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Abstract

Large-scale diffusion models have achieved remarkable success in generating1

high-quality images from textual descriptions, gaining popularity across various2

applications. However, the generation of layered content, such as transparent3

images with foreground and background layers, remains an under-explored area.4

Layered content generation is crucial for creative workflows in fields like graphic5

design, animation, and digital art, where layer-based approaches are fundamental6

for flexible editing and composition. In this paper, we propose a novel image7

generation pipeline based on Latent Diffusion Models (LDMs) that generates8

images with two layers: a foreground layer (RGBA) with transparency information9

and a background layer (RGB). Unlike existing methods that generate these layers10

sequentially, our approach introduces a harmonized generation mechanism that11

enables dynamic interactions between the layers for more coherent outputs. We12

demonstrate the effectiveness of our method through extensive qualitative and13

quantitative experiments, showing significant improvements in visual coherence,14

image quality, and layer consistency compared to baseline methods.15

1 Introduction16

Layered content generation, particularly creating images with transparency, is crucial in creative17

industries that rely on layer-based composition. While large-scale diffusion models [7, 6, 8] excel at18

generating single images, their application to compositional layer generation remains underexplored.19

Recent efforts have shown promise in generating single transparent images [10, 4, 2, 9], highlighting20

the need to better align these models with established creative workflows.21

However, harmonizing distinct layers into a visually coherent composite presents significant chal-22

lenges. First, realistic composition demands interactions beyond simple alpha blending, such as23

grounding, shadows, and illumination, which are difficult to achieve when layers are generated24

independently. Second, preserving continuous transparency for elements like glass or reflections is a25

problem for pipelines that rely on segmentation, as binary masks cannot capture the nuances of an26

alpha channel.27

Addressing these issues, we propose a novel latent diffusion model pipeline that generates a transpar-28

ent foreground layer (RGBA) and a background layer (RGB) simultaneously. Our method facilitates29

harmonized interaction between the layers, in contrast to sequential generation approaches [4, 10]30

that can lead to inconsistencies. The core of our framework is a novel **attention-level blending**31

mechanism, which utilizes cross-attention and self-attention masks to guide the co-generation of both32

layers. This allows for dynamic, fine-grained interactions that improve the realism and coherence of33

the final composition.34

Our contributions are: (1) a new pipeline that generates harmonized foreground (RGBA) and35

background (RGB) layers with natural interactions; (2) a novel attention-level blending scheme for36
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“a bar counter”

“a glass of whiskey”“an astronaut”

“a jungle”

“a cow”“a family car”“a man, standing”“a lizard”

“a sun-baked stone” “a street, raining” “a road, snowing” “a summer field”

Figure 1: Qualitative Results. We present qualitative results on multi-layer generation over different
visual concepts. In each column, we show the high-quality results of foreground layer, background
layer and their generative blending respectively, in terms of text-image alignment, transparency and
harmonization. We present more results in the supplementary material.

seamless and cohesive composition; and (3) extensive experiments demonstrating that our method37

outperforms baselines in visual coherence, image quality, and layer consistency.38

2 Methodology39

Our pipeline returns a foreground image with an α channel (RGBA), a background RGB image,40

and their composite RGB in a single sampling run, doing so with no weight updates. We reuse41

the transparent–foreground branch of LayerDiffuse [10], denoted ϵθ,FG, and team it with a frozen,42

off-the-shelf text-to-image diffusion model ϵθ, which is responsible for both the background and43

the blended view. Both denoisers share the same timestep schedule and exchange information only44

through their attention tensors; therefore the pretrained output distributions of the two networks45

remain unchanged.46

2.1 Priors from attention47

Our blending strategy is driven by two complementary guidance maps. One captures static structure48

which locates the boundary of the foreground object (structure prior), while the other captures layer-49

wise content confidence, how strongly the prompt steers each block of the network as the image forms50

(content confidence prior).51

Structure prior. We extract the structure prior once, from the last self-attention block of the52

foreground denoiser ϵθ,FG, because this layer is closest to the point where the object appears sharply53

in latent space. Let mL ∈ RM×M be the head-averaged self-attention matrix of that block (L is54

the deepest layer index). For each spatial token i we compute si =
(∑M

j=1(m
L
ij)

2
)−1

, s′i =55

1−norm(si), yielding a fixed map s′∈ [0, 1]M that highlights tokens whose attention rows are dense,56

typical for the foreground object (Fig. 2). This map is reused, unchanged, at every transformer depth57

during fusion.58
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Figure 2: Visualization of the masks extracted as generative priors. Throughout the generation
process, we extract a structure prior s and a content confidence prior c. To combine the structure
and content information, we construct masksoft and maskhard during the blending process. As
visible from the provided maps (as priors), We can both capture the overall object structure with the
structure prior s and incorporate the content with c, where their combination provides a precise mask
reflecting both quantities (see the example “the car"). Also note that the masks we construct also
capture transparency information throughout the masking process (see the example “a glass bottle").
We retrieve the provided masks for the diffusion timestep t = 0.8T .

Content-confidence prior. While foreground location is largely stable across depth, the influence59

of the text prompt evolves from coarse to fine detail. We therefore compute a content-confidence map60

for every transformer block. For a given block index ℓ, we average the H cross-attention heads and61

keep the channel that corresponds to the <EOS> text token, obtaining cℓ ∈ [0, 1]M (ℓ = 1, . . . , L).62

Because CLIP’s encoder is unidirectional, the <EOS> token accumulates information from the entire63

prompt, so cℓ offers a compact, up-to-date measure of how strongly each token is being driven by the64

text at depth ℓ (Fig. 2). These attention layer-specific maps allow our masks to adapt as the image65

content sharpens through the network.66

Together, the layer-invariant structure prior s′ and the layer-dependent content maps {cℓ} supply the67

spatial weights used to build the soft and hard blending masks in the next section.68

2.2 Mask extraction69

We combine the two attention-based priors into a pair of spatial masks that will guide all later fusion70

steps. First, we form a soft mask by an element-wise product of the structure scores s′ ∈ [0, 1]M71

and the content-confidence map c ∈ [0, 1]M , followed by a min–max rescaling over the token set,72

masksoft = norm
(
s′ ⊙ c

)
. This mask holds fractional weights in [0, 1] and therefore supports73

smooth interpolation between foreground and background activations. For operations that require a74

crisper decision we pass the soft mask through a centred sigmoid gate, maskhard = σ
(
d (masksoft −75

0.5)
)
, d=10 where the slope parameter d controls the hardness of the boundary (see supplement for76

a sensitivity analysis). Figure 2 visualizes typical soft and hard masks produced by this two-step77

process.78

2.3 Attention-level Blending79

During each transformer block our method maintains three latent streams: LFG for the foreground80

branch of ϵθ,FG, LBL for the composite branch of ϵθ, and LBG for the background branch of the81

same model. Let aFG, aBL, aBG ∈ RM×D denote the self-attention outputs of the current block,82

where M is the number of spatial tokens and D the hidden dimension. Guided by the masks, we83

first inject foreground information into the composite stream through a soft, convex combination84

a′BL = aFG ⊙masksoft + aBL ⊙ (1−masksoft), which copies foreground activations wherever85

the mask weight is high while leaving the remainder of the composite activations untouched. The86

updated composite activations then feed back into the foreground stream through the harder binary87

mask a′FG = a′BL ⊙ maskhard + aFG ⊙ (1 − maskhard), ensuring that both branches stay in88

sync over regions judged to belong to the foreground. Finally, the same soft-mask operation is89

applied between a′BL and aBG, allowing the background stream to adapt to the evolving composite90

without overwriting areas that should remain purely background. Identical equations are applied to91

the cross-attention outputs of the block. Because these updates involve only element-wise arithmetic,92

and require no gradient computation; full pseudo-code is given in Algorithm 1 of the supplementary93

material.94
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Table 1: Quantitative Results. We quantitatively evaluate the output distribution for the foreground
and background images with CLIP-score, KID, and FID metrics. Furthermore, we also conduct a
user study to evaluate the blending performance of our framework perceptually.

Foreground Background Blending
CLIP KID FID CLIP KID FID User Preference

LayerDiffuse [10] 38.46 0.0014 0.09 38.27 0.0400 1.17 2.960 ± 0.692
Ours 38.97 0.0012 0.09 41.95 0.0058 0.14 3.233 ± 0.566

3 Experiments95

In all of our experiments, we use SDXL model as the diffusion model. Following the implementation96

released by [10], we use the model checkpoint RealVisXL_V4.01, unless otherwise stated. While97

using the non-finetuned SDXL, ϵθ as the background and blended image generators, we use the98

weights released by [10] for the foreground diffusion model ϵθ,FG
2. We conduct all of our experiments99

on a single NVIDIA L40 GPU.100

3.1 Quantitative Results101

Quantitative Results We compare our framework with [10], a state-of-the-art method that generates102

a transparent foreground, an RGB background, and their blended result. Our evaluation assesses the103

quality of the individual layers and the final composite. For the foreground and background layers,104

we measure text-prompt alignment using CLIP score [5]. We also evaluate distributional realism105

using FID [3] and KID [1] scores, comparing our outputs to a reference distribution of foregrounds106

from [10] and backgrounds from a base SDXL model. This analysis confirms our method improves107

background quality and alignment with the base model while maintaining high-fidelity foreground108

generation.109

User Study To assess the perceptual harmony of the final blended image, we conducted a user study110

with 50 participants. Participants were shown 40 image triplets (foreground, background, and our111

blended composite) and asked to rate the quality of the final blend on a 1-to-5 scale (1=not satisfactory,112

5=very satisfactory). The results, presented in Table 1, show our method receives significantly higher113

ratings, confirming that our compositions are more visually coherent and appealing. Additional114

details about the study setup are in the supplementary material.115

4 Discussion116

Limitations and Future Directions The present work concentrates on the widely used two-layer117

case (foreground + background); extending our attention-guided fusion to richer multi-layer or118

hierarchical scenes is an exciting next step. Our results already benefit greatly from self- and cross-119

attention masks, yet further gains are possible with more robust mask extraction or lightweight120

refinement. Finally, because we rely on frozen latent-diffusion checkpoints, the method inherits121

their scene priors (for example, a mild bias toward centered subjects)—opening opportunities for122

bias-mitigation strategies or task-specific fine-tuning. A fuller discussion and illustrative failure cases123

appear in the supplementary material.124

Conclusion We present an attention-guided diffusion pipeline that produces a harmonized fore-125

ground RGBA, a clean background RGB, and their composite in a single training-free pass. Given126

structure and content confidence priors, extracted from the frozen foreground branch, steers an unmod-127

ified SDXL backbone so both layers evolve together, yielding visually coherent results. Qualitative,128

quantitative, and user-study evaluations demonstrate clear gains over layered-generation and latent-129

blending baselines. Future work will extend the method to multi-layer scenes and release a public130

layered-image dataset to support tasks such as text-guided inpainting and advanced harmonization.131

1https://huggingface.co/SG161222/RealVisXL_V4.0
2https://huggingface.co/lllyasviel/LayerDiffuse_Diffusers
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