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ABSTRACT

One of the ways that machine learning algorithms can help control the spread
of an infectious disease is by building models that predict who is likely to get
infected making them good candidates for preemptive interventions. In this work
we ask: can we build reliable infection prediction models when the observed data
is collected under limited, and biased testing that prioritizes testing symptomatic
individuals? Our analysis suggests that when the infection is highly contagious,
incomplete testing might be sufficient to achieve good out-of-sample prediction
error. Guided by this insight, we develop an algorithm that predicts infections, and
show that it outperforms baselines on simulated data. We apply our model to data
from a large hospital to predict Clostridioides difficile infections; a communicable
disease that is characterized by asymptomatic (i.e., untested) carriers. Using a
proxy instead of the unobserved untested-infected state, we show that our model
outperforms benchmarks in predicting infections.

1 INTRODUCTION

Preemptively identifying individuals at a high risk of contracting a contagious infection is impor-
tant for guiding treatment decisions to mitigate symptoms, and preventing further spread of the
contagion. In this paper, we study how to build individual-level predictive models for contagious
infections while explicitly addressing the challenges inherent to contagious diseases.

Building accurate infection prediction models is hindered by two main factors. First, contagious
infections defy the usual iid assumption central to most machine learning methods. This is because
an individual’s infection state is not independent of their contacts’ infection states. Previous work
has often relied on expert knowledge to construct exposure proxies (Wiens et al., 2012; Oh et al.,
2018). It is then assumed that conditional on the exposure proxy and individual characteristics,
individual outcomes are independent of one another. Second, the observed data is biased due to
incomplete testing. We use the term “incomplete testing” to describe the scenario where only a
small, biased subset of infected individuals get tested. Such a scenario is ubiquitous in the context of
contagious infections for several reasons. While many individuals carry the pathogen, only a fraction
display symptoms. Even in the presence of unlimited testing resources, the latter are far more likely
to get tested leading to biased data collection where individuals predisposed to displaying symptoms
are over-represented. Incomplete testing makes learning accurate models difficult since the collected
labels are missing not at random leading to biased, inconsistent estimates.

In this work, we treat non-independence of outcomes as a blessing rather than a curse. Our proposed
approach leverages the fact that an individual’s infection state provides useful information about
their contacts’ true infection states. This information is used to generate pseudo-labels for untested
individuals, mitigating issues due to incomplete testing. The key idea behind our approach is that
highly structured patterns of contagion transmission can serve as a complementary signal to identify
even untested carriers. The stronger that signal is, the less impact that incomplete testing will have.
Our contributions can be summarized as follows: (1) We identify two properties of the collected
data that can be exploited to mitigate the effects of incomplete testing. (2) We propose an algorithm
that leverages that insight to predict the probability of an untested individual carrying the disease.
(3) We empirically evaluate the effectiveness of our method on both simulated data and real data for
a common healthcare associated infection. We show that predictions from our model can be used to
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inform efficient testing and isolation policies. Using real data, we show that our model outperforms
baselines in the task of predicting a hospital associated infection.

2 RELATED WORK

Infectious disease modeling. Modeling the transmission of infectious diseases has been extensively
studied in the epidemiology literature using SIS/SIR models and several other variants (Kermack &
McKendrick, 1927). These epidemiological models focus on the aggregate levels of infections in a
community, which is distinct from our approach here where we focus on predicting individual level
infections. In the machine learning literature, previous work has relied on proxies for exposure,
e.g., the prevalence of a disease in a community (Wiens et al., 2012; Oh et al., 2018), and implicitly
assume that conditioning on individual characteristics. Similar to our approach, Fan et al. (2016) and
Makar et al. (2018) take into account structured data, namely contact networks to compute infection
estimates (Fan et al., 2016; Makar et al., 2018). We differ from these approachs in that (1) we do
not make parametric assumptions about the joint distribution of the observed or latent variables, and
instead use nonparametric models (neural networks) to model the infection states, (2) we do not
assume all infections will become symptomatic as is done in Fan et al. (2016), and (3) unlike the
approach taken by Makar et al. (2018), we model time evolving sequences of infections taking into
account the exposure states of potential asymptomatic carriers.

Semi-supervised learning. Our proposed approach relies on transductive reasoning to generate
labels for untested individuals. In that, it is closely related to semi-supervised learning methods, such
as pseudo-labeling (Lee, 2003), and self-training (Robinson et al., 2020). However, in traditional
pseudo-labeling, the transductive power comes from the fact that points similar to each other in the
input space should have similar outputs. Here, the rich structure in the data allows for more: we can
construct pseudo-labels for untested individuals not just by relying on their similarity to other labeled
instances, but also by observing their observed contacts’ infection states. Our empirical results, and
analysis are similar in spirit to concepts presented in the semi-supervised literature, specifically the
cluster assumption, which we discuss at length later (Seeger, 2000; Rigollet, 2007).

Graph Neural Networks. Our proposed approach incorporates knowledge of the contact network.
In that it is similar to Graph Neural Networks (GNNs), which utilize relational data to generate
prediction estimates (Zhou et al., 2018). GNNs fall into two categories, the first relies on transductive
reasoning and cannot generalize to new communities (e.g., Kipf & Welling (2017)) or inductive,
which can be used to generate estimates for previously unseen graphs (e.g., Hamilton et al. (2017)).
Our work is similar to the latter category with an important distinction: our approach leverages
unlabeled data giving more accurate, and robust estimates.

Our work can be viewed as combining the strengths of semi-supervised learning, and GNNs to
address limited testing. In addition, our approach augments the strengths of those two approaches
with ideas from domain shift, and causal inference such as importance weighting (Cortes et al.,
2010) to address biased testing.

3 PROBLEM SETTING

Setup. Let yt ∈ {0, 1} denote an individual’s true infection state at time t, with yt = 0 if an
individual is not infected and 1 if they are. We use xt ∈ X t to denote a vector of the individual’s
features at time t, and define J ti to be the set of indices of i’s contacts at time t. We assume
that contact indices are known, i.e., that the contact network is observed. Let eti ∈ R≥0 denote
i’s exposure state, with eti =

∑
j∈Jt

i
ytj . The exposure state is fully observed only when all of i’s

contacts have been tested, but otherwise either partially observed or unobserved. Define xt = xt||et,
where || as the concatenation operator, i.e., xt ∈ X t × R≥0. Let ot ∈ {0, 1} denote the observation
state, with ot = 1 if an individual’s label is observed, i.e., if the individual has been tested for the
infection. We use the super-script : t to denote variables from time t = 0 up to and including t, e.g.,
x:t = [x0, ...,xs, ...,xt].

Throughout, we use capital letters to denote variables, and small letters to denote their values. We
use P (Xt, Ot, Y t+1) to denote the unknown distribution over the full joint. Under biased testing,
we have that P (Xt|Ot = 1) 6= P (Xt|Ot = 0) 6= P (Xt). We assume that 0 < P (Ot =
o|Xt = x) < 1, for all x ∈ X , and o ∈ {0, 1}. This is the same as the overlap assumption
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in causality literature. In addition, we assume that i’s outcome is independent of their contacts
given xi, which is itself a function of the contacts’ outcomes, we refer to this as the conditional
independence assumption. We consider the case where we have access to (1) a labeled (i.e., tested)
set of individuals D1 = {Dt1}Tt=0 = {(xti, yti), . . . (xtnt

1
, ytnt

1
)} ∼ P (Xt, Y t+1|Ot = 1), and (2) an

unlabeled (untested) set of individuals D0 = {Dt0}Tt=0 = {xti, . . . ,xtnt
0
} ∼ P (Xt|Ot = 0), such

that for each i ∈ D0∪D1, and each t ∈ [0, T ], we have that J ti ∈ D0∪D1. It will also be convenient
to use U t to denote the set of indices of untested individuals at time t.

Learning objective. We are interested in learning f : x:T → yT+1. To focus the discussion on
the novel component of our approach, we consider a setting where we are only interested in pre-
dicting the outcomes for a single time step. It will be particularly useful to consider the task of
making predictions for t = 2, using data from t = 0, 1, dropping the time superscript when it can
be inferred from the context. We present the full model predicting infection sequences over time in
section 5. Let ` be the logistic loss function. Our goal is to find f ∈ F , where F is some hypothesis
space such that the risk of incorrectly classifying the infection state Rf = EX,Y [`(f(X

t), Y t+1)]
is minimized. We briefly consider a scenario where we have oracle access to the true exposure states
but we return to the more realistic, non-oracle scenario later. Under the conditional independence
assumption, we can break down the risk to the sum of independent losses. Define the inverse proba-
bility of being tested, wt(X) = P (Ot = o)/P (Ot = o|Xt), following Robins (1998), and Robins et al.
(2000). Due to the overlap assumption, and under biased testing, we have that:

Rf = Rw
t

f = EX,Y |O=1[w
t(X)`(f(X), Y )|O = 1], (1)

(Cortes et al., 2010). The reweighted risk simply places a higher importance on the loss of individu-
als who are unlikely to be tested. Rwt

f cannot be directly computed since the expectation is defined
with respect to the unobserved distribution. However, the following reweighted empirical loss is an
unbiased estimator ofRwt

f :

ε(f) =
∑
i∈Dt

1

wti`(f(x
t
i), y

t+1
i ),

by Cortes et al. (2008), where wti = p(Ot = oti)/g(oti|x
t
i), p(Ot = oti) is the empirical estimate of

P (Ot = o), and g(oti|xti) is the estimated probability of getting tested conditional on individual
characteristics. Without oracle access to exposure states, the samples xt ∼ P (Xt|Ot = 1) are
incomplete. This is because xti includes eti, which is a function of ytj : j ∈ J ti . We only fully
observe eti, and hence xti for individuals whose contacts have all been tested. To address this, we
define Q(Dt1), a set of partially imputed distributions that are consistent with the labeled samples.
It is the set of all possible distributions over the (partially) unobserved eti. Our risk is now defined
with respect to both Q, and f , and our task is to find Q and f , such that the following empirical risk
is minimized:

ε(f,Q) =
∑
i∈D1

ŵti`(f(x̂
t
i), y

t+1
i ), (2)

where x̂ = xt||êt, and êti ∼ Q, and ŵti = p(O = oi)/g(x̂i, oi). Minimizing this objective is prone to
extreme overfitting. To see why, consider some Q that sets eti = 100 for every i : oti = 1, yt+1

i =

1, and 0 for i : oti = 1, yt+1
i = 0. Since Q is essentially leaking the true label into the input

space, it is trivial to find some f that takes in the imputed inputs, {(xti, 100, yt+1
i )}i:yt+1

i =1, and

{(xti, 0, yt+1
i )}i:yt+1

i =0 and gives perfect performance. Such an f is clearly expected to have poor
generalization error. We next consider how to leverage existing properties of the problem as efficient
regularizers.

4 EXPLOITING STRUCTURE AS A REGULARIZER

We seek to constrain the candidate sets F and Q(D1) to ensure that such pathological overfitting is
avoided. To do so, we exploit the structure in the data, namely the interdependence among individu-
als’ infection states, and the availability of unlabeled data. Recall that the exposure state is the sum
of the contacts’ infection states. This means that when we draw êti from Q, we are implicitly draw-
ing a label for i’s contacts’ outcomes, by definition of êti. This becomes obvious if we breakdown êti
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draws fromQ as follows: êti =
∑
j∈Jt(i) 1{j : otj = 1}·ytj+1{j : otj = 0}·ŷti,j , and ŷti,j ∼ Q, such

that ŷti,j ∈ [0, 1]. This breakdown immediately implies two properties that should hold for “good”
Q’s. First, Q should assign the same estimate for the same individual. Consider the case where two
i = a, i = b come into contact with the same individual j, who has not been tested. For simplicity,
suppose that a, and b have no other contacts. In this case, one failure mode would be if Q assigns
eta = ŷta,j = 0.9, and etb = ŷtb,j = 0.1, which constitutes two “votes” on the true state of j; one vote
by each contact. Second, note that Q is implicitly assigning pseudo-labels for the infection states
of untested contacts, this means that Q’s imputed labels should be similar to the labels predicted
by f . Going back to the previous example, besides having ŷta,j = 0.9, ŷtb,j = 0.1, we also have
f(xtj) = 0.4. A good regularization method should then explicitly encourage the pseudo-labels to
be similar to the estimated labels from f , and hence implicitly penalizing varying estimates for the
same individual. This intuition is encoded in the main loss in our proposed approach:

f∗, Q∗ = min
f,Q

1

nt1

∑
i:oti=1

ŵti`(f(x̂
t
i), y

t+1
i ) +

λ

|J ti ∩ U t|
∑

j∈Jt
i∩Ut

ŵt−1j `(1{f(xt−1j ) > τ}, ŷti,j) (3)

where |.| denotes the set cardinality, λ ≥ 0, and τ are parameters to be picked via cross validation,
ŷti,j ∼ Q∗, and êti =

∑
j∈Jt(i) 1{j : otj = 1} · ytj + 1{j : otj = 0} · ŷti,j . When λ > 0,

this objective is somewhat similar to pseudo-labeling (Lee, 2003), it would encourage the votes
of each of j’s contacts to conform with the prediction from f , and implicitly with one another.
When λ = 0, equation 3 prioritizes finding good predictions for the labeled data, ignoring possible
structure implied by the data. Note that in the second term in equation 3, we have f(xt−1j ), f(x̂t−1j ),
meaning we assume not imputed exposure component for contacts at time t−1. This is only because
we are considering the simple setting where we make predictions for t+1 = 2, meaning at t−1 = 0,
this is the beginning of the observation period and we cannot impute exposure yet. We consider more
complicated settings where the contacts’ inputs also include an exposure state later.

4.1 WHEN DOES STRUCTURE WORK AS A REGULARIZER?

We now ask: when do we expect equation 3 to yield models superior to those that ignore structure?
First, if the imputed ŷ.,j concentrates around significantly different values for j : yj = 1, and
j : yj = 0, then we expect minimizing equation 3 to yield better models. We stress that we do
not require ŷ to be an accurate estimate of the true labels, but only require that there is significant
separation between the imputed values for untested-infected individuals and untested-uninfected
individuals, i.e., they are distinguishable. This distinction means that even noisy and inaccurate
estimates of ŷ can be sufficient. We expect such high separability to exist, even in settings of low
and biased testing if observed data satisfies a property which we will refer to as carrier potency.
The carrier potency property can be viewed as an extension of the margin condition in classification
(Tsybakov et al., 2004; Audibert et al., 2007): it states that there are few j’s who have contacts with
ambiguous infection states. In other words, infections cluster so that infected-untested individuals
tend to have many more infected contacts than do uninfected-untested. Such a condition will be
satisfied if the infection is highly contagious. We refer to this property as the potency property.

Second, even if the imputed ŷ allows high seperability, but x̂ makes it difficult to identify a learnable
mapping from x̂ to ŷ, then minimizing equation 3 instead of the objective on the labeled data only
does not help. Such is the case when untested-healthy and untested-infected individuals “look” the
same, meaning they have very similar characteristics and exposure states. This property is often
referred to as the cluster assumption in semi-supervised learning literature (Rigollet, 2007; Seeger,
2000). The cluster assumption states that individual characteristics, and exposure states tend to form
near discrete clusters, with homogeneous labels within each cluster. We refer to this property as the
dissimilarity property.

The degree to which these two properties are satisfied in the observed data will depend on the
infection being studied, the environment in which it is spreading, and the quality of data collection,
among others. Importantly, as we show empirically in section 6, our proposed approach “does no
harm” in that in the worst case scenario, when these two properties degrade to the point of non-
existence, our model performs as well as the best baseline.
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5 PROPOSED METHOD

Our proposed model, a Model for Infections under Incomplete Testing (MIINT) leverages la-
beled and unlabeled data in order to predict sequences of infections over time. MIINT mini-
mizes a slight variant of equation 3, which is modified to predict sequences of infections. Let
Ati, be the set of ancestors of i at time t whose outcomes are unobserved, i.e., Ati = J t(i) ∩ U t,
At−1 =

⋃
j∈At

i

J t−1(j) ∩ U t−1, etc. The loss at time t is defined as:

Lt = 1

nt1

∑
i∈D1

ŵti`(f(x̂
t
i), y

t+1
i ) +

t∑
s=0

λ

|Ati|
∑
j∈As

i

ŵsj`(1{f(x̂sj) > τ}, ŷsi,j), (4)

and the final objective is to find f∗, Q∗, such that: f∗, Q∗ = minf,Q T
−1 ∑

t Lt. We assume that
f does not vary over time (though that is an assumption that could be relaxed), and take F to be
the space of recurrent neural networks (RNNs), which are ideal for modeling sequences of data.
We propagate the predicted state forward in time, meaning f takes in xt, et and ŷt to predict ŷt+1.
This ensures that exposures at time < t are taken into account when predicting at time t. Note
that equation 4 can be broken down into the independent sums of individual losses, as well as their
ancestors’ losses. This means we can use stochastic gradient descent, with gradient updates defined
with respect to mini-batches as is typically done. One limitation is that equation 4 as stated would
require keeping track of all the ancestors’ states since t = 0, which can be prohibitive. For long
observation periods, we suggest considering a subset of Ati up to a reasonable time limit.

The algorithm used to train MIINT, similar to pseudo-labeling (Lee, 2003), is inherently an ex-
pectation maximization algorithm, where we iterate between computing the expected label for the
untested samples (i.e., finding the optimal Q̂, and identifying the optimal of f that maximize the
likelihood of the observed labels under Q̂) until convergence. Convergence is achieved when the
change in loss defined over the samples with observed labels in a held out validation set < ε for
some small ε. For our purposes, we find it sufficient to let Q be a deterministic function rather than
an actual distribution. However, our approach is trivially extendable to allow Q to be a distribution,
for example using techniques described in Tran et al. (2017). All models presented in this paper are
implemented using Tensorflow (Abadi et al., 2016).

Finally, recall that we need to estimate ŵti = p(O = oi)/g(x̂i, oi). We follow Chernozhukov et al.
(2017) in using an independent sample to estimate g. Importantly, g depends on x̂. So we follow an
iterative process: after every epoch of training, we use the most updated f to estimate the unobserved
outcomes in the validation set, and hence get an estimate for ê and x̂ for the independent weighting
sample. We use these imputed values to learn an updated g. The updated g provides estimates for
the weights of the training samples of the main prediction model, which are used to reweight the
loss function for the next epoch, and so forth.

6 EXPERIMENTS

We evaluate our model on a simulated and a real data setting. In the simulated setting, unlike the real
data setting, we have access to the true infection state, which allows us to evaluate the performance
of the model and baselines under different patterns of infection. In both settings, we present results
from our model (MIINT) and four baselines: (1) Optimistic Model (OM): a model that assumes
that all unobserved labels are = 0, (2) No Exposure Model (NEM), a model that ignores exposure,
and attempts to predict infections solely based on the individual characteristics, (3) GraphSAGE
(GNN) a graph neural network that takes into account the contact network, and observed infection
states (Hamilton et al., 2017) but ignores untested individuals, and (4) Pseudo-Labeling (PL) a semi-
supervised learning method that takes into account untested individuals but ignores the rich graph
structure (Lee, 2003).

For all models, we weight the loss from each individual by the inverse of their estimated propensity
to be tested, wti , which is estimated using an independent sample following Chernozhukov et al.
(2017). For our model, we use the iterative weighting technique outlined in section 5. We also
present an ORacle Model (ORM): an unrealistic model that has oracle access to the true labels for
the whole population. For all these models, we keep the neural network architecture fixed. We
use cross-validate to get the values of λ, τ . Results from unweighted models, and details about
cross-validation and network architecture are included in the supplement.
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6.1 SIMULATION EXPERIMENTS

Our goal here is to highlight how MIINT can be used to inform testing and isolation policies that lead
to reduction in infection rates, as well as empirically validate our conjectures regarding favorable
properties under which MIINT is expected to be superior.

Setup. We simulate a world where there are three types of people: symptomatic if exposed (G0),
asymptomatic if exposed (G1), and immune (G2). If exposed, individuals in group G0 become
infected and symptomatic, hence they are more likely to get tested. If exposed individuals in group
G1 become infected without displaying symptoms. This group is unlikely to get tested. Finally,
G2, the immune group is unlikely to get the infection even if exposed. To simulate individuals’
characteristics (i.e., x), we map the distinct groups to distinct MNIST digits. We use MNIST images
because (1) they provide a complex input space compared to randomly generated data, and (2)
images can be easily classified as similar or dissimilar, which enables us to design experiments
where the dissimilarity property can be easily manipulated as described later.

Let νi denote the pixels of an MNIST image i. For G0 we randomly sample without replacement
n/3 ·T elements from the set {νi}i:di=0 , where n is the total sample size. ForG1, andG2 we sample
from {νi}i:di=1, and {νi}i:di=2, respectively. Note that the infection states will be different within
each group, since infection also depends on the exposure state, and injected noise. We draw the edge
sets {J t(i)}i∈n,t∈[0,T ] according to a stochastic block model, parameterized by the matrixB, where
Bk,l is the probability that an individual from Gk forms an edge with an individual from Gl. B is
important in simulating different levels of carrier potency. When B1,k/B1,2 for k = {0, 1} approaches
1, members of the asymptomatic carrier group is equally likely to form an edge with individuals who
are infectable (G0) as with individuals who are immune (G2). This is the unfavorable low-separation
setting. On the other hand, if B1,k/B1,2 = 5, for example, individuals inG0, andG1 are 5 times more
likely to form an edge with someone in a susceptible group as compared to forming an edge with an
individual in G2. This is a favorable, high-separation setting.

We mimic the situation where testing started after a significant proportion of the population has
been exposed by randomly setting the true exposure state of 20% of the population to be 1 at time
t = 0. Exposure for each individual eti =

∑
j∈Jt

i
ytj ≥ 1. The true infection label yt+1

i = 1{i ∈
(G0, G1)}·1{ei,t = 1}. We introduce noise by randomly flipping the labels of 1% of the population.
If an individual tests positive at t < T , their label remains positive until t = T . We define pobs to
be the proportion tested, and hence their true label is observed. We pick the probability of observing
i’s label based on his true infection state, meaning, p(oi|yi = 1) 6= p(oi|yi = 0). For all the
simulations, we set T = 6, we draw 500× 6 samples for each of the training, validation, and testing
sets. We simulate an independent sample to compute the weights wi, so we also draw 500 × 6
samples that will be used to train and validate weighting models. For each experiment, we draw 10
different datasets, and report the mean and standard deviation of the performance metric across the
10 draws.
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Figure 1: Reduction in infection rates relative to a
policy that does not isolate infections (no-action
policy) as the daily testing budget varies. Our
model achieves the highest reductions in policy
relative to all realistic (i.e., non-oracle) models.

Informing testing and isolation policies.
Here, we highlight how our model can in-
form efficient testing and isolation policies. We
simulate biased and limited testing by setting
p(oi|yi = 1)/p(oi|yi = 0) = 5, and pobs = .1 re-
spectively. We set B1,k/B1,2 = 5, making it a
high potency setting where MIINT is expected
to perform well. We mimic a situation where
no isolation interventions are taken at training
time. At test time, we fix a testing budget of
at most ptest% of the total population on each
time step. We use the predictions from each
model to inform who gets tested by picking the
top ptest% with the highest predicted proba-
bility of infection. Of those tested, individuals
who are truly infected are “isolated” by setting
their edges for the subsequent time steps to 0.
They are also taken out of the population eligi-
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ble for further testing. We compute the infec-
tion rate, πM for a model M as πM = n−1 ·

∑
imaxt yi,t. We define π0 as the infection rate under

a no-action policy, that is if no isolation interventions are taken. Our main metric of interest is the
reduction in infection rate relative to the no-action policy = π0 − πM/π0. Figure 1(left) shows the
reduction in infection rate on the y−axis for different values of the testing budget ptest% on the
x−axis. In addition to the main baselines, we also show results from a random testing policy. The
results show that for any given testing budget, our model outperforms all feasible baselines giving
higher reduction in infection rates. Importantly, the results imply that our model is able to achieve
near oracle infection control with only 70% testing, compared to ≈ 90% for the baselines.

In next two settings, we empirically validate our conjectures about the two properties which en-
able our model to outperform others, and explore what happens as these favorable properties are
weakened to the point of non-existence.

Sensitivity to the potency property. Here, we fix pobs = .1, and p(oi|yi = 1)/p(oi|yi = 0) = 5
but sweep over carrier potency by varying the value of B1,k/B1,2 from 1 (low potency) to 5 (high
potency). Figure 2(left) shows B1,k/B1,2 on the x−axis and the AUROC on the y−axis. The plot
shows that MIINT outperforms other baselines when there is high potency, and as potency declines,
its performance becomes similar to that of the other baselines. This supports our conjecture that
our regularization approach is advantageous when it is easy to impute the true infection states for
individuals based on their contacts’ infection states.

Sensitivity to the dissimilarity property. Here we examine what happens when the cluster assump-
tion breaks down, meaning when untested individuals with similar characteristics have different in-
fection states. We do so by moving the untested, and possibly infected1 individuals to “look” similar
to the untested-healthy. Specifically, we sample pairs of images {(νi, νj)}i,j:di=1,dj=2. We then
use VoxelMorph (Balakrishnan et al., 2018), a learning-based framework for deformable, pairwise
image registration to learn a function that gives us a deformation field which we then apply it to
pairs of images, moving νi to look closer to νj . Further details about the deformation process are
in the original VoxelMorph paper. Figure 2(right) shows the results of this setting. The x−axis can
be viewed as the degree of similarity between the two untested groups with 0 being dissimilar (i.e.,
the original images without any deformation) and 1 being very similar (i.e., all images of the digit
1 look almost identical to 2’s). The y−axis is the average AUROC. We see that all models perform
worse as members in G1 look more and more similar to those in G2. We also see that MIINT out-
performs all baselines when the two groups are dissimilar, but performs as well as the others when
the mapping from input space to label becomes more difficult.

The last two experiments confirm our conjectures about the properties necessary for MIINT to per-
form well, and imply that MIINT “does no harm”: at worst it performs comparably to alternatives,
and at best it can give significantly better performance making it the superior alternative. Additional
results examining the effect of bias and limited testing are in the supplement.
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Figure 2: Left: Impact of varying levels of carrier potency controlled by B1,k/B1,2. Our model out-
performs baselines, especially in cases with high potency. Right: Impact of high (=.9) and low (=.1)
similarity between the characteristics of the untested-uninfected and untested-infected populations.
Our model outperforms baselines when the two populations are dissimilar.

1Individuals in G1 are only infected if they get exposed.
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6.2 REAL DATA EXPERIMENT

Here, our task is to predict the onset of Clostridioides difficile infections (CDI) among patients in a
large urban hospital. CDI is a contagious infection that attacks the gut, and causes over 300,000 in-
fections annually in the US (Magill et al., 2014). As with most contagious infections, asymptomatic
carriers of CDI exists and can contribute to the spread of the infection (Riggs et al., 2007).

Setup. Using Electronic Medical Records, we extract daily characteristics of patients who were
admitted to the hospital between 09/01/2012 and 06/01/2014. We follow similar inclusion criteria
as Oh et al. (2018); Makar et al. (2018), outlined in detail in the supplement. We collect all patient
characteristics available upon admission (e.g., gender, age, medical history) as well as daily charac-
teristics (e.g., lab tests). We collect contact networks, where an edge exists if two patients are in the
same room on the same day or if they came into contact with the same nurse on the same day.

Here, we have partial access to the true infection states, since not all the patients are tested, making
accurate evaluation of different models difficult. Therefore, we exploit testing protocols to construct
a proxy “true” label and a proxy “observed” label. Whether a patient is labeled as CDI positive or
not is a result of two, or possibly three tests. First, an enzyme immunoassay (EIA) and Glutamate
dehydrogenase (GDH) test are conducted. If the results of the two tests are discordant, a polymerase
chain reaction (PCR) assay acts as a tie-breaker. Previous studies comparing the outcomes of the two
groups (those who have non-discordant EIA/GDH+ results vs. PCR+) have shown that the former
experiences more severe complications (Origüen et al., 2018; Polage et al., 2015). This implies the
EIA/GDH+ label can act a proxy for symptomatic infections, whereas PCR+ might be picking up on
patients who are carrying the bacteria but have low toxin levels and therefore mild or no symptoms.

For this reason, we hide the PCR+ labels during training, presenting them as untested individuals to
all models. At test time, we set the target label = 1 if a patient tested positive via EIA/GDH or PCR
and 0 otherwise. In addition to the baselines outlined in section 6.1, we allow one of models full
access to the EIA/GDH+ and PCR+ labels, and refer to it as a “partial oracle” model (POM) since
it has access to the PCR+ labels, but not the full infection states. The latter are unavailable because
the majority of patients are not tested. We also compare our results to the state-of-the-art prediction
model for CDI, which is a logistic regression that takes into account the varying importance of
different risk factors over the hospitalization, and relies on medical knowledge to construct exposure
proxies. We refer to this model as the Expert driven Logistic Regression (ELR), details about the
model are outlined in Wiens et al. (2012).

We split the data into 5 subsets based on time. The first subset holds 6 months of data and is used to
train the main infection prediction models. The second and third subsets contain 5 months of data
each, and are used for validation and testing of the main prediction model. The last 2 subsets are
used for training and validation of the weighting models, and each contain 2 months worth of data.
We report the AUROC, the True Positive Rate (TPR) at the threshold which achieves a False Positive
Rate (FPR) of 10%, as well as the Area under the Precision Recall curve (AUPR) on the test set.

TPR@
FPR=10%

AUROC AUPRC

POM 0.49 (0.014) 0.73 (0.003) 0.2 (0.004)
NEM–U 0.45 (0.009) 0.7 (0.006) 0.13 (0.001)
OM–U 0.45 (0.012) 0.7 (0.005) 0.12 (0.004)
ELR 0.53 (0.008) 0.82 (0.006) 0.09 (0.002)
GNN 0.24 (0.005) 0.59 (0.005) 0.03 (0.007)
PL–U 0.58 (0.012) 0.78 (0.006) 0.18 (0.009)
MIINT–U 0.6 (0.007) 0.81 (0.006) 0.11 (0.002)

Table 1: Performance metrics for CDI prediction on the test set.

Table 1 shows the results of the
models on the test set. For
several models, the unweighted
model outperforms its weighted
counterpart. We show the bet-
ter performing version here, and
index it with “–U” to denote
that it is the unweighted ver-
sion. Results from all mod-
els, and results broken down by
GDH/EIA+ vs. PCR+ are in the
supplement. Standard deviations
are calculated by taking 100 bootstrap replicates of the test set data. We see that MIINT outperforms
all others on all reported metrics. The one exception is ELR: MIINT and ELR achieve comparable
AUROCs but MIINT significantly outperforms ELR on all other metrics. Unsurprisingly, MIINT
outperforms POM even though the latter has access to better labels. We hypothesize that this is
because in addition to accurately estimating the PCR+ patients, it is also capturing truly untested in-
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fections, and utilizing these estimates to accurately impute the exposures of the EIA/GDH+ patients
as well as the PCR+ patients leading to better performance metrics.

While POM, OM-U, NEM-U, and PL-U achieve higher AUPRC than our model, figure 8 in the
supplement shows that these models achieve a higher AUPRC than MIINT because they have high
precision at low recall, whereas MIINT has the highest precision at high recall values (greater than
0.5). High precision at low recall is not necessarily useful in the infectious disease setting, where
having a low recall (meaning being unable to identify the true infections) can be disastrous.

7 CONCLUSION

We presented MIINT, a model that predicts contagious infections under biased and limited testing.
It does so by taking into account contact networks and the interdependence of individuals’ out-
comes. We identified two properties that determine the extent to which MIINT outperforms other
approaches. The first states that the more contagious the infection, the better MIINT performs. The
second is the degree to which characteristics of untested and infected individuals and characteristics
of the untested and healthy individuals form discrete clusters–an important property in general for
semi-supervised learning. Using simulated data, we showed that MIINT can be used to guide test-
ing policies that lead to reduced infection rates, and that even if the two properties outlined above
are non-existent, MIINT still performs well. We showed that MIINT outperforms baselines when
applied to real EMR data.

Because of the obvious relevance of our work to the current pandemic we should note that our
model is best-suited for infections which spread within clinical environments (e.g., hospitals and
nursing facilities). Within clinical settings, it is easier to track a individuals’ contacts, which is
necessary for our model. While our model can theoretically be used to predict COVID-19 infections
in the community, it would require unprecedented levels of contact tracing, and data collection. In
conclusion, we believe this work is a first step down an important path. If predictive models are to
play a useful role in limiting the spread of contagious infections, they must take into account the
interdependence of outcomes, and the fact that untested individuals are capable of spreading the
disease before they have been diagnosed.
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