
LayerFusion: Harmonized Multi-Layer Text-to-Image Generation with Generative Priors

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 Large-scale diffusion models have achieved remarkable success in generating
2 high-quality images from textual descriptions, gaining popularity across various
3 applications. However, the generation of layered content, such as transparent
4 images with foreground and background layers, remains an under-explored area.
5 Layered content generation is crucial for creative workflows in fields like graphic
6 design, animation, and digital art, where layer-based approaches are fundamental
7 for flexible editing and composition. In this paper, we propose a novel image
8 generation pipeline based on Latent Diffusion Models (LDMs) that generates
9 images with two layers: a foreground layer (RGBA) with transparency information
10 and a background layer (RGB). Unlike existing methods that generate these layers
11 sequentially, our approach introduces a harmonized generation mechanism that
12 enables dynamic interactions between the layers for more coherent outputs. We
13 demonstrate the effectiveness of our method through extensive qualitative and
14 quantitative experiments, showing significant improvements in visual coherence,
15 image quality, and layer consistency compared to baseline methods.

16 1 Introduction

17 Layered content generation, particularly creating images with transparency, is crucial in creative
18 industries that rely on layer-based composition. While large-scale diffusion models [7, 6, 8] excel at
19 generating single images, their application to compositional layer generation remains underexplored.
20 Recent efforts have shown promise in generating single transparent images [10, 4, 2, 9], highlighting
21 the need to better align these models with established creative workflows.

22 However, harmonizing distinct layers into a visually coherent composite presents significant chal-
23 lenges. First, realistic composition demands interactions beyond simple alpha blending, such as
24 grounding, shadows, and illumination, which are difficult to achieve when layers are generated
25 independently. Second, preserving continuous transparency for elements like glass or reflections is a
26 problem for pipelines that rely on segmentation, as binary masks cannot capture the nuances of an
27 alpha channel.

28 Addressing these issues, we propose a novel latent diffusion model pipeline that generates a transpar-
29 ent foreground layer (RGBA) and a background layer (RGB) simultaneously. Our method facilitates
30 harmonized interaction between the layers, in contrast to sequential generation approaches [4, 10]
31 that can lead to inconsistencies. The core of our framework is a novel **“attention-level blending”**
32 mechanism, which utilizes cross-attention and self-attention masks to guide the co-generation of both
33 layers. This allows for dynamic, fine-grained interactions that improve the realism and coherence of
34 the final composition.

35 Our contributions are: (1) a new pipeline that generates harmonized foreground (RGBA) and
36 background (RGB) layers with natural interactions; (2) a novel attention-level blending scheme for

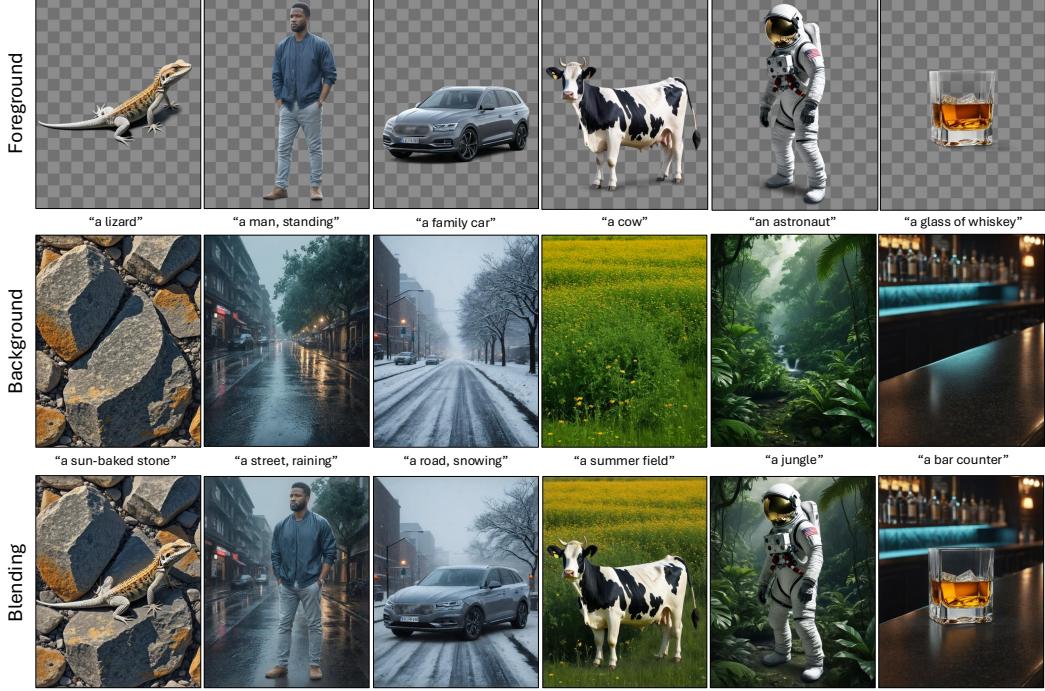


Figure 1: **Qualitative Results.** We present qualitative results on multi-layer generation over different visual concepts. In each column, we show the high-quality results of foreground layer, background layer and their generative blending respectively, in terms of text-image alignment, transparency and harmonization. We present more results in the supplementary material.

37 seamless and cohesive composition; and (3) extensive experiments demonstrating that our method
 38 outperforms baselines in visual coherence, image quality, and layer consistency.

39 **2 Methodology**

40 Our pipeline returns a *foreground image with an α channel* (RGBA), a *background RGB* image,
 41 and their *composite RGB* in a single sampling run, doing so with **no weight updates**. We reuse
 42 the transparent–foreground branch of **LayerDiffuse** [10], denoted $\epsilon_{\theta,FG}$, and team it with a frozen,
 43 off-the-shelf text-to-image diffusion model ϵ_{θ} , which is responsible for both the background and
 44 the blended view. Both denoisers share the same timestep schedule and exchange information *only*
 45 through their attention tensors; therefore the pretrained output distributions of the two networks
 46 remain unchanged.

47 **2.1 Priors from attention**

48 Our blending strategy is driven by two complementary guidance maps. One captures *static structure*
 49 which locates the boundary of the foreground object (structure prior), while the other captures *layer-
 50 wise content confidence*, how strongly the prompt steers each block of the network as the image forms
 51 (content confidence prior).

52 **Structure prior.** We extract the structure prior once, from the *last* self-attention block of the
 53 foreground denoiser $\epsilon_{\theta,FG}$, because this layer is closest to the point where the object appears sharply
 54 in latent space. Let $m^L \in \mathbb{R}^{M \times M}$ be the head-averaged self-attention matrix of that block (L is
 55 the deepest layer index). For each spatial token i we compute $s_i = \left(\sum_{j=1}^M (m_{ij}^L)^2 \right)^{-1}$, $s'_i =$
 56 $1 - \text{norm}(s_i)$, yielding a fixed map $s' \in [0, 1]^M$ that highlights tokens whose attention rows are dense,
 57 typical for the foreground object (Fig. 2). This map is reused, unchanged, at every transformer depth
 58 during fusion.

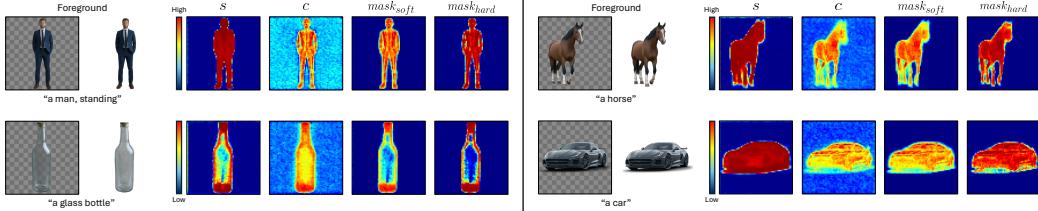


Figure 2: **Visualization of the masks extracted as generative priors.** Throughout the generation process, we extract a structure prior s and a content confidence prior c . To combine the structure and content information, we construct $mask_{soft}$ and $mask_{hard}$ during the blending process. As visible from the provided maps (as priors), We can both capture the overall object structure with the structure prior s and incorporate the content with c , where their combination provides a precise mask reflecting both quantities (see the example “the car”). Also note that the masks we construct also capture transparency information throughout the masking process (see the example “a glass bottle”). We retrieve the provided masks for the diffusion timestep $t = 0.8T$.

59 **Content-confidence prior.** While foreground location is largely stable across depth, the influence
 60 of the text prompt evolves from coarse to fine detail. We therefore compute a content-confidence map
 61 for *every* transformer block. For a given block index ℓ , we average the H cross-attention heads and
 62 keep the channel that corresponds to the <EOS> text token, obtaining $c^\ell \in [0, 1]^M$ ($\ell = 1, \dots, L$).
 63 Because CLIP’s encoder is unidirectional, the <EOS> token accumulates information from the entire
 64 prompt, so c^ℓ offers a compact, up-to-date measure of how strongly each token is being driven by the
 65 text at depth ℓ (Fig. 2). These attention layer-specific maps allow our masks to adapt as the image
 66 content sharpens through the network.

67 Together, the layer-invariant structure prior s' and the layer-dependent content maps $\{c^\ell\}$ supply the
 68 spatial weights used to build the soft and hard blending masks in the next section.

69 2.2 Mask extraction

70 We combine the two attention-based priors into a pair of spatial masks that will guide all later fusion
 71 steps. First, we form a *soft mask* by an element-wise product of the structure scores $s' \in [0, 1]^M$
 72 and the content-confidence map $c \in [0, 1]^M$, followed by a min–max rescaling over the token set,
 73 $mask_{soft} = \text{norm}(s' \odot c)$. This mask holds fractional weights in $[0, 1]$ and therefore supports
 74 smooth interpolation between foreground and background activations. For operations that require a
 75 crisper decision we pass the soft mask through a centred sigmoid gate, $mask_{hard} = \sigma(d(\text{mask}_{soft} -$
 76 $0.5))$, $d=10$ where the slope parameter d controls the hardness of the boundary (see supplement for
 77 a sensitivity analysis). Figure 2 visualizes typical soft and hard masks produced by this two-step
 78 process.

79 2.3 Attention-level Blending

80 During each transformer block our method maintains three latent streams: \mathcal{L}_{FG} for the foreground
 81 branch of $\epsilon_{\theta, FG}$, \mathcal{L}_{BL} for the composite branch of ϵ_{θ} , and \mathcal{L}_{BG} for the background branch of the
 82 same model. Let $a_{FG}, a_{BL}, a_{BG} \in \mathbb{R}^{M \times D}$ denote the self-attention outputs of the current block,
 83 where M is the number of spatial tokens and D the hidden dimension. Guided by the masks, we
 84 first inject foreground information into the composite stream through a soft, convex combination
 85 $a'_{BL} = a_{FG} \odot \text{mask}_{soft} + a_{BL} \odot (1 - \text{mask}_{soft})$, which copies foreground activations wherever
 86 the mask weight is high while leaving the remainder of the composite activations untouched. The
 87 updated composite activations then feed back into the foreground stream through the harder binary
 88 mask $a'_{FG} = a'_{BL} \odot \text{mask}_{hard} + a_{FG} \odot (1 - \text{mask}_{hard})$, ensuring that both branches stay in
 89 sync over regions judged to belong to the foreground. Finally, the same soft-mask operation is
 90 applied between a'_{BL} and a_{BG} , allowing the background stream to adapt to the evolving composite
 91 without overwriting areas that should remain purely background. Identical equations are applied to
 92 the cross-attention outputs of the block. Because these updates involve only element-wise arithmetic,
 93 and require no gradient computation; full pseudo-code is given in Algorithm 1 of the supplementary
 94 material.

Table 1: **Quantitative Results.** We quantitatively evaluate the output distribution for the foreground and background images with CLIP-score, KID, and FID metrics. Furthermore, we also conduct a user study to evaluate the blending performance of our framework perceptually.

	Foreground			Background			Blending User Preference
	CLIP	KID	FID	CLIP	KID	FID	
LayerDiffuse [10]	38.46	0.0014	0.09	38.27	0.0400	1.17	2.960 ± 0.692
Ours	38.97	0.0012	0.09	41.95	0.0058	0.14	3.233 ± 0.566

95 3 Experiments

96 In all of our experiments, we use SDXL model as the diffusion model. Following the implementation
97 released by [10], we use the model checkpoint `RealVisXL_V4.0`¹, unless otherwise stated. While
98 using the non-finetuned SDXL, ϵ_θ as the background and blended image generators, we use the
99 weights released by [10] for the foreground diffusion model $\epsilon_{\theta,FG}$ ². We conduct all of our experiments
100 on a single NVIDIA L40 GPU.

101 3.1 Quantitative Results

102 **Quantitative Results** We compare our framework with [10], a state-of-the-art method that generates
103 a transparent foreground, an RGB background, and their blended result. Our evaluation assesses the
104 quality of the individual layers and the final composite. For the foreground and background layers,
105 we measure text-prompt alignment using CLIP score [5]. We also evaluate distributional realism
106 using FID [3] and KID [1] scores, comparing our outputs to a reference distribution of foregrounds
107 from [10] and backgrounds from a base SDXL model. This analysis confirms our method improves
108 background quality and alignment with the base model while maintaining high-fidelity foreground
109 generation.

110 **User Study** To assess the perceptual harmony of the final blended image, we conducted a user study
111 with 50 participants. Participants were shown 40 image triplets (foreground, background, and our
112 blended composite) and asked to rate the quality of the final blend on a 1-to-5 scale (1=not satisfactory,
113 5=very satisfactory). The results, presented in Table 1, show our method receives significantly higher
114 ratings, confirming that our compositions are more visually coherent and appealing. Additional
115 details about the study setup are in the supplementary material.

116 4 Discussion

117 **Limitations and Future Directions** The present work concentrates on the widely used two-layer
118 case (foreground + background); extending our attention-guided fusion to richer multi-layer or
119 hierarchical scenes is an exciting next step. Our results already benefit greatly from self- and cross-
120 attention masks, yet further gains are possible with more robust mask extraction or lightweight
121 refinement. Finally, because we rely on frozen latent-diffusion checkpoints, the method inherits
122 their scene priors (for example, a mild bias toward centered subjects)—opening opportunities for
123 bias-mitigation strategies or task-specific fine-tuning. A fuller discussion and illustrative failure cases
124 appear in the supplementary material.

125 **Conclusion** We present an attention-guided diffusion pipeline that produces a harmonized fore-
126 ground RGBA, a clean background RGB, and their composite in a single training-free pass. Given
127 structure and content confidence priors, extracted from the frozen foreground branch, steers an unmod-
128 ified SDXL backbone so both layers evolve together, yielding visually coherent results. Qualitative,
129 quantitative, and user-study evaluations demonstrate clear gains over layered-generation and latent-
130 blending baselines. Future work will extend the method to multi-layer scenes and release a public
131 layered-image dataset to support tasks such as text-guided inpainting and advanced harmonization.

¹https://huggingface.co/SG161222/RealVisXL_V4.0

²https://huggingface.co/l1lyasviel/LayerDiffuse_Diffusers

132 **References**

133 [1] Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd gans. In: International
134 Conference on Learning Representations (2018)

135 [2] Burgert, R.D., Price, B.L., Kuen, J., Li, Y., Ryoo, M.S.: Magick: A large-scale captioned
136 dataset from matting generated images using chroma keying. In: Proceedings of the IEEE/CVF
137 Conference on Computer Vision and Pattern Recognition. pp. 22595–22604 (2024)

138 [3] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two
139 time-scale update rule converge to a local nash equilibrium. Advances in neural information
140 processing systems **30** (2017)

141 [4] Quattrini, F., Pippi, V., Cascianelli, S., Cucchiara, R.: Alfie: Democratising rgba image
142 generation with no \$\$. arXiv preprint arXiv:2408.14826 (2024), <https://arxiv.org/pdf/2408.14826.pdf>

144 [5] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
145 A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from natural language
146 supervision. In: International conference on machine learning. pp. 8748–8763. PMLR (2021)

147 [6] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., Sutskever, I.: Zero-
148 shot text-to-image generation. In: International conference on machine learning. pp. 8821–8831.
149 Pmlr (2021)

150 [7] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis
151 with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision
152 and pattern recognition. pp. 10684–10695 (2022)

153 [8] Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour, K., Gon-
154 tijio Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-to-image diffusion
155 models with deep language understanding. Advances in neural information processing systems
156 **35**, 36479–36494 (2022)

157 [9] Wang, L., Li, Y., Chen, Z., Wang, J.H., Zhang, Z., Zhang, H., Lin, Z., Chen, Y.: Transpixar:
158 Advancing text-to-video generation with transparency. arXiv preprint arXiv:2501.03006 (2025)

159 [10] Zhang, L., et al.: Transparent image layer diffusion using latent transparency. arXiv preprint
160 arXiv:2402.17113 (2024), <https://arxiv.org/abs/2402.17113>, last revised 23 Jun 2024