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ABSTRACT

Time-series forecasting is a challenging problem that traditionally requires spe-
cialized models custom-trained for the specific task at hand. Recently, inspired
by the success of large language models, foundation models pre-trained on vast
amounts of time-series data from diverse domains have emerged as a promising
candidate for general-purpose time-series forecasting. The defining characteristic
of these foundation models is their ability to perform zero-shot learning, that is,
forecasting a new system from limited context data without explicit re-training or
fine-tuning. Here, we evaluate whether the zero-shot learning paradigm extends
to the challenging task of forecasting chaotic systems. Across 135 distinct chaotic
dynamical systems and 108 timepoints, we find that foundation models produce
competitive forecasts compared to custom-trained models (including NBEATS,
TiDE, etc.), particularly when training data is limited. Interestingly, even after
point forecasts fail, large foundation models are able to preserve the geometric and
statistical properties of the chaotic attractors. We attribute this success to founda-
tion models’ ability to perform in-context learning and identify context parroting
as a simple mechanism used by these models to capture the long-term behavior
of chaotic dynamical systems. Our results highlight the potential of foundation
models as a tool for probing nonlinear and complex systems.

1 INTRODUCTION

Classical paradigms in machine learning (ML) require the model to be trained on data specific to the
intended task. For example, to forecast the weather in Singapore, a model would need to be trained
on past weather data from Singapore. However, recent work in statistical learning has highlighted
the power of generative pre-trained models, which use probabilistic approaches and vast amounts of
training data to build foundation models that can excel at diverse tasks without the need for separate
retraining. In time-series forecasting, this paradigm shift has ignited an intense race to build general-
purpose pre-trained models that can make zero-shot forecasts for any time series (Oreshkin et al.,
2021; Garza & Mergenthaler-Canseco, 2023; Rasul et al., 2023; Jin et al., 2023; Gruver et al., 2024;
Dooley et al., 2024; Liu et al., 2024; Woo et al., 2024; Ansari et al., 2024; Goswami et al., 2024).
Such models have seen some initial success in forecasting real-world time series (Liang et al., 2024)
but they have not been systematically tested on chaotic dynamical systems, especially in terms of
their performance in long-term forecasting over an extended time horizon.

There are several reasons why such tests are interesting. First, to train foundation models for time
series, the amount of high-quality time-series data needed is the single most crucial bottleneck. For
this reason, a significant percentage of openly-available time-series data has been used to train these
models. It is thus difficult to verify that the test set is not contaminated by time series related to
those in the training set. In contrast, as far as we know, no trajectories generated by classical chaotic
systems (e.g., Lorenz equations) have been used to train foundation models. Thus, time series
from chaotic systems constitute an independent test set that can be used to quantify the generaliza-
tion ability of foundation models. Second, chaotic dynamical systems have well-defined attractors
that exhibit invariant statistical and geometric properties (fractal dimensions, Lyapunov exponents,
power spectra, etc.). This allows us to quantify ML models’ ability to capture the long-term behavior
of the system even after point forecasts inevitably fail (Pathak et al., 2018; Hess et al., 2023). Such
tests are usually not possible for general time series. Third, the past few years have seen growing
activities at the interface of physics and ML (Yu & Wang, 2024; Levine & Tu, 2024; Gilpin, 2024),
with the cross-fertilization between ML and dynamical systems yielding advances in both directions

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

135 chaotic 
systems

20 different 
initial conditions 

…
…

…

Pre-trained
LLM

Input as 
context

Baselines

Forecast

Measure 
performance

short-term 
accuracy

long-term invariant 
properties

Error 
(sMAPE)

Valid 
prediction 
time (VPT)

Correlation 
dimension

KL Divergence

&

Fully train

Figure 1: Chaos as a benchmark for zero-shot forecasting of time series. We use 135 distinct
chaotic systems to generate chaotic trajectories from 20 different initial conditions each. Each tra-
jectory is used to train the baseline deep-learning models (NBEATS, TiDE, etc.) and also provided
as context to the pre-trained LLM (we use Chronos, a best-in-class foundation model for time se-
ries). Both the trained baseline models and Chronos are then asked to predict the trajectory into the
future. We measure the quality of the predictions in terms of both short-term accuracy and long-term
attractor reconstruction. Across 104 distinct trajectories and 108 data points, we find that zero-shot
forecasts can be competitive in both short-term predictions and in capturing the long-term “climate”
of the dynamics.
(Weinan, 2017; Chen et al., 2018; Pathak et al., 2018; Li et al., 2020; Chen & Tao, 2021; Jordan
et al., 2021; Gauthier et al., 2021; Levine & Stuart, 2022; Mikhaeil et al., 2022; Krishnapriyan et al.,
2023; Yang et al., 2024). Benchmarking foundation models on chaotic systems introduces the pos-
sibility of applying dynamical systems techniques (e.g., Takens embedding theorem (Huke, 2006))
to understand the inner workings of these models and the origin of their generalization abilities.

In this paper, we set out to perform the first systematic evaluation of the zero-shot learning paradigm
in the context of forecasting chaotic systems. A schematic summarizing our benchmark pipeline is
presented in Fig. 1. We also show another schematic illustrating the difference between classical
deep learning models and foundation models when making time series predictions (see Fig. 7 in the
appendix).

Our study is also of intrinsic interest to scientific machine learning (SciML) and nonlinear dynamics
communities. So far, the data-driven modeling approaches developed in these communities (reser-
voir computing (Pathak et al., 2018), PINN (Karniadakis et al., 2021), SINDy (Brunton et al., 2016),
Koopman operators (Brunton et al., 2022), neural operators (Azizzadenesheli et al., 2024), etc.) still
very much follow the classical train/test dichotomy. That is, to forecast the dynamics of the Lorenz
oscillator, an ML model needs to be trained on data generated by the Lorenz equations. The model
learns the chaotic dynamics by extracting the underlying vector field (or flow map) from time-series
data during training. At first glance, it seems ludicrous that a model can effectively forecast chaotic
dynamical systems without first explicitly learning the flow. A convincing demonstration of the pos-
sibility of zero-shot learning in a SciML context could lead to new forecasting tools and generate
novel insights into chaotic systems.

From a theoretical standpoint, an emerging direction in SciML is to understand the out-of-
distribution generalization ability of different data-driven modeling frameworks (Wang et al., 2020;
Kong et al., 2021; 2023; Göring et al., 2024). This parallels a long line of research that investigates
the generalization ability of neural networks (Neyshabur et al., 2018; Belkin et al., 2019; Baldassi
et al., 2020; Xu et al., 2020; Feng & Tu, 2021; Nakkiran et al., 2021; Power et al., 2022; Liu et al.,
2022c). For example, if a model was only trained on trajectories from a limited number of initial
conditions, can it effectively extrapolate the learned dynamics to a different part of the phase space
and forecast from a previously unseen initial condition (that is, far from any of the training initial
conditions) (Zhang & Cornelius, 2023)? Foundation models that not only generalize to new initial
conditions but also to new systems could introduce novel ideas and insights into this endeavor.
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Our main contributions are:

1. A large-scale evaluation of the ability of time series foundation models to model physical
systems outside of their training domain.

2. Discovery that foundation models produce zero-shot forecasts competitive with models
custom-trained to forecast chaotic attractors. Moreover, larger foundation models produce
better forecasts.

3. Observation of scaling of a foundation model’s zero-shot prediction ability with context
lengths far exceeding typical correlation timescales of chaos, indicating in-context learning
of chaotic dynamics.

4. Observation that foundation models retain long-term statistical properties of chaotic attrac-
tors, even after pointwise predictions fail.

2 RELATED WORK

Several works train transformers to perform long-horizon forecasting tasks (Li et al., 2019; Zhou
et al., 2021; 2022; Liu et al., 2022b; Wen et al., 2022), obtaining leading results in long-horizon fore-
casting. However, recent works question their consistency and utility compared to properly-tuned
simpler models (Lara-Benı́tez et al., 2021; Zeng et al., 2023; Das et al., 2023; Tan et al., 2024). De-
spite these debates, a unique property of large models like transformers is zero-shot generalization,
in which they learn to perform a novel task without training the model weights on task-specific data
(Brown, 2020). The resulting in-context learning strongly differs from prior approaches to fore-
casting chaotic systems, which focus on training the weights of models based on the past observed
history of a system (Pathak et al., 2018; Gauthier et al., 2021; Vlachas et al., 2020). In-context learn-
ing has motivated the development of foundation models: large models pre-trained on vast amounts
of data, which perform few-shot inference via prompting (Bommasani et al., 2021).

Several recent zero-shot forecasting models are modifications of large language models, which en-
code time series as tokens (Xue & Salim, 2023; Ansari et al., 2024; Gruver et al., 2024; Miller et al.,
2024; Liu et al., 2024; Ekambaram et al., 2024). Several of these models have been shown to exhibit
in-context learning at test time (Lu et al., 2024; Gao et al., 2024; Liang et al., 2024).

Foundation models have recently been introduced for other scientific machine-learning tasks (Miller
et al., 2024). These include models for partial differential equations (Yang et al., 2023; Rahman
et al., 2024; Subramanian et al., 2024; Herde et al., 2024; Takamoto et al., 2022), numerical integra-
tion (Song et al., 2024), fluid flow prediction (Herde et al., 2024), molecular dynamics (Allen et al.,
2024), weather forecasting (Nguyen et al., 2023; Bodnar et al., 2024), material discovery (Takeda
et al., 2023), astrophysics (Parker et al., 2024), and electrocardiogram (ECG) analysis (McKeen
et al., 2024). However, to the best of our knowledge, this work is the first large-scale evaluation of
the zero-shot learning ability of foundation models on over 100 chaotic systems, both in terms of
short-term forecast accuracy and long-term attractor reconstruction performance.

3 A MOTIVATING EXAMPLE

Here, we chose Chronos (Ansari et al., 2024) to represent pre-trained models because it has been
shown to outperform earlier foundation models for time series, such as TimeGPT and Moirai (Garza
& Mergenthaler-Canseco, 2023; Woo et al., 2024). Chronos internally uses a large language model
based on the text-to-text T5 transformer model family (Raffel et al., 2020). It introduces a scaling
and quantization layer, which converts continuous-valued univariate time series into a set of discrete
tokens, with vocabulary size acting as a model hyperparameter. The model was trained on diverse
time series spanning ∼ 1011 observations drawn from 42 synthetic and real-world settings, but the
training data does not contain any dynamical systems. We evaluate five pre-trained variants of
Chronos, denoted by the sizes of the underlying T5 architecture: 8M , 20M , 46M , 200M , and
710M parameters.

Figure 2 shows zero-shot forecasting of the Lorenz oscillator (defined in the appendix), a well-
studied chaotic dynamical system, using Chronos-200M. The only data Chronos has access to are
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the 512 data points that serve as the context for the prediction (the gray-only part of the time se-
ries). Because Chronos is a univariate forecast model, we separately forecast each coordinate of
the attractor and reset the model state between each forecast. Forecasting chaotic systems based on
partial observations (e.g., only having access to the x or y coordinate of the Lorenz oscillator) is an
extremely difficult task in nonlinear dynamics (Ratas & Pyragas, 2024). Despite this challenge, the
prediction closely tracks the ground truth for over 3 Lyapunov times and, even after diverging from
it due to chaos, remains in the vicinity of the strange attractor.

Zero-shot prediction
Ground Truth

time

x(t)

x(
t)

y(t)

Figure 2: Zero-shot forecasts of
chaotic systems. We use Chronos to
predict the x(t) and y(t) components
of the Lorenz oscillator. The zero-shot
forecasts match remarkably well with
the ground truth for both short-term pre-
diction and long-term attractor recon-
struction.

Interestingly, although Chronos predicts x and y sepa-
rately, it maintains a positive correlation between x and y
so they have the same sign most of the time (which is nec-
essary for accurately reconstructing the attractor). This
suggests that Chronos internally models y when forecast-
ing x and vice-versa. In nonlinear dynamics, this process
is possible due to Takens’ theorem, which states that low-
dimensional measurements can reveal unmeasured dy-
namical variables using delay embedding (Huke, 2006).

However, the performance of Chronos, while impressive,
can also be fragile. Keeping everything unchanged, sim-
ply starting the context trajectory from a different initial
condition on the attractor can significantly degrade the
accuracy of Chronos’s prediction (see Figs. 5, 8 and 9).
So how good is Chronos at forecasting chaotic systems,
truly? More generally, is zero-shot forecasting from foun-
dation models a promising alternative to custom-trained
models when it comes to predicting chaotic systems?
To answer these questions, we next perform systematic
benchmarks that average over a diverse set of chaotic sys-
tems and different initial conditions.

4 METHODS

A chaotic systems forecasting benchmark. Nonlinear
dynamics aims to quantify the degree to which physical
systems are predictable. A key concept is the largest Lya-
punov exponent λ, an invariant property associated with
every set of differential equations that quantifies the rate
at which small errors accumulate. Systems that approach a periodic orbit or an equilibrium exhibit
zero or negative Lyapunov exponents because different initial conditions converge to the same state.
In contrast, chaotic systems exhibit positive Lyapunov exponents, implying that small changes in the
initial conditions or the model parameters lead to trajectories that (at least initially) diverge exponen-
tially. When modeling such systems, a small error will compound over a characteristic timescale, the
Lyapunov time, τ ≡ λ−1, making highly-chaotic systems (those with small τ ) difficult to forecast.

The dysts dataset represents a standardized benchmark of 135 low-dimensional chaotic systems,
described by ordinary differential equations that have been aligned with respect to their dominant
timescales and integration steps (Gilpin, 2021; 2023). Each equation in the database has its own
Lyapunov time τ , as well as distinctive chaotic dynamics annotated by mathematical properties
such as entropy or fractal dimension. The dataset can be re-integrated to produce chaotic multidi-
mensional time series of arbitrary length, granularity, and noise level. Here, in order to match the
typical properties of the real-world time series used to train Chronos, we generate a new dataset
of similar time series. For each chaotic system, we integrate a set of trajectories using an implicit
Runge-Kutta scheme, and then downsample them to a uniformly coarse granularity of 30 timepoints
per Lyapunov time τ . However, we observe only a weak dependence of our forecast results on the
data granularity (Appendix).

Baseline experiments. Our baseline experiment design matches prior works (Gilpin, 2021; 2023;
Godahewa et al.; Schötz et al., 2024). For each of the 135 chaotic dynamical systems, 20 trajectories
of length 812 are generated, each originating from a random initial condition on the attractor. This
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produces a set of 2700 (135 × 20) multivariate time series, which have dimensionalities between
3 and 6 depending on the particular dynamical system. All time series are then split into training
sets consisting of the first 512 points of each time series, with the last 300 timepoints set aside to
determine final test scores. For experiments with varying context lengths, trajectories are extended
backwards in time, so that the 300 test points remain the same.

For the baseline models, hyperparameter tuning is performed separately for each of the 135 dynam-
ical systems. For a given dynamical system, each of the 20 training trajectories is divided into a true
training set comprising the first 435 timepoints, and a validation set of the last 77 timepoints. For
each set of hyperparameters, a model is trained on the true training set and then evaluated on the vali-
dation set. The validation scores are averaged over the 20 trajectories, and the hyperparameters from
the best-performing model are selected. A model is then initialized with those hyperparameters, and
it is trained on the full 512 timepoints. The model is then tasked with autonomously generating a
forecast of the next 300 timepoints (around 10 Lyapunov times), which are compared against the
ground-truth trajectories to generate overall model scores. The testing dataset is therefore causally
disconnected from the training data at all times.

To match the design of Chronos, for multivariate dynamical systems, each baseline model is sep-
arately trained and tested along each dimension, and the results are averaged. This channel-
independent forecasting task is intrinsically harder than providing full state information, because
the models cannot leverage the mutual information between different dimensions (Ratas & Pyragas,
2024). However, recent works on large-scale forecast models actually obtain stronger results by
isolating input channels, because the resulting model class is more expressive (Nie et al., 2023). We
thus do not expect Chronos’s performance to improve if it were instead trained to produce multivari-
ate forecasts (i.e., one in which x,y,z are jointly embedded and tokenized).

The experiments yield 2700 distinct forecasts of 300 timepoints each along 3 − 6 dimensions de-
pending on the underlying chaotic system, all generated by separately-trained forecast models. Our
large-scale experiments thus span 5.5 × 107 training points, 3.2 × 107 test points, and 3.2 × 108

generated forecasts across all models. The experiments require 104 walltime compute hours on an
Nvidia A100 GPU.

Our baseline models include NBEATS (Oreshkin et al., 2019), a hierarchical neural network model
that has been shown to perform particularly well on dynamical systems forecasting tasks (Gilpin,
2021; 2023). TiDE (Das et al., 2023), a recent model that addresses several known computational
limitations of Transformer class models on forecasting time series. A next-generation reservoir
computer (NVAR) (Gauthier et al., 2021), which has a strong inductive bias for learning dynamical
systems and which has previously been found to perform well on chaotic systems (Gilpin, 2023).
We also include a small encoder-decoder Transformer with 0.5M trainable parameters, as well as
an LSTM (Vaswani et al., 2017; Hochreiter, 1997).

In principle, the baseline models have a wide variety of additional hyperparameters available to tune,
such as optimizer settings, reservoir or recurrent layer size, etc. Here, we focus on the lookback
window, which is a common hyperparameter across all forecast models. It is also analogous to the
context window in Chronos, for which we tune no other hyperparameters in the zero-shot setting.

Metrics. Following prior studies (Hyndman & Koehler, 2006; Makridakis et al., 2022; Gilpin,
2021; 2023), we use four metrics to evaluate forecast quality, including Symmetric Mean Absolute
Percentage Error (sMAPE).

sMAPE(x, x̂) ≡ 2
100

T

T∑
t=1

|xt − x̂t|
|xt|+ |x̂t|

,

where x1,x2, ...,xT correspond to the true test values of a time series up to a maximum forecast
horizon T , and x̂1, x̂2, ..., x̂T are the predictions of a forecast model at those same timepoints.

Valid Prediction Time (VPT). The first forecast horizon at which the sMAPE exceeds a fixed thresh-
old ϵ (Vlachas et al., 2020).

VPT ≡ argmaxtf {tf |sMAPE(xt, x̂t) < ϵ, ∀t < tf}. (1)
We set ϵ = 30, as in prior studies (Vlachas et al., 2020; Gilpin, 2023).

Correlation Dimension (dfrac). For chaotic dynamical systems, the long-term distribution of ob-
served data points approximates a fractal object known as the strange attractor. Fractals have space-
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filling properties that are intermediate between integer dimensionalities, and every strange attractor
has a unique and invariant fractal dimension. The correlation dimension non-parametrically esti-
mates the fractal dimension from a time series, by calculating the scaling of the number of other
attractor points that fall within a given radius of each point (Grassberger & Procaccia, 1983). We
compute the correlation dimension using all data points from a model’s forecasts and report the root
mean square error between the inferred correlation dimension and the ground truth.

Kullback–Leibler Divergence between attractors (Dstsp). We compute the KL Divergence between
the original and reconstructed attractors, following previous works (Hess et al., 2023; Göring et al.,
2024). To perform the computation, we center a Gaussian distribution at each point from the true and
reconstructed trajectories. We then use a sampling-based approach to estimate the KL Divergence
between these Gaussian mixtures (Hershey & Olsen, 2007). This metric measures whether two
attractors have matching distributions, and it largely agrees with the correlation dimension. We thus
report the KL Divergence results in the Appendix.

5 RESULTS

5.1 ZERO-SHOT MODELS ARE COMPETITIVE WITH FULLY-TRAINED MODELS IN
SHORT-TERM ACCURACY.

To evaluate the effectiveness of zero-shot forecasting for chaotic systems, we evaluate the perfor-
mance of Chronos and the baseline models on the dysts benchmark (Fig. 3). Across the 135
systems, the median VPT of the three largest zero-shot Chronos models is statistically indistin-
guishable, while the smaller models exhibit significantly smaller VPT (p < 10−3, non-parametric
Friedman test, N = 135). Scaling of performance with model size indicates that the larger models
exhibit better generalization properties, because the chaotic systems dataset strongly differs from
their training data. This finding supports the premise of the foundation model paradigm for chaotic
systems, because it shows that the sheer scale of a domain-agnostic model, when matched with suf-
ficient training, improves forecasts. Compared to the fully-trained baseline models, the three largest
zero-shot forecast models outperform all except for NBEATS (Friedman, p < 10−3, N = 135).
While recurrent neural networks and next generation reservoir computers have previously shown
promising forecast results for dynamical systems (Vlachas et al., 2020; Gilpin, 2021; Gauthier et al.,
2021), they underperform zero-shot models in the data-limited setting investigated here. However,
when given enough training data, it has been shown that these models can achieve longer prediction
horizons (Gauthier et al., 2021; Gilpin, 2023; Pathak et al., 2018). In contrast, the context length of
Chronos and other attention-based forecast models is limited, and they are most effective when data
is scarce.

Forecast Horizon (Lyapunov time)

Er
ro

r (
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Va
lid
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NBEATS
TiDE
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Figure 3: Zero-shot models of chaotic systems are competitive with custom-trained models.
Zero-shot forecasts from Chronos for five different model sizes (left), compared to other forecast
models directly trained on the points given to Chronos as context (right). Inset plots show the valid
prediction times (VPT), the first time each forecast exceeds an error limit. All error bars are over
135 chaotic systems, each with 20 distinct initial conditions.
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We emphasize that the similarity of the error curves in Fig. 3 does not arise from a lack of sensitivity
in the forecast metrics. When the baseline models are instead given full state information (multi-
variate forecasting), the prediction task becomes easier, resulting in lower sMAPE and higher VPT
across all systems (see Appendix). These results underscore that partial observability, which char-
acterizes most practical forecasting tasks (Ratas & Pyragas, 2024), is quantifiably harder for current
forecasting models. The zero-shot models perform nearly as well as state-of-the-art, fully-trained
models in this setting, reaching a VPT as high as 1 Lyapunov time.

Historically a prediction time of 1 Lyapunov timescale has been considered prohibitive even for
fully-trained forecast models. This is because both observational and modeling error compound
over this timescale (Palmer, 2000; Medio & Lines, 2001). Chronos’s ability to consistently forecast
up to 1 Lyapunov time, without prior training on dynamical systems, suggests the advantages of its
large-scale training on diverse time series. This scale allows it to extract generic predictive features
from time series, which also prove to effectively represent nonlinear dynamics. A similar concept
occurs in computer vision, in which convolutional neural networks tend to learn generic Gabor-like
feature extractors in early convolutional layers (Zeiler & Fergus, 2014). The ability of Chronos to
generate meaningful forecasts suggests that these learned nonlinear features, coupled with high di-
mensionality both in the input feature space (context length) and internal model dynamics, mitigate
the intrinsic chaoticity of the underlying systems. In dynamical systems theory, recent works on
Koopman operators show that appropriately-selected nonlinear transformations make chaotic sys-
tems appear more linear (and thus predictable) in higher-dimensional spaces (Mezić, 2013; Brunton
et al., 2022). As Chronos contains tens of millions of internal weights, it has an intrinsic advan-
tage due to its scale, which counteracts its low inductive bias when compared to forecasting models
specialized for dynamical systems, such as next-generation reservoir computers.

5.2 LARGE ZERO-SHOT MODELS EXCEL AT LONG-TERM ATTRACTOR RECONSTRUCTION.

Next, we quantify Chronos and the baseline models’ ability to capture the long-term behavior of
chaotic systems after point forecasts inevitably fail. This corresponds to a global measure of fore-
cast quality: how well does a model capture the shape of the strange attractor and reproduce the
statistics of major dynamic events, even if not necessarily their particular timing? In forecasting,
this problem is known as predicting the climate, rather than the weather (Patel et al., 2021; Bram-
burger & Fantuzzi, 2024).

NVARTransformerLSTM

tiny mini small base large

TiDE NBEATS

A B

Zero-shot
Fully-trained

Figure 4: Zero-shot forecast models effectively capture attractor geometry. (A) Example fore-
casts produced by the zero-shot and trained models, for 20 initial conditions from the Lorenz chaotic
attractor. (B) The correlation between the fractal dimension of the predicted attractor and the true
attractor (Spearman’s rank-order coefficient, N = 2420 points, p < 10−3 for all cases), versus
the VPT of the corresponding model. The red markers represent variants of Chronos with different
model sizes: tiny (8M parameters), mini (20M ), small (46M ), base (200M ), and large (710M ).
The blue markers represent the baseline models. Models closer to the top capture the attractor ge-
ometry better and models closer to the right make accurate point forecasts for longer. Error bars are
standard errors over 135 dynamical systems, each with 20 different initial conditions.

Figure 4 shows the correlation dimension accuracy (long-term attractor reconstruction quality)
against the VPT (short-term forecast quality) for different models. NBEATS performs the best in
both metrics, likely because very high pointwise accuracy necessarily leads to high global attractor
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quality. Generally, this trend holds across both zero-shot models and baseline models. However,
within each model class a few surprises emerge: the fully-trained small Transformer, which pro-
duced relatively weak forecasts, captures the attractor shape as accurately as the zero-shot models.
This observation suggests that attention-based models, which process their entire context simultane-
ously, have an innate advantage in capturing the long-term structure of attractors—mirroring similar
results for language models (Brown, 2020). Consistent with this interpretation, we observe weak at-
tractor reconstruction accuracy from the LSTM and NVAR models, which both operate sequentially
and downweight earlier parts of their context. To ensure that these results are not a consequence
of our choice of metric, we also evaluated attractor reconstruction quality using the KL Divergence
between the true and forecasted attractors, and we found the same trends (see Appendix).

5.3 ZERO-SHOT FORECASTS PARROT MOTIFS FROM THEIR CONTEXT.

We next identify a simple mechanism for zero-shot forecasting. Because Chronos is a generative
time series model that learns conditional dependencies among points in its context, we directly quan-
tify the similarity between the timepoints immediately preceding a forecast and previous intervals
seen in the context. We use the highest-correlating subsequence of duration greater than 30 time-
points (1 Lyapunov time in our units) as a measure of context overlap. We find that the zero-shot
model’s forecasts strongly correlate with this metric over all dynamical systems, and that this depen-
dence is more pronounced than in the best-performing fully-trained model (Fig. 5). This suggests
that much of Chronos’s performance arises from its ability to parrot context sequences, underscoring
our earlier observation that Chronos primarily models conditional dependencies among timepoints.

In Appendix E, we further probe this effect by showing that zero-shot performance continuously
degrades as nonstationarity is introduced into the time series. Nonstationarity represents distribu-
tion shift for time series, and it disrupts the effectiveness of context-parroting as a forecast strategy
because the dynamical attractor continuously and irreversibly changes. In Appendix C, we also
identify a weak correlation between forecast accuracy and the first forecast point’s natural mea-
sure density (the local density of points on a dynamical system’s attractor), underscoring how rarer
dynamics challenge zero-shot predictions.
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Figure 5: Context parroting as a mechanism for zero-shot forecasting. (A) Better zero-shot
forecasts often have initial stages that overlap with the context. The context overlap quantifies
the similarity between the last 30 points of the context and the prior points. (B) Comparison of
context overlap of the zero-shot forecasts (Chronos-base) with the best performing fully-trained
model (NBEATS). The zero-shot model correlates with context significantly more than the trained
models across the chaotic systems dataset (matched t-test, N = 135, p < 10−3).

5.4 CHRONOS PERFORMS EFFECTIVE IN-CONTEXT LEARNING EVEN WITH SHUFFLED
CONTEXT.

Chronos’s forecasting performance stems from its ability to perform in-context learning, in which
early context points on an attractor act analogously to prompts in language models (Brown, 2020; Li
et al., 2023). This mechanism underlies our earlier observation that the model’s generalization ability
improves with its size. While early points in a long context are decorrelated with the predictions,
they are drawn from the same underlying distribution, and we thus hypothesize that longer contexts
provide information about the distribution of attractor states, as occurs in language models (Xie et al.,
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2022). We test this hypothesis by randomly shuffling all length-k sequences of successive timepoints
in the model’s context, and then repeating our zero-shot experiments as k increases (Fig. 6A). For
example, if the context is x1,x2,x3,x4, then a 1-gram shuffle would be x1,x4,x2,x3 while a 2-
gram shuffle would be x3,x4,x1,x2. We keep the last k context timepoints the same as the original
training dataset, but we ensure that the penultimate k sequence differ from the unshuffled context.
As a baseline, we also directly perform zero-shot forecasts using only the last k context timepoints.

We find that the model’s forecast accuracy increases with the context length, but that, for sufficiently
long contexts, random shuffles provide better forecasts than shorter context baselines. Earlier context
points thus provide statistical information about the distribution of single timepoint values, as well
as conditional probabilities of certain pairs, triplets, et cetera (Xie et al., 2022). The ergodicity
of chaotic attractors implies that they have a well-defined stationary distribution of expected states
p(xt), known as the natural measure (Ott, 2002). Long contexts (even when shuffled), beyond the
timescale over which the states of a system become decorrelated, facilitate in-context learning of
this measure. Consistent with this observation, in Appendix E, we show that non-stationary time
series (in which this measure irreversibly deforms) generally lead to worse zero-shot forecasts. This
process resembles the warm-up time in reservoir computers, a type of recurrent neural network
used for dynamical systems forecasting (Jaeger & Haas, 2004; Pathak et al., 2018). In this setting,
extended context allows the reservoir to gradually synchronize with the dynamical system being
learned (Lu & Bassett, 2020).

5.5 ZERO-SHOT FORECASTING IS COMPUTATIONALLY EFFICIENT COMPARED TO
FULLY-TRAINING MODELS.

A B C

Figure 6: Scaling laws with context length. (A) The forecast accuracy (VPT) of Chronos-base
when given a context of length k versus when given a full context (length 512) but with all k-grams
shuffled. (B) Comparing Chronos-base zero-shot forecasts with NBEATS fully trained on the same
context. For these experiments, NBEATS was trained in a multivariate setting (channel-mixing),
giving it a slight advantage over Chronos. (C) The single-node walltime for zero-shot forecasts
(Chronos-base), compared to the training and inference costs of NBEATS (including hyperparameter
tuning). All curves show medians and standard errors over 20 different initial conditions from each
of 135 dynamical systems.

We next evaluate how variation in context length affects the performance of Chronos. We vary the
context length of the base Chronos model between 5 and its maximum value of 512 and repeat our
zero-shot forecast experiments. We also select the best-performing traditional model, NBEATS, and
fully train it (including cross-validation to set the lookback window) over the same points given to
Chronos as context. We find that the VPT of Chronos increases monotonically with context length,
even as the context reaches over 17 Lyapunov times (Fig. 6B). This timescale extends well-beyond
the ∼1 Lyapunov timescale over which chaotic systems typically become decorrelated (⟨x(t)x(t+
τ)⟩t = 0) (Shaw, 1981). This regime also exceeds the typical range of Takens’ embedding theorem,
because time series are usually lifted using delay embeddings over timescales < τ . Chronos’s
performance therefore arises from more than just featurization and extrapolation from recent points
in the context.

We next consider the practical question of whether the foundation model paradigm—pretraining in
domain-agnostic settings, and then specializing to a task—confers computational advantages over
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directly training a smaller model from scratch. We measure the walltime of training and inference
on a single A100 GPU node. 1 We find that the computational cost of Chronos can be favorable at
long context lengths when compared to NBEATS (Fig. 6C).

The inference time of Chronos is bounded by the quadratic scaling of attention layers with the con-
text length. This limitation motivates newer architectures like Mamba (for language) and TiDE (for
time series), which exhibit linear scaling. However, despite the relatively slow inference at small
context windows, we find that Chronos can be very efficient when working with long context, mak-
ing it a viable choice for many practical applications. In terms of the prediction horizon, Chronos
exhibits the same linear scaling of cost as auto-regressive models (RC, LSTM, NVAR, etc.).

6 CONCLUSION AND FUTURE DIRECTIONS

We have performed the first large-scale evaluation of zero-shot forecasting models on the classi-
cal problem of predicting chaos. Our most striking finding is that a large pre-trained model can
successfully forecast chaotic systems for up to one Lyapunov time, beyond the expected degree
of predictability, even though it was not directly trained on chaotic systems. The resource re-
quirements of inference-only zero-shot forecasting are negligible compared to fully training deep-
learning models such as NBEATS, particularly when long context lengths and lookback windows
are used. Moreover, zero-shot models perform well without hyperparameter tuning. All in all, the
success of Chronos indicates that many aspects of chaotic dynamics can be captured by generic
high-dimensional transformations, suggesting that the internal representations used by Chronos to
learn dynamical systems may provide insight into other time series tasks, such as system identifi-
cation or bifurcation detection. It also supports the hypothesis that there is a common “language”
for time series—universal features and structures shared by time series across different domains that
make transfer learning possible.

On a conceptual level, unpredictability in chaotic systems arises from the rapid growth of the gap
between the true trajectory and its approximation by a forecast model—motivating the intuition that
Lyapunov time bounds predictability. The long lookback of models like Chronos allows them to
leverage information from multiple past timepoints, and thus stabilize accumulation of error relative
to forecast models that only consider the most recent timepoints (Viswanath, 2001). In this sense,
long-context forecasting resembles multistep integration (Zhang & Cornelius, 2023; 2024). Recent
work on dynamic mode decomposition and Koopman operator inference take this idea even further,
by showing that time delays can lift dynamical systems into spaces where the dynamics are nearly
linear (Brunton et al., 2017). We therefore broadly interpret the zero-shot capabilities of Chronos,
which improve with model size, as illustrating the intrinsic inductive bias that comes from lifting
nonlinear time series to very high dimensions. However, this does not fully explain our observation
that long context windows, spanning multiple Lyapunov times, improve zero-shot forecasts. Instead,
we attribute this phenomenon to the recent discovery of in-context learning in pre-trained forecast
models, which is only recently starting to be explored in SciML (Yang et al., 2023; Subramanian
et al., 2024).

Our study therefore affirms the suitability of the foundation model paradigm for SciML tasks. An
important future direction for our investigation is task-specific tuning, in which the weights of large
pre-trained models like Chronos are fine-tuned on a small number of example chaotic time series.
This differs from the zero-shot in-context learning that we discuss above, and recent foundation mod-
els for partial differential equations have found that in-weights tuning can improve generalization
(Subramanian et al., 2024). In initial experiments, we found that at least two orders of magnitude
more data were required to stably update the weights and validation scores of Chronos. However,
this came at the expense of worse performance on the original Chronos training dataset, implying
that our dynamical systems dataset differs from a typical time series corpus. This underscores the
need for large-scale retraining or low-rank adaptation to further tune Chronos to our task. This mir-
rors results for large language models, where in-context learning has been shown to be preferable
when few examples of the target task are available (Liu et al., 2022a).

1Walltime imperfectly measures computational costs, as different models are specialized for different hard-
ware (e.g. paralleization or GPU acceleration). Nonetheless, walltime within a given model class provides a
proxy for a model’s practical performance.
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7 REPRODUCIBILITY STATEMENT

All benchmark code is available as a .zip file accompanying the submission. In addition to the
training scripts, the code contains example forecasts produced by all baseline models and Chronos
variants on the Lorenz attractor. The other 134 forecasts produced do not fit within the file upload
limit, but will be included in the camera-ready de-anonymized code on GitHub. The uploaded
code uses training data from dysts, an existing dynamical systems benchmark, which can be
downloaded directly from PyPI.
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A ADDITIONAL SCHEMATICS

Data from Lorenz ForecastTrain

Data from diverse domains 
(not including Lorenz)

Baseline models 
(e.g., NBEATS)

Foundation models 
(e.g., Chronos)

Pre-train Forecast

Prediction for Lorenz

Prediction for Lorenz

Data from Lorenz

Context

Context

(learn the flow)

(zero shot)

Figure 7: Difference between baseline models and foundation models in forecasting chaotic
systems. Classical deep-learning models (i.e., baseline models) forecast a chaotic system by learn-
ing the underlying vector field or flow map. To achieve this, the model adjusts its weights based
on data from the same chaotic system. In contrast, foundation models (e.g., Chronos) do not train
directly on the system they want to predict. Instead, they aim to “learn the language of time series”
(Ansari et al., 2024) by training on vast amounts of time series data from diverse domains. After
that, foundation models can make zero-shot forecasts on any (previously unseen) chaotic system
based on a short context trajectory.

B ADDITIONAL METHODS

B.1 LORENZ EQUATIONS.

Lorenz oscillator is one of the most studied chaotic systems and is described by the following equa-
tions:

ẋ = σ(y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz,

where the default parameter values are σ = 10, ρ = 28, and β = 8/3.

B.2 POINTWISE ERROR METRICS

We quantify point-wise accuracy of forecasts using the Symmetric Mean Absolute Percentage Error
(sMAPE).

sMAPE(x, x̂) ≡ 2
100

T

T∑
t=1

|xt − x̂t|
|xt|+ |x̂t|

,

where x1,x2, ...,xT correspond to the true test values of a time series up to a maximum forecast
horizon T , and x̂1, x̂2, ..., x̂T are the predictions of a forecast model at those same timepoints.

Prior studies have evaluated the suitability of various error metrics in evaluating forecast accuracy
(Hyndman & Koehler, 2006; Makridakis et al., 2022), including specifically on dynamical sys-
tems prediction (Gilpin, 2021; 2023), and found that sMAPE strongly correlates with other metrics
(e.g. RMSE, NRMSE, MASE, Spearman correlation) while exhibiting favorable properties like a
bounded range.

B.3 MEASURING ATTRACTOR SIMILARITY.

We measure attractor similarity using an approach introduced in previous works (Hess et al., 2023;
Brenner et al., 2022). The state space divergence between the true and generated attractors is given
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by the Kullback-Leibler divergence between the distributions p(x) and q(x),

Dstsp ≡ DKL(p(x) ∥ q(x)) =
∫
x∈RN

p(x) log

(
p(x)

q(x)

)
dx.

In high-dimensional spaces, a Gaussian Mixture Model (GMM) is created from the true and gener-
ated trajectories in order to approximate these distributions,

p̂(x) = (1/T )

T∑
t=1

N (x;xt,Σt) (2)

and

q̂(x) = (1/T )

T∑
t=1

N (x; x̂t,Σt).

While prior works set the covariance matrix equal to the scaled identity matrix Σt = σ2
t 1 with

σt = 1 for all t, we instead set σt = ∥xt − xt−1∥ in order to adjust for uneven spacing among data
points. We next perform Monte Carlo sampling and estimate the KL divergence as

Dstsp ≈
1

n

n∑
i=1

log

(
p̂(x(i))

q̂(x(i))

)
,

where x(i) are samples drawn from the true orbit (Hershey & Olsen, 2007).

C DEPENDENCE OF FORECAST ACCURACY ON INITIAL CONDITIONS

We investigate the degree to which zero-shot forecasting performance depends on the initial con-
dition. As an illustrative example, in the right panel of Figure 8, we repeat the experiment shown
in Figure 2, but for a different initial condition. We use the base Chronos model with a maximum
context of 512 points, but we choose a trajectory emanating from a different point on the chaotic
attractor. We see that the performance of Chronos is noticeably worse for this trajectory, indicating
that the particular choice of initial conditions can influence zero-shot performance.

For both initial conditions, Chronos attempted to perform pattern matching by looking for snippets
in the context trajectory that most closely resemble the history immediately preceding the prediction
and simply repeating that motif. The difference is that there is a very good repeating pattern in the
context trajectory on the left but not on the right, which directly leads to worse prediction from the
second initial condition. From the perspective of Takens’ embedding theorem, this context-matching
strategy is trying to find the closest context data point to the initial condition in the delay embedding
space and repeating the context trajectory from that point.

To further quantify variability in forecast accuracy caused by initial conditions, we sample a set of
200 trajectories originating from different points on the attractor, and generated zero-shot forecasts
that we evaluated using the VPT (Eq. 1). We define the initial condition for each trajectory as the
final point of the context given to the model before a forecast. We observe wide variation in predic-
tion performance with the initial condition (Fig. 9, with a nearly exponential distribution of VPT
across initial conditions. Thus while the median VPT of Chronos is relatively high (approaching 1
Lyapunov time for the largest models), occasionally an initial condition will result in a forecast that
remains accurate for several Lyapunov times.

In order to identify the origin of these anomalously long forecasts, we calculate the relative denstity
of the attractor at each initial condition. Chaotic dynamical systems approach a steady-state distri-
bution of points, the strange attractor, with a continuous density µ(x) known as the natural measure
of the system. We estimate µ̂(x) using Eq. 2 for each initial condition, and compare the VPT(x) of
a forecast originating from each initial condition x to the estimated measure at that point µ̂(x). We
perform this procedure for 20 distinct initial conditions from each of the 135 chaotic dynamical sys-
tems in our dataset (Fig 9B). In the figure, we highlight the initial conditions for the Lorenz attractor
in blue. We find a weak but robust correlation between measure and forecast accuracy (Spearman’s
rank order coefficient, ρ = 0.26± 0.03, p < 10−3, N = 2700. This is consistent with the idea that
zero-shot forecast models perform better at forecasting denser, more common regions of the attrac-
tor, because those points are more common in the context. Conversely, rarer points (i.e., extremal
points closer to out-of-distribution dynamics relative to the context points) lead to worse forecasts.
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Figure 8: Zero-shot forecasting performance depends on initial conditions. Zero-shot forecasts
of the Lorenz attractor using Chronos-base for two different initial conditions on the Lorenz attractor.
Both forecasts use the same context length of 512 timepoints; their performance difference arises
only from their starting point.

VPT (Lyapunov times)

Lorenz
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Figure 9: Quantification of the dependence of zero-shot forecasts on initial conditions. (A) A
set of points on the Lorenz chaotic attractor, colored by the forecast accuracy (VPT) of zero-shot
forecasts in which they were the final context point. A histogram of the accuracy values is underlaid.
(B) The forecast accuracy (VPT) versus the relative density of the region of the attractor in which
the last context point appears. Black circles indicate 20 initial conditions from each of 135 chaotic
dynamical systems, and the 20 initial conditions from the Lorenz attractor are highlighted in blue.
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D APPLICATION TO REAL-WORLD CHAOTIC SYSTEMS

We next compare our results for our large-scale dynamical systems benchmark dataset to real-world
multivariate time series from chaotic systems. Unlike simulated differential equations, real mea-
surements exhibit measurement error, stochasticity, and non-stationarity.

Our experimental dataset consists of a 400 fps video of an oscillating double pendulum, as recorded
on a high-speed Phantom Miro EX2 camera (Asseman et al., 2018). The video is paired with a time
series of centroid coordinates for each pendulum hinge and joint, as extracted by the original authors
using object tracking. This time series consists of positions of the pivot attachment to the wall, the
hinge connecting the first and second pendula, and the second pendulum’s tip. We transform the
dataset into new sequences that represent the angles each pendulum forms with the vertical axis,
denoted as (θ1, θ2). We then numerically differentiate these angle measurements to obtain the angu-
lar velocities (θ̇1, θ̇2). In an ideal double pendulum system, the set of four variables (θ̇1, θ̇2, θ1, θ2)
uniquely parameterizes the Hamiltonian, thereby defining the system’s attractor. However, for the
experimental data, the time-averaged kinetic energy T ∝ θ̇21 + θ̇22 gradually decreases over the
course of the experiment. As a result, the pendulum dataset is non-stationary, with an attractor that
gradually changes over time. We downsample this time series by a factor of 3.

We use Chronos (base model) to forecast this dataset for 7 non-overlapping contiguous time intervals
spanning the full experiment. Each window is split into a context window of length 512 and a testing
dataset of length 300, for a total of 8× (512 + 300) ≈ 6500 total timepoints. We find that the error
exhibits similar scaling as we observe for ergodic dynamical systems in the main text (Fig. 10).
This indicates that experimental variation and measurement errors do not preclude the application
of zero-shot forecasting to chaotic time series generated by real-world systems. Additionally, the
pendulum dataset exhibits non-stationarity due to gradual loss of energy from the system. As a
result, this dataset exhibits weak distribution shift between the training (context) and testing (zero-
shot forecasting) settings. Because we observe the same general scaling of error as in the 135 ergodic
and stationary systems, we conclude weak distribution shift does not preclude effective zero-shot
forecasting. Thus, in this example, Chronos exhibits out-of-domain generalization, because the
underlying chaotic attractor (and thus distribution of testing points) changes relative to the context.

Forecast Horizon (Lyapunov time)
True
Predicted

A B

Er
ro

r (
sM

AP
E)

x1(t)

x2(t)

Figure 10: Zero-shot forecasting of a chaotic pendulum experiment. (A) Zero-shot forecasts
along the first angular coordinate of a double pendulum for the base Chronos model, for 7 different
initial conditions. (B) Scaling of forecast error with forecast horizon. Curve corresponds to means
and standard errors across 7 initial conditions and 4 coordinates each.
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E PROBING OUT-OF-DISTRIBUTION DYNAMICS AS TRAJECTORIES LEAVE
THE ATTRACTOR

0.2 0.4 0.6 0.8 1.0
Nonstationarity
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Figure 11: Zero-shot forecasts degrade with distribution shift. Forecast accuracy (VPT) of zero-
shot forecasts with Chronos-base, as the degree of nonstationarity in the time series varies via Eq. 3.
Curve and error bars are median and standard error over 20 initial conditions for each of N = 135
chaotic dynamical systems.

We next evaluate the degree to which non-stationarity affects zero-shot forecasting performance.
For each trajectory considered in the main text, we apply an exponential modulation along the time
dimension. For a time series of length T given by x1,x2, ...,xt, ...,xT , the exponentially-decaying
modulation has the form,

xt ← xte
t
log fmin
T−1 (3)

By decreasing fmin from 1 to 0, we increase the degree to which the dynamics appear non-stationary.
When fmin = 1, then the damping term becomes a constant and the dynamics are unaffected. How-
ever, when fmin → 0, the dynamics resemble damped oscillations that monotonically approach a
fixed point. We thus consider experiments forecasting time series with fmin < 1 a quantitative probe
of the degree to which zero-shot forecasts are applicable to real-world systems, in which the chaotic
attractor irreversibly deforms due to processes like dissipation. In a machine learning context, this
setting corresponds to out-of-distribution or out-of-domain generalization, in which the forecast
points describe a different dynamical regime than the context (Göring et al., 2024).

We find that, across all 135 systems, the performance of Chronos degrades as the degree of nonsta-
tionarity 1 − fmin increases (Fig 11). This observation matches our intuition, based on our obser-
vation in the main text that Chronos performs in-context learning of the distribution of points (and
pairwise, k-wise conditional dependencies among successive timepoints). We also find in the main
text that Chronos performs more strongly on trajectories resembling its training data. Nonstationar-
ity undermines all of these mechanisms, leading to the degradation in performance as the forecast
regime more strongly differs from the context.

Because context-parroting is a particularly effective strategy for stationary systems like ergodic
chaotic attractors, time series models like NBEATS, which can directly identify and model mono-
tonic trends, have an advantage on simple out-of-distribution forecasting tasks like the one we con-
sider here. NBEATS and its variants have successfully been applied to several types of time series
with predominant trends, underscoring their advantage in this setting Challu et al. (2023). Based
on this observation, we anticipate that several modifications could make foundation models like
Chronos more robust to weak nonstationarity: (1) Chronos currently uses an encoder-decoder lan-
guage model Raffel et al. (2020). Using Chronos’s tokenizer in tandem with a modern language
model with an explicit positional encoding scheme, like rotary positional embedding, would pro-
vide the model with explicit time information that would allow it to capture longer-term trends in
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a time series Su et al. (2024). (2) Pretraining with short time series. While Chronos’s original
training dataset includes many nonstationary processes, shorter time series generally exhibit greater
nonstationarity, and so their inclusion represents a simple mechanism to improve model robustness.
(3) Biasing generative forecasting towards rarer states. As a generative model, Chronos generates
forecasts probabilistically by sampling multiple potential future trajectories. Modifications of this
scheme that encourage oversampling of rarer states could help the model better account for irre-
versible processes, though potentially at the expense of lower performance on ergodic processes.

F BASELINE MODELS

F.1 BASELINE MODEL HYPERPARAMETERS

Our baseline models follow the experiment design and hyperparameter tuning procedure used in
prior works on the chaotic systems dataset (Gilpin, 2021; 2023). Those works contain qualitative
descriptions of the different models, and the performance results obtained in those works motivate
our particular baseline model choices. We also include the Time-series Dense Encoder (TiDE),
a newly introduced linear state space model that can achieve nearly-optimal error rates for linear
dynamical systems (Das et al., 2023). For many models, we use reference implementations and hy-
perparameters found in the Darts forecasting library (Herzen et al., 2022). For the next-generation
reservoir computer (NVAR), we use the default settings used in the original work (Gauthier et al.,
2021). However, in order to fairly tune hyperparameters across models, for each model we select one
hyperparameter to tune that corresponds to the lookback window, or context, that sets the number of
past timepoints that the model simultaneously processes when generating a forecast.

N-BEATS Model (Oreshkin et al., 2019)

• Key Hyperparameters:
– Input Length: Tuned for each system among {0.067, 0.167, 0.333, 0.5, 0.833, 1}

Lyapunov times
– Number of Stacks: 30
– Number of Blocks: 1
– Number of Layers: 4
– Layer Widths: 256
– Expansion Coefficient Dimension: 5
– Degree of Trend Polynomial: 2
– Dropout Fraction: 0.0
– Activation Function: ReLU

Transformer Model (Vaswani et al., 2017)

• Key Hyperparameters:
– Input Length: Tuned for each system among {0.067, 0.167, 0.333, 0.5, 0.833, 1}

Lyapunov times
– Number Attention Heads: 4
– Number Encoder Layers: 3
– Number Decoder Layers: 3
– Dimension Feedforward: 512
– Dropout Fraction: 0.1
– Activation Function: ReLU

TiDE (Das et al., 2023)

• Key Hyperparameters:
– Input Length: Tuned for each system among {0.067, 0.167, 0.333, 0.5, 0.833, 1}

Lyapunov times
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– Number of Encoder Layers: 1
– Number of Decoder Layers: 1
– Decoder Output Dimension: 16
– Hidden Dimension Size: 128
– Past Temporal Width: 4
– Future Temporal Width: 4
– Past Temporal Hidden: None
– Future Temporal Hidden: None
– Temporal Decoder Hidden: 32
– Dropout Fraction: 0.1

NVAR (Gauthier et al., 2021)

• Key Hyperparameters:
– Number Input Lags: Tuned for each system among {0.067, 0.167, 0.333, 0.5, 0.833,

1} Lyapunov times
– Maximum Order: 2
– Regularization: 10−4

– Stride: 1.0

LSTM (Hochreiter, 1997)

• Key Hyperparameters:
– Input Length: Tuned for each system among {0.067, 0.167, 0.333, 0.5, 0.833, 1}

Lyapunov times
– Hidden Dimensionality: 25
– Number of Recurrent Layers: 2
– Dropout Fraction: 0.0
– Training Length: 24

F.2 FINE-TUNING CHRONOS

As an informative additional baseline, we attempted to fine-tune Chronos-base on the chaotic sys-
tems dataset. From the zero-shot experiments, we compiled a collection of 1.3× 106 observations,
corresponding to trajectories of length 512 timepoints originating from 20 initial conditions for each
of 135 chaotic dynamical systems. We fine-tuned Chronos-base using the authors’ original training
scripts, with all hyperparameters matching those used in the original Chronos training run Ansari
et al. (2024). On our zero-shot dataset, we did not observe a strong improvement in Chronos’s
validation scores on held-out trajectories. Instead, the loss plateaued early during training, and the
qualitative appearance of forecasts did not improve over the zero-shot case. When we instead tried
only fine-tuning on a single system, the Lorenz attractor, we observed similar results. Moreover, we
observe a weak reduction in forecast accuracy on datasets randomly drawn from Chronos’s training
corpus. Across the 135 chaotic dynamical systems in our dataset, we did not observe a general re-
lationship between fine-tuning performance and invariant properties of the underlying system, such
as dimensionality or Lyapunov exponents.

Based on these observations, we conclude that the training behavior of Chronos is decoupled from
properties of the underlying datasets in the training regime we reach in our fine-tuning experiments.
We thus conjecture that the chaotic systems time series dataset strongly differs from the large time
series corpus on which Chronos was originally trained, leading to fine-tuning failing due to strong
task shift Kumar et al. (2022). This phenomenon represents a variant of out-of-distribution gen-
eralization error, manifesting as slow convergence on new datasets. We therefore expect that fine-
tuning Chronos for chaotic systems will require full retraining on a dataset comparable in size to
the Chronos training corpus (1010 − −1011 observations), as well as potential customizations of
the tokenizer and language model to better handle dynamical systems datasets. For example, recent
works note that multivariate time series often exhibit weak coupling among channels, motivating
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the general use of channel-independent training schemes Nie et al. (2023). We also expect that new
hyperparameters, particularly training schedule and optimization rates, will need to be selected in or-
der to obtain noticeable improvements. This level of tuning and data scale exceeds that used for the
other baseline models, and so we defer further investigation of fine-tuning and few-shot learning to
future work. Additionally, in order to avoid fully retraining Chronos for our task, alternative strate-
gies such as low-rank adaptation Hu et al. (2021), and its generalizations for time series forecasting
Gupta et al. (2024), may be applied in future work.

G ADDITIONAL EXPERIMENTS AND ANALYSES

Figure 12: Zero-shot forecast models capture attractor geometry well, as measured by the KL
Divergence. The state space divergence Dstsp between the predicted attractor and the true attractor,
versus the VPT of the corresponding model. The red markers represent variants of Chronos with
different model sizes: tiny (8M parameters), mini (20M parameters), small (46M parameters), base
(200M parameters), and large (710M parameters). The blue markers represent the baseline models.
Models closer to the bottom capture the attractor geometry better, and models closer to the right
make accurate point forecasts for longer.
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Figure 13: Comparison of univariate versus multivariate baseline forecasts of chaotic systems.
Because Chronos is a univariate forecast model that predicts each time series channel independently,
the baseline experiments we present in the main text (left panel here) involve channel-independent
training, in which each baseline model is separately trained and tested on each dimension of the
input time series. We repeat these experiments in a multivariate setting, by retraining the baseline
models simultaneously on all dimensions (right panel). All error bars are over 20 distinct initial
conditions for each of the 135 chaotic systems.
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Figure 14: Correlation between forecasts and invariant properties. The correlation between the
Lyapunov exponent of each of the 135 chaotic systems, and the sMAPE error of a forecast model,
as a function of the prediction horizon.
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Figure 15: Zero-shot attractor reconstruction accuracy scales with model size. The Spearman
correlation between the fractal dimension of Chronos’s predictions, and the true fractal dimension
of the underlying system, compared to the number of trainable parameters in the Chronos model.

Figure 16: Naive forecasts underperform all models evaluated. The growth of the sMAPE
error for a naive constant forecast, in which the most recent training point is carried forward as
the prediction for all future values. The shaded region corresponds to standard error across 135
dynamical systems, with 20 initial conditions each..
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