
CUPID: Curating Data your Robot Loves
with Influence Functions

Christopher Agia1, Rohan Sinha1, Jingyun Yang1,
Rika Antonova2, Marco Pavone1,3, Haruki Nishimura4, Masha Itkina4, Jeannette Bohg1

Abstract: In robot imitation learning, policy performance is tightly coupled
with the quality and composition of the demonstration data. Yet, developing a
precise understanding of how individual demonstrations contribute to downstream
outcomes—such as closed-loop task success or failure—remains a persistent
challenge. We propose CUPID, a robot data curation method based on a novel
influence function-theoretic formulation for imitation learning policies. Given
a set of evaluation rollouts, CUPID estimates the influence of each training
demonstration on the policy’s expected return. This enables ranking and selection of
demonstrations according to their impact on the policy’s closed-loop performance.
We use CUPID to curate data by 1) filtering out training demonstrations that harm
policy performance and 2) subselecting newly collected trajectories that will most
improve the policy. Extensive simulated and hardware experiments show that
our approach consistently identifies which data drives test-time performance. For
example, training with less than 33% of curated data can yield state-of-the-art
diffusion policies on the simulated RoboMimic benchmark, with similar gains
observed in hardware. Furthermore, hardware experiments show that our method
can identify robust strategies under distribution shift, isolate spurious correlations,
and even enhance the post-training of generalist robot policies.

Keywords: Imitation Learning, Data Curation, Influence Functions

1 Introduction

While some of the largest breakthroughs in deep learning have emerged from architectural innovations,
data often remains an underrecognized yet critical driver of a model’s overall performance. In
particular, the success of scaling vision and language models has been followed by a rising interest in
data attribution [1, 2, 3]—methods that causally link model behavior to training data—and in automatic
data curation algorithms [4, 5, 6], grounded in the idea that not all data points contribute equally, or
even positively, to a model’s performance. As parts of the robotics community scale imitation learning
and robotics datasets become increasingly diverse [7, 8], developing a deeper understanding of (i) how
demonstration data shapes policy behavior and (ii) how we can extract maximum utility from training
datasets will be imperative to advancing policy performance toward reliable, open-world deployment.

Curating data for robot imitation learning has been the focus of several recent works [9, 10, 11]. A
common approach retains demonstrations deemed most valuable under a heuristic, task-agnostic
quality metric, resulting in a smaller dataset curated offline [10]. This approach typically rests on
the implicit assumption that the designed quality metric aligns well with the policy’s downstream
performance—an assumption that may not hold uniformly across diverse robotics tasks. While recent
efforts attempt to learn performance-correlated heuristics using online policy experience [11], they do
not establish strong causal links between training data and policy behavior. As a result, these methods
risk misattributing the root cause of policy success or failure with respect to the training data [12].

In this work, we formally define data curation in imitation learning as the problem of identifying which
expert demonstrations maximally contribute to the policy’s expected return. We then introduce CUPID
(CUrating Performance-Influencing Demonstrations), a data curation method that directly targets this
objective by leveraging influence functions [13, 14]—a technique popularized in the data attribution
literature [15]—to identify which demonstrations influenced a policy’s predictions during closed-loop
execution. We show that a demonstration’s influence on expected return decomposes into a tractable

Correspondence to: cagia@cs.stanford.edu. Videos and code are available at: https://cupid-curation.github.io.
1Stanford University, 2University of Cambridge, 3NVIDIA Research, 4Toyota Research Institute
9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

http://agiachris.github.io/
https://rohansinha.nl/
https://yjy0625.github.io/
https://contactrika.github.io/
https://profiles.stanford.edu/marco-pavone
https://harukins.github.io/
https://mashaitkina.weebly.com/
https://web.stanford.edu/~bohg/
mailto:cagia@cs.stanford.edu
https://cupid-curation.github.io
https://www.stanford.edu/
https://www.cam.ac.uk/
https://www.nvidia.com/en-us/research/
https://www.tri.global/

sum over its state-action transitions and can be efficiently approximated using a REINFORCE-style
estimator [16] given a set of policy rollouts. Ranking demonstrations by their estimated performance
impact facilitates curation in two settings: (a) filtering existing demonstrations from training sets and
(b) selecting high-impact demonstrations from newly collected or pre-collected data—whereas prior
work focuses solely on filtering [10, 11]. Finally, while our approach offers a general and effective
standalone signal for curating demonstration data, we investigate its combined use with task-agnostic
quality metrics (also derived from influence scores), identifying conditions under which the integration
of performance- and quality-based metrics strengthens or weakens overall curation performance.

Our contributions are three-fold: (1) We formulate robot data curation as the problem of valuating
demonstrations in accordance with their downstream impact on policy performance; (2) We propose
CUPID, a novel approach for curating imitation learning datasets based on influence functions, causally
linking demonstrations to the policy’s expected return; (3) We characterize the conditions under which
the integration of task-agnostic quality metrics strengthens performance-based data curation, providing
practical insights into when such integration is beneficial. Extensive simulation and hardware exper-
iments show that curation with CUPID significantly improves policy performance in mixed-quality
regimes, even when using only a fraction of the training data. Moreover, it identifies robust strategies
under test-time distribution shifts and can disentangle spurious correlations in training data that hinder
generalization—all by observing policy outcomes alone, without requiring additional supervision.

2 Related Work

Data Curation in Robotics. Assembling larger and more diverse datasets has been central to scaling
efforts in robot imitation learning [7, 8, 17, 18, 19, 20, 21], yet how to extract greater utility from these
datasets remains an open question. Several works have explored data augmentation [22, 23, 24, 25, 26]
and mixture optimization [27]. Only recently has attention shifted to valuating individual demonstra-
tions for data curation [9, 10, 11]. Hejna et al. [10] estimate demonstration quality offline via mutual
information—without considering policy performance—while Chen et al. [11] train classifiers to dis-
tinguish successful and failed rollouts across policy checkpoints. In contrast, we directly measure the
causal influence of each demonstration on the policy’s expected return, providing a signal that (a) does
not require observing both successes and failures, (b) uses only a single policy checkpoint, (c) is robust
to spurious correlations in the policy’s rollout distribution, and (d) naturally extends to selecting new
data, whereas [10, 11] only filter existing data. Concurrent to our work is DataMIL [28], which uses data-
models to select from large multi-task datasets with an offline metric, whereas we focus on single-task
curation with an influence measure that directly reflects closed-loop returns from online policy rollouts.

Data Attribution outside Robotics. Data attribution methods model the relationship between training
data and learned behavior, with applications in model interpretability [2, 29], data valuation [30, 31],
machine unlearning [32], and more [33]. Recent work has focused on improving the accuracy of data
attribution methods [34, 35, 36], such as influence functions [13, 14], and extending them to increasingly
complex generative architectures [1, 37, 38]. A related line of research explores improving language
model pre-training [3] and fine-tuning [39, 40, 41] through data selection. However, these settings
typically assume aligned training and evaluation objectives (i.e., prediction loss) and access to test-time
labels. In contrast, robot imitation learning involves an objective mismatch: policies are trained via
supervised learning but evaluated through closed-loop environment interactions, where task success
depends on many sequential predictions and ground-truth action labels are unavailable at test-time.

3 Background: Data Attribution via Influence Functions

At a high-level, the goal of data attribution methodologies is to explicitly relate model performance
and behavior to the training data, so that we can answer counterfactual questions about the contribution
of training samples towards test-time predictions. Consider a standard supervised learning setting,
where we fit model parameters θ on a given training dataset D := {z1,...,zn} of input-label pairs
zi = (xi,yi) ∈ Z with θ(D) = argminθ′{L(θ′;D) := 1

n

∑n
i=1ℓ(z

i;θ′)}. Moreover, let f(ẑ;θ) ∈ R
be any chosen performance metric on a test sample ẑ = (x̂,ŷ) ∈Z given model parameters θ (e.g.,
cross-entropy loss for a classifier). Then, a data attribution method Ψout : Z × Z → R aims to

2

approximate the change in the performance metric f if we were to exclude sample zi from the model’s
training data. That is, we aim to design Ψout such that Ψout(ẑ,zi)≈f

(
ẑ;θ(D\{zi})

)
−f(ẑ;θ(D)).

The influence function is a data attribution technique that approximates Ψout without retraining any
models [15]. Consider perturbing the training objective as Lϵ,z(θ

′;D) :=L(θ′;D)+ϵℓ(z,θ′), where
we add an infinitesimal weight ϵ on the loss of some sample z to L. The influence function estimates
the change in the performance metric f as a function of ϵ with a first-order Taylor approximation as

Ψinf(ẑ,z) :=
df(ẑ;θ)

dϵ

∣∣∣∣
ϵ=0

=−∇θf(ẑ;θ(D))⊤H−1
θ ∇θℓ(z;θ(D)), (1)

where Hθ=
1
n

∑n
i=1∇2

θℓ(z
i;θ(D)) denotes the Hessian of the training loss 1 [13]. Therefore, we can

use the influence function to directly approximate the leave-one-out influence Ψout of a sample zi∈D
as Ψout

inf (ẑ,z
i) :=− 1

nΨinf(ẑ,z
i). In addition, for z ̸∈D we similarly define the add-one-in influence

as Ψin
inf(ẑ,z) :=

1
nΨinf(ẑ,z)≈f(ẑ;θ(D∪{z}))−f(ẑ;θ(D)) with z excluded from the Hessian Hθ.

4 Problem Formulation

Imitation Learning (IL): The objective of this work is to understand how demonstration data con-
tributes to closed-loop performance in robot imitation learning. Thus, we consider a Markov Decision
Process ⟨S,A,T ,R,ρ0⟩ with state space S , action space A, transition model T , reward model R, initial
state distribution ρ0, and finite horizonH . We train a policy πθ to minimize a behavior cloning (BC) ob-
jective, i.e., θ=argminθ′{Lbc(θ

′;D) := 1
|D|H

∑
ξi∈D

∑
(s,a)∈ξiℓ(s,a;πθ′)}, using a dataset ofn expert

demonstrations D={ξ1,...,ξn}. Each demonstration ξi=((si0,a
i
0),...,(s

i
H ,aiH)) consists of a state-

action trajectory where the robot successfully completes the task. We treat a trajectory τ=(s0,a0,...,sH)
as either a success or a failure, corresponding to the binary returnsR(τ)=1 andR(τ)=−1 respectively.

Therefore, in IL, we train the policyπθ to match the distribution of successful behaviors inD, rather than
directly maximize its expected return J(πθ) :=Ep(τ |πθ)[R(τ)]. As a result, the policy’s performance is
intimately linked to the relative suboptimality of the demonstration data—a function of its quality and
composition—not just to validation losses, model capacity, or bias-variance tradeoffs. This makes it ex-
tremely challenging to systematically improve performance. Recent works underscore that simply scal-
ing demonstration collection may result in datasets that contain substantial redundancies and behaviors
that may actually harm policy performance, even though R(ξi)=1 for all demonstrations ξi∈D [42].

Robot Data Curation: While several recent works propose intuitive measures of quality to curate
data, we find that such heuristics can misalign with how deep models actually learn, sometimes even
worsening test-time performance compared to randomly choosing samples (see §6). Therefore, we first
formally define robot data curation as the problem of identifying demonstration data that maximizes
the policy’s closed-loop performance. In particular, assume that we have a base policy πθ trained on
the demonstration data D. We consider two settings that are essential to a policy debugging toolchain.
The first is that of data filtering, where our goal is to identify and remove redundant or harmful
demonstrations from D that may be limiting the performance of the base policy πθ.

Task 1 (Filter-k demonstrations). Let Ξ−
k = {S⊆D||S|=k} denote all possible k-demonstration

subsets of the training datasetD={ξ1,...,ξn}, where k≤n. Determine which k demonstrations should
be removed from D to maximize policy performance with respect to the task objective J . That is, find

S⋆=argmax
S∈Ξ−

k

J(πθ) s.t. θ=argmin
θ′

Lbc(θ
′;D\S).

The second is that of data selection, where we seek to guide the subselection of new demonstration
data to maximally improve our base policy, given a fixed budget.

Task 2 (Select-k demonstrations). Let Ξ+
k ={S⊆H||S|=k} denote all possible k-demonstration

subsets of a holdout dataset H={ξ1,...,ξn′}, where k≤n′. Determine which k demonstrations should

1 To reduce the cost of Eq. 1, we use TRAK [2], which leverages random projections with a Gauss–Newton
Hessian approximation for efficient influence estimation. This also renders the influence function applicable to
non-smooth, non-convex losses in practical deep learning, so we assume Eq. 1 is well-defined throughout.

3

Demonstration Datasets

Train & Evaluate Policy

Any
demo

Training set Newly collected

Performance Influence Estimation

𝜃

∇!!	𝐽#
∇!"	𝐽#

∇!#	𝐽#ℒ!"

𝜋!

Store BC policy rollouts

Dataset Curation & Retraining
Performance scores

Estimate
performance

input

output
𝜏#
𝜏$
𝜏%

𝜓(𝜏#)
𝜓(𝜏$)
𝜓(𝜏%)

Curated set

𝜋!

Retrain & evaluate

CUPID

Original policy After curation

Top-𝑘
demos

𝐽 𝜋

𝐽% 𝜋#

Figure 1: Data curation with CUPID. Upon training a policy on a set of demonstrations using behavior cloning,
we evaluate it online to collect closed-loop rollout trajectories and estimate the policy’s expected return. CUPID
ranks demonstration based on their measured influence on this performance estimate and selects the top-k. Thus,
curating with CUPID results in a dataset of demonstrations that most strongly influences closed-loop policy success.

be added to D from H to maximize policy performance with respect to the task objective J . That is, find

S⋆=argmax
S∈Ξ+

k

J(πθ) s.t. θ=argmin
θ′

Lbc(θ
′;D∪S).

In Task 2, we consider the problem of identifying the most impactful trajectories from a newly collected
batch of demonstrations or from an existing pre-collected dataset, akin to performing quality control.

Policy Testing & Evaluation: To make progress on Task 1 and Task 2, we assume access to a small
dataset of m rollouts Dτ ={τ1,...,τm} iid∼p(τ |πθ) of the base policy πθ along with their associated re-
turns {R(τ1),...,R(τm)} to estimateJ(πθ). This aligns with how we currently evaluate policies in prac-
tice [43], despite lacking principled strategies to leverage evaluations towards BC policy improvement.

5 CUPID: Curating Performance-Influencing Demonstrations

While recent works valuate demonstration data upon heuristic notions of quality [10, 11, 44], our key in-
sight is that solving curation problems, i.e., Task 1 and Task 2 (§4), requires causally connecting training
data to the policy’s closed-loop performance. Therefore, we first adapt techniques from data attribution,
as defined in §3, to directly compute the influence of a training demo on the performance of a policy.
This allows us to use our performance influence to directly curate data in alignment with our objectives.

5.1 Demonstration-Performance Influence

Although existing data attribution methods can trace validation losses back to the training set D for
curation purposes, the BC loss is not always reflective of a policy’s closed-loop performance [45]. Thus,
we must first develop an analogous notion of the influence function to capture the impact of a demonstra-
tion trajectory on the closed-loop performance of an imitation learning policy. To do so, we group the
BC training objective into trajectory-level losses by introducing ℓtraj(ξ;πθ′) := 1

H

∑
(s,a)∈ξℓ(s,a;πθ′),

so that Lbc(θ
′;D)= 1

|D|
∑

ξi∈Dℓtraj(ξ
i;πθ′). We now formally define the performance influence of

a demonstration as the application of the influence function (see Eq. 1) on the policy’s expected return:

Definition 1 (Performance Influence). Let ξ be a demonstration of interest. Suppose we train a
policy πθ to minimize the perturbed BC objective Lϵ,ξ

bc (θ
′;D) := Lbc(θ

′;D)+ ϵℓtraj(ξ;πθ′). Then,
demonstration ξ’s performance influence is the derivative of the policy’s expected return J(πθ) with
respect to the weight ϵ. That is,

Ψπ-inf(ξ) :=
dJ(πθ)

dϵ

∣∣∣∣
ϵ=0

=−∇θJ(πθ)
⊤H−1

bc ∇θℓtraj(ξ;πθ),

where Hbc :=∇2
θLbc(θ;D) denotes the Hessian of the BC objective.

In essence, Definition 1 enables us to predictively answer the counterfactual: “How would the
policy’s expected return change if we upweighted—or by negating, downweighted—the loss on a
demonstration ξ during training?” While Definition 1 neatly aligns with the standard definition of
the influence function in Eq. 1—using J as the performance metric and ℓtraj as the demonstration-level
loss—we distinguish the performance influence from the standard influence function [13] for two

4

key reasons: (1) The performance influence attributes the outcome of a policy’s sequential decisions
to time-series demonstrations, whereas the existing techniques discussed in §3 only relate an individual
labeled prediction to a single training sample; (2) We cannot directly compute Ψπ-inf because the
policy’s expected return J(πθ) depends on the unknown transition dynamics and reward function. To
alleviate these challenges, we show that we can decompose the performance influence into influence
scores of individual action predictions, which we define as the action influence.

Definition 2 (Action Influence). The action influence of a state-action pair (s,a) on a test state-action
pair (s′,a′) is the influence of (s,a) on the policy’s log-likelihood logπθ(a

′|s′). That is,

Ψa-inf((s
′,a′),(s,a)) :=−∇θlogπθ(a

′|s′)⊤H−1
bc ∇θℓ(s,a;πθ). (2)

The advantage of the action influence is that we can easily compute the quantities in Eq. 2 given the
policy weights θ and the training demonstrations D, e.g., using the attribution methods discussed in
§3. However, we emphasize that computing action influences over state-action samples from a policy
rollout τ∼p(τ |πθ) only tells us what demonstration data led to the policy taking those actions, without
ascribing value to the resulting outcome (e.g., success or failure). We now show that the performance in-
fluence decomposes into the sum of individual action influences, weighted by the trajectory returnR(τ).

Proposition 1. Assume that θ(D) = argminθ′Lbc(θ
′;D), that Lbc is twice differentiable in θ, and

that Hbc≻0 is positive definite (i.e., θ(D) is not a saddle point)1. Then, it holds that2

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

H

∑
(s′,a′)∈τ

∑
(s,a)∈ξ

Ψa-inf
(
(s′,a′),(s,a)

)]
. (3)

In brief, we prove Proposition 1 using the log-derivative trick underlying policy gradient meth-
ods [16, 46] to decompose Ψπ-inf into Ψa-inf (see §D.1 for proof). Because Proposition 1 relates the
performance influence to the average action influence that a demonstration ξ has on the closed-loop
distribution of policy rollouts, Proposition 1 directly provides a method to estimate Ψπ-inf :
Estimate Ψπ-inf : First, evaluate the policy πθ online to gather a set of rollouts Dτ = {τ1,...,τm} iid∼
p(τ |πθ) and their associated returns {R(τ1),...,R(τm)}. Then, construct an empirical estimate of
the performance influence Ψ̂π-inf using Eq. 3, by averaging action influences across the rollouts in Dτ .

5.2 Data Curation with Performance Influence

In this section, we leverage the performance influence Ψπ-inf , which we developed in §5.1,
to curate data towards the filtering and selection tasks (Task 1 and Task 2) defined in §4. In
particular, we use the estimates of Ψπ-inf to make the following first-order Taylor approximations
on the leave-one-out and add-one-in influence (as defined in §3) of a demonstration trajectory as

Ψout
π-inf(ξ) :=− Ψ̂π-inf(ξ)

|D| ≈J(πθ(D\{ξ}))−J(πθ(D)), Ψin
π-inf(ξ) :=

Ψ̂π-inf(ξ)

|D| ≈J(πθ(D∪{ξ}))−J(πθ(D)).

Then, we use the leave-one-out and add-one-in influences to counterfactually estimate the change
in expected return when removing or adding a set of demonstrations S with a linear approximation as
∆Ĵ(πθ(D\S))∝ 1

|S|
∑

ξ∈SΨ
out
π-inf(ξ) and ∆Ĵ(πθ(D∪S))∝ 1

|S|
∑

ξ∈SΨ
in
π-inf(ξ). As a result, optimally

curating data under our approximate linear model on policy performance simply entails selecting the
least influential demonstrations from the training data D—in the case of data filtering—or selecting
the most influential demonstrations from a new set of demonstrations H—in the case of data selection:
Task 1: Filter-k Demonstrations

S⋆
out=arg top-k

(
{Ψout

π-inf(ξ
i) :ξi∈D}

)
, (4)

Task 2: Select-k Demonstrations

S⋆
in=arg top-k

(
{Ψin

π-inf(ξ
i) :ξi∈H}

)
. (5)

We note that by linearly approximating policy performance changes using Ψπ-inf , we construct what
is commonly termed a (linear) datamodel [47]. As shown in NLP [3], using such first-order approxi-
mations for data curation can often greatly improve model performance over manual notions of quality.

2Note that the fraction 1/H appears from the assumption that all trajectories have equal length, which we make
purely for notational simplicity without loss of generality. We refer to §D.2 for the variable length case.

5

5.3 Additional Quality Metrics

In §5.1, we constructed a method to estimate Ψπ-inf from a dataset of policy rollouts Dτ by relying on
policy gradient methods. Therefore, the estimated performance influence Ψ̂π-inf becomes increasingly
noisy as we reduce the number of rollouts m to evaluate the policy—akin to the high variance problem
of the REINFORCE algorithm. To complement the analysis in §5.1, we explore the integration of a
reward-agnostic, heuristic demonstration quality metric based on the action influence scores Ψa-inf :

Ψqual(ξ;Dτ) :=
1

m

∑
τ∈Dτ

max
(s′,a′)∈τ

min
(s,a)∈ξ

Ψa-inf
(
(s′,a′),(s,a)

)
− min

(s′,a′)∈τ
max

(s,a)∈ξ
Ψa-inf

(
(s′,a′),(s,a)

)
. (6)

We base the quality score Eq. 6 on the intuition that we should penalize demonstrations containing outlier
or noisy influence scores [13, Sec. 5.2], [10]. As such, we posit that this heuristic can reduce variance on
tasks requiring precise motion, yet introduce bias uncorrelated with performance in other settings. Thus,
in §6, we investigate when the quality score can complementΨπ-inf to curate data by taking their convex
combination, αΨπ-inf+(1−α)Ψqual, ablating α=1 (CUPID) and α=1/2 (CUPID-QUALITY).

6 Experiments

We conduct a series of experiments to test the efficacy of CUPID alongside state-of-the-art baselines for
robot data curation. These experiments take place across three simulated tasks from the RoboMimic
benchmark suite [48] and three real-world tasks with a Franka FR3 manipulator (see Fig. 4). These tasks
comprise a taxonomy of settings where data curation may benefit policy performance. For a detailed
description of our tasks, datasets, baselines, evaluation protocol, and hardware setup, please refer to §B

Evaluation. We study the filter-k (Task 1) and select-k (Task 2) curation tasks wherever applicable.
For statistical significance, we start filter-k and select-k from random ∼ 2/3 and ∼ 1/3 subsets in
RoboMimic (300 demonstrations per task total), and random ∼9/10 and ∼4/10 subsets on Franka
tasks (120-160 demonstrations per task total), respectively. We use the official convolutional-based
diffusion policy implementation [49] for all tasks to measure the effect of curation on a state-of-the-art
policy architecture. Details on the influence function computation for diffusion models are provided
in §A. We also consider the official π0 implementation [21] for real-world tasks. To reflect practical
constraints, we limit the rollout budget (i.e., the number of rollouts in Dτ = {τ i}mi=1 a curation
algorithm may use, as described in §4) to m=100 and m=25 for simulated and real-world tasks,
respectively. We report policy success rates over 500 rollouts averaged over the last 10 policy
checkpoints for simulated tasks, and 25 rollouts performed with the last checkpoint for real-world tasks.

Baselines. We consider baselines from several methodological categories: DemInf [10]—applicable
only to filter-k (Task 1)—curates data offline (i.e., without rollouts) by maximizing mutual information,
promoting diverse and predictable demonstrations; Demo-SCORE [11] trains binary classifiers to
distinguish states from successful and failed rollouts, retaining demonstrations with a high average state
success probability; Success Similarity is a custom method that ranks demonstrations by their average
state similarity to successful rollouts; Random chooses demonstrations uniformly at random; Oracle
approximates an upper bound on performance by curating data with privileged access to ground-truth
demonstration labels, e.g., indicating demonstration quality, strategy robustness, or other properties.

6.1 Setting 1: Improving Policy Performance in Mixed-Quality Regimes

We first study curation of mixed-quality datasets, where training on lower-quality demonstrations
may degrade policy performance [48, 10]. We use the “Lift,” “Square,” and “Transport” tasks from
RoboMimic’s multi-human (MH) task suite, which provides ground-truth quality labels for demonstra-
tions. On hardware, we design the “Figure-8” task (Fig. 4(a)), where the robot must tie a simplified cleat
hitch—a knot that follows a figure-8 pattern—requiring precise manipulation of a deformable rope.

RoboMimic analysis. Fig. 2 presents the RoboMimic benchmark results: the top row shows data quality
trends for filter-k and select-k across varying k, while the bottom row reports success rates of diffusion
policies trained on the corresponding curated datasets. As expected, we first observe that DemInf—
which targets demonstration quality—curates datasets of the highest overall quality by RoboMimic’s
ground-truth labels for filter-k (top row, Fig. 2). However, policies trained on data curated by CUPID

6

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40

50

(%
) I

nc
re

as
e

in
 Q

ua
lit

y Lift MH

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40

50
Square MH

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40
Transport MH

40 80 120 160 200 240
Num Demos Selected (k)

2.0

2.2

2.4

2.6

2.8

3.0

Av
g

Se
le

ct
ed

 Q
ua

lit
y Square MH

40 80 120 160 200 240
Num Demos Selected (k)

2.2

2.4

2.6

2.8

3.0
Transport MH

RoboMimic State Data Quality – Demo Filtering RoboMimic State Data Quality – Demo Selection

Oracle Random Demo-SCORE DemInf Success Similarity CUPID CUPID-Quality

0.10 0.25 0.50 0.75 0.90
Frac Demos Filtered

0.6

0.7

0.8

0.9

1.0

Po
lic

y
Su

cc
es

s
R

at
e Lift MH

0.10 0.25 0.50 0.75 0.90
Frac Demos Filtered

0.2

0.4

0.6

Square MH

0.10 0.25 0.50 0.75 0.90
Frac Demos Filtered

0.1

0.2

0.3

0.4

0.5

Transport MH

0.10 0.25 0.50 0.75 0.90
Frac Demos Selected

0.4

0.5

0.6

0.7

0.8

Po
lic

y
Su

cc
es

s
R

at
e Square MH

0.10 0.25 0.50 0.75 0.90
Frac Demos Selected

0.2

0.3

0.4

0.5

Transport MH
RoboMimic State Policy Performance – Demo Filtering RoboMimic State Policy Performance – Demo Selection

All Demos
Oracle

Random
Demo-SCORE

DemInf
Success Similarity

CUPID
CUPID-Quality

Base Policy

Figure 2: RoboMimic mixed-quality curation results. Top: Data Quality. Baselines often prioritize demonstra-
tion quality (e.g., DemInf [10]), but higher demonstration quality does always translate to higher policy success
rates. In contrast, CUPID targets demonstrations that most strongly contribute to downstream policy performance.
Bottom: Policy Performance. Diffusion policies trained on data curated by CUPID achieve higher success rates
than baselines, despite using demonstrations of perceived lower quality. Although combining performance and
quality measures (CUPID-QUALITY) yields the best policies on mixed-quality datasets, quality measures can
degrade performance in other settings (see Fig. 4). Results are averaged over 3 random seeds (500 policies trained
across settings). Success rates are computed over 50 rollouts from the last 10 checkpoints (500 rollouts total).

consistently match or outperform those of DemInf (bottom row, Fig. 2). This indicates that human
perception of demonstration quality does not necessarily correspond to data that maximizes downstream
policy success. Second, we find the state similarity heuristics employed by Demo-SCORE and Success
Similarity to be relatively ineffective in challenging mixed-quality regimes, where successful and failed
rollouts exhibit similar states. Lastly, CUPID-QUALITY, which evenly balances demonstration quality
and downstream performance impact (§5.3), attains the highest policy success rates—surpassing the
Oracle in 3/5 cases, and achieving an even higher success rate than the official diffusion policy [49]
on “Transport MH” while using fewer than (i) 33% of the original 300 demonstrations and (ii) 10%
of the model parameters. We provide an extended discussion of the RoboMimic results in §C.1.

Filter 66% Select 33%

Su
cc

es
s

R
at

e
(%

)

All Demos

92 84

48

20

(a) PI-0 Figure-8

Filter 66% Select 33%

All Demos

64
80

36 36

(b) PI-0 TuckBox

PI-0 Fine-tuned CUPID

Figure 3: Data curated for single-
task diffusion policies improves
π0 [21] post-training performance.

Figure-8 analysis. Fig. 4(a) shows diffusion policy results on the
real-world “Figure-8” task. First, CUPID improves over the base
policy’s success rate by 38% (averaged over filtering and selection).
Second, as in RoboMimic, CUPID-QUALITY further strengthens
curation performance, corroborating the utility of quality metrics
(Eq. 6) in mixed-quality regimes. Finally, Fig. 3(a) demonstrates
that the “Figure-8” dataset curated for a single-task diffusion policy
(using CUPID) yields an appreciable 54% improvement on the
fine-tuned performance of a large, multi-task policy π0 [21].

6.2 Setting 2: Identifying Robust Test-time Strategies from Policy Failures

Heterogeneous imitation learning datasets may contain multiple strategies for solving a task, some of
which can fail under distribution shifts at deployment. We design a real-world “TuckBox” task, where
a robot must tuck a recycling bin under a receptacle by (i) sliding or (ii) first repositioning it via pick-
and-place (see Fig. 4(b)). The dataset contains a 2:1 ratio of sliding to pick-and-place demonstrations,
making sliding the dominant strategy. At test time, we induce an imperceptible distribution shift by
altering the bin’s mass distribution, rendering sliding unreliable. In this task, curation aims to rebalance
the dataset to promote strategies that are more robust to unforeseen shifts at deployment.

TuckBox analysis. Fig. 4(b) shows the diffusion policy results on “TuckBox.” Due to the strategy
imbalance, the base policy exclusively exhibits the sliding behavior, resulting in a 100% failure rate
under the distribution shift. This immediately invalidates the use of Demo-SCORE, which requires
both successful and failed rollouts. In contrast, CUPID does not require observing successes: by linking

7

Mixed-quality data

Su
cc

es
s

R
at

e
(%

)
32

56
64

80
72

84

36

(a) Figure-8 - Filter 66%

Multi-strategy data

44

N/A 0 4

84 88

0

(b) TuckBox - Filter 66%

Spurious correlation data

48 44
36

20

84
96

44

(c) Bookshelf - Filter 50%

Mixed-quality data

Su
cc

es
s

R
at

e
(%

)

44
36

76 72
84

32

(a) Figure-8 - Select 33%

Multi-strategy data

40

N/A
16

88 92

0

(b) TuckBox - Select 33%
Franka Image Policy Performance – Demo Filtering Franka Image Policy Performance – Demo Selection

Random Demo-SCORE DemInf CUPID-Quality CUPID Oracle Base Policy

stacked book

(b) TuckBox(a) Figure-8 (c) Bookshelf

High Quality
E.g. first attempt. Push from

side only.
Pick-and-place,

then slide.
E.g. retry needed.

Strategy 1 Strategy 2Low Quality

Dark
Background

Light
Background

single book

Figure 4: Franka real-world diffusion policy performance. CUPID, which curates demonstrations w.r.t. policy
performance, improves success rates on mixed-quality datasets, identifies robust strategies, and disentangles
spurious correlations that hinder performance. Although quality measures (e.g., DemInf, CUPID-QUALITY)
help in mixed-quality settings (Figure-8; Fig. 2), they degrade performance when higher-quality demonstrations
induce brittle strategies at test time (TuckBox), or when quality is not the primary factor limiting policy success
(Bookshelf). Overall, curating data based on performance (CUPID) maintains robustness across these settings.

failures to the demonstrations that influenced them, curating with CUPID yields a policy that exhibits
increased pick-and-place behavior, performing comparably (84%-88% success rate) to the Oracle. In
contrast, both DemInf and CUPID-QUALITY incorrectly associate the higher-variance pick-and-place
demonstrations with lower quality, and by uniformly filtering across strategies (see Fig. 9(b)), produce
policies that default to the brittle sliding strategy at deployment. As in §6.1, we conduct an ablation
with the π0 policy (Fig. 3(b)): training on the dataset curated by CUPID for the single-task diffusion
policy results in an aggregate 36% improvement to π0’s fine-tuned performance on “TuckBox.”

6.3 Setting 3: Disentangling Spurious Correlations in Demonstration Data

Spurious correlations in training data may cause a policy to rely on non-causal features, hindering
generalization to variations in the input or task [12]. We design a real-world “Bookshelf” task, where a
robot must extract a target book via (i) horizontal or (ii) vertical pulling motion, depending on whether
another book is stacked above the target. While both strategies are equally represented in the training
set, each co-occurs more frequently with a certain background color (see Fig. 4(c)). At evaluation, we
test the policy under slight variations in the number and position of distractor books, while keeping the
white background fixed—the correlate associated with the horizontal pulling behavior.

Bookshelf analysis. Diffusion policy results are shown in Fig. 4(c). The base policy achieves only a
44% success rate, as the presence of the white background often causes the policy to extract the target
book horizontally despite another book being stacked atop (causing it to fall). Interestingly, by training
classifiers to distinguish failed from successful states, Demo-SCORE appears to misattribute failure
to rollout correlates (the stacked book) rather than causal factors (the white background). In contrast,
CUPID attains an 84% success rate by identifying demonstrations that causally drive failure—in this
case, horizontal pulling motion with a white background—enabling dataset rebalancing that mitigates
the effect of spurious correlations (see Fig. 9(c)). As in §6.2, DemInf and CUPID-QUALITY incorrectly
prioritize the lower-variance horizontal pulling motion, yielding negligible performance gains.

7 Conclusion

In this work, we study the problem of data curation for robot imitation learning. We present CUPID, a
novel data curation method that uses influence functions to measure the causal impact of a demonstration
on the policy’s closed-loop performance. Our results highlight the general utility of performance-based
curation for two key curation tasks—filtering existing training demonstrations and subselecting new
demonstrations—and across diverse curation settings, where a policy’s test-time performance varies
with the choice of training data. We hope this work spurs continued investigation into the ways training
data influences policy behavior, toward advancing policy reliability and performance in deployment.

8

8 Limitations

Curation tasks. The curation tasks considered in this work (Task 1 and Task 2) aim to curate
performance-maximizing datasets for a specified filtering or selection quantity of demonstrations k.
Determining the suitable quantity of demonstrations to curate represents a possible point of extension.

Data properties. Critically, future work should further investigate how properties of the data dictate
the extent to which curation can improve policy performance. For example, our mixed-quality curation
experiments (Fig. 2 and Fig. 4(a)) reveal that while curation strengthens performance on “Transport
MH” and “Figure-8” (i.e., a fraction of the demonstrations harm policy performance), removing almost
any demonstration degrades performance on “Square MH” (i.e., all demonstrations appear important).
In contrast, only about 15% of the dataset is necessary to maximize performance on “Lift MH” (i.e.,
the dataset is highly redundant)3.

Data explainability. Our methods focus on curating existing demonstrations as a first step. However,
future work may seek to interpret the properties of influential demonstrations to actively inform
subsequent data collection efforts—for example, by providing instructions to data collectors.

Selection methods. While the greedy selection procedures used in Eq. 4 and Eq. 5 are tractable to
optimize and often improve over quality- and similarity-based measures [3], they ignore the interactions
between demonstrations in the curated set [14, 47]. This can temper performance gains when the size
of the curated set is large. Future work should investigate higher-order approximations that consider the
joint diversity of the curated dataset, as is common in the active learning literature (e.g., [50, Sec. 4.3]).

Larger datasets. Estimating performance influences over the full demonstration dataset incurs a
computational cost comparable to that of policy training. Reducing this expense in large-scale settings
is an important future direction. For example, one could approximate group effects [14] via random
sampling or limit influence estimation to smaller data subsets identified using coarse-grained heuristics.

Estimator variance. Finally, although we observe stable performance from CUPID across curation
settings, the use of the REINFORCE estimator may result in high variance influence scores, e.g., when
the number of policy rollouts is small. In such settings, variance reduction techniques, such as those
typically used in reinforcement learning [51], may further improve the fidelity of our influence scores.

Acknowledgments

The authors would like to thank Sam Park and Andrew Ilyas for the helpful conversations on data
attribution, and Joey Hejna for early-staged technical feedback on the project. Toyota Research Institute
provided funds to support this work. This work was also supported by the DARPA TIAMAT program.

References
[1] R. Grosse, J. Bae, C. Anil, N. Elhage, A. Tamkin, A. Tajdini, B. Steiner, D. Li, E. Durmus,

E. Perez, et al. Studying large language model generalization with influence functions. arXiv
preprint arXiv:2308.03296, 2023.

[2] S. M. Park, K. Georgiev, A. Ilyas, G. Leclerc, and A. Madry. Trak: Attributing model behavior at
scale. In International Conference on Machine Learning, pages 27074–27113. PMLR, 2023.

[3] L. Engstrom, A. Feldmann, and A. Madry. Dsdm: Model-aware dataset selection with datamodels.
In International Conference on Machine Learning, pages 12491–12526. PMLR, 2024.

[4] K. Lee, D. Ippolito, A. Nystrom, C. Zhang, D. Eck, C. Callison-Burch, and N. Carlini.
Deduplicating training data makes language models better. In S. Muresan, P. Nakov, and
A. Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 8424–8445, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi:10.18653/v1/2022.acl-long.577. URL
https://aclanthology.org/2022.acl-long.577/.

3Note that Fig. 2 does not include select-k curation results for “Lift MH” because the base policy already
achieves a 100% success rate, leaving no further room for improvement by selecting additional demonstrations.

9

https://sungminpark.com/
https://andrewilyas.com/
https://joeyhejna.com/
http://dx.doi.org/10.18653/v1/2022.acl-long.577
https://aclanthology.org/2022.acl-long.577/

[5] K. Tirumala, D. Simig, A. Aghajanyan, and A. Morcos. D4: Improving llm pretraining via
document de-duplication and diversification. Advances in Neural Information Processing Systems,
36:53983–53995, 2023.

[6] A. Albalak, Y. Elazar, S. M. Xie, S. Longpre, N. Lambert, X. Wang, N. Muennighoff, B. Hou,
L. Pan, H. Jeong, C. Raffel, S. Chang, T. Hashimoto, and W. Y. Wang. A survey on data selection
for language models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.
URL https://openreview.net/forum?id=XfHWcNTSHp.

[7] A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Pooley, A. Gupta,
A. Mandlekar, A. Jain, A. Tung, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Gupta,
A. Wang, A. Singh, A. Garg, A. Kembhavi, A. Xie, A. Brohan, A. Raffin, A. Sharma, A. Yavary,
A. Jain, A. Balakrishna, A. Wahid, B. Burgess-Limerick, B. Kim, B. Schölkopf, B. Wulfe,
B. Ichter, C. Lu, C. Xu, C. Le, C. Finn, C. Wang, C. Xu, C. Chi, C. Huang, C. Chan, C. Agia,
C. Pan, C. Fu, C. Devin, D. Xu, D. Morton, D. Driess, D. Chen, D. Pathak, D. Shah, D. Büchler,
D. Jayaraman, D. Kalashnikov, D. Sadigh, E. Johns, E. Foster, F. Liu, F. Ceola, F. Xia, F. Zhao,
F. Stulp, G. Zhou, G. S. Sukhatme, G. Salhotra, G. Yan, G. Feng, G. Schiavi, G. Berseth, G. Kahn,
G. Wang, H. Su, H.-S. Fang, H. Shi, H. Bao, H. Ben Amor, H. I. Christensen, H. Furuta, H. Walke,
H. Fang, H. Ha, I. Mordatch, I. Radosavovic, I. Leal, J. Liang, J. Abou-Chakra, J. Kim, J. Drake,
J. Peters, J. Schneider, J. Hsu, J. Bohg, J. Bingham, J. Wu, J. Gao, J. Hu, J. Wu, J. Wu, J. Sun,
J. Luo, J. Gu, J. Tan, J. Oh, J. Wu, J. Lu, J. Yang, J. Malik, J. Silvério, J. Hejna, J. Booher,
J. Tompson, J. Yang, J. Salvador, J. J. Lim, J. Han, K. Wang, K. Rao, K. Pertsch, K. Hausman,
K. Go, K. Gopalakrishnan, K. Goldberg, K. Byrne, K. Oslund, K. Kawaharazuka, K. Black, K. Lin,
K. Zhang, K. Ehsani, K. Lekkala, K. Ellis, K. Rana, K. Srinivasan, K. Fang, K. P. Singh, K.-H.
Zeng, K. Hatch, K. Hsu, L. Itti, L. Y. Chen, L. Pinto, L. Fei-Fei, L. Tan, L. J. Fan, L. Ott, L. Lee,
L. Weihs, M. Chen, M. Lepert, M. Memmel, M. Tomizuka, M. Itkina, M. G. Castro, M. Spero,
M. Du, M. Ahn, M. C. Yip, M. Zhang, M. Ding, M. Heo, M. K. Srirama, M. Sharma, M. J. Kim,
N. Kanazawa, N. Hansen, N. Heess, N. J. Joshi, N. Suenderhauf, N. Liu, N. Di Palo, N. M. M.
Shafiullah, O. Mees, O. Kroemer, O. Bastani, P. R. Sanketi, P. T. Miller, P. Yin, P. Wohlhart, P. Xu,
P. D. Fagan, P. Mitrano, P. Sermanet, P. Abbeel, P. Sundaresan, Q. Chen, Q. Vuong, R. Rafailov,
R. Tian, R. Doshi, R. Martı́n-Martı́n, R. Baijal, R. Scalise, R. Hendrix, R. Lin, R. Qian, R. Zhang,
R. Mendonca, R. Shah, R. Hoque, R. Julian, S. Bustamante, S. Kirmani, S. Levine, S. Lin,
S. Moore, S. Bahl, S. Dass, S. Sonawani, S. Song, S. Xu, S. Haldar, S. Karamcheti, S. Adebola,
S. Guist, S. Nasiriany, S. Schaal, S. Welker, S. Tian, S. Ramamoorthy, S. Dasari, S. Belkhale,
S. Park, S. Nair, S. Mirchandani, T. Osa, T. Gupta, T. Harada, T. Matsushima, T. Xiao, T. Kollar,
T. Yu, T. Ding, T. Davchev, T. Z. Zhao, T. Armstrong, T. Darrell, T. Chung, V. Jain, V. Vanhoucke,
W. Zhan, W. Zhou, W. Burgard, X. Chen, X. Wang, X. Zhu, X. Geng, X. Liu, X. Liangwei,
X. Li, Y. Lu, Y. J. Ma, Y. Kim, Y. Chebotar, Y. Zhou, Y. Zhu, Y. Wu, Y. Xu, Y. Wang, Y. Bisk,
Y. Cho, Y. Lee, Y. Cui, Y. Cao, Y.-H. Wu, Y. Tang, Y. Zhu, Y. Zhang, Y. Jiang, Y. Li, Y. Li,
Y. Iwasawa, Y. Matsuo, Z. Ma, Z. Xu, Z. J. Cui, Z. Zhang, and Z. Lin. Open x-embodiment:
Robotic learning datasets and rt-x models : Open x-embodiment collaboration0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pages 6892–6903, 2024. doi:
10.1109/ICRA57147.2024.10611477.

[8] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany, M. K.
Srirama, L. Y. Chen, K. Ellis, P. D. Fagan, J. Hejna, M. Itkina, M. Lepert, Y. J. Ma, P. T. Miller,
J. Wu, S. Belkhale, S. Dass, H. Ha, A. Jain, A. Lee, Y. Lee, M. Memmel, S. Park, I. Radosavovic,
K. Wang, A. Zhan, K. Black, C. Chi, K. B. Hatch, S. Lin, J. Lu, J. Mercat, A. Rehman, P. R.
Sanketi, A. Sharma, C. Simpson, Q. Vuong, H. R. Walke, B. Wulfe, T. Xiao, J. H. Yang, A. Yavary,
T. Z. Zhao, C. Agia, R. Baijal, M. G. Castro, D. Chen, Q. Chen, T. Chung, J. Drake, E. P.
Foster, J. Gao, D. A. Herrera, M. Heo, K. Hsu, J. Hu, D. Jackson, C. Le, Y. Li, R. Lin, Z. Ma,
A. Maddukuri, S. Mirchandani, D. Morton, T. Nguyen, A. O’Neill, R. Scalise, D. Seale, V. Son,
S. Tian, E. Tran, A. E. Wang, Y. Wu, A. Xie, J. Yang, P. Yin, Y. Zhang, O. Bastani, G. Berseth,
J. Bohg, K. Goldberg, A. Gupta, A. Gupta, D. Jayaraman, J. J. Lim, J. Malik, R. Martı́n-Martı́n,
S. Ramamoorthy, D. Sadigh, S. Song, J. Wu, M. C. Yip, Y. Zhu, T. Kollar, S. Levine, and C. Finn.

10

https://openreview.net/forum?id=XfHWcNTSHp
http://dx.doi.org/10.1109/ICRA57147.2024.10611477
http://dx.doi.org/10.1109/ICRA57147.2024.10611477

DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset. In Proceedings of Robotics:
Science and Systems, Delft, Netherlands, July 2024. doi:10.15607/RSS.2024.XX.120.

[9] S. Kuhar, S. Cheng, S. Chopra, M. Bronars, and D. Xu. Learning to discern: Imitating heteroge-
neous human demonstrations with preference and representation learning. In J. Tan, M. Toussaint,
and K. Darvish, editors, Proceedings of The 7th Conference on Robot Learning, volume 229 of
Proceedings of Machine Learning Research, pages 1437–1449. PMLR, 06–09 Nov 2023.

[10] J. Hejna, S. Mirchandani, A. Balakrishna, A. Xie, A. Wahid, J. Tompson, P. Sanketi, D. Shah,
C. Devin, and D. Sadigh. Robot data curation with mutual information estimators. arXiv preprint
arXiv:2502.08623, 2025.

[11] A. S. Chen, A. M. Lessing, Y. Liu, and C. Finn. Curating demonstrations using online experience.
arXiv preprint arXiv:2503.03707, 2025.

[12] P. De Haan, D. Jayaraman, and S. Levine. Causal confusion in imitation learning. Advances in
neural information processing systems, 32, 2019.

[13] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pages 1885–1894. PMLR, 2017.

[14] P. W. W. Koh, K.-S. Ang, H. Teo, and P. S. Liang. On the accuracy of influence functions for
measuring group effects. Advances in neural information processing systems, 32, 2019.

[15] Z. Hammoudeh and D. Lowd. Training data influence analysis and estimation: A survey. Machine
Learning, 113(5):2351–2403, 2024.

[16] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. Advances in neural information processing systems, 12,
1999.

[17] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. Joshi, R. Julian,
D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manjunath,
I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao, M. S.
Ryoo, G. Salazar, P. R. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,
V. Vanhoucke, S. Vega, Q. H. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. RT-1:
Robotics Transformer for Real-World Control at Scale. In Proceedings of Robotics: Science and
Systems, Daegu, Republic of Korea, July 2023. doi:10.15607/RSS.2023.XIX.025.

[18] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid,
Q. Vuong, V. Vanhoucke, H. Tran, R. Soricut, A. Singh, J. Singh, P. Sermanet, P. R. Sanketi,
G. Salazar, M. S. Ryoo, K. Reymann, K. Rao, K. Pertsch, I. Mordatch, H. Michalewski, Y. Lu,
S. Levine, L. Lee, T.-W. E. Lee, I. Leal, Y. Kuang, D. Kalashnikov, R. Julian, N. J. Joshi, A. Irpan,
B. Ichter, J. Hsu, A. Herzog, K. Hausman, K. Gopalakrishnan, C. Fu, P. Florence, C. Finn, K. A.
Dubey, D. Driess, T. Ding, K. M. Choromanski, X. Chen, Y. Chebotar, J. Carbajal, N. Brown,
A. Brohan, M. G. Arenas, and K. Han. Rt-2: Vision-language-action models transfer web
knowledge to robotic control. In J. Tan, M. Toussaint, and K. Darvish, editors, Proceedings of The
7th Conference on Robot Learning, volume 229 of Proceedings of Machine Learning Research,
pages 2165–2183. PMLR, 06–09 Nov 2023. URL https://proceedings.mlr.press/v229/

zitkovich23a.html.

[19] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, C. Xu,
J. Luo, T. Kreiman, Y. Tan, L. Y. Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh, C. Finn, and
S. Levine. Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science
and Systems, Delft, Netherlands, 2024.

11

http://dx.doi.org/10.15607/RSS.2024.XX.120
http://dx.doi.org/10.15607/RSS.2023.XIX.025
https://proceedings.mlr.press/v229/zitkovich23a.html
https://proceedings.mlr.press/v229/zitkovich23a.html

[20] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. P. Foster,
P. R. Sanketi, Q. Vuong, T. Kollar, B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine, P. Liang, and
C. Finn. Openvla: An open-source vision-language-action model. In P. Agrawal, O. Kroemer,
and W. Burgard, editors, Proceedings of The 8th Conference on Robot Learning, volume 270 of
Proceedings of Machine Learning Research, pages 2679–2713. PMLR, 06–09 Nov 2025.

[21] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
B. Ichter, et al. π0: A vision-language-action flow model for general robot control. URL
https://arxiv.org/abs/2410.24164, 2024.

[22] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox. Mimicgen:
A data generation system for scalable robot learning using human demonstrations. In J. Tan,
M. Toussaint, and K. Darvish, editors, Proceedings of The 7th Conference on Robot Learning,
volume 229 of Proceedings of Machine Learning Research, pages 1820–1864. PMLR, 06–09
Nov 2023.

[23] T. Yu, T. Xiao, J. Tompson, A. Stone, S. Wang, A. Brohan, J. Singh, C. Tan, D. M, J. Peralta,
K. Hausman, B. Ichter, and F. Xia. Scaling Robot Learning with Semantically Imagined Experi-
ence. In Proceedings of Robotics: Science and Systems, Daegu, Republic of Korea, July 2023.
doi:10.15607/RSS.2023.XIX.027.

[24] Z. Mandi, H. Bharadhwaj, V. Moens, S. Song, A. Rajeswaran, and V. Kumar. Cacti: A framework
for scalable multi-task multi-scene visual imitation learning. arXiv preprint arXiv:2212.05711,
2022.

[25] L. Smith, A. Irpan, M. G. Arenas, S. Kirmani, D. Kalashnikov, D. Shah, and T. Xiao. Steer:
Flexible robotic manipulation via dense language grounding. arXiv preprint arXiv:2411.03409,
2024.

[26] M. Zawalski, W. Chen, K. Pertsch, O. Mees, C. Finn, and S. Levine. Robotic control via embodied
chain-of-thought reasoning. In P. Agrawal, O. Kroemer, and W. Burgard, editors, Proceedings
of The 8th Conference on Robot Learning, volume 270 of Proceedings of Machine Learning
Research, pages 3157–3181. PMLR, 06–09 Nov 2025.

[27] J. Hejna, C. A. Bhateja, Y. Jiang, K. Pertsch, and D. Sadigh. Remix: Optimizing data mixtures for
large scale imitation learning. In P. Agrawal, O. Kroemer, and W. Burgard, editors, Proceedings
of The 8th Conference on Robot Learning, volume 270 of Proceedings of Machine Learning
Research, pages 145–164. PMLR, 06–09 Nov 2025.

[28] S. Dass, A. Khaddaj, L. Engstrom, A. Madry, A. Ilyas, and R. Martı́n-Martı́n. Datamil: Selecting
data for robot imitation learning with datamodels. arXiv preprint arXiv:2505.09603, 2025.

[29] H. Shah, S. M. Park, A. Ilyas, and A. Madry. Modeldiff: A framework for comparing learning
algorithms. In International Conference on Machine Learning, pages 30646–30688. PMLR,
2023.

[30] A. Ghorbani and J. Zou. Data shapley: Equitable valuation of data for machine learning. In
International conference on machine learning, pages 2242–2251. PMLR, 2019.

[31] S. K. Choe, H. Ahn, J. Bae, K. Zhao, M. Kang, Y. Chung, A. Pratapa, W. Neiswanger, E. Strubell,
T. Mitamura, et al. What is your data worth to gpt? llm-scale data valuation with influence
functions. arXiv preprint arXiv:2405.13954, 2024.

[32] K. Georgiev, R. Rinberg, S. M. Park, S. Garg, A. Ilyas, A. Madry, and S. Neel. Attribute-to-delete:
Machine unlearning via datamodel matching. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=3vXpZpOn29.

[33] A. Madry, A. Ilyas, L. Engstrom, S. M. Park, and K. Georgiev. Data attribution at scale.
https://ml-data-tutorial.org/, 2024. Tutorial at ICML 2024.

12

http://dx.doi.org/10.15607/RSS.2023.XIX.027
https://openreview.net/forum?id=3vXpZpOn29
https://ml-data-tutorial.org/

[34] S. Basu, P. Pope, and S. Feizi. Influence functions in deep learning are fragile. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?

id=xHKVVHGDOEk.

[35] J. Bae, N. Ng, A. Lo, M. Ghassemi, and R. B. Grosse. If influence functions are the answer, then
what is the question? Advances in Neural Information Processing Systems, 35:17953–17967,
2022.

[36] A. Ilyas and L. Engstrom. Magic: Near-optimal data attribution for deep learning. arXiv preprint
arXiv:2504.16430, 2025.

[37] X. Zheng, T. Pang, C. Du, J. Jiang, and M. Lin. Intriguing properties of data attribution on
diffusion models. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=vKViCoKGcB.

[38] K. Georgiev, J. Vendrow, H. Salman, S. M. Park, and A. Madry. The journey, not the destination:
How data guides diffusion models. arXiv preprint arXiv:2312.06205, 2023.

[39] M. Xia, S. Malladi, S. Gururangan, S. Arora, and D. Chen. Less: Selecting influential data for
targeted instruction tuning. In International Conference on Machine Learning, pages 54104–
54132. PMLR, 2024.

[40] Z. Liu, A. Karbasi, and T. Rekatsinas. Tsds: Data selection for task-specific model finetuning.
Advances in Neural Information Processing Systems, 37, 2024.

[41] L. Engstrom, A. Ilyas, B. Chen, A. Feldmann, W. Moses, and A. Madry. Optimizing ml training
with metagradient descent. arXiv preprint arXiv:2503.13751, 2025.

[42] S. Belkhale, Y. Cui, and D. Sadigh. Data quality in imitation learning. Advances in neural
information processing systems, 36:80375–80395, 2023.

[43] J. A. Vincent, H. Nishimura, M. Itkina, P. Shah, M. Schwager, and T. Kollar. How generalizable is
my behavior cloning policy? a statistical approach to trustworthy performance evaluation. IEEE
Robotics and Automation Letters, 2024.

[44] K. Gandhi, S. Karamcheti, M. Liao, and D. Sadigh. Eliciting compatible demonstrations for
multi-human imitation learning. In K. Liu, D. Kulic, and J. Ichnowski, editors, Proceedings
of The 6th Conference on Robot Learning, volume 205 of Proceedings of Machine Learning
Research, pages 1981–1991. PMLR, 14–18 Dec 2023.

[45] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings, 2011.

[46] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

[47] A. Ilyas, S. M. Park, L. Engstrom, G. Leclerc, and A. Madry. Datamodels: Understanding predic-
tions with data and data with predictions. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari,
G. Niu, and S. Sabato, editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 9525–9587. PMLR,
17–23 Jul 2022.

[48] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations
for robot manipulation. In A. Faust, D. Hsu, and G. Neumann, editors, Proceedings of the 5th
Conference on Robot Learning, volume 164 of Proceedings of Machine Learning Research, pages
1678–1690. PMLR, 08–11 Nov 2022.

13

https://openreview.net/forum?id=xHKVVHGDOEk
https://openreview.net/forum?id=xHKVVHGDOEk
https://openreview.net/forum?id=vKViCoKGcB

[49] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023.

[50] B. Settles. Active Learning. Morgan & Claypool Publishers, 2012.

[51] E. Greensmith, P. L. Bartlett, and J. Baxter. Variance reduction techniques for gradient estimates
in reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–1530, 2004.

[52] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[53] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based genera-
tive modeling through stochastic differential equations. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=PxTIG12RRHS.

[54] J. Lin, L. Tao, M. Dong, and C. Xu. Diffusion attribution score: Evaluating training data influence
in diffusion model. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=kuutidLf6R.

[55] J. Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020. URL http://jmlr.org/papers/v21/17-678.

html.

[56] B. K. Mlodozeniec, R. Eschenhagen, J. Bae, A. Immer, D. Krueger, and R. E. Turner. Influence
functions for scalable data attribution in diffusion models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?

id=esYrEndGsr.

[57] T. Xie, H. Li, A. Bai, and C.-J. Hsieh. Data attribution for diffusion models: Timestep-induced
bias in influence estimation. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.
URL https://openreview.net/forum?id=P3Lyun7CZs.

[58] W. B. Johnson, J. Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

[59] O. Khatib. A unified approach for motion and force control of robot manipulators: The operational
space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 2003.

[60] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3, 2022.

[61] C. Agia, R. Sinha, J. Yang, Z. Cao, R. Antonova, M. Pavone, and J. Bohg. Unpacking failure
modes of generative policies: Runtime monitoring of consistency and progress. In P. Agrawal,
O. Kroemer, and W. Burgard, editors, Proceedings of The 8th Conference on Robot Learning,
volume 270 of Proceedings of Machine Learning Research, pages 689–723. PMLR, 06–09 Nov
2025.

[62] Y. Dai, J. Lee, N. Fazeli, and J. Chai. Racer: Rich language-guided failure recovery policies for
imitation learning. arXiv preprint arXiv:2409.14674, 2024.

[63] R. Sinha, A. Elhafsi, C. Agia, M. Foutter, E. Schmerling, and M. Pavone. Real-Time Anomaly
Detection and Reactive Planning with Large Language Models. In Proceedings of Robotics:
Science and Systems, Delft, Netherlands, July 2024. doi:10.15607/RSS.2024.XX.114.

[64] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[65] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without supervision. arXiv
preprint arXiv:2304.07193, 2023.

14

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=kuutidLf6R
http://jmlr.org/papers/v21/17-678.html
http://jmlr.org/papers/v21/17-678.html
https://openreview.net/forum?id=esYrEndGsr
https://openreview.net/forum?id=esYrEndGsr
https://openreview.net/forum?id=P3Lyun7CZs
http://dx.doi.org/10.15607/RSS.2024.XX.114

Appendix Overview – Curating Data your Robot Loves with Influence Functions

The appendix offers additional details w.r.t. the implementation of CUPID (§A), the experiments
conducted (§B), along with extended results and analysis (§C), and finally, supporting derivations for
our data curation methods (§D). Videos and code are made available at: https://cupid-curation.github.io.

Appendix A Implementation Details 16

A.1 Influence Functions for Diffusion Policies . 16

A.2 CUPID Hyperparameters . 17

A.3 Combining Score Functions . 17

Appendix B Experimental Setup 18

B.1 Hardware Setup . 18

B.2 Policy Architectures . 18

B.3 Tasks & Datasets . 19

B.4 Baseline Details . 19

Appendix C Additional Results & Analysis 20

C.1 Extended Discussion on RoboMimic Results . 20

C.2 Ablation on Number of Policy Rollouts in RoboMimic 21

C.3 Additional Data Quality Results in RoboMimic . 22

C.4 Data Filtering Curation Distributions in Franka Real-World 23

C.5 Data Selection Curation Distributions in Franka Real-World 24

C.6 Additional Results for Franka π0: Curated Dataset Transfer 24

Appendix D Derivations 25

D.1 Proof of Proposition 1 . 25

D.2 Derivation of Performance Influence for Variable Length Trajectories 26

15

https://cupid-curation.github.io

A Implementation Details

A.1 Influence Functions for Diffusion Policies

For ease of reference in this section, we restate the definition of the action influence (Definition 2) and
the proposition establishing performance influence (Proposition 1), both originally introduced in §5.

Restatement of Definition 2. The action influence of a state-action pair (s,a) on a test state-action
pair (s′,a′) is the influence of (s,a) on the policy’s log-likelihood logπθ(a

′|s′). That is,

Ψa-inf((s
′,a′),(s,a)) :=−∇θlogπθ(a

′|s′)⊤H−1
bc ∇θℓ(s,a;πθ).

Restatement of Proposition 1. Assume that θ(D) = argminθ′Lbc(θ
′;D), that Lbc is twice differ-

entiable in θ, and that Hbc ≻ 0 is positive definite (i.e., θ(D) is not a saddle point)1. Then, it holds
that

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

H

∑
(s′,a′)∈τ

∑
(s,a)∈ξ

Ψa-inf
(
(s′,a′),(s,a)

)]
.

where Ψπ-inf(ξ) is the performance influence of a demonstration ξ (as introduced in Definition 1).

Computing the Action Influence

Although Proposition 1 provides a clean mechanism to attribute policy performance to its training data
by leveraging influence scores on action log-likelihoods, computing ∇θ logπθ(a

′|s′) (in the action
influence Ψa-inf) for diffusion-based policy architectures is nontrivial due to the iterative denoising
process [52, 53]. Instead, various works outside robotics propose to approximate the log-likelihood
with the denoising loss ℓ(s′,a′;πθ) for the purpose of data attribution [38], because the denoising loss is
proportionate to the variational lower bound on logπθ(a

′|s′). In §6, we apply a similar approximation
to perform data attribution on state-of-the-art diffusion policies [49], which we describe below.

Diffusion Policy: Consider the standard diffusion policy architecture [49]. An action a := a0 is
generated by iteratively denoising an initially random action aT ∼N (0,1) over T steps as aT ,...,a0

using a noise prediction network ϵθ, where ai denotes the generated action at the i-th denoising iteration.
Following the imitation learning setting described in §4, the parameters θ of the noise prediction network
ϵθ are fit to the BC objective as θ=argminθ′{Lbc(θ

′;D) := 1
|D|H

∑
ξi∈D

∑
(s,a)∈ξiℓ(s,a;πθ′)}. Here,

the noise prediction network ϵθ is trained to predict random noise ϵi∼N (0,1) added to the action a at
randomly sampled timesteps i∼U [0,T) of the diffusion process using the loss function ℓ defined as

ℓ(s,a;πθ′) :=Eϵi,i

[
||ϵi−ϵθ′(

√
ᾱia+

√
1−ᾱiϵ

i,s,i)||2
]
, (7)

where the constants ᾱi depend on the chosen noise schedule of the diffusion process.

Influence Approximations: Since the denoising loss ℓ in Eq. 7 is proportionate to the variational lower
bound on the action log-likelihood logπθ(a|s), it may seem intuitive to substitute ∇θlogπθ(a

′|s′) with
−∇θℓ(s

′,a′;πθ)—assuming gradient alignment—to approximate the action influence (Eq. 2) as

Ψa-inf((s
′,a′),(s,a))≈∇θℓ(s

′,a′;πθ)
⊤H−1

bc ∇θℓ(s,a;πθ). (8)

A similar approach is taken by Georgiev et al. [38] for attributing the generations of image-based
diffusion models. However, consistent with more recent results in the data attribution literature [37, 54],
we find this approximation to work poorly in practice, with highly influential training samples (s,a)∈D
rarely reflecting the test-time transitions (s′,a′)∈ τ over which the action influences are computed.
Instead, we follow the approach of Zheng et al. [37], which entails replacing both logπθ(a

′|s′) and
ℓ(s,a;πθ) in Eq. 2 with a surrogate, label-agnostic output function ℓsquare(s,a;πθ) :=Eϵi,i[||ϵθ(

√
ᾱia+√

1−ᾱiϵ
i,s,i)||2], making our final approximation of the action influence

Ψa-inf((s
′,a′),(s,a))≈∇θℓsquare(s

′,a′;πθ)
⊤H−1

square∇θℓsquare(s,a;πθ). (9)

Here, Hsquare=
1

|D|H
∑

ξi∈D
∑

(s,a)∈ξi∇θℓsquare(s,a;πθ)∇θℓsquare(s,a;πθ)
⊤ is the Gauss-Newton

approximation of the Hessian—as introduced by Martens [55] and applied for stable and efficient
influence estimation in [2, 35]—under the surrogate output function ℓsquare.

Additional Remarks: While the use of ℓsquare may seem counterintuitive at first, it offers three key
advantages for computing action influences:

16

1. Leave-one-out influences (§3) computed using ℓsquare (Eq. 9) are empirically found to
correlate better with actual changes in a diffusion model’s loss—i.e., the difference
ℓ(s′,a′;πθ(D\(s,a)))−ℓ(s′,a′;πθ(D))—than those computed using the loss ℓ (Eq. 8) [37].

2. Theoretical analysis also shows that ℓsquare more closely aligns with a distributional formula-
tion of the leave-one-out influence compared to the loss ℓ [54]. In the case of diffusion policies,
this distributional formulation would seek to design Ψa-inf such that it approximates the
leave-one-out divergence Ψa-inf((s

′,a′)),(s,a))≈DKL(πθ(D)(a
′|s′)||πθ(D\(s,a))(a

′|s′)).

3. Using ℓsquare significantly reduces the computational cost of computing action influences
for policies with high-dimensional action spaces, because the ℓ2-norm collapses the model’s
prediction into a scalar ||ϵθ(

√
ᾱia+

√
1−ᾱiϵ

i,s,i)||2. As a result, computing Eq. 9 requires
only a single model gradient ∇θℓsquare per training and test sample. In contrast, while the
technique proposed by Lin et al. [54] offers a more accurate estimate of the leave-one-out
divergenceDKL(πθ(D)(a

′|s′)||πθ(D\(s,a))(a
′|s′)), its computational cost scales linearly with

the dimensionality of the model’s output, which may be prohibitive.

Accuracy-Efficiency Tradeoff: We note that our approach for computing the performance influence of
a demonstration (Eq. 3) is agnostic to the choice of influence estimation technique [38, 37, 54, 56, 57],
allowing practitioners to trade off between accuracy and efficiency based on available computational
resources, and enabling integration of improved data attribution methods (e.g., [36]) in the future.

A.2 CUPID Hyperparameters

We use the same set of hyperparameters for CUPID and CUPID-QUALITY across all experiments.

Performance Influence (Eq. 3): For all tasks, we define the trajectory return to be R(τ) = 1 if τ
completes the task and R(τ)=−1 otherwise. As a result, every rollout trajectory τ∼p(·|πθ) provides
information on the utility of each demonstration toward the policy’s closed-loop performance. We also
found CUPID to work with alternative return definitions—for example, focusing solely on successful
rollouts by setting R(τ)=0 when τ fails. However, such choices may increase sample complexity.

Action Influence (Eq. 9): The action influence requires computing the gradient of an expectation
∇θℓsquare(s,a;πθ) = ∇θEϵi,i[||ϵθ(

√
ᾱia+

√
1−ᾱiϵ

i, s, i)||2]. For all tasks, we approximate the
expectation using a batch of B=64 samples (ϵ(b),i(b)), where ϵ(b) ∼N (0,1) and i(b) ∼U [0,T) are
sampled independently.

Data Attribution: We leverage TRAK [2] to efficiently compute action influences as defined in Eq. 9.
First, TRAK uses random projections P∼N (0,1)p×d, where p is the number of model parameters
and d << p is the specified projection dimension, to reduce the dimensionality of the gradients as
gθ=P⊤∇θℓsquare while preserving their inner products gθ ·gθ≈∇θℓsquare ·∇θℓsquare [58]. Second,
TRAK ensembles influence scores over C independently trained models (i.e., from different seeds) to
account for non-determinism in learning. In our experiments, we use the standard projection dimension
d=4000 and minimize computational cost by using only a single policy checkpoint C=1, noting that
ensembling over C>1 policy checkpoints is likely to improve the accuracy of our influence scores.

A.3 Combining Score Functions

For ease of exposition in §5.3, we express the overall score of a demonstration as the convex combination
of its performance influence and its quality score αΨπ-inf+(1−α)Ψqual, where α=1 and α∈ [0,1)
instantiates CUPID and CUPID-QUALITY, respectively. Here, we additionally note that taking weighted
combinations of score functions requires first normalizing them to equivalent scales. Hence, our
implementation uniformly normalizes demonstration scores within the range [0,1] (i.e., producing an
absolute ranking of demonstrations) for each score function Ψπ-inf and Ψqual before combining them.
This simple approach can be applied to combine an arbitrary number of demonstration score functions.

17

B Experimental Setup

B.1 Hardware Setup

As depicted in Fig. 4, our hardware experiments involve a Franka FR3 manipulator robot. We use
a single ZED 2 camera to capture RGB-D observations and disregard the depth information. Our
image-based policies process 256×256 downsampled RGB observations and predict sequences of
end-effector poses for the manipulator, which are tracked using operational space control [59].

B.2 Policy Architectures

Diffusion Policy (DP): We use the original diffusion policy implementation4 from Chi et al. [49].
Specifically, we use the convolutional-based diffusion policy architecture for efficiency. For state-based
tasks (e.g., in RoboMimic; Fig. 2), actions are generated solely using the noise prediction network ϵθ as
described in §A.1. However, for image-based tasks (e.g., on hardware; Fig. 4), the policy πθ contains
two sets of parameters θ=(θo,θa) corresponding to a ResNet-18 encoder Eθo and the noise prediction
network ϵθa . When scoring demonstrations, we compute action influences (Eq. 9) over all available
policy parameters θ, noting that one might also consider using a subset of the parameters, e.g., those of
the noise prediction network or an alternative action head, under reduced computational budgets.

Other optimizations: In preliminary experiments, we found that the original diffusion policy (a) was
heavily over-parameterized and (b) converged in performance much earlier in training than the specified
maximum number of epochs. Thus, to accelerate experimentation in RoboMimic (Fig. 2), we (a)
manually determined the smallest model size that performed similarly to the original policy and (b)
adjusted the maximum number of epochs to the point where additional training would result in no
further performance gains. Importantly, we keep the model size and training epochs consistent across
all curation methods for a given RoboMimic task. For real-world hardware experiments, we use the
same model size and limit the number of training steps to 200K across all tasks, similar to Hejna et al.
[10]. All other diffusion policy hyperparameters are consistent with the original implementation [49].

Hyperparameter Value

Training steps 30,000
Batch size 16
Optimizer AdamW
Learning rate schedule Cosine decay
EMA Disabled
Action chunk length 50 steps
Control frequency 10 Hz
Image resolution 224×224
Observation history 1 frame

VLM backbone LoRA Rank = 16, α=16
Action expert LoRA Rank = 32, α=32

Table 1: Hyperparameter configu-
ration used for π0 [21] post-training.

Generalist Robot Policy (π0): We fine-tune Physical

Intelligence’s π0 Vision-Language-Action (VLA) policy5

via Low-Rank Adaptation (LoRA) [60] on the “Figure-8” and
“TuckBox” tasks. To ensure the post-trained policy’s performance
is solely a result of the properties of the curated dataset used for
training, we use the standard fine-tuning parameter configuration
from Black et al. [21] and keep all hyperparameters fixed across
experiments (see Table 1). We trained on 2 NVIDIA RTX 4090
GPUs, which took approximately 15 hours under the configura-
tion in Table 1. In initial experiments, we found that training for
30K steps was necessary to compensate for mismatch between
our robot’s action space (target end-effector poses tracked via
operational space control) and the action spaces used to pre-train
the base π0 policy (absolute joint angles). In addition, we found that using a descriptive prompt for
the task was necessary to yield performant policies. We kept these prompts fixed across training,
evaluation, and all curation settings. For the “TuckBox” task, we used the instruction “Move the blue
box underneath the white shelf” to avoid biasing the policy towards a particular behavior mode (e.g.,
“sliding” or “pick-and-place”). For the “Figure-8” task, we used the instruction “Pick up the red rope,
then tie a figure 8,” where we found the two-step instruction to increase performance over shorter
instructions like “Tie the cleat.” Similar to the diffusion policy experiment, we fine-tune a separate π0

model for each curation task—filter-k (Task 1) and select-k (Task 2)—using their corresponding base
demonstration datasets. We then fine-tune additional π0 models on datasets curated by our methods.

4DP’s open-source implementation: https://github.com/real-stanford/diffusion_policy.
5π0’s open-source implementation: https://github.com/Physical-Intelligence/openpi.

18

https://github.com/real-stanford/diffusion_policy
https://github.com/Physical-Intelligence/openpi

B.3 Tasks & Datasets

Here, we provide additional details regarding our real-world hardware tasks and their corresponding
datasets. We refer to Mandlekar et al. [48] for details on the simulated RoboMimic benchmark.

Figure-8: A brief description of the task is provided in §6.1. The “Figure-8” dataset contains 160
demonstrations evenly split across four quality tiers. Higher quality demonstrations complete the task
at a constant rate without errors, while lower-quality demonstrations vary in progression rate [61] and
include retry or recovery behaviors. Therefore, the “Figure-8” task intends to reflect a practical setting
where demonstrations of varying properties are introduced during data collection, whether organically
or deliberately, e.g., to improve policy robustness to recoverable failures [62]. Therefore, we expect
curation algorithms that distinguish demonstrations upon notions of quality (e.g., predictability [10])
to perform well on this task, which is consistent with our findings in Fig. 4(a) and Fig. 3(a).

TuckBox: A brief description of the task is provided in §6.2. As mentioned, the “TuckBox” dataset
contains 120 demonstrations split 2:1 between two subsets: 80 demonstrations solve the task by sliding
the box under the receptacle, while 40 demonstrations first reposition the box in front of the receptacle
via pick-and-place. Although the sliding strategy appears more smooth and involves just a single step,
it is rendered unreliable by imperceptible test-time distribution shifts to the box’s mass distribution. As
such, “TuckBox” stands conceptually opposite to “Figure-8,” whereby attending to heuristic properties
of demonstrations (e.g., quality) may result in poor curation performance (as shown in Fig. 4(b)).

Bookshelf: A brief description of the task is provided in §6.3. To summarize, the robot must extract
a target book that is either shelved alone—affording a simple, horizontal pulling motion—or with
another book stacked on top of it (i.e., a bookstack). In the bookstack case, the robot must extract the
target book using a vertical pulling motion, such that the stacked book does not fall off the shelf in the
process (see Fig. 4(c)). In total, the “Bookshelf” dataset contains 120 demonstrations split across three
subsets: (a) 60 demonstrations feature the target book shelved alone with a white background, (b) 20
demonstrations feature the bookstack with a white background, and (c) 40 demonstrations feature the
bookstack with a dark background. All subsets feature task-irrelevant distractor books on other shelves.

Spurious correlations in training data: Although the vertical pulling solution to the bookstack case
is demonstrated in scenes with both white and dark backgrounds, the disproporionate number of
demonstrations in subset (a) versus subset (b) spuriously correlates the horizontal pulling motion with
the white background. Such spurious correlations may result in causal confusion [12], where the policy
ignores the bookstack, attends the white background, and executes the failing horizontal strategy.

Spurious correlations in rollout data: Like “TuckBox,” “Bookshelf” represents another limiting case
for curating data with quality metrics [10]. However, it also presents an additional challenge for
methods that seek to curate data using online experience [11]. For example, approaches that attend
to differences in states between successful and failed policy rollouts may be susceptible to spurious
correlations in the rollout data. Consider the simple case: if we were to observe successful rollouts
when the target book is shelved alone and failed rollouts when another book is stacked above the target,
then training a classifier (i.e., as in Demo-SCORE [11]) to distinguish successful from failed states
may wrongly attribute failures to the presence of the stacked book. Curating demonstrations with such
a classifier would, in turn, worsen the spurious correlation in the training data. Thus, we posit that
handling more challenging cases of spurious correlations in real-world data will require methods that
causally attribute the outcomes of observed test-time experiences to the training data, such as CUPID.

B.4 Baseline Details

DemInf: We use the official implementation6 provided by Hejna et al. [10]. We note that DemInf
curates data offline—that is, without using any policy rollouts—and is at present only applicable to the
demonstration filtering setting (i.e., filter-k, as defined in Task 1).

Demo-SCORE: We construct our own implementation based on the description provided by the
authors [11]. Given our assumed fixed budget of m=100 rollouts for RoboMimic experiments (§6),
we collect 25 rollouts from C=4 policy checkpoints throughout training. We train three-layer MLP

6DemInf open-source implementation: https://github.com/jhejna/demonstration-information.

19

https://github.com/jhejna/demonstration-information

classifiers with hidden dimensions [16,16,16] on the first three rollout sets, and select the best classifier
via cross-validation on the last 25 rollouts, as described in [11]. Since we reduce the rollout budget
to m=25 rollouts for hardware experiments (§6), we collect 25 rollouts from the last C=1 policy
checkpoint. We then train a single ResNet-18 encoder and three-layer classification head with hidden
dimensions [32,32,32] on 20 of the rollouts, leaving 5 validation rollouts to monitor for overfitting. We
train all classifiers with a heavy dropout of 0.3 and an AdamW weight decay of 0.1 to prevent overfitting,
in alignment with [11]. Although Chen et al. [11] only test Demo-SCORE for demonstration filtering,
we extend its use for demonstration selection (i.e., select-k, as defined in Task 2).

Success Similarity: We design a custom robot data curation algorithm that, similar to Demo-SCORE,
valuates demonstrations based on a heuristic measure of similarity w.r.t. successful policy rollouts.
Instead of training classifiers, Success Similarity measures the average state-embedding similarity of a
demonstration w.r.t. all successful rollouts as

S(ξ;Dτ)=−
∑
τ∈Dτ

[
1(R(τ)=1)· 1

H2

∑
s′∈τ

∑
s∈ξ

D
(
ϕ(s′),ϕ(s)

)]
,

where the indicator function 1 evaluates to 1 if rollout τ is successful and 0 otherwise,H is the assumed
length of all demonstrations ξ∈D and rollouts τ ∈Dτ for notational simplicity,ϕ is the state embedding
function, and D is a specified distance function over state embeddings [63], such as the Mahalanobis,
L2, or cosine distance. For image-based states, we experimented with various embedding functions
ϕ, including ResNet [64], DINOv2 [65], and the policy’s vision encoder [61], and ultimately found
the policy’s vision encoder to work best in RoboMimic. The embedding function is set to identity for
low-dimensional states (i.e., ϕ(s)=s). Lastly, the distance function D is chosen for compatibility with
ϕ: e.g., L2 distance for policy encoder embeddings and cosine distance for DINOv2 embeddings.

Comparison to Performance Influence (CUPID): One can interpret Success Similarity as replacing the
action influence Ψa-inf((s

′,a′),(s,a)) (Eq. 2) with a state-based proxy −D(ϕ(s′),ϕ(s)) in an attempt
to estimate the performance contribution of a demonstration (Eq. 3). In our RoboMimic experiments
(Fig. 2), this approach performs comparably to Demo-SCORE and, in some cases, even outperforms
it—without requiring the training of any additional models. However, Success Similarity performs
consistently worse than CUPID across all tasks, supporting prior findings that influence functions offer
a substantially stronger causal signal than heuristic measures of similarity [2].

Oracle: For each task, the Oracle method represents a best attempt to curate data assuming privileged
access to ground-truth demonstration labels. For the RoboMimic and “Figure-8” tasks, the Oracle
ranks demonstrations in descending order of quality, choosing high-quality demonstrations before
low-quality demonstrations. For the “TuckBox” task, the Oracle first chooses all demonstrations
exhibiting the more robust pick-and-place strategy before any demonstration exhibiting the more brittle
sliding strategy. Lastly, for the “Bookshelf” task, the Oracle chooses demonstrations to minimize the
effect of the known spurious correlation (i.e., horizontal pulling motion in the presence of a white
background), resulting in a more balanced curated dataset. These definitions of the Oracle apply
identically to the filter-k (Task 1) and select-k (Task 2) curation tasks studied throughout this work.

Additional baselines: We implement a number of additional custom baselines that one might try
in practice, such as curating data based on policy loss, policy uncertainty, state diversity, and action
diversity. However, we exclude them from our experiments given their relatively poor performance.

C Additional Results & Analysis

We present additional results and ablations for our RoboMimic and Franka real-world tasks that were
cut from the main text due to space constraints.

C.1 Extended Discussion on RoboMimic Results

Performance versus Data Quality: One of our key findings is that the performance of a state-of-the-
art policy does not strictly correlate with the perceived quality of its training data. Factors such as
redundancy, balance, and coverage of the dataset all play a role in determining policy performance.
This is illustrated in the Oracle filter-k results (left three plots of Fig. 2). While the top row shows a

20

monotonic increase in average dataset quality as lower-quality demonstrations are filtered out, the
bottom row reveals (1) a consistent performance drop for diffusion policies on 2 out of 3 tasks, and (2)
as expected, performance degradation when too many demonstrations are removed. Similar analysis
applies to the select-k setting. These results highlight two important points: First, the impact of dataset
curation should not be judged by quality labels alone, but by the downstream performance of models
trained on curated datasets. Second, determining how much data to curate (i.e., the k in filter-k and
select-k) remains another key challenge for effective data curation in practice.

Performance versus Task Complexity: We evaluate curation performance across three RoboMimic
tasks of increasing complexity—“Lift MH,” “Square MH,” and “Transport MH.” On the simplest
task, “Lift MH,” diffusion policies achieve 100% success despite training on all demonstrations,
indicating that low-quality demonstrations have minimal impact and can be safely filtered. We observe
a similar trend for the moderately difficult “Square MH” task, where the policy benefits from access
to all demonstrations regardless of their quality. However, performance degrades more quickly as
demonstrations are filtered, suggesting increased sensitivity to data quantity due to the task’s higher
complexity relative to “Lift MH.” Finally, on the challenging “Transport MH” task, which requires
precise bi-manual coordination, both CUPID and CUPID-QUALITY significantly outperform the base
policy. These results suggest that curation of mixed-quality datasets is most beneficial for complex,
precision-critical tasks, where training on lower-quality data is more likely to hinder performance.

C.2 Ablation on Number of Policy Rollouts in RoboMimic

CUPID uses a REINFORCE-style estimator to compute the performance influence of each demonstration
(Eq. 3) for curation. Thus, the accuracy of estimated performance influences depends on the number of
policy rollouts. While REINFORCE [16] often yields high-variance gradient estimates under limited
rollout budgets, e.g., in reinforcement learning contexts [51], we highlight that our curation objective
imposes a lower fidelity requirement: since curation with CUPID involves top-k selection (§5.2), it
suffices to rank helpful demonstrations above harmful ones (requiring fewer rollouts) rather than to
estimate performance influence precisely (requiring many). As shown in Fig. 5 and Fig. 6, CUPID’s
demonstration rankings stabilize with approximately m∈ [25,50] rollouts on “Lift MH” and “Square
MH,” and m∈ [50,100] on “Transport MH.” Similarly, we use only m=25 rollouts for our real-world
Franka tasks (Fig. 4). These results support the practicality of CUPID under realistic rollout budgets,
while noting that more complex tasks (e.g., “Transport MH”) may benefit from additional rollouts.
Finally, as discussed in §5.3, the heuristic quality measure employed by CUPID-QUALITY further
reduces variance, resulting in demonstration scores that are less sensitive to the number of rollouts.

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40

50

(%
) I

nc
re

as
e

in
 Q

ua
lit

y Lift MH

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40

50
Square MH

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40
Transport MH

40 80 120 160 200 240
Num Demos Selected (k)

2.0

2.2

2.4

2.6

2.8

3.0

Av
g

Se
le

ct
ed

 Q
ua

lit
y Lift MH

40 80 120 160 200 240
Num Demos Selected (k)

2.0

2.2

2.4

2.6

2.8

3.0
Square MH

40 80 120 160 200 240
Num Demos Selected (k)

2.2

2.4

2.6

2.8

3.0
Transport MH

RoboMimic State Data Quality vs Num Rollouts – Demo Filtering RoboMimic State Data Quality vs Num Rollouts – Demo Selection

Oracle
Random

CUPID – 1
CUPID – 5

CUPID – 10
CUPID – 25

CUPID – 50
CUPID – 100

CUPID-Quality – 1
CUPID-Quality – 5

CUPID-Quality – 10
CUPID-Quality – 25

CUPID-Quality – 50
CUPID-Quality – 100

Figure 5: RoboMimic state ablation: Data quality trends under varying number of rollouts. Performance
influences (Eq. 3) converge around m∈ [25,50] rollouts for “Lift MH” and “Square MH” (yielding similar quality
trends), but continue to evolve until m∈ [50,100] rollouts for “Transport MH.” Curation performed on state-based
diffusion policies. Results are averaged over 3 random seeds. Errors bars represent the standard error.

21

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40

50

(%
) I

nc
re

as
e

in
 Q

ua
lit

y Lift MH

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40

50
Square MH

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40
Transport MH

40 80 120 160 200 240
Num Demos Selected (k)

2.0

2.2

2.4

2.6

2.8

3.0

Av
g

Se
le

ct
ed

 Q
ua

lit
y Lift MH

40 80 120 160 200 240
Num Demos Selected (k)

2.0

2.2

2.4

2.6

2.8

3.0
Square MH

40 80 120 160 200 240
Num Demos Selected (k)

2.2

2.4

2.6

2.8

3.0
Transport MH

RoboMimic Image Data Quality vs Num Rollouts – Demo Filtering RoboMimic Image Data Quality vs Num Rollouts – Demo Selection

Oracle
Random

CUPID – 1
CUPID – 5

CUPID – 10
CUPID – 25

CUPID – 50
CUPID – 100

CUPID-Quality – 1
CUPID-Quality – 5

CUPID-Quality – 10
CUPID-Quality – 25

CUPID-Quality – 50
CUPID-Quality – 100

Figure 6: RoboMimic image ablation: Data quality trends under varying number of rollouts. Performance
influences (Eq. 3) converge around m ∈ [25,50] rollouts for “Lift MH” and “Square MH” (yielding similar
quality trends), but continue to evolve until m∈ [50,100] rollouts for “Transport MH.” Curation performed on
image-based diffusion policies. Results are averaged over 3 random seeds. Errors bars represent the standard error.

C.3 Additional Data Quality Results in RoboMimic

We provide full data quality results in RoboMimic. Fig. 7 is identical to the top row of Fig. 2 in the
main text, but also includes data quality trends for select-k curation on “Lift MH.” Fig. 8 shows data
quality results for image-based diffusion policies. We do not retrain image-based policies on curated
datasets (as in the bottom row of Fig. 2) due to the substantial computational resources required.

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40

50

(%
) I

nc
re

as
e

in
 Q

ua
lit

y Lift MH

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40

50
Square MH

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40
Transport MH

40 80 120 160 200 240
Num Demos Selected (k)

2.0

2.2

2.4

2.6

2.8

3.0

Av
g

Se
le

ct
ed

 Q
ua

lit
y Lift MH

40 80 120 160 200 240
Num Demos Selected (k)

2.0

2.2

2.4

2.6

2.8

3.0
Square MH

40 80 120 160 200 240
Num Demos Selected (k)

2.2

2.4

2.6

2.8

3.0
Transport MH

RoboMimic State Data Quality – Demo Filtering RoboMimic State Data Quality – Demo Selection

Oracle Random Demo-SCORE DemInf Success Similarity CUPID CUPID-Quality

Figure 7: RoboMimic state data quality results. Curation performed on state-based diffusion policies. Results are
averaged over 3 random seeds. Errors bars represent the standard error.

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40

50

(%
) I

nc
re

as
e

in
 Q

ua
lit

y Lift MH

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40

50
Square MH

0 50 100 150
Num Demos Filtered (k)

0

10

20

30

40
Transport MH

40 80 120 160 200 240
Num Demos Selected (k)

2.0

2.2

2.4

2.6

2.8

3.0

Av
g

Se
le

ct
ed

 Q
ua

lit
y Lift MH

40 80 120 160 200 240
Num Demos Selected (k)

2.0

2.2

2.4

2.6

2.8

3.0
Square MH

40 80 120 160 200 240
Num Demos Selected (k)

2.2

2.4

2.6

2.8

3.0
Transport MH

RoboMimic Image Data Quality – Demo Filtering RoboMimic Image Data Quality – Demo Selection

Oracle Random Demo-SCORE DemInf Success Similarity CUPID CUPID-Quality

Figure 8: RoboMimic image data quality results. Curation performed on image-based diffusion policies. Results
are averaged over 3 random seeds. Errors bars represent the standard error.

22

C.4 Data Filtering Curation Distributions in Franka Real-World

25%

25% 25%

25%

Base Distribution

37%

6% 20%

37%

Demo-SCORE

Success Rate: 56%

49% 49%

DemInf

Success Rate: 64%

22%

75%

CUPID-Quality

Success Rate: 80%

6%
16%

75%

CUPID

Success Rate: 72%

25%

75%

Oracle

Success Rate: 84%

Low Quality Low-Medium Quality Medium-High Quality High Quality

(a) Figure-8: Distribution of curated demonstrations after filtering 66%. Higher-quality demos are better.

67%

33%

Base Distribution Demo-SCORE

Success Rate: N/A

97%

DemInf

Success Rate: 0%

82%

18%

CUPID-Quality

Success Rate: 4%

58%
42%

CUPID

Success Rate: 84%

100%

Oracle

Success Rate: 88%

Sliding Strategy (Unreliable) Pick-and-Place Strategy (Robust)

(b) TuckBox: Distribution of curated demonstrations after filtering 66%. Pick-and-place demos are better.

33%

67%

Base Distribution

67%

33%

Demo-SCORE

Success Rate: 44%

61%

39%

DemInf

Success Rate: 36%

30%

70%

CUPID-Quality

Success Rate: 20%

14%

86%

CUPID

Success Rate: 84%

100%

Oracle

Success Rate: 96%

Spuriously Correlated Balanced

(c) Bookshelf: Distribution of curated demonstrations after filtering 50%. Balanced data is better.

Figure 9: Franka diffusion policy curated dataset distributions for filtering (Task 1). CUPID filters lower-
quality demonstrations (Figure-8), brittle strategies (TuckBox), and spuriously correlated examples (Bookshelf),
improving policy performance across tasks. While curation heuristics employed by baselines may be effective in
some cases (e.g., DemInf and CUPID-QUALITY in Figure-8), they can lead to suboptimal pruning in others.

25%

25% 25%

25%

Uniform Random

19%

35% 28%

19%

Demo-SCORE

Success Rate: 56%

38%

37%

13%
13%

DemInf

Success Rate: 64%

38%

36%

27%

CUPID-Quality

Success Rate: 80%

35%

36%

30%

CUPID

Success Rate: 72%

38%

38%

25%

Oracle

Success Rate: 84%

Low Quality Low-Medium Quality Medium-High Quality High Quality

(a) Figure-8: Distribution of demonstrations filtered. Filtering lower-quality demos is better.

67%

33%

Uniform Random Demo-SCORE

Success Rate: N/A

51% 49%

DemInf

Success Rate: 0%

59%
41%

CUPID-Quality

Success Rate: 4%

71%

29%

CUPID

Success Rate: 84%

100%

Oracle

Success Rate: 88%

Sliding Strategy (Unreliable) Pick-and-Place Strategy (Robust)

(b) TuckBox: Distribution of demonstrations filtered. Filtering sliding demos is better.

33%

67%

Uniform Random

100%

Demo-SCORE

Success Rate: 44%

5%

95%

DemInf

Success Rate: 36%

37%

63%

CUPID-Quality

Success Rate: 20%

53% 47%

CUPID

Success Rate: 84%

67%

33%

Oracle

Success Rate: 96%

Spuriously Correlated Balanced

(c) Bookshelf: Distribution of demonstrations filtered. Filtering spurious correlations is better.

Figure 10: Franka diffusion policy – distribution of demonstrations filtered (S⋆ in Task 1). See Fig. 9 for
distributions of the corresponding curated datasets used for policy training.

23

C.5 Data Selection Curation Distributions in Franka Real-World

25%

25% 25%

25%

Base Distribution

22%

17%

23%

39%

Demo-SCORE

Success Rate: 36%

16%

16%

25%

43%

CUPID-Quality

Success Rate: 76%

16%

16%

26%

42%

CUPID

Success Rate: 72%

16%

16%

25%

43%

Oracle

Success Rate: 84%

Low Quality Low-Medium Quality Medium-High Quality High Quality

(a) Figure-8: Distribution of curated demonstrations after selecting 33%. Higher-quality demos are better.

67%

33%

Base Distribution Demo-SCORE

Success Rate: N/A

77%

23%

CUPID-Quality

Success Rate: 16%

52% 48%

CUPID

Success Rate: 88%

42%
58%

Oracle

Success Rate: 92%

Sliding Strategy (Unreliable) Pick-and-Place Strategy (Robust)

(b) TuckBox: Distribution of curated demonstrations after selecting 33%. Pick-and-place demos are better.

Figure 11: Franka diffusion policy curated dataset distributions for selection (Task 2). CUPID selects
higher-quality demonstrations (Figure-8) and robust strategies (TuckBox), improving policy performance across
tasks (see Fig. 4). While curation heuristics employed by baselines may be effective in some cases (e.g., CUPID-
QUALITY in Figure-8), they can lead to suboptimal selection in others.

25%

25% 25%

25%

Uniform Random

16%

19% 62%

Demo-SCORE

Success Rate: 36%

25%

75%

CUPID-Quality

Success Rate: 76%

28%

72%

CUPID

Success Rate: 72%

25%

75%

Oracle

Success Rate: 84%

Low Quality Low-Medium Quality Medium-High Quality High Quality

(a) Figure-8: Distribution of demonstrations selected. Selecting higher-quality demos is better.

67%

33%

Uniform Random Demo-SCORE

Success Rate: N/A

96%

4%

CUPID-Quality

Success Rate: 16%

25%

75%

CUPID

Success Rate: 88%

100%

Oracle

Success Rate: 92%

Sliding Strategy (Unreliable) Pick-and-Place Strategy (Robust)

(b) TuckBox: Distribution of demonstrations selected. Selecting pick-and-place demos is better.

Figure 12: Franka diffusion policy – distribution of demonstrations selected (S⋆ in Task 2). See Fig. 11 for
distributions of the corresponding curated datasets used for policy training.

C.6 Additional Results for Franka π0: Curated Dataset Transfer

Fig. 13 contains the full results of our π0 ablation (Fig. 3), including the performance of π0 [21] trained
on datasets curated by CUPID and CUPID-QUALITY for both the “Figure-8” and “TuckBox” tasks.

24

Filter 66% Select 33%

Su
cc

es
s

R
at

e
(%

)

All Demos48

92 88

20

84 80

(a) PI-0 Figure-8

Filter 66% Select 33%

All Demos36

64

20
36

80

48

(b) PI-0 TuckBox

PI-0 Fine-tuned CUPID CUPID-Quality

Figure 13: Data curated for single-task diffusion policies improves π0 [21] post-training performance. As in
Fig. 4, quality measures (CUPID-QUALITY) may degrade performance when higher-quality demonstrations induce
brittle strategies at test time (TuckBox), whereas curating based on performance (CUPID) is robust across settings.

In this experiment, we investigate two questions: (1) Can datasets curated with one policy architecture
result in increased performance when used to train another policy with a different architecture? (2)
How influential is curation for policies that have been pre-trained on large-scale multi-task datasets?

Curation Transfer: Towards the first question, Fig. 13 shows that datasets curated using diffusion
policies significantly increase the performance of fine-tuned π0 policies relative to fine-tuning on the
base, uncurated datasets. We attribute these results to two causes: First, we find that both the diffusion
policy and π0 have sufficient capacity to accurately fit the training data distribution, and thus, they
should learn a similar behavior distribution from the training data. This implies that the observed
performance gains in Fig. 13 result from curation transfer between policies. Second, as the “TuckBox”
experiment shows in Fig. 4(b), our method is able to effectively identify behaviors in the demonstration
data that are not robust. While on-policy evaluations (i.e., rollouts) are necessary to identify such brittle
behaviors, these are purely properties of the training demonstration data. Therefore, filtering out poor
behaviors will increase the performance of any policy. Similarly, on the high-precision “Figure-8” task,
filtering out more noisy, low-quality demonstrations is likely to improve performance for any policy.

VLA Robustness: Towards the second question, we find that even when the base policy is pre-trained on
a large, diverse, multi-task dataset, curation is still essential to yield strong fine-tuned performance. As
shown in Fig. 13, π0 policies trained on the base demonstration datasets are unable to reliably complete
our tasks. In contrast, policies trained on curated datasets attain significantly higher success rates. As
such, our results indicate that simply training VLM-based policies on more data and more tasks does
not strictly result in pre-conditioned policies that use their generalist knowledge to “ignore” low-quality
behaviors or brittle strategies in demonstration data—i.e., data curation still appears essential.

Concluding Remarks: Overall, these results indicate that using smaller, single-task policies to curate
individual datasets, which may then benefit a larger, multi-task policy is a promising direction to
alleviate the computational cost of applying our method to generalist policies. Still, we emphasize that
datasets curated using our method are not completely model agnostic, as the same demonstrations may
influence different models in different ways. As such, while π0 achieves a higher base performance
than the diffusion policy, the π0 policies trained on curated datasets perform similarly to or slightly
worse than the diffusion policies (for which those datasets were curated).

D Derivations

D.1 Proof of Proposition 1

Proof. As presented in §3, applying the basic derivation of the influence function1 in [13] gives us that

Ψπ-inf(ξ) :=
dJ(πθ)

dϵ

∣∣∣∣
ϵ=0

=−∇θJ(πθ)
⊤∇2

θLbc(θ;D)−1∇θℓtraj(ξ;πθ).

25

Next, note that the standard log-derivative trick underlying policy gradient methods [16, 46] tells us
that

∇θJ(πθ)=Eτ∼p(τ |πθ)

[
R(τ)

∑
(s′,a′)∈τ

∇θlogπθ(a
′|s′)

]
.

Therefore, since Lbc and ℓtraj are deterministic functions of θ, ξ, and D, it holds that

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

∑
(s′,a′)∈τ

−∇θlogπθ(a
′|s′)⊤H−1

bc ∇θℓtraj(ξ;πθ)
]

by linearity of expectation. Finally, by simply noting that ℓtraj(ξ;πθ) =
1
H

∑
(s,a)∈ξ ℓ(s,a;θ) and

applying the definition of Ψa-inf , we have the result:

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

H

∑
(s′,a′)∈τ

∑
(s,a)∈ξ

Ψa-inf
(
(s′,a′),(s,a)

)]
.

D.2 Derivation of Performance Influence for Variable Length Trajectories

In §4 and §5, we assumed that all trajectories in the demonstration dataset D were of an equal length H
for notational simplicity. Here, we show that without loss of generality, our analysis extends to the case
where the length of demonstration trajectories vary. Suppose each demonstration ξi∈D has length Hi,
so that the base policy πθ minimizes the average loss across all samples in the demonstration data, i.e.,

θ=argmin
θ′

{L̃bc(θ
′;D) :=

1

(
∑n

i=1H
i)

∑
ξi∈D

∑
(s,a)∈ξi

ℓ(s,a;πθ′)}. (10)

Note that the objective in Eq. 10 is equivalent to an unweighted BC loss

L′
bc(θ

′;D) :=
∑
ξi∈D

∑
(s,a)∈ξi

ℓ(s,a;πθ′),

which decomposes into its unweighted trajectory losses ℓ′traj(ξ;πθ′) :=
∑

(s,a)∈ξℓ(s,a;πθ′), so that
L′
bc(θ

′,D)=
∑

ξi∈Dℓ
′
traj(ξ

i;πθ′). We can then derive an equivalent statement to Proposition 1 for the
unweighted loss functions that applies when the demonstrations have variable length.
Proposition 2. Assume that θ(D)=argminθ′L′

bc(θ
′;D), that L′

bc is twice differentiable in θ, and that
Hbc≻0 is positive definite (i.e., θ(D) is not a saddle point)1. Then, it holds that

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

∑
(s′,a′)∈τ

∑
(s,a)∈ξ

Ψa-inf
(
(s′,a′),(s,a)

)]
. (11)

Proof. As presented in §3, applying the basic derivation of the influence function1 in [13] gives us that

Ψπ-inf(ξ) :=
dJ(πθ)

dϵ

∣∣∣∣
ϵ=0

=−∇θJ(πθ)
⊤∇2

θL′
bc(θ;D)−1∇θℓ

′
traj(ξ;πθ).

Next, note that the standard log-derivative trick underlying policy gradient methods [16, 46] tells us
that

∇θJ(πθ)=Eτ∼p(τ |πθ)

[
R(τ)

∑
(s′,a′)∈τ

∇θlogπθ(a
′|s′)

]
.

Therefore, since L′
bc and ℓ′traj are deterministic functions of θ, ξ, and D, it holds that

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

∑
(s′,a′)∈τ

−∇θlogπθ(a
′|s′)⊤H−1

bc ∇θℓ
′
traj(ξ;πθ)

]
by linearity of expectation. Finally, by simply noting that ℓ′traj(ξ;πθ)=

∑
(s,a)∈ξℓ(s,a;θ) and applying

the definition of Ψa-inf , we have the result:

Ψπ-inf(ξ)=Eτ∼p(τ |πθ)

[
R(τ)

∑
(s′,a′)∈τ

∑
(s,a)∈ξ

Ψa-inf
(
(s′,a′),(s,a)

)]
.

26

	Introduction
	Related Work
	Background: Data Attribution via Influence Functions
	Problem Formulation
	CUPID: Curating Performance-Influencing Demonstrations
	Demonstration-Performance Influence
	Data Curation with Performance Influence
	Additional Quality Metrics

	Experiments
	Setting 1: Improving Policy Performance in Mixed-Quality Regimes
	Setting 2: Identifying Robust Test-time Strategies from Policy Failures
	Setting 3: Disentangling Spurious Correlations in Demonstration Data

	Conclusion
	Limitations
	Appendix Implementation Details
	Influence Functions for Diffusion Policies
	CUPID Hyperparameters
	Combining Score Functions

	Appendix Experimental Setup
	Hardware Setup
	Policy Architectures
	Tasks & Datasets
	Baseline Details

	Appendix Additional Results & Analysis
	Extended Discussion on RoboMimic Results
	Ablation on Number of Policy Rollouts in RoboMimic
	Additional Data Quality Results in RoboMimic
	Data Filtering Curation Distributions in Franka Real-World
	Data Selection Curation Distributions in Franka Real-World
	Additional Results for Franka 0: Curated Dataset Transfer

	Appendix Derivations
	Proof of prop:polinf
	Derivation of Performance Influence for Variable Length Trajectories

