
LIWO: Lidar-Inertial-Wheel Odometry

Zikang Yuan1, Fengtian Lang2, Tianle Xu2 and Xin Yang2∗

Abstract— LiDAR-inertial odometry (LIO), which fuses
complementary information of a LiDAR and an Inertial
Measurement Unit (IMU), is an attractive solution for state
estimation. In LIO, both pose and velocity are regarded
as state variables that need to be solved. However, the
widely-used Iterative Closest Point (ICP) algorithm can only
provide constraint for pose, while the velocity can only be
constrained by IMU pre-integration. As a result, the velocity
estimates inclined to be updated accordingly with the pose
results. In this paper, we propose LIWO, an accurate and
robust LiDAR-inertial-wheel (LIW) odometry, which fuses
the measurements from LiDAR, IMU and wheel encoder in
a bundle adjustment (BA) based optimization framework.
The involvement of a wheel encoder could provide velocity
measurement as an important observation, which assists LIO
to provide a more accurate state prediction. In addition, con-
straining the velocity variable by the observation from wheel
encoder in optimization can further improve the accuracy of
state estimation. Experiment results on two public datasets
demonstrate that our system outperforms all state-of-the-art
LIO systems in terms of smaller absolute trajectory error
(ATE), and embedding a wheel encoder can greatly improve
the performance of LIO based on the BA framework.

I. INTRODUCTION
As a widely-used solution for 6-degree of freedom

(DOF) pose estimation and map reconstruction, LiDAR-
inertial odometry (LIO) is a fundamental technique for
many robotics applications, e.g., unmanned vehicle and
automatic navigation. LIO combines the measurements
from a three-dimension light detection and ranging
(LiDAR) and an Inertial Measurement Unit (IMU)
to estimate the state (i.e., pose and velocity) of the
hardware platform in real time, and then utilizes the
solved state to register the points of a new sweep into
the map. According to the degree of coupling, existing
LIO systems [19], [20], [11], [7], [17], [9], [12], [16], [15],
[3], [18] can be divided into two groups: loose-coupled
and tightly coupled.

The loose-coupled framework [19], [20], [11] mainly
uses IMU measurements to calibrate the motion distor-
tion of LiDAR points, and provide motion priors for Iter-
ative Closest Point (ICP) pose estimation. For instance,
LOAM [19] and LeGO-LOAM [11] have loosely-coupled

This work is supported by the National Natural Science Foun-
dation of China (62122029, 62061160490, U20B2064).

1Zikang Yuan is with Institute of Artificial Intelligence,
Huazhong University of Science and Technology, Wuhan, 430074,
China. (E-mail: yzk2020@hust.edu.cn)

2Fengtian Lang, Tianle Xu and Xin Yang (correspond-
ing author) are with the Electronic Information and Com-
munications, Huazhong University of Science and Technology,
Wuhan, 430074, China. (E-mail: U201913666@hust.edu.cn; tian-
lexu@hust.edu.cn; xinyang2014@hust.edu.cn)

IMU interfaces in their open source code, although they
described their work as the LiDAR-only odometry and
mapping system in the literature. However, calculating
the motion priors of current time relies on the velocity
of last state, which is neither directly observed by sensor
nor involved in optimization. Therefore, the accumu-
lated error of velocity increases with time, degrading
the accuracy of state estimation. In addition, LOAM
and LeGO-LOAM do not estimate the gravity vector
which need to be removed from raw accelerometer
measurements. Instead, they obtain the roll, pitch, yaw
angle in real time by fusing the magnetometer with
the accelerometer and gyroscope measurements in the
attitude and heading reference system (AHRS). Then,
the obtained roll, pitch and yaw angle are used to remove
the gravity vector. However, the magnetometer only
exists in AHRS, preventing those systems being used in
most hardware platforms with 6-axis IMUs. The tight-
coupled methods [7], [17], [9], [12], [16], [15], [3], [18] also
use IMU measurements to provide motion constraints
for ICP so as to improve the accuracy and robustness
of state estimation. The LIO joint optimization systems
based on the tightly-coupled framework can be mainly
categorized into three types: iterated extended Kalman
filter (iEKF), [9], [16], [15], bundle adjustment (BA)
[7], [17], [18] and graph optimization [12], [3]. All three
types regard pose and velocity as state variables that
need to be solved. The prediction of pose and velocity
are calculated by integrating IMU measurements to the
last state, and the observation of pose is obtained from
LiDAR ICP. However, the velocity does not have any
observation, therefore, it can only adjust itself according
to the result of pose to satisfy the kinematic constraints.
In order words, the accuracy of velocity mainly depends
on the accuracy of pose. Once the pose is not correct,
the velocity would adjust itself to fit the incorrect
pose. Although IMU pre-integrations can constrain the
velocity, this constrain is not very useful if the velocity
of last time is not accurate.

In this paper, we present LIWO, an accurate and ro-
bust LiDAR-inertial-wheel (LIW) odometry, which fused
constraints from LiDAR, IMU and wheel encoder in a
BA based tightly-coupled framework. LIWO integrates
the IMU and wheel encoder measurements as the initial
pose value of current sweep, and then refine pose by a BA
based LIW-optimization module. The wheel encoder can
make the initial velocity value of LIW-optimization more
reliable, and meanwhile can provide velocity observations
to address the limitation of IMU. In addition, compared

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 1-5, 2023. Detroit, USA

978-1-6654-9190-7/23/$31.00 ©2023 IEEE 1481

20
23

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

91
90

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IR

O
S5

55
52

.2
02

3.
10

34
22

58

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 19,2024 at 05:35:43 UTC from IEEE Xplore. Restrictions apply.

with [19], [11] which need AHRS support, our system is
compatible with hardware platforms with 6-axis IMUs
and thus is much more convenient in practice. Although
we utilize an extra wheel encoder sensor, the cost of
a wheel encoder sensor is much lower than that of
an AHRS. Experimental results on the public dataset
nclt [2] and kaist [5] demonstrate that: 1) our system
outperforms existing state-of-the-art LIO systems (i.e.,
[7], [9], [12], [15], [18] in term of smaller absolute
trajectory error (ATE); 2) Compared with a variant
of our system which utilizes only IMU pre-integration
to provide constraints, our final system which embeds
velocity observations from wheel encoder could further
improve accuracy and robustness.

To summarize, the main contributions of this work
are two folds: 1) We proposed a novel BA based LIW
odometry system, which embeds the velocity observa-
tions from a wheel encoder into BA based Lidar-inertial
optimization framework. Our LIWO outperforms most
state-of-the-art LIO systems in terms of accuracy. 2)
We have released the source code of this work for the
development of the community1.

The rest of this paper is structured as follows. In
Sec. II, we briefly discuss the relevant literature. Sec. III
provides preliminaries. Sec. IV illustrates the overview
of our system. Sec. V details each module of our system,
followed by experimental evaluation in Sec. VI. Sec. VII
concludes the paper.

II. RELATED WORK

LiDAR-Only Odometry and Mapping. LiDAR-only
odometry and mapping systems rely on geometric in-
formation contained in LiDAR points for tracking, and
constantly register the new points to the map. LOAM
[19], [20] firstly proposes a complete LiDAR odometry
which mainly consists of three steps: 1) Extracting edge
and surfaces from raw points; 2) Performing sweep-to-
sweep pose estimation at an input sweep frequency; 3)
Performing sweep-to-map pose optimization and utiliz-
ing the optimized pose to register points to the map at
a lower frequency. However, due to huge number of 3D
points to be processed, the output frequency of LOAM is
low. On the basis of LOAM, LeGO-LOAM [11] proposes
to cluster raw LiDAR points and then removes clusters
with weak geometric structure information to reduce
computation. Fast-LOAM [13] eliminates the sweep-to-
sweep pose estimation module and keep only the sweep-
to-map pose estimation module to make the system
lightweight. CT-ICP [4] estimates the state at beginning
and ending time of each sweep. By this way, the state at
any time during a sweep can be expressed as a function of
the beginning state and the ending state. Compared with
the previous scheme [19], [20], [11], [14] which represents
the state of a sweep by only the state at beginning time

1https://github.com/ZikangYuan/liw_oam

or ending time, CT-ICP is more realistic and meanwhile
achieves superior performance.

LiDAR-Inertial Odometry. Almost all LiDAR-inertial
odometry systems also include the mapping module, but
their mapping is almost exactly the same as LiDAR-
only odometry and mapping system. The core change
occurred in the odometery module, so we usually omit
”mapping” when summarizing them. LiDAR-inertial
odometry systems are mainly divided into loosely-
coupled framework [19], [20], [11] and tightly-coupled
framework [7], [17], [9], [12], [16], [15], [3], [18]. The
loose-coupled framework, such as LOAM [19] and LeGO-
LOAM [11] with an IMU interface, uses IMU mea-
surements to calibrate the motion priors for ICP pose
estimation. The tightly-coupled framework uses IMU
measurements to provide motion constraints for ICP,
so as to improve the accuracy and robustness of pose
estimation. According to the type of LiDAR-inertial
joint optimization, the tightly-coupled framework can
be further divided into iEKF based framework [9],
[16], [15] BA based framework [7], [17], [18] and graph
optimization based framework [12], [3]. LINs [9] firstly
fuses 6-axis IMU and 3D LiDAR in an iEKF based
framework, where an iEKF is designed to correct the
estimated state recursively by generating new feature
correspondences in each iteration, and to keep the sys-
tem computationally tractable. Fast-LIO [16] proposes
a new method of solving Kalman gain to avoid the
calculation of the high-order matrix inversion, and in
turn greatly reduce the computational burden. Based
on Fast-LIO, Fast-LIO2 [15] proposes an ikd-tree al-
gorithm [1]. Compared with the original kd-tree, ikd-
tree reduces time cost in building a tree, traversing a
tree, removing elements and other operations. LIO-SAM
[12] formulates LiDAR-inertial odometry as a factor
graph. Measurements from LiDAR and IMU are used
to provide absolute constraints for each node graph and
relative constraints between nodes respectively. DLIO [3]
builds an internal map by registering dense points to a
local submap with a translational and rotational prior
generated by a nonlinear motion model. [17] fuses 6-
axis IMU and 3D LiDAR in a BA based framework.
Besides, to obtain more reliable poses estimation, a
rotation-constrained refinement algorithm is proposed to
further align the pose with the global map. LiLi-OM
[7] selects the key-sweeps from solid-state LiDAR data,
and performs BA based multi-key-sweep joint LiDAR-
inertial optimization. However, when the type of LiDAR
changes from solid-state to spinning, the time interval
between two consecutive key-sweeps becomes longer, and
the accumulative error in IMU pre-integration increases.
To reduce the accumulative error of IMU pre-integration
in BA based framework, our previous work SR-LIO
[18] segments and reconstructs raw input sweeps from
spinning LiDAR to obtain reconstructed sweeps with
higher frequency, and utilizes the reconstructed sweep
for state estimation.

1482

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 19,2024 at 05:35:43 UTC from IEEE Xplore. Restrictions apply.

LiDAR-Inertial-Wheel Odometry. [21] is the first ap-
proach (without source code released) trying to fuse
LiDAR, IMU and wheel in a loosely-coupled extended
Kalman filter (EKF) framework. First, the state at a
particular time is calculated by LiDAR, IMU and wheel
encoder odometer respectively. Then, the three states
calculated by the three sensors are integrated into an
EKF to obtain the final state. EKF-LOAM [6] which
provides the source code also adopts the loosely-coupled
EKF framework. Compared with [21], [6] uses a simple
and lightweight adaptive covariance matrix based on the
number of detected geometric features. Different from
[21] and [6], our LIWO utilizes a tightly-coudpled BA
framework, where constraints from LiDAR, IMU and
wheel encoder odometer are used together to solve a
state. This scheme is more robust, because when the
observation of one sensor is unreliable, constraints form
other sensors can also ensure the reliability of the final
state solution in most cases.

III. PRELIMINARY
A. Coordinate Systems

We denote (·)w, (·)l, (·)o and (·)k as a 3D point in
the world coordinates, the LiDAR coordinates, the IMU
coordinates and the odometer (i.e., wheel encoder) coor-
dinates respectively. The world coordinate is coinciding
with (·)l at the starting position. In all coordinates, the
x-axis points forward, the y-axis points to the left, and
the z-axis points upward.

We denote the LiDAR coordinates for taking the
ith sweep at time ti as li and the corresponding IMU
coordinates at ti as oi, then the transformation matrix
(i.e., external parameters) from the LiDAR coordinates
li to the IMU coordinates oi is denoted as Toi

li
∈ SE(3),

where Toi
li

consists of a rotation matrix Roi
li

∈ SO(3)
and a translation vector toili ∈ R3. The external pa-
rameters are usually calibrated once offline and remain
constant during online pose estimation; therefore, we
can represent Toi

li
using To

l for simplicity. Similarity,
the transformation from the odometer coordinates to the
IMU coordinate is denoted as To

k, which consists of Ro
k

and tok.
We use both rotation matrices R and Hamilton quater-

nions q to represent rotation. We primarily use quater-
nions in state vectors, but rotation matrices are also
used for convenience rotation of 3D vectors. ⊗ represents
the multiplication operation between two quaternions.
Finally, we denote (̂·) as the noisy measurement or
estimate of a certain quantity.

In addition to pose, we also estimate the velocity v,
the accelerometer bias ba and the gyroscope bias bω,
which are represented uniformly by a state vector:

x =
[
tT ,qT ,vT ,ba

T ,bω
T
]T (1)

B. Sweep State Expression
Inspired by CT-ICP [4], we represent the state of a

sweep S by: 1) the state at the beginning time tb of

S (e.g., xb) and 2) the state at the end time te of S
(e.g., xe). By this way, the state of each point during
[tb, te] can be represented as a function of xb and xe. For
instance, for a point p ∈ S collected at time tp ∈ [tb, te],
the state at tp can be calculated as:

α =
tp − tb
te − tb

tp = (1− α)tb + αte

qp = qb.slerp (α,qe)

vp = (1− α)vb + αve

bap = (1− α)bab
+ αbae

bωp = (1− α)bωb
+ αbωe

(2)

where slerp (·) is the spherical linear interpolation oper-
ator for quaternion.

C. IMU-Odometer Measurement Model
The IMU-odometer includes a wheel encoder and an

IMU, which consists of an accelerometer and a gyroscope.
The raw gyroscope and accelerometer measurements
from IMU, i.e., ω̂t and ât, are given by:

ω̂t = ωt + bωt + nω

ât = at + bat
+Rt

wg
w + na

(3)

IMU measurements, which are measured in the IMU
coordinates, combine the force for countering gravity and
the platform dynamics, and are affected by acceleration
bias bat

, gyroscope bias bωt
, and additive noise. As

mentioned in VINs-Mono [10], the additive noise in
acceleration and gyroscope measurements are modeled as
Gaussian white noise, na ∼ N

(
0,σ2

a

)
, nω ∼ N

(
0,σ2

ω

)
.

Acceleration bias and gyroscope bias are modeled as
random walk, whose derivatives are Gaussian, ḃat

=
nba ∼ N

(
0,σ2

ba

)
, ḃωt

= nbω ∼ N
(
0,σ2

bω

)
.

The wheel encoder obtains the rotational speed τ of
the shaft according to the pulse received by the counter,
and then calculate the speed of the left rear wheel and
the right rear wheel according to τ and the wheel radius
r:

v̂left =
[
τ̂leftrleft 0 0

]T
v̂right =

[
τ̂rightrright 0 0

]T
τ̂left = τleft + nτleft

, τ̂right = τright + nτright

(4)

where nτleft
and nτright

are the corresponding zero-
mean white Gaussian noises of τleft and τright, v̂left

and v̂right are the measured linear speed of two wheels
calculated from τ̂· and r·. Then the final measurement
model of wheel encoder odometer, which are measured
in odometer coordinates, can be defined as:

v̂ =
v̂left + v̂right

2
+ nv

nv =
[

rleftnτleft
+rrightnτright

2 0 0
]T (5)

where [nv]x is the sum of two zero-mean Gaussian
distributions. In theory, nτleft

and nτright
are correlated.

1483

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 19,2024 at 05:35:43 UTC from IEEE Xplore. Restrictions apply.

However, we assume that they are independent for
simplifying the noise model. Under this assumption,
[nv]x is the sum of two uncorrelated zero-mean Gaussian
distributions nv ∼ N

(
0,σ2

v

)
, which is still a zero-mean

Gaussian distribution. This simplified noise model can be
processed together with the IMU noise when propagation
of covariance.

IV. SYSTEM OVERVIEW
Fig. 1 illustrates the framework of our LIWO which

consists of four main modules: pre-processing, initializa-
tion, state estimation and point registration. The pre-
processing module down-samples the input raw points,
and pre-integrates IMU-odometer measurements at the
same frequency of input sweep. The initialization module
estimates some state parameters including gravitational
acceleration, accelerometer bias, gyroscope bias, and
initial velocity. The state estimation module firstly
integrates the IMU-odometer measurements to the last
state to predict the current state, then performs BA
based LIW-optimization to optimize the state of current
sweep. Finally, the point registration adds the new points
to the map, and deletes the points that are far away.

V. SYSTEM DETAILS
A. Pre-Processing

1) Down Sampling: Processing a huge number of 3D
points yields a high computational cost. To reduce the
computational complexity, we down-sample the input
points as following. Following CT-ICP [4], we put the
points of current input sweep Si+1 into a volume with
0.5×0.5×0.5 (unit: m) voxel size, and make each voxel
contain only one point, to obtain the down-sampled
sweep Pi+1. This down-sampling strategy ensures that
the density distribution of points is uniform in 3D space
after down-sampling.

2) Pre-Integration: Typically, the IMU-odometer
sends out data at a much higher frequency than the
LiDAR. Pre-integration of all IMU-odometer measure-
ments between two consecutive sweeps Si and Si+1 can
well summarize the dynamics of the hardware platform
from time tei to tei+1

, where ei and ei+1 are the
end time stamp of Si and Si+1 respectively. In this
work, we employ the discrete-time quaternion-based
derivation of IMU-odometer pre-integration approach [8],
and incorporate IMU bias using the method in [10].
Specifically, the pre-integrations between Si and Si+1

in the corresponding IMU coordinates oei and oei+1
,

i.e., α̂ei
ei+1

, η̂ei
ei+1

, β̂
ei
ei+1

, and γ̂ei
ei+1

, are calculated, where
αei

ei+1
, βei

ei+1
, γei

ei+1
are the pre-integration of translation,

velocity, rotation from IMU measurements respectively
and ηei

ei+1
is the pre-integration of translation from

gyroscope and wheel encoder odometer measurements.
In addition, the Jacobian of pre-integration with respect
to bias, i.e., Jα

ba
, Jα

bω
, Jβ

ba
, Jβ

bω
, Jγ

bω
, Jη

ba
and Jη

bω
, are

also calculated according to the error state kinematics.

B. Initialization
The initialization module aims to estimate all neces-

sary values including initial pose, velocity, gravitational
acceleration, accelerometer bias and gyroscope bias, for
subsequent state estimation. Similar as our previous
work SR-LIO [18], we adopt motion initialization and
static initialization for handheld devices and vehicle-
mounted devices respectively. Please refer to [18] for
more details about our initialization module.

C. State Estimation
1) State Prediction: When every new down-sampled

sweep Pi+1 completes, we use IMU-odometer measure-
ments to predict the state at the beginning time stamp
of Pi+1 (i.e., xw

bi+1
) and the state at the end time stamp

of Pi+1 (i.e., xw
ei+1

) to provide the prior motion for LIW-
optimization. Specifically, the predicted state xw

bi+1
(i.e.,

twbi+1
, Rw

bi+1
, vw

bi+1
, babi+1

and bωbi+1
) is assigned as:

xw
bi+1

= xw
ei (6)

and xw
ei+1

(i.e., twei+1
, Rw

ei+1
, vw

ei+1
, baei+1

and bωei+1
) is

calculated as:

Rw
n+1 = Rw

nExp

((
ω̂n + ω̂n+1

2
− bωei

)
δt

)
vw
n+1 = Rw

n+1R
l
kv̂n+1

twn+1 = twn + vw
n δt+

1

2

(
ân + ân+1

2
− baei

−Rw
ng

w

)
δt2

(7)
where ω̂·, â· and v̂· are the measurements from IMU
gyroscope, IMU accelerometer and wheel encoder, gw is
the gravitational acceleration in the world coordinates,
n and n+1 are two time instants of obtaining an IMU-
odometer measurements during

[
tei , tei+1

]
, δt is the time

interval between n and n+ 1. We iteratively increase n
from 0 to

(
tei+1

− tei
)
/δt to obtain xw

ei+1
. When n = 0,

xw
n = xw

ei . For baei+1
and bωei+1

, we set the predicted
values of them by: baei+1

= baei
and bωei+1

= bωei
.

2) BA based LIW-Optimization: We jointly utilize
measurements of the LiDAR, inertial and wheel encoder
to optimize the beginning state (i.e., xw

bi+1
) and the end

state (i.e., xw
ei+1

) of the current sweep Pi+1, where the
variable vector is expressed as:

χ =
{
xw
bi+1

,xw
ei+1

}
(8)

Residual from the LiDAR constraint. As proposed in
Fast-LIO2 [15], directly building point-to-plane residuals
is more accurate and robust than using both edge and
surface features. Therefore, we followed their scheme in
this work. For a point p, we first project p to the world
coordinates to obtain pw, and then find 20 nearest points
around pw from the volume. To search for the nearest
neighbor of pw, we only search in the voxel V to which pw

belongs, and the 8 voxels adjacent to V . The 20 nearest
points are used to fit a plane with a normal n and a

1484

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 19,2024 at 05:35:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Overview of our LIWO which consists of four main modules: a pre-processing module, an initialization module, a state estimation
module and a point registration module.

distance d. Accordingly, we can build the point-to-plane
residual rp for p as:

rp = ωp

(
nTpw + d

)
pw = qw

pp+ twp

α =
tp − tbi+1

tei+1 − tbi+1

twp = (1− α)twbi+1
+ αtwei+1

qw
p = qw

bi+1
.slerp

(
α,qw

ei+1

)
(9)

where ωp is a weight parameter defined by [4], qw
bi+1

and qw
ei+1

are the rotation with respect to (·)w at tbi+1

and tei+1
respectively, twbi+1

and twei+1
are the translation

with respect to (·)w at tbi+1 and tei+1 respectively. Both
qw
bi+1

, qw
ei+1

, twbi+1
, twei+1

are variables to be refined, and
the initial value of them are obtained from Sec. V-C.1.

Residual from the IMU-odometer constraint. Con-
sidering the IMU-odometer measurements during[
tbi+1

, tei+1

]
, according to pre-integration introduced in

[8], the residual for pre-integrated IMU-odometer mea-
surements can be computed as:

ro
bi+1
ei+1

=

R
bi+1
w

(
twei+1

− twbi+1
+ 1

2g
w∆t2 − vw

bi+1
∆t

)
− α̂ei

ei+1

R
bi+1
w

(
vw
ei+1

+ gw∆t− vw
bi+1

)
− β̂

ei
ei+1

2

[
qw−1

bi+1
⊗ qw

ei+1
⊗
(
γ̂ei
ei+1

)−1
]
xyz

R
bi+1
w

(
twei+1

− twbi+1

)
− tok +R

bi+1
w Rw

ei+1
tok − η̂ei

ei+1

bai+1 − bai

bωi+1
− bωi

(10)

where [·]xyz extracts the vector part of a quaternion
q for error state representation. At the end of each
iteration, we update

[
α̂ei

ei+1
, β̂

ei
ei+1

, γ̂ei
ei+1

, η̂ei
ei+1

]T
with

the first order Jacobian approximation [10].
Residual from the velocity observation constraint. As

mentioned in Sec. I, the existing LIO systems lack of
velocity observations to constrain the velocity during op-
timization. In our system, we utilized the measurements
from wheel encoder as the observation to constrain the

velocity:

rw =

[
rwbi+1

rwei+1

]
=

[
vw
bi+1

−Rw
bi+1

Rl
kv̂bi+1

vw
ei+1

−Rw
ei+1

Rl
kv̂ei+1

]
(11)

where Rl
k is the rotation from the wheel encoder to

LiDAR, v̂bi+1 and v̂ei+1 are the velocity measurements
from the wheel encoder at tbi+1

and tei+1
respectively.

Residual from the consistency constraint. According
to CT-ICP [4], xw

bi+1
and xw

ei are two states at the same
time stamp tbi+1

(tei). Logically, xw
ei and xw

bi+1
should be

the same. Therefore, we build the consistency residual
as follow:

rc =

rtc
rqc
rvc
rba
c

rbω
c

 =

twbi+1

− twei

2
[
qw
ei

−1 ⊗ qw
bi+1

]
xyz

vw
bi+1

− vw
ei

babi+1
− baei

bωbi+1
− bωei

 (12)

where twbi+1
, qw

bi+1
, vw

bi+1
, babi+1

, bωbi+1
are varibales to

be optimized.
By minimizing the sum of point-to-plane residuals,

the IMU-odometer pre-integration residuals, the velocity
observation residuals and the consistency residuals, we
obtain maximum a posteriori estimation as:

χ = min
χρ

 ∑
p∈Pi+1

∥rp∥2PL
+

∥∥∥robi+1
ei+1

∥∥∥2
P

ei
ei+1

+ ∥rw∥2 + ∥rc∥2

(13)

where ρ is the Huber kernel to eliminate the influence of
outlier residuals. Pei

ei+1
is the covariance matrix of pre-

integrated IMU-odometer measurements. The inverse of
Pei

ei+1
is utilized as the weight of IMU pre-integration

residuals. PL is a constant (e.g., 0.001 in our system)
to indicate the reliability of the point-to-plane residuals.
The inverse of PL is utilized as the weight of point-
to-plane residuals. After finishing LIW-optimization, we
selectively add the points of current sweep to the map.

D. Point Registration
Similar as CT-ICP [4], the cloud map is stored in

a volume, and the size of each voxel is 1.0×1.0×1.0

1485

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 19,2024 at 05:35:43 UTC from IEEE Xplore. Restrictions apply.

TABLE I
Datasets for Evaluation

LiDAR IMU Wheel encoder
Line Rate Type Rate Type Rate

nclt 32 10 Hz 9-axis 100 Hz speed 10 Hz
kaist 16 10 Hz 9-axis 200 Hz pulse 100 Hz

TABLE II
Datasets of All Sequences for Evaluation

Name Duration
(min:sec)

Distamce
(km)

nclt_1 2012-01-08 92:16 6.4
nclt_2 2012-01-15 110:46 7.5
nclt_3 2012-01-22 86:11 6.1
nclt_4 2012-02-02 96:39 6.2
nclt_5 2012-02-18 88:19 6.2
nclt_6 2012-03-17 81:51 5.8
nclt_7 2012-05-11 83:36 6.0
nclt_8 2012-05-26 97:23 6.3
nclt_9 2012-06-15 55:10 4.1
nclt_10 2012-08-04 79:27 5.5
nclt_11 2012-08-20 88:44 6.0
nclt_12 2013-09-28 76:40 5.6
kaist_1 urban_08 5:07 1.56
kaist_2 urban_13 24:14 2.36
kaist_3 urban_14 29:06 8.20

(unit: m). Each voxel contains a maximum of 20 points.
When the state of the current down-sampled sweep Pi+1

has been estimated, we transform Pi+1 to the world
coordinate system (·)w, and add the transformed points
into the volume map. If a voxel already has 20 points,
the new points cannot be added to it.

VI. EXPERIMENTS
We evaluate our LIWO on the public datasets nclt

[2] and kaist [5]. nclt is a large-scale, long-term au-
tonomous unmanned ground vehicle dataset collected in
the University of Michigans North Campus. The nclt
dataset contains a full data stream from a Velodyne
HDL-32E LiDAR, 50 Hz data from Microstrain MS25
IMU and 10 Hz data from Segway vehicle platform’s
wheel encoder. The nclt dataset has a much longer
duration and amount of data than other datasets and
contains several open scenes, such as a large open parking
lot. In addition, 50 Hz IMU measurements cannot meet
the requirements of some systems (e.g., LIO-SAM [12]).
Therefore, we increase the frequency of the IMU to
100 Hz by interpolation.

The kaist dataset is collected with a human-driving
robocar on a variety of longer and larger environments.
The robocar has two 10 Hz Velodyne VLP-16, 200 Hz
Ssens MTi-300 IMU and 100 Hz RLS LM13 wheel en-
coder. Two 3D LiDARs are tilted by approximately 45◦.
For point clouds, we utilize the data from both two
3D LiDARs. The datasets’ information, including the
sensors’ type and data rate, are illustrated in Table I.
As both datasets utilize the vehicle platform, we employ
static initialization in our system. Details of all the 15
sequences used in this section, including name, duration,

TABLE III
RMSE of ATE Comparison of State-of-the-art (Unit: m)

LiLi-
OM

LIO-
SAM LINs Fast-

LIO2
SR-
LIO Ours

nclt_1 60.98 1.71 × 1.34 1.55 1.42
nclt_2 127.5 2.12 × 1.65 1.53 1.46
nclt_3 42.32 9.70 × 1.91 6.72 1.20
nclt_4 40.14 1.45 × 1.95 1.57 1.45
nclt_5 × 5.66 × 4.37 1.46 1.44
nclt_6 146.2 × × 6.11 2.07 1.52
nclt_7 89.98 × × 2.42 1.87 1.79
nclt_8 43.46 × × 2.62 2.04 1.41
nclt_9 82.66 1.51 × 2.09 2.00 1.31
nclt_10 96.87 2.26 × 2.43 2.15 1.46
nclt_11 207.1 10.81 × 2.29 1.97 1.33
nclt_12 1137.8 × × 2.91 2.32 1.55
kaist_1 × × × 16.27 3.17 2.87
kaist_2 × × × × × 2.68
kaist_3 × × × × × 55.95

TABLE IV
Ablation Study of Embedding Sensors on RMSE of ATE (Unit:

m)

LiDAR-only LIO LIWO
nclt_1 × × 1.42
nclt_2 × 1.43 1.46
nclt_3 × × 1.20
nclt_4 × 1.36 1.45
nclt_5 × × 1.44
nclt_6 × 1.73 1.52
nclt_7 × × 1.79
nclt_8 × 1.65 1.41
nclt_9 × 1.72 1.31
nclt_10 × × 1.46
nclt_11 × 76.69 1.33
nclt_12 × 32.84 1.55
kaist_1 × × 2.87
kaist_2 × × 2.68
kaist_3 × × 55.95

and distance, are listed in Table II. For both datasets,
we utilize the universal evaluation metric – absolute
translational error (ATE) for pose accuracy evaluation.
A consumer-level computer equipped with an Intel Core
i7-12700 and 32 GB RAM is used for all experiments.

A. Comparison with the State-of-the-Arts
We compare our LIWO with five state-of-the-art LIO

systems: i.e., LiLi-OM [7], LIO-SAM [12], LINs [9], Fast-
LIO2 [15] and SR-LIO [18]. It is necessary to emphasize
that the LiDAR of nclt takes 130∼140ms to complete a
360deg sweep (i.e., the frequency of a sweep is about
7.5 Hz), and SR-LIO needs 360deg sweeps as input.
Therefore, for SR-LIO, we package sweeps at 7.5 Hz from
the full LiDAR data stream of nclt. For fair comparison,
we obtain the results of the above systems based on
the source code provided by the authors. In addition to
the aforementioned LIO systems, there are also a few
LIW odometry systems (e.g., [21] and EKF-LOAM [8]).
However, [21] did not provide the source code, and we
fail to configure the environment of [8] based on their
guidance on the github. In addition, the paper of [21]
and [8] did not report their ATE results on nclt and

1486

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 19,2024 at 05:35:43 UTC from IEEE Xplore. Restrictions apply.

TABLE V
Time Consumption Per Sweep (Unit: ms)

LIW-Optimization Point Registration Total
nclt_1 51.1 10.3 62.7
nclt_2 51.2 13.9 66.4
nclt_3 54.7 9.2 65.2
nclt_4 51.8 9.7 63.0
nclt_5 53.2 10.1 64.8
nclt_6 51.6 9.6 62.6
nclt_7 52.3 9.7 63.3
nclt_8 54.5 9.5 65.3
nclt_9 55.7 8.0 65.1
nclt_10 54.5 9.2 65.1
nclt_11 54.8 9.6 65.7
nclt_12 54.1 9.8 65.2
kaist_1 71.9 4.2 77.2
kaist_2 76.5 3.7 81.0
kaist_3 68.0 4.2 73.2

kaist, but only test on their own datasets. Therefore,
the results of [21] and [8] are not included in Table III.

Results in Table III demonstrate that our LIWO
outperforms the state-of-the-art LIO systems for almost
all sequences in terms of smaller ATE. “×” means the
system fails to run the entire sequence. Except for our
system, other systems break down on several sequences
(especially the kaist sequences), which demonstrate that
our method is robust under challenging scenes. It is
necessary to emphasize that the Segway vehicle platform
enters a long indoor corridor through a door from the
outdoor scene at the end of some sequences of nclt,
yielding significant scene changes. This large differences
in scenes produce great difficulties for ICP point cloud
registration, and hence almost all LIO systems break
down here. Therefore, we omit the test for these cases
which usually locate at the end of the sequences.
B. Ablation Study of Embedding Sensors

In this section, we examine the impact of embedding
IMU into our LiDAR-only system and embedding the
wheel encoder into our BA based LIO system. To this
end, we evaluate ATE of the estimated pose under
the following three configurations: 1) using only the
LiDAR point-to-plane residuals and consistency residuals
to provide constraints for state estimation. 2) con-
currently using LiDAR point-to-plane residuals, IMU
pre-integration residuals and consistency residuals to
provide constraints for state estimation. 3) concurrently
using LiDAR point-to-plane residuals, IMU-odometer
pre-integration residuals, velocity observation residuals
and consistency residuals to provide constraints for
state estimation. Table IV shows the comparison results.
Although the accuracy of LIWO is not the best on nclt_1
and nclt_4, we are very close to the best accuracy. On
other sequences, embedding wheel encoder can achieve
the best performance. In addition, both LiDAR-only
and LIO break down on many sequences, while LIWO
can run successfully on all sequences. This demonstrates
that embedding a wheel encoder can greatly improve the
robustness of BA based LIO framework.

C. Time Consumption
We evaluate the runtime breakdown (unit: ms) of our

system for all sequences. In general, the most time-
consuming modules are the BA based LIW-optimization
module, and the point registration module. Therefore,
for each sequence, we test the time cost of above two
modules, and the total time for handling a sweep.

Results in Table V show that our LIWO takes
60∼80ms to handle a sweep, while the time interval
of two consecutive input sweeps is 100ms. That means
our system can not only run in real time, but also save
20∼40ms per sweep.

D. Evaluation of Velocity
Introducing the wheel encoder measurements, which

provides the velocity observation, could yield the greatest
accuracy improvement for the estimated velocity, as
the raw LIO framework does not have any velocity
observations. In practice, it is difficult for us to obtain
the ground truth value of velocity. However, we can
still make a stereotypical evaluation of the accuracy
of velocity based on the kinematic attempt. In theory,
the velocity of a moving vehicle should be continuous
and smooth, but not oscillating at a high frequency.
Therefore, the smoother the curve of a velocity function
with respect to time, the better the curve fits the
kinematics attempt. As illustrated in Fig. 2, compared to
the high frequency oscillation curve of LIO, the curve of
LIWO is much smoother. This shows that the accuracy of
velocity estimation is greatly improved after embedding
velocity observation.

E. Visualization for map
We also visualize the trajectories and point cloud

maps estimated by our LIWO. The comparison result
between our estimated trajectory and ground truth of
the sequence kaist_1 is shown in Fig. 3 (a), where our
estimated trajectories and ground truth almost exactly
coincide. Fig. 3 (b) shows sufficient accuracy for some
local structures, where the distribution of the points is
also uniform.

VII. CONCLUSION
In this work, we proposed LIWO, which is an accurate

and robust BA based LiDAR-inertial-wheel framework
for state estimation in real time. Compared with exist-
ing LIO systems, the involvement of a wheel encoder
provides velocity measurements as an extra observation,
which can greatly enhance the accuracy and robustness
of state estimation. Experiment results on the nclt and
kaist datasets demonstrate the high accuracy of our
LIWO.

It is noteworthy that so far LIWO is only a basic
open-sourced LiDAR-inertial-wheel framework. Several
practical problems (e.g., the speed inconsistency of the
left and right wheels during turns, the observation failure
of wheel slippage) have not been considered in the

1487

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 19,2024 at 05:35:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The velocity distribution in the X-direction component of LIO and LIWO on the sequence nclt_9. Compared to the high
frequency oscillation curve of LIO, the curve of LIWO is much smoother. This shows that the accuracy of velocity estimation is greatly
improved after embedding the velocity observation, because the velocity of a moving vehicle should be continuous and smooth in theory,
but not oscillating at high frequency.

Fig. 3. (a) is the comparison result between our estimated
trajectory and ground truth on the exemplar sequence kaist_1.
(b) is the local point cloud map of kaist_1.

current framework. These problems will be improved in
our future work.

References

[1] Y. Cai, W. Xu, and F. Zhang, “ikd-tree: An incre-
mental kd tree for robotic applications,” arXiv preprint
arXiv:2102.10808, 2021.

[2] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “Uni-
versity of michigan north campus long-term vision and lidar
dataset,” The International Journal of Robotics Research,
vol. 35, no. 9, pp. 1023–1035, 2016.

[3] K. Chen, R. Nemiroff, and B. T. Lopez, “Direct lidar-inertial
odometry,” arXiv preprint arXiv:2203.03749, 2022.

[4] P. Dellenbach, J.-E. Deschaud, B. Jacquet, and F. Goulette,
“Ct-icp: Real-time elastic lidar odometry with loop closure,”
in 2022 International Conference on Robotics and Automation
(ICRA). IEEE, 2022, pp. 5580–5586.

[5] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex
urban dataset with multi-level sensors from highly diverse
urban environments,” The International Journal of Robotics
Research, vol. 38, no. 6, pp. 642–657, 2019.

[6] G. P. C. Júnior, A. M. Rezende, V. R. Miranda, R. Fernandes,
H. Azpúrua, A. A. Neto, G. Pessin, and G. M. Freitas, “Ekf-
loam: an adaptive fusion of lidar slam with wheel odometry
and inertial data for confined spaces with few geometric
features,” IEEE Transactions on Automation Science and
Engineering, vol. 19, no. 3, pp. 1458–1471, 2022.

[7] K. Li, M. Li, and U. D. Hanebeck, “Towards high-
performance solid-state-lidar-inertial odometry and map-
ping,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp. 5167–5174, 2021.

[8] J. Liu, W. Gao, and Z. Hu, “Visual-inertial odometry tightly
coupled with wheel encoder adopting robust initialization and
online extrinsic calibration,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
2019, pp. 5391–5397.

[9] C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu,
“Lins: A lidar-inertial state estimator for robust and efficient
navigation,” in 2020 IEEE international conference on robotics
and automation (ICRA). IEEE, 2020, pp. 8899–8906.

[10] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile
monocular visual-inertial state estimator,” IEEE Transactions
on Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[11] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,”
in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 4758–4765.

[12] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and
D. Rus, “Lio-sam: Tightly-coupled lidar inertial odometry via
smoothing and mapping,” in 2020 IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE,
2020, pp. 5135–5142.

[13] H. Wang, C. Wang, C.-L. Chen, and L. Xie, “F-loam: Fast lidar
odometry and mapping,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
2021, pp. 4390–4396.

[14] H. Wang, C. Wang, and L. Xie, “Intensity scan context:
Coding intensity and geometry relations for loop closure de-
tection,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 2095–2101.

[15] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2:
Fast direct lidar-inertial odometry,” IEEE Transactions on
Robotics, vol. 38, no. 4, pp. 2053–2073, 2022.

[16] W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-inertial
odometry package by tightly-coupled iterated kalman filter,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
3317–3324, 2021.

[17] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3d lidar inertial
odometry and mapping,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 3144–
3150.

[18] Z. Yuan, F. Lang, and X. Yang, “Sr-lio: Lidar-inertial
odometry with sweep reconstruction,” arXiv preprint
arXiv:2210.10424, 2022.

[19] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping
in real-time.” in Robotics: Science and Systems, vol. 2, no. 9.
Berkeley, CA, 2014, pp. 1–9.

[20] ——, “Low-drift and real-time lidar odometry and mapping,”
Autonomous Robots, vol. 41, pp. 401–416, 2017.

[21] S. Zhang, Y. Guo, Q. Zhu, and Z. Liu, “Lidar-imu and wheel
odometer based autonomous vehicle localization system,” in
2019 Chinese control and decision conference (CCDC). IEEE,
2019, pp. 4950–4955.

1488

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 19,2024 at 05:35:43 UTC from IEEE Xplore. Restrictions apply.

