
PinNet: Pinpoint Instructive Information for Retrieval Augmented
Code-to-Text Generation

Han Fu 1 Jian Tan 1 Pinhan Zhang 2 Feifei Li 1 Jianling Sun 2

Abstract
Automatically generating high quality code de-
scriptions greatly improves the readability and
maintainability of the codebase. Recently, re-
trieval augmented code-to-text approaches have
proven to be an effective solution, and have
achieved the state-of-the-art results on various
benchmarks. It brings out the potential to lever-
age large unlabeled code descriptions to fur-
ther improve the generation quality. In spite of
the promising performance, retrieval-augmented
models however suffer from being deluded by
inconducive retrieved references, due to irrele-
vant or even misleading information contained
therein. To this end, we design PinNet, a new
framework for code-to-text generation. PinNet
relies on a discriminator to measure how well the
retrievals match the semantics of the input code.
Remarkably, the hidden representation of the ref-
erence from the last layer of the discriminator can
be leveraged to significantly improve the code-
to-text generation through modifying the atten-
tion weights. It essentially pays high attention
to valuable information and eliminates mislead-
ing part. To effectively execute this idea, we also
propose a novel contrastive learning method to
quantify the semantical similarities between un-
labeled references. Using extensive experiments
on code summarization and SQL-to-text genera-
tion, we demonstrate that the proposed method
can significantly outperform all of the baselines.

1. Introduction
Generating accurate descriptions automatically for given
code snippets (code-to-text) can bring tremendous value for

1Alibaba Group, Hangzhou, China 2College of Computer Sci-
ence and Technology, Zhejiang University, Hangzhou, China.
Correspondence to: Han Fu <fuhan.fh@alibaba-inc.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

Input Code public String at(List<String> keys, Object ... args)
{

return messagesApi.get(lang, keys, args);
}

Ground
Truth Get the message at the first defined key.

Retrieved
Reference

Gets the localized string corresponding to a key formatted with
a set of args.

Baseline Gets the localized string corresponding to a list of keys.

PinNet Get the message at the given keys.

Figure 1. The misleading information in the retrieved reference
deludes the baseline model in generating a wrong description in
italics. The accurate description by PinNet is shown in bold.

readability and maintainability of the codebase, and has be-
come an emerging capability of AI coding assistant tools.

Recently, various methods based on natural language pro-
cessing have been developed for code-to-text generation.
One prominent approach based on deep-learning (Iyer
et al., 2016; Ahmad et al., 2020) formulates it as a trans-
lation task. However, applying vanilla translation mod-
els, e.g., Seq2Seq (Sutskever et al., 2014; Bahdanau et al.,
2014) and Transformer (Vaswani et al., 2017), to code-to-
text is challenging due to the syntactic and semantic com-
plexity of programming languages. Observing that many
similar code snippets are frequently reused in various sce-
narios, some works (Zhang et al., 2020; Wei et al., 2020;
Parvez et al., 2021) propose to use reference samples col-
lected from annotated codebases that may contain relevant
descriptions to further improve the generation quality.

Though effective, existing retrieval augmented code-to-text
methods suffer from the fact that the model could be seri-
ously deluded if the retrieved description is irrelevant or
even misleading. The reason is that all existing models do
not consider how well the retrieved descriptions match with
the semantics of the input code. For example in Figure 1,
the retrieved reference is semantically different from the
ground truth, and the baseline model is negatively influ-
enced to generate an inaccurate description.

Moreover, the accuracy of the retriever also plays a critical

1

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

role to the overall performance. Most existing retrievers
(Parvez et al., 2021; Zhang et al., 2020) are typically based
on contrastive learning. During training, these methods use
the ground truth texts as the positive instances while regard
all others, even when they contain relevant information, as
negatives. In addition, the truly relevant references may
not be selected by the retriever during inference. This gap
between training and inference phases significantly limits
the performance of retrieval models.

To mitigate the limitations of existing methods, we pro-
pose PinNet. It is designed to pinpoint the most rele-
vant information from the retrieved references, by focus-
ing on the valuable part and eliminating the misleading
semantics. Specifically, we introduce a discriminator to
predict the correlation between the retrieved description
and the ground truth. The hidden representation of the
reference from the last layer of the discriminator, which
captures the critical semantics of the retrieved description,
is directly leveraged to improve the accuracy of code-to-
text generation. To sufficiently utilize the discriminative
representations, we propose a new attention mechanism,
namely PinAttention, which boosts the Multi-Head Atten-
tion (Vaswani et al., 2017) to use extra knowledge. More-
over, we introduce a new contrastive learning model, called
PinNet-Ret, for code-text retrieval. The overall architecture
of the proposed framework is shown in Figure 2.

To verify the effectiveness of the proposed framework, we
conduct extensive experiments on code summarization and
SQL-to-text generation tasks using four datasets. The ex-
periments demonstrate that PinNet achieves the state-of-
the-art results on all test sets and significantly outperforms
all of the existing models. Ablation studies show that Pin-
Net can adequately leverage the retrieved information. We
also compare with modern large language models (e.g.,
ChatGPT). The results further confirm the advantages of
PinNet, which has great potential to enhance the perfor-
mance of LLMs for code-to-text tasks.

The major contributions of this work are summarized as
follows:

• A new framework PinNet for code-to-text generation is
designed, which can better exploit the valuable informa-
tion from the retrieved references and eliminate the mis-
leading information.

• A new contrastive learning objective function for code-
to-text retrieval is formulated. It quantifies the semanti-
cal similarities between the retrieved sample and the in-
put code, and bridges the gap between the training and
inference when only negative samples are present for in-
ference.

• Experimental results show that the proposed method

Table 1. BLEU scores using different cutoff thresholds to re-
move outliers. The performance of REDCODER is evaluated
on CodeXGLEU-Python. The similarity score of REDCODER
ranges from 60 to 130.

Threshold 0 80 90 100 110 120

BLEU 19.64 19.61 19.47 18.67 18.46 18.40

significantly outperforms compared approaches on code
summarization and SQL-to-text tasks.

• Even when compared with the large language models,
PinNet still achieves superior performance on code sum-
marization tasks. The proposed method raises potential
to obtain further improvement over the large language
models.

2. The Design of PinNet
2.1. Overview

Task. The goal is to predict a natural language descrip-
tion for a given code snippet, e.g., a Python function or
a SQL query. Formally, for a code snippet of n tokens
x = (x1, x2, · · · , xn), a code-to-text generation model
produces a natural language description, e.g., a docstring,
a code comment, or a natural language query, denoted by
y = (y1, y2, · · · , ym) with m being the sequence length.

Motivation. Existing retrieval augmented code-to-text
methods have two major limitations: 1) the generation
could be misguided due to the semantic difference between
the retrieved description and the ground truth description;
2) there exists a discrepancy between the training and in-
ference phases for the dense retriever. During training,
the embedding of ground truth description is made close
to the input code, but all other descriptions, even relevant,
are unanimously used as negatives. However, during in-
ference, a most matched description may not be selected
by the retriever, and even worse, may not exist in the re-
trieval database. This incapability of judging the relevance
and worth of the reference samples could cause a serious
performance degradation.

A naive approach to eliminate misleading information is
to simply remove the outliers from the retrieved samples.
Table 1 shows the performance of REDCODER (Parvez
et al., 2021) with different cutoff thresholds for identifying
outliers. Specifically, if a retrieved sample has a similarity
score below a threshold, we remove the description from
the prompt. From the results, we observe that the perfor-
mance of REDCODER keeps decreasing as the threshold
increases. This is because the similarity score does not
fully reflect whether a retrieved sample is misleading or

2

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

Multi-Head Attention

Add & Norm

FeedForward

Add & Norm

Pin Attention

Add & Norm

FeedForward

Add & Norm

Add & Norm

Multi-Head Attention

Add & Norm

Multi-Head Attention
Q

Output Token
Embedding

Discriminator Queries
Positional

Embedding

FeedForward
Linear

softmax
softmax

Input Code

Retrieved
Summary Candidate

Matching Score
Output Summary

VK

QVK QVK

QRVK

Output Summary
(shifted right)

𝐿𝐿𝑑𝑑 ×
𝐿𝐿𝑜𝑜 ×

PinNet Decoder

PinNet Discriminator

Code Summary
Retrieval Database

PinNet Retriever

1
PinNet Encoder

2

3
4

Figure 2. PinNet consists of 4 components: 1) given the input code snippet, the PinNet Retriever ➀ searches for the relevant description
samples (without the corresponding code) from a code summary database; 2) the PinNet Encoder ➁ takes both the code and a selected
reference description, which may not match with the code, as input and extracts the semantic features; 3) the PinNet Discriminator ➂

estimates the similarity between the description and the input code, and provides hidden representations that contain the discriminative
information; 4) using this information, the PinNet Decoder ➃ generates the final description through output tokens sequentially.

not. Removing outliers thus completely discard the poten-
tially valuable information provided in the sample. To this
end, we propose PinNet to quantitively pinpoint the rele-
vant semantic information from the retrieved reference.

Method. As illustrated in Figure 2, the PinNet architecture
consists of four major components: Retriever, Encoder, De-
coder, and Discriminator. The Retriever (PinNet-Ret) com-
putes the similarity scores between the input code snippet
and all code descriptions in the retrieval database. For ex-
ample, code summarization tasks use the summary as the
description. The sample with the highest score is selected
as the reference. The retrieved reference and the code are
then concatenated and fed to the Encoder (PinNet-Enc),
which computes hidden states as the encoded representa-
tions. The Discriminator (PinNet-Dec) takes the encoder
hidden states as the inputs and generates discriminative rep-
resentations, which capture the characteristic semantic fea-
tures between the retrieved reference and the code. Based
on all the above information, the Decoder (PinNet-Dec)
generates the target natural language tokens sequentially
using three inputs: a code snippet, a retrieved reference and
the discriminative representation.

Compared with typical retrieval augmented code-to-text
methods (Zhang et al., 2020; Wei et al., 2020; Parvez et al.,
2021; Zhu et al., 2022), PinNet exhibits two advantages.
First, PinNet introduces a discriminator, which captures

the semantic relevance of different parts of the reference.
This facilitates the model to focus on the important seman-
tics and ignore the misleading information. Second, dur-
ing retrieval training, the relevant descriptions are explic-
itly leveraged through a new retrieval objective to bridge
the gap between the training and inference. Notably, some
recent works (Parvez et al., 2021; Zhang et al., 2020) use
multiple description references, which introduce consider-
able computational overhead. In this work, we only con-
sider the top one retrieved reference at runtime, which al-
ready achieves significant performance improvement.

2.2. PinNet Retriever

Applying code-code retrieval to code-to-text generation is
challenging due to the difficulty of preparing a large set
of high-quality code-text pairs. A natural solution is to
build a collection of descriptions, and use language mod-
els through contrastive learning to retrieve the relevant de-
scriptions for the input code. However, due to the above-
mentioned discrepancy between the training and inference
phases, the retriever may miss its goal. To this end, we
propose PinNet-Ret to fully exploit the relevant semantics
from the reference description.

Specifically, we use two independent pre-trained language
models (i.e., RoBERTa (Liu et al., 2019) and GraphCode-

3

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

def prune_all (self) -> int :
from . repositories import PriceRepository
repo = PriceRepository()
items = repo.query.distinct(dal.Price.namespace,

dal.Price.symbol).all ()
count = 0
for item in items:

symbol = SecuritySymbol(item.namespace,
item.symbol)

deleted = self.prune(symbol)
if deleted:

count += 1
return count

Prune historical prices for all symbols leaving
only the latest. Returns the number of items
removed .

Delete all but the latest available price for the
given symbol. Returns the count of removed
items.

Converts strings from camelcase to lowercase.

Ground Truth Summary

Relevant Summary

Random Summary

ℒ𝑅𝑅𝑅𝑅 ℒ𝐻𝐻𝑅𝑅

Latent Space

Code

Figure 3. Illustration of PinNet-Ret Objective. In the semantics space, the embedding of a relevant description (yellow diamond) is
pulled closer to the input code than a random summary (green star), but is pushed farther than the ground truth (red circle).

BERT (Guo et al., 2020)) to encode the natural language
description and the code, respectively. Then, by sharing a
last layer and using a novel contrastive learning loss func-
tion, we align these two embedding spaces so that their sim-
ilarities can be directly computed.

To obtain the final representations for both the description
and the code snippet, their encoder hidden states are fed to
two seperate Attention Pooling layers, respectively. Let us
use the code snippet as an example to illustrate the process,
which also applies to the description input. The encoder
hidden states are denoted by H(x) = (hx1

,hx2
, · · · ,hxn

)
(special tokens are omitted). The attention pooling layer
calculates the weighted summation of H(x) as:

Er(x) = FFN(

n∑
i=1

αihxi
), (1)

where FFN denotes a feed-forward network layer, and αi

is the weight score of xi calculated by:

αi = softmax(v⊤
α tanh(Wαhq(x) +Uαhxi)),

where Wα, Uα, vα are trainable matrices and vectors. The
query vector hq(x) captures the global information of the
input. In this work, we use the hidden state embedding of
[CLS] as the query vector. [CLS] is a special token of
BERT (Devlin et al., 2019) and is typicall used (Liu et al.,
2019; Feng et al., 2020; Guo et al., 2020) as a sentence
representation for text classification tasks.

To bridge the gap between training and inference of re-
trieval, we propose a hierarchical triplet objective function.
As shown in Figure 3, the intuition is to maintain a dis-
tance ranking order among the target description, a relevant
description, and the input code. Specifically, we want to
make the embedding of a relevant description closer to the
input code than a random text in the latent space, but not
closer than the target description. Specifically, given the
input code x and target description y, we randomly sample
a batch of descriptions denoted by B and a set of relevant

code summaries Y+ using BM25 search (Robertson et al.,
2009) during training. The hierarchical retrieval loss LHR

is computed as:

LHR =
∑

y+∈Y+

ReLU(s(Er(x),Er(y
+))

− s(Er(x),Er(y)) +m1)

+
∑

y−∈B

∑
y+∈Y+

ReLU(s(Er(x),Er(y
−))

− s(Er(x),Er(y
+)) +m1),

where m1 is a manually defined marginal error and ReLU
is the linear rectification function (Nair & Hinton, 2010)
which always takes the positive part of a value. s(·) is the
similarity score function and we use cosine in this work.
The conventional retrieval objective is also considered:

LRT =
∑

y−∈B

ReLU(s(Er(x),Er(y
−))− s(Er(x),Er(y))

+m2),

Intuitively, to maintain the consistency of the two objec-
tives, the hyperparameter setting should satisfy m1 < m2.
The final training loss for the retrieval model is:

Lr = LRT + γLHR,

where γ is a hyperparameter to balance the losses. We ob-
serve that the performance is not sensitive to γ and thus
simply set it to 1. During inference, PinNet-Ret finds the
top-1 description reference y∗ using cosine similarity.

2.3. PinNet Encoder

The encoder module is built upon a bi-directional Trans-
former encoder (Vaswani et al., 2017) pre-trained on a cor-
pus of source code and natural language descriptions, i.e.,
CodeBERT (Feng et al., 2020) and GraphCodeBERT (Guo
et al., 2020). Given the input code x and a retrieved de-
scription reference y∗, the input of PinNet-Enc follows the

4

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

RoBERTa cross-encoding format (Liu et al., 2019):

[CLS], x1, x2, · · · , xn, [SEP], [SEP], y
∗
1 , y

∗
2 , · · · , y∗t , [SEP],

where [SEP] is the separator token. The encoder gener-
ates the hidden state of each token, denoted by E(x,y∗),
which will be used by the decoder and discriminator.

2.4. PinNet Discriminator

The major novelty of PinNet is the design of PinNet-Dis,
which captures the discriminative information of the re-
trieved reference. It consists of multiple Transformer de-
coder layers. The output hidden states of the l-th layer are:

Ol
1 = LayerNorm

(
MultiHead(Ol−1,Ol−1,Ol−1)

+Ol−1
)
,

Ol
2 = LayerNorm(MultiHead(Ol

1,E(x,y∗),E(x,y∗))

+Ol
1),

Ol = LayerNorm(Ol
2 + FFN(ReLU(FFN(Ol

2))))

where Ol−1 is the output of the (l − 1)-th layer. Layer-
Norm represents Layer Normalization (Ba et al., 2016).
MultiHead(Q,K, V) is the Multi-Head Attention Layer
(Vaswani et al., 2017), with Q, K, and V being the hidden
states for Query, Key and Value, respectively. The fixed in-
put of the discriminator network O0 is a sequence of nd

trainable vectors. The final representation is:

D(x,y∗) = FFN(OLd) ∈ Rnd×dd ,

where Ld denotes the last transformer layer. nd and dd are
the length and the dimension of the discriminative vectors,
respectively. Essentially, D(x,y∗) captures the relevant in-
formation of y∗ and mitigate the misleading part.

To this end, we formulate the training objective of the dis-
criminator as predicting the matching score between the
retrieved description reference and the input code. Specifi-
cally, we categorize the set of descriptions Y∗ into g groups
according to their BLEU scores (Papineni et al., 2002) with
respect to the ground truth description. Specifically, we di-
vide the BLEU score range into g disjoint intervals, and
each interval represents one class. Thus, each BLEU score,
which is a float number, will be assigned with one label
from g classes. The discriminator is trained to predict the
class label of the BLEU score for each retrieved reference.
With this novel method, PinNet-Dis is facilitated to cap-
ture the contrastive semantics between the relevant and ir-
relevant parts of y∗. In addition, we use another attention
pooling layer (Equation 1) to transform D(x,y∗) to a sin-
gle vector d. The query of the attention pooling layer is the
average of all nd discriminative vectors. The classification

QRK

Pin Attention

Multi-Head
Attention

QVK

Multi-Head
Attention

QVK

V

Multi-Head
Attention

QVK

Figure 4. Illustration of PinAttention

objective is estimated with a cross-entropy loss:

Pd = softmax(d) = {P d
1 , · · · , P d

g }

Ld = −
g∑
j

ydj log(P
d
j)

where pc
j is prediction probability of the j-th class and yci

is the corresponding label.

2.5. PinNet Decoder

To integrate the discriminative representation D(x,y∗)
into the decoder, we design PinAttention, which is an
extension of the Multi-Head Cross-Attention mechanism
(Vaswani et al., 2017). It can effectively leverage extra
knowledge from the reference.

As illustrated in Figure 4, the input PinAttn(Q,K, V,R)
consists of four elements, including queries (Q), keys (K),
values (V) and representations of the reference (R). We ap-
ply two independent Multi-Head Attention layers to inte-
grate the reference knowledge into queries and keys, for-
mulated as follows:

Qr = LayerNorm (MultiHead(Q,R,R) +Q)

Kr = LayerNorm (MultiHead(K,R,R) +K) .

The output of PinAttention is calculated with another
Multi-Head Attention:

Or = MultiHead(Qr,Kr,V).

With PinAttention, the discriminative information helps the
model to dynamically control the attention to different parts
of the encoder outputs. Similar to a transformer layer, the
hidden states Dl of the l-th PinNet-Dec layer is calculated

5

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

as follows:

Dl
1 = LayerNorm(MultiHead(Dl−1,Dl−1,Dl−1) +Dl−1),

Dl
2 = LayerNorm(PinAttn(Dl

1,E(x,y∗),E(x,y∗),

D(x,y∗)) +Ol
1),

Dl = LayerNorm(Dl
2 + FF(ReLU(FF(Dl

2)))).

The training objective function for generation is formu-
lated as an auto-regressive conditional factorization Lg =∑t

i logP (yi|y<i,x,y
∗), where P (yi = t|y<i,x,y

∗) =
softmax(WoD

Lo)t is the prediction probability of the i-
th token in the output sequence where Wo is the trainable
matrix of the output layer. Its dimension size changes from
that of the final hidden state to the vocabulary size. Lo is
the number of transformer layers in the decoder network.

The final loss of PinNet is L = αLd + βLg where α and β
are hyper-parameters to balance the two objectives.

3. Experiment Setup
3.1. Datasets

For code summarization task, we use a widely adopted
benchmark, CodeXGLUE (Lu et al., 2021), for evaluation,
and we follow (Parvez et al., 2021) to construct the re-
trieval database. For SQL-to-text generation task, we con-
duct experiments on two datasets, WikiSQL (Zhong et al.,
2017) and StackOverflow (Iyer et al., 2016). The details of
preprocessing and data statistics are provided in Appendix
A.1.

3.2. Comparing baselines

For code summarization, we compare PinNet with the
state-of-the-art approaches from the following four cate-
gories:

Generative Models: LSTM-based encoder-decoder model
(Seq2Seq) (Luong et al., 2015) and Transformer (Vaswani
et al., 2017).

Pre-trained Language Models: RoBERTa (code) (Husain
et al., 2019), CodeBERT (Feng et al., 2020), GraphCode-
BERT (Guo et al., 2020), PLBART (Ahmad et al., 2021),
CodeT5 (Wang et al., 2021), UniXcoder (Guo et al., 2022),
and CodeT5+ (Wang et al., 2023).

Retrieval Augmented Methods: kNN-Transformer (Zhu
et al., 2022), BM25 + PLBART (Ahmad et al., 2021;
Robertson et al., 2009), REDCODER (Parvez et al., 2021),
and REDCODER-ext (Parvez et al., 2021).

Large Language Models: PinNet is also compared with
large language models (LLM) including PolyCoder (Xu
et al., 2022), CodeGen (Nijkamp et al., 2022), StarCoder
(Li et al., 2023) and ChatGPT (OpenAI, 2023). We follow
(Sun et al., 2023) to apply few-shot prompt and fine-tuning

to the open-sourced LLMs. For ChatGPT, we augment the
prompt with reference samples retrieved by PinNet-Ret to
enable in-context learning. The implementation details are
listed in Appendix A.3.

For SQL-to-Text, we categorize the baseline models into
three groups.

Sequence-to-Sequence Models: RNN-based sequence-to-
sequence model (seq2seq) (Bahdanau et al., 2014) with
copy mechanism (cp) (Gu et al., 2016) or latent variable
(lv) (Guo et al., 2018).

Pre-trained Models: RoBERTa (Liu et al., 2019) and
PreQR2Seq (Tang et al., 2022).

Structural Information Augmented Models: Tree-to-
sequence model (Tree2Seq) (Eriguchi et al., 2016) and
Graph-to-sequence model Graph2Seq (Xu et al., 2018).

3.3. Implementations

Both PinNet-Enc and PinNet-Ret models are initialized
with GraphCodeBERT (Guo et al., 2020). the PinNet-Dec
network consists of 6 stacked PinNet-Dec layers which
shares the same embedding shape with the encoder. To
train the models sufficiently, we set the learning rates of
PinNet-Enc and PinNet-Dec as 1× 10−5 and 1× 10−4 re-
spectively. For the retrieval task, we set m1 and m2 to 0.2
and 0.4, respectively. The hyper-parameters of the genera-
tion loss, α and β, are both set to 1.0. More implementation
details are provided in Appendix A.2.

4. Results on Code Summarization
4.1. Main Results

The main results on code summarization are listed in Table
2. Observe that the BLEU scores of all models are rela-
tively low (< 25) due to the difficulty of this task. Retrieval
augmented code-to-text methods give better performance
than generative models, which shows the effectiveness of
leveraging large-scale retrieval databases. Notably, PinNet
outperforms all baseline models on all datasets. Compared
with REDCODER (Parvez et al., 2021), which is the state-
of-the-art model, PinNet achieves improvements of 0.92
points and 0.53 points on Python and Java datasets, respec-
tively. It should be noted that REDCODER is based on
the PLBART backbone (Ahmad et al., 2021) which actu-
ally outperforms the GraphCodeBERT (Guo et al., 2020)
used by PinNet. However, PinNet achieves a better result,
indicating the effectiveness of the proposed technique.

4.2. Ablation Study

The ablation study is provided in Table 3. Compared with
GraphCodeBERT, PinNet achieves significant improve-

6

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

Table 2. BLEU-4 scores for code summarization on CodeXGLEU

Methods Python Java

Seq2Seq 15.93 15.09
Transformer 15.81 16.26

RoBERTa (code) 18.14 16.47
CodeBERT 19.06 17.65
GraphCodeBERT 17.98 17.85
CodeT5 20.01 20.31
UniXcoder 19.13 20.31
PLBART 19.30 18.45
CodeT5+ 20.47 20.83

kNN-Transformer 17.61 16.73
BM25 + PLBART 19.57 19.71
REDCODER 21.01 22.94
REDCODER-ext 20.91 22.95

PinNet 21.83 23.48

Table 3. Ablation studies on code summarization

Methods # Para Python Java

GraphCodeBERT 125M 17.98 17.85

PinNet 230M 21.83 23.48

w/o PinNet-Dis 182M 18.52 21.65
w/o LHR 230M 19.93 21.78
w/o PinNet-Dis + LHR 182M 17.88 20.31

ments of 3.85 and 4.63 points on Python and Java, respec-
tively. Moreover, PinNet-Dis contributes to the final perfor-
mance with 3.31 and 1.83 on Python and Java, respectively.
Though less significant than PinNet-Dis, the proposed hi-
erarchical retrieval loss LHR also achieves around 2 points
improvements. Another interesting observation is that the
performance of the vanilla retrieval augmented method (the
last row in Table 3) is even worse than GraphCodeBERT.
This is because many retrieved summaries on Python are ir-
relevant to the ground truth and the model is seriously mis-
guided. That explains why the improvements on Python
brought by PinNet are more significant than that on Java.

4.3. Analysis

We conduct experiments to analyze the performance of
PinNet on different sizes of retrieval sets. We sample mul-
tiple subsets from the original retrieval databases with dif-
ferent sampling rates from 0.1% to 10%. The compar-
ing results are shown in Table 4. Note that PinNet only
achieves comparable performance with REDCODER on
small-scale retrieval databases (1% and 0.1%). This is be-
cause REDCODER uses 10 retrieved references while Pin-

Table 4. Code summarization. The subsets are randomly sampled
from the database with different rates. The notation w/o both
refers to PinNet without PinNet-Dis and LHR. The results of
REDCODER∗ (Parvez et al., 2021) are from re-implementation
using CodeGraphBERT (Guo et al., 2020) as the backbone.

Methods Sampling Rate Code
100% 10% 1% 0.1%

REDCODER∗ 19.64 18.69 18.50 18.39

PinNet 21.83 19.30 18.49 18.16 Python

w/o both 17.88 17.25 17.24 16.71

REDCODER∗ 21.33 19.31 18.83 18.86

PinNet 23.48 19.92 18.82 18.42 Java

w/o both 20.31 18.69 18.55 18.34

Table 5. BLEU-4 scores for code-summary retrieval on CodeX-
GLEU. The ground truth summaries are removed. Multiple im-
plementations of BM25 and DPR using various index keys and
values are included.

Methods Python Java Search Index

Key Value

Sparse Retrieval

BM25-c2c 8.18 6.58 Code Text
BM25-c2t 1.92 1.82 Text Text
IR-baseline 12.62 13.46 Code Text

Dense Retrieval

DPR-c2c 7.88 7.71 Code Text
DPR-c2ct 8.12 7.79 Code + Text Text
SCORE-R 14.98 15.87 Code or Text Code or Text

PinNet-Ret 16.15 17.07 Text Text
w/o LHR 15.13 15.88

Net only uses the top-1 reference. As the size of the re-
trieval database increases, the superiority of PinNet over
baselines becomes more clear. This result shows that Pin-
Net can leverage large-scale unlabeled unimodal datasets.

The evaluation of PinNet-Ret on the CodeXGLEU test sets
is shown in Table 5. We compare with both sparse retriev-
ers (e.g., BM25 search index (Robertson et al., 2009) and
Apache IR-baseline (Gros et al., 2020)), and dense retrieval
models (e.g, DPR (Karpukhin et al., 2020) and SCORE-R
(Parvez et al., 2021)).

The results show that the code-to-text search index based
on BM25 (Robertson et al., 2009) only achieves an im-
provement of 2 points due to the semantics and syntac-
tic complexity of source code. For code-to-code search,
the performance of the dense retriever (i.e., DPR-c2c) and

7

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

Table 6. Comparison with Large Language Models (LLMs) on
CodeXGLEU-Java. B: BLEU, M: METEOR; R: ROUGE-L;
S: SentenceBERT.

Methods # Para B M R S
PolyCoder

2.7B
7.7 2.3 12.2 12.9

+ Few-shot 13.8 8.8 27.5 49.3
+ Fine-tuning 19.3 13.7 38.0 60.7

CodeGen
2B

8.0 3.1 13.2 15.2
+ Few-shot 15.0 11.8 31.1 55.3
+ Fine-tuning 19.4 14.2 38.5 60.6

StarCoder
3B

9.6 8.6 20.7 33.9
+ Few-shot 15.1 11.6 29.8 55.9
+ Fine-tuning 20.4 14.7 39.5 61.9

ChatGPT - 10.7 15.4 25.0 57.1
+ PinNet-Ret 13.1 16.2 28.7 58.8

PinNet 0.2B 23.5 16.1 40.6 61.9

the sparse retriever (i.e., BM25-c2c) are similar, signifi-
cantly outperformed by code-to-text retrievers. This re-
sult indicates that the matching of two code snippets does
not guarantee the semantic relevance of the corresponding
descriptions. Compared with the state-of-the-art dense re-
trieval model SCORE-R (Parvez et al., 2021), PinNet-Ret
outperforms SCORE-R with 1.17 points and 1.20 points
on Python and Java respectively. The improvement con-
tributed by the proposed hierarchical retrieval loss LHR is
1.02 points and 1.19 points on the two test sets, respec-
tively. This study validates that our method can fully lever-
age the sample information during training, and can explic-
itly characterize the relevance and inconsistency between
code and description. The analysis on the embeddings is
presented in Appendix B.1.

4.4. Comparison with Large Language Models.

We also conduct a performance comparison with LLMs. In
order to fully quantify the performance from different as-
pects, we use both lexical-based metrics (BLEU (Papineni
et al., 2002), ROUGE-L (LIN, 2004)) and semantic-based
metrics (METEOR (Banerjee & Lavie, 2005), Sentence-
BERT (Reimers & Gurevych, 2019)).

The comparing results are shown in Table 6. As we can see,
PinNet consistently outperforms all of the compared large
language models for almost all metrics, even though our
model size is much smaller. When using BERT Score as the
criterion, our model has smaller advantages than other met-
rics. This is because the language style of LLMs is quite
different from the ground truth summaries and Sentence-
BERT measures the semantic correlation rather than lexical
matching. To further improve the performance ChatGPT,

Table 7. Evaluation of SQL-to-text using BLEU metrics.

Methods WikiSQL StackOverflow

Seq2Seq 20.9 13.3
Seq2Seq + cp 24.1 16.6
Seq2Seq + cp + lv 26.3 18.4
Tree2Seq 26.7 17.0
Graph2Seq 29.3 19.9
PreQR2Seq 32.1 21.1

PinNet 38.4 21.9

Table 8. Ablation Studies on SQL-to-text using BLEU metrics.
W: WikiSQL, S: StackOverflow

Methods # Para W S

RoBERTa 182M 36.8 19.1

PinNet 230M 38.4 21.9

w/o PinNet-Dis 182M 37.8 20.4

we augment the prompt using the top-3 code summaries
retrieved by PinNet-Ret. Notably, the performance of Chat-
GPT is significantly improved with the augmentation of
PinNet-Ret. This result shows the promising potential of
using the proposed idea to improve augmented methods
for large language models. We also use detailed samples
from the CodeXGLEU-Python testing set to demonstrate
the performance in Table 12 of Appendix B.2.

5. Results on Sql-to-Text Generation
5.1. Main Results

The main results on Sql-to-Text generation is provided in
Table 7. One can observe that the PinNet achieves the new
state-of-the-art results on WikiSQL (Zhong et al., 2017)
and StackOverFlow (Iyer et al., 2016). Specifically, Pin-
Net obtains BLEU 38.4 and 21.9, respectively, which out-
perform the existing state-of-the-art approach (Tang et al.,
2022) with 6.3 points and 0.8 points, respectively. It is be-
cause the size of the retrieval database on WikiSQL is much
larger than the one on StackOverFlow.

5.2. Ablation Study

The ablation result on sql-to-text is summarized in Table
8. Compared to RoBERTa, PinNet achieves a significant
improvement on both datasets. Specifically, PinNet outper-
forms RoBERTa by 1.6 and 2.8 points, respectively. The
improvements of the proposed discriminator on the two
datasets are 0.6 and 1.5 points, respectively. This result
is consistent with the observation on the code summariza-

8

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

tion task that the improvement by PinNet-Dis is less sig-
nificance on relatively easy tasks (Java and WikiSQL) than
challenging problems (Python and StackOverFlow).

6. Related Work
6.1. Code-to-Text Generation

Using information retrieval techniques to find relevant de-
scriptions to improve the quality of code summarization
(Eddy et al., 2013; Haiduc et al., 2010) has been shown
to be an effective method. Recently, due to the success
of neural networks, many methods exploit deep-learning
techniques on this task, based on, e.g., Seq2Seq framework
(Iyer et al., 2016; Hu et al., 2018; 2020) and Transform-
ers (Ahmad et al., 2020). These approaches significantly
improve the performance on code-to-text summarization,
which leverage code syntactic information (Hu et al., 2018;
Peng et al., 2021b; Cai et al., 2020) by integrating new net-
work modules (Shi et al., 2021; Peng et al., 2021a).

Observing that code snippets could be reused, recent stud-
ies use information retrieval techniques for code-to-text
systems (Zhang et al., 2020; Wei et al., 2020; Parvez et al.,
2021). Most existing methods (Zhang et al., 2020; Wei
et al., 2020) use code-to-code search to retrieve syntacti-
cally relevant programs with the corresponding summaries.
This method potentially requires a large collection of hand-
crafted code-text pairs, which is a challenge in real-world
scenarios. A more practical way is to only use code-to-text
retrieval, e.g., REDCODER (Parvez et al., 2021). Com-
pared with our method, REDCODER can not fully uti-
lize the semantics of relevant descriptions and may be mis-
guided by inaccurate retrieved references.

6.2. SQL-to-Text Generation

SQL-to-Text is very important for database applications
because it helps non-experts to understand SQL queries.
SQL-to-text can be viewed as a reverse task of text-to-SQL
parsing (Zhong et al., 2017; Guo et al., 2018). With the
recent public large datasets (Zhong et al., 2017; Iyer et al.,
2016), different approaches have been proposed from both
the natural language and database communities. Typical
text-to-SQL models integrate a tree-based or graph-based
encoder into the Seq2Seq framework (Iyer et al., 2016;
Eriguchi et al., 2016; Xu et al., 2018). In this work, we ap-
ply retrieval augmented code-to-text methods and achieve
significant improvements.

7. Conclusion
Code-to-text generation is a practical and challenging prob-
lem. The state-of-the-art methods take advantage of in-
formation retrieval techniques to improve the performance

significantly. However, all of the existing models could
be deluded by inconducive retrieved references, due to the
possible mismatch between the inputs and the retrievals. To
address this limitation, we propose PinNet by introducing
discriminative representations, which can effectively cap-
ture the critical information of retrieved descriptions and
eliminate the misleading semantics. To better execute this
idea, we also propose a new retrieval objective to effec-
tively leverage the large retrieval database. Extensive ex-
periments on code summarization and SQL-to-text tasks
show that the proposed model can significantly outperform
the existing models.

For future work, we plan to investigate how to further facil-
itate this model to understand the potential semantic corre-
lations between code and retrieved texts. We are also inter-
ested in applying our method to large language models to
obtain further improvements.

Impact Statement
Limitations. PinNet assumes a retrieval pool and only
uses the top-1 reference. However, even the top-1 exam-
ple could be irrelevant, especially when there exist long-
distance dependencies that extend beyond the input snip-
pet. In such a case, PinNet would still suffer from the ir-
relevant retrievals and generate incorrect code summaries.
Besides, the newly proposed modules introduce additional
parameters and incur 30% runtime overhead.

Societal Implications. The potential societal conse-
quences of our work are summarized below.

• Positive. PinNet can assist non-technical people in un-
derstanding code. It may inspire more work on the prob-
lem of language models being deluded by irrelevant re-
trievals in RAG.

• Negative. PinNet introduces new parameters, which
leads to increased energy cost and consequently results
in more carbon emissions. Moreover, PinNet could be
potentially misused to facilitate network attacks and re-
verse engineering, which could be a privacy threat.

References
Ahmad, W., Chakraborty, S., Ray, B., and Chang, K.-

W. Unified pre-training for program understanding and
generation. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, pp. 2655–2668, Online, June 2021. Association for
Computational Linguistics.

Ahmad, W. U., Chakraborty, S., Ray, B., and Chang, K.-W.

9

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

A transformer-based approach for source code summa-
rization. arXiv preprint arXiv:2005.00653, 2020.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450, 2016.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014.

Banerjee, S. and Lavie, A. Meteor: An automatic met-
ric for mt evaluation with improved correlation with hu-
man judgments. In Proceedings of the acl workshop on
intrinsic and extrinsic evaluation measures for machine
translation and/or summarization, pp. 65–72, 2005.

Cai, R., Liang, Z., Xu, B., Li, Z., Hao, Y., and Chen, Y.
Tag: Type auxiliary guiding for code comment genera-
tion. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 291–301,
2020.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D.
Electra: Pre-training text encoders as discriminators
rather than generators. arXiv preprint arXiv:2003.10555,
2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp.
4171–4186, 2019.

Eddy, B. P., Robinson, J. A., Kraft, N. A., and Carver,
J. C. Evaluating source code summarization techniques:
Replication and expansion. In 2013 21st International
Conference on Program Comprehension (ICPC), pp.
13–22. IEEE, 2013.

Eriguchi, A., Hashimoto, K., and Tsuruoka, Y. Tree-to-
sequence attentional neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 823–833, 2016.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., et al. Code-
bert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Gros, D., Sezhiyan, H., Devanbu, P., and Yu, Z. Code to
comment” translation” data, metrics, baselining & eval-
uation. In Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
pp. 746–757, 2020.

Gu, J., Lu, Z., Li, H., and Li, V. O. Incorporating copying
mechanism in sequence-to-sequence learning. In Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 1631–1640, 2016.

Guo, D., Sun, Y., Tang, D., Duan, N., Yin, J., Chi, H., Cao,
J., Chen, P., and Zhou, M. Question generation from sql
queries improves neural semantic parsing. In Proceed-
ings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pp. 1597–1607, 2018.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou,
L., Duan, N., Svyatkovskiy, A., Fu, S., et al. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366, 2020.

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., and
Yin, J. Unixcoder: Unified cross-modal pre-training for
code representation. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 7212–7225, 2022.

Haiduc, S., Aponte, J., Moreno, L., and Marcus, A. On
the use of automated text summarization techniques for
summarizing source code. In 2010 17th Working Con-
ference on Reverse Engineering, pp. 35–44. IEEE, 2010.

Hu, X., Li, G., Xia, X., Lo, D., and Jin, Z. Deep code com-
ment generation. In Proceedings of the 26th conference
on program comprehension, pp. 200–210, 2018.

Hu, X., Li, G., Xia, X., Lo, D., and Jin, Z. Deep code
comment generation with hybrid lexical and syntacti-
cal information. Empirical Software Engineering, 25(3):
2179–2217, 2020.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. Codesearchnet challenge: Evaluat-
ing the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Iyer, S., Konstas, I., Cheung, A., and Zettlemoyer, L. Sum-
marizing source code using a neural attention model. In
Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 2073–2083, 2016.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L.,
Edunov, S., Chen, D., and Yih, W.-t. Dense passage
retrieval for open-domain question answering. In Pro-
ceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 6769–
6781, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

10

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., et al.
Starcoder: may the source be with you! arXiv preprint
arXiv:2305.06161, 2023.

LIN, C. Rouge: A package for automatic evaluation of
summaries. In Text Summarization Branches Out: Pro-
ceedings of the ACL-04 Workshop, Barcelona, Spain, pp.
74–81, 2004.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen,
W. What makes good in-context examples for gpt-3?
arXiv preprint arXiv:2101.06804, 2021.

Liu, S., Chen, Y., Xie, X., Siow, J., and Liu, Y. Retrieval-
augmented generation for code summarization via hy-
brid gnn. arXiv preprint arXiv:2006.05405, 2020.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692, 2019.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A.,
Blanco, A., Clement, C., Drain, D., Jiang, D., Tang, D.,
et al. Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv preprint
arXiv:2102.04664, 2021.

Luong, M.-T., Pham, H., and Manning, C. D. Effective
approaches to attention-based neural machine transla-
tion. In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 1412–
1421, 2015.

Nair, V. and Hinton, G. E. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-
10), pp. 807–814, 2010.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H.,
Zhou, Y., Savarese, S., and Xiong, C. Codegen: An open
large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on
Learning Representations, 2022.

OpenAI. Introducing chatgpt. https://openai.com/
blog/chatgpt, 2023. Last accessed on 2023-07-24.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu: a
method for automatic evaluation of machine translation.
In Proceedings of the 40th annual meeting on associa-
tion for computational linguistics, pp. 311–318. Associ-
ation for Computational Linguistics, 2002.

Parvez, M. R., Ahmad, W. U., Chakraborty, S., Ray, B., and
Chang, K.-W. Retrieval augmented code generation and
summarization. arXiv preprint arXiv:2108.11601, 2021.

Peng, H., Li, G., Wang, W., Zhao, Y., and Jin, Z. Inte-
grating tree path in transformer for code representation.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang,
P., and Vaughan, J. W. (eds.), Advances in Neural Infor-
mation Processing Systems, volume 34, pp. 9343–9354.
Curran Associates, Inc., 2021a.

Peng, H., Li, G., Wang, W., Zhao, Y., and Jin, Z. Inte-
grating tree path in transformer for code representation.
Advances in Neural Information Processing Systems, 34:
9343–9354, 2021b.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence em-
beddings using siamese bert-networks. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 3982–3992, 2019.

Robertson, S., Zaragoza, H., et al. The probabilistic rele-
vance framework: Bm25 and beyond. Foundations and
Trends® in Information Retrieval, 3(4):333–389, 2009.

Rubin, O., Herzig, J., and Berant, J. Learning to retrieve
prompts for in-context learning. In Proceedings of the
2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 2655–2671, 2022.

Shi, E., Wang, Y., Du, L., Zhang, H., Han, S., Zhang, D.,
and Sun, H. Cast: Enhancing code summarization with
hierarchical splitting and reconstruction of abstract syn-
tax trees. arXiv preprint arXiv:2108.12987, 2021.

Sun, W., Fang, C., You, Y., Chen, Y., Liu, Y., Wang, C.,
Zhang, J., Zhang, Q., Qian, H., Zhao, W., et al. A
prompt learning framework for source code summariza-
tion. arXiv preprint arXiv:2312.16066, 2023.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. Advances in neu-
ral information processing systems, 27, 2014.

Tang, X., Wu, S., Song, M., Ying, S., Li, F., and Chen, G.
Preqr: Pre-training representation for sql understanding.
In Proceedings of the 2022 International Conference on
Management of Data, pp. 204–216, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In arXiv, 2017.

11

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

Wang, T. and Isola, P. Understanding contrastive represen-
tation learning through alignment and uniformity on the
hypersphere. In International Conference on Machine
Learning, pp. 9929–9939. PMLR, 2020.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. Codet5:
Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation. In Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 8696–8708, 2021.

Wang, Y., Le, H., Gotmare, A. D., Bui, N. D., Li, J., and
Hoi, S. C. Codet5+: Open code large language models
for code understanding and generation. arXiv preprint
arXiv:2305.07922, 2023.

Wei, B., Li, Y., Li, G., Xia, X., and Jin, Z. Retrieve
and refine: exemplar-based neural comment generation.
In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 349–360.
IEEE, 2020.

Xu, F. F., Alon, U., Neubig, G., and Hellendoorn, V. J. A
systematic evaluation of large language models of code.
In Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming, pp. 1–10, 2022.

Xu, K., Wu, L., Wang, Z., Feng, Y., and Sheinin, V. Sql-to-
text generation with graph-to-sequence model. In Pro-
ceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 931–936, 2018.

Zhang, J., Wang, X., Zhang, H., Sun, H., and Liu, X.
Retrieval-based neural source code summarization. In
2020 IEEE/ACM 42nd International Conference on Soft-
ware Engineering (ICSE), pp. 1385–1397. IEEE, 2020.

Zhong, V., Xiong, C., and Socher, R. Seq2sql: Generating
structured queries from natural language using reinforce-
ment learning. arXiv preprint arXiv:1709.00103, 2017.

Zhu, X., Sha, C., and Niu, J. A simple retrieval-based
method for code comment generation. In 2022 IEEE
International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), pp. 1089–1100. IEEE,
2022.

12

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

A. Implementation Details
A.1. Datasets

For code summarization task, we use a widely adopted benchmark, CodeXGLUE (Lu et al., 2021), to produce descriptive
summaries for given code snippets. The code snippets are in two programming languages, Java and Python. To obtain
the reference summaries, we follow (Parvez et al., 2021) to construct the retrieval database on CodeSearchNET (Husain
et al., 2019) and CCSD corpus (Liu et al., 2020). The retrieval dataset contains the code summaries of six programming
languages (Java, Python, Ruby, Javascript, Go and PHP). Note that all target code summaries in test/developing partitions
are excluded from the retrieval database.

For SQL-to-text generation task, the goal is to automatically generate a natural language description to explain an input
SQL query. This task is important in real-world database applications, which helps non-expert users to understand complex
SQL queries. We conduct experiments on two datasets, WikiSQL (Zhong et al., 2017) and StackOverflow (Iyer et al.,
2016). WikiSQL is the largest dataset for SQL understanding tasks with 87,726 handcrafted SQL-text pairs. StackOverflow
consists of 32,337 pairs of SQL queries and title from the posted questions in Stack Overflow. For both datasets, we use
the training set as the retrieval database.

The detailed statistics of the datasets and retrieval samples are provided in Table 9.

Table 9. Statistics of training/developing/testing samples and retrieval databases of different datasets.

Dataset Train Dev Test Retrieval

Code Summarization

CodeXGLEU-Java 164,923 5,183 10,955 1,070,229
CodeXGLEU-Python 251,820 13,914 14,918 150,007

SQL-to-Text Generation

WikiSQL 56,355 8,421 15,878 56,355
StackOverflow 25,671 111 100 25,671

A.2. Model Setup

For both CodeXGLEU-Java and CodeXGLEU-Python datasets, we truncate the input and output sequence to maximum
512 and 80 tokens, respectively. For SQL-to-text generation, the input and output lengths are limited to 256 and 32,
respectively.

Both PinNet-Enc and PinNet-Ret models are initialized with GraphCodeBERT (Guo et al., 2020) and RoBERTa-base (Liu
et al., 2019) for code summarization and SQL-to-Text, respectively. Both pre-trained models consist of 12 stacked 8-head
transformer encoder layers with the dimension of hidden states being 768. For all tasks, the PinNet-Dec network consists
of 6 stacked PinNet-Dec layers which shares the same embedding shape with the encoder.

The PinNet-Ret model is trained with Adam (Kingma & Ba, 2014) using batch size 128. The learning rate is 2× 10−5. To
train the generation model sufficiently, we set the learning rates of PinNet-Enc and PinNet-Dec as 1× 10−5 and 1× 10−4

, respectively. The generation model is trained with batch size 64. For all models, we use the corpus-level BLEU score
(Papineni et al., 2002) on the developing set for validation.

For the retrieval task, we set m1 and m2 to 0.2 and 0.4, respectively. The hyper-parameters of the generation loss, α and
β, are both set to 1.0.

During training, we use PinNet-Ret to select the top-10 code summaries by cosine score. Then, we randomly feed one of
them to PinNet-Enc as input to prevent over-fitting. To train PinNet-Dis sufficiently, we categorize the retrieved descriptions
into 6 classes according to the BLEU score: [0,5), [5,10), [10,20), [20,40), [40,60), and [60,100). These intervals are based
on the distribution of the description BLEU scores as shown in Figure 5. At runtime, we use beam search and the beam
size is set to 4.

13

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

BLEU

Sa

m
pl

es

Figure 5. Number of retrieved references vs. BLEU scores.

A.3. Large Language Models Setup

We compare PinNet with three popular open-sourced LLMs (PolyCoder, CodeGen, StarCoder). The model size of Poly-
Coder, CodeGen and StarCoder is 2.7B, 2B, and 3B respectively. For the few-shot setting, we randomly select ten example
pairs of (code snnipet, summary) and append the examples to the input code snippet. Besides, we also choose GPT-turbo-
3.5-16K1 for comparison. Recent work (Liu et al., 2021; Rubin et al., 2022) has demonstrated that the performance of large
language models could be improved when few-shot examples are provided. Inspired by these results, we also augment the
prompt with retrieved examples to enable few-shot in-context learning of ChatGPT. Figure 6 shows the prompt template
we use for ChatGPT.

The task is to generate a brief description of a piece of code.
Please generate a one-sentence comment for the folllowing code snippet:

<input code>

Followings are some relevant code comments:

<code summary 1>
<code summary 2>
<code summary 3>

Figure 6. Prompt template for ChatGPT to generate code comments. Three retrieved code summaries are provided for few-shot in-
context learning.

A.4. Details of the Compared Models

For code summarization, we compare PinNet with the state-of-the-art approaches from multiple categories: generative
methods, pre-trained models (PLM), and retrieval augmented methods.

A.4.1. Generative Models

The generative models follow the LSTM-based encoder-decoder framework (Seq2Seq) (Luong et al., 2015) or the Trans-
former architecture (Vaswani et al., 2017), and formulate the code summarization problem as a sequence-to-sequence task.

A.4.2. Pre-trained Language Models

We compare the results of multiple pre-trained models.

1https://platform.openai.com/docs/models/gpt-3-5

14

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

• RoBERTa (code) (Husain et al., 2019) is a variant of the original RoBERTa model (Liu et al., 2019). RoBERTa (code) is
pre-trained on the CodeSearchNet dataset (Husain et al., 2019).

• CodeBERT (Feng et al., 2020) extends BERT (Devlin et al., 2019) with replaced token detection objective (Clark et al.,
2020).

• GraphCodeBERT (Guo et al., 2020) is an extension of CodeBERT which encodes the data flow edges between code
tokens.

• PLBART (Ahmad et al., 2021) is a sequence-to-sequence model pre-trained on an extensive collection of JAVA and
Python functions through denoising autoencoding.

• CodeT5 (Wang et al., 2021) is a variant of T5 (Raffel et al., 2019) which leverages s the code semantics conveyed from
the developer-assigned identifiers for pre-training.

• UniXcoder (Guo et al., 2022) exploits the structural information of AST to the performance of code representation.

A.4.3. Retrieval Augmented Methods

We also compare PinNet with the state-of-the-art methods which enhance the performance of generative models with
retrieval augmented references.

• kNN-Transformer (Zhu et al., 2022) combines a nearest neighbor retrieval module and a transformer generation model.

• BM25 + PLBART (Ahmad et al., 2021; Robertson et al., 2009) leverages BM25 to retrieve the candidate summary from
a code snippet and feed the retrieved information and the input code to a PLBART for summary generation.

• REDCODER (Parvez et al., 2021) trains a dense retriever to find multiple candidate summaries related to a input code
fragment. REDCODER uses bimoal retrieved reference information (including both summaries and codes) with a
PLBART model (Ahmad et al., 2021).

• REDCODER-ext (Parvez et al., 2021) is a variant of REDCODER which leverages unimoal retrieved candidates (either
only summaries or codes).

For Code-to-Text Retrieval, we incorporate the following methods for comparison.

A.4.4. Sparse Retrieval Methods

Conventional information retrieval methods represents code or text with sparse vectors to perform lexical matching.

• BM25-c2c (Robertson et al., 2009) is a search index contains code as key and associated text descriptions as values.
BM25 is used as the ranking score.

• BM25-c2t (Robertson et al., 2009) contains the code summary as both the key and value. BM25-c2t can use singleton
corpus (e.g. problem states without any code).

• IR-baseline (Gros et al., 2020) is a search index over the code parts based on Apache Solr2.

A.4.5. Dense Retrieval Methods

Deep learning-based retrievers encode the query into fixed-sized representations and retrieves the relevant key via maxi-
mum inner product search.

• DPR-c2c (Karpukhin et al., 2020) is a encoder-only network which encodes both the query and the code in the retrieval
database. The similarity of a query and a key is defined by the inner product.

2https://solr.apache.org/

15

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

Table 10. Training speed (samples/second), inference speed (samples/second) and GPU memory usage (GB).

Method Training Speed Inference Speed GPU Memory Usage

GraphCodeBERT + PinNet-Ret 45.35 1.83 1.85
PinNet 39.51 1.39 2.17

Table 11. Evaluation on code-summary retrieval when keeping the target code in the retrieval database. Evaluated on BLEU, Recall at
top-K (R@K), Mean reciprocal rank (MRR), alignment (ℓa) and uniformity (ℓu) (Wang & Isola, 2020).

Methods Retrieval Metrics Code
BLEU R@1 R@5 R@10 MRR ℓa ℓu

SCODE-R (Parvez et al., 2021) 45.71 37.29 56.62 63.79 0.463 0.737 -1.860

PinNet-Ret 50.86 42.67 61.72 68.25 0.507 0.228 -3.788 Python

w/o LHR 47.25 38.39 57.01 63.52 0.473 0.292 -3.825

SCODE-R (Parvez et al., 2021) 48.3 40.48 59.82 66.45 0.495 0.745 -1.853

PinNet-Ret 52.23 43.8 61.0 67.8 0.517 0.207 -3.835 Java

w/o LHR 50.77 41.99 59.73 66.28 0.498 0.263 -3.828

• DPR-c2ct (Robertson et al., 2009) shares the same architecture with DPR-c2c but encodes the concatenation of both
code and text.

• SCORE-R is the retrieval module of REDCODER (Parvez et al., 2021). SCORE-R is a cross-encoder which estimates
the semantic similarity between code snippets and textual summaries. At runtime, SCORE-R considers both paired data
and singletons (e.g. code without a description or a problem statement without any code)

For SQL-to-Text evaluation, we categorize the baseline models into three classes.

A.4.6. Sequence-to-Sequence Models

These methods follow the RNN-based sequence-to-sequence architecture (seq2seq) (Bahdanau et al., 2014) and also intro-
duce copy mechanism (cp) (Gu et al., 2016) and latent variable (lv) (Guo et al., 2018).

A.4.7. Structural Information Augmented Models

We compare with methods that exploit the structural information of SQL queries.

• Tree2Seq (Eriguchi et al., 2016) employs a tree-LSTM to model the interactive information of SQL tokens in a SQL
parsing tree. The output text is predicted with an auto-regressive decoder based on LSTM layers.

• Graph2Seq (Xu et al., 2018) exploits a graph neural network to capture the structural information of SQL query. The
method represents a SQL query as a directed graph and encodes the graph information with node embedding vectors.

A.5. Training and Inference

The models are trained on a single Nvidia A100 GPU. The batch size is set to 32 for training and 1 for inference respectively.
The beam size is set to 4. The training speed, inference speed, and GPU memory usage are provided in Table 10.

B. Evaluation on Code Sumarization
B.1. Analysis of Retrieval Embedding

The retrieval results keeping the target summaries in the retrieval databases are summarized in Table 11. This evaluation
is conducted to provide a comprehensive analysis of the retrieval models. Results on BLEU, recall, and MRR show the

16

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

proposed retriever significantly outperforms the baseline SCORE-R. Besides we also follow (Wang & Isola, 2020) to use
alignment and uniformity to measure the quality of learned embeddings. alignment calculates expected distance between
paired instances while uniformity measures how well the embeddings are uniformly distributed. From the results, the su-
periority of PinNet-Ret to REDCODER can be observed on representation quality. One can also observe that the proposed
hierarchical retrieval loss improves the alignment but contributes nothing to uniformity. It is interesting to investigate how
to improve it via leveraging the semantics of a retrieval database, and we leave it for future study.

Table 12. Cases on CodeXGLEU-Python testing set. The generation errors are highlighted with italic type and correct ones are bolded.
Due to space limit, only the top-1 retrieved results are listed.

1

Code

def rep1(parser: Union[Parser, Sequence[Input]])
-> RepeatedOnceParser:
if isinstance(parser, str):
parser = lit(parser)
return RepeatedOnceParser(parser)

Summary Match a parser one or more times repeatedly.

REDCODER Retrieval: Match a parser zero or more times repeatedly ;
Generation: Match a parser zero or more times repeatedly .

PinNet
Retrieval: Match a parser zero or more times repeatedly .
Generation: match a parser one or more times repeatedly .

w/o PinNet-Dis Generation: parses one or more times .

2

Code

def get_settings(cls, show_hidden=False):
settings = Integration.objects.get_settings(cls.ID)
if not show_hidden:
for field in cls.HIDDEN_FIELDS:
settings.pop(field, None)
return settings

Summary Retrieves the settings for this integration as a dictionary .

REDCODER Retrieval: Return settings for given integration as a dictionary .
Generation: Return settings for given integration .

PinNet
Retrieval: return settings for given integration as a dictionary .
Generation: return the settings for this integration as a dictionary .

w/o PinNet-Dis Generation: returns the settings for the given integration .

3

Code

def _log_vector_matrix (vs, ms):
return tf.reduce_logsumexp(input_tensor =
vs[..., tf.newaxis] + ms, axis=- 2)

Summary Multiply tensor of vectors by matrices assuming values stored are logs .

REDCODER Retrieval: Multiply tensor of matrices by vectors assuming values stored are logs.
Generation: Calculate the log matrix .

PinNet
Retrieval: Multiply tensor of matrices by vectors assuming values stored are logs.
Generation: combine tensors of matrices into log .

w/o PinNet-Dis Generation: calculate log vectors

17

PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation

B.2. Case Studies

We use some detailed samples from the CodeXGLEU-Python testing set to demonstrate the performance in Table 12. For
this first case, the information zero provided by the retrieved reference is inaccurate. All the comparing models except
PinNet are misguided by the retrieved reference. With the discriminative representations, PinNet can focus on the critical
semantics and successfully generates the accurate description. For the second case, the retrieved summary contains the
critical information dictionary. However, both REDCODER and the variant of PinNet fail to utilize it. It shows that PinNet
can better leverage the semantics from the retrieved samples.

The third is a failed case. Though the retrieved reference provides conducive semantics, both REDCODER and PinNet
fail to leverage the information. This failure is due to the semantical complexity of the code snippet. It is challenging for
models to understand the potential correlation between codes and retrieved knowledge. We leave the problem of addressing
the semantic obscurities for the future work.

18

