_given = 8
The answer is 8

SATCOTSOLVER for CLUTRR

Dorothy took her daughter Michelle and her mother Gabrielle car shopping.
Q: How is [Michelle] related to [Gabrielle]?
[Dorothy] took her daughter [Michelle] and her mother [Gabrielle] car shopping.
relation(Dorothy, Michelle) = (mother, daughter)
relation(Dorothy, Gabrielle) = (daughter, mother)
How is [Michelle] related to [Gabrielle]?
solve(relation(Michelle, Gabrielle))
Solve the problem
Gabrielle’s daughter is Dorothy, and Dorothy’s daughter is Michelle, so Gabrielle’s
granddaughter is Michelle.
The answer is granddaughter.

Figure 20: Prompt (excerpt) used for SATCOTSOLVER.

33

	Introduction
	Overview
	SAT-Aided Language Models using Declarative Prompting
	Declarative Prompting
	Solving with a SAT Solver

	Experiments
	Setup
	Main Results
	Impact of SAT Solver & Declarative Prompting
	Advantages of Sat in Selective Prediction
	Analysis

	Related Work
	Conclusion & Limitations
	Detailed Statistics of Datasets
	Details of the Prompts
	Performance of Original CoT and ProgLM Prompts on Arithmetic Reasoning Datasets
	Extended Discussion on Concurrent Work
	Detailed Performance on the BoardgameQA Dataset
	Details of the SAT Specification
	Examples of Error Cases of SatLM
	Examples of Unsatisfiable and Ambiguous Formulas
	Examples of Incorrect Answers

	Examples of Execution Errors and Planning Errors Made by CoTSolver
	Prompt Examples

