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Abstract

Large-scale diffusion models have achieved remarkable success in generating
high-quality images from textual descriptions, gaining popularity across various
applications. However, the generation of layered content, such as transparent
images with foreground and background layers, remains an under-explored area.
Layered content generation is crucial for creative workflows in fields like graphic
design, animation, and digital art, where layer-based approaches are fundamental
for flexible editing and composition. In this paper, we propose a novel image
generation pipeline based on Latent Diffusion Models (LDMs) that generates
images with two layers: a foreground layer (RGBA) with transparency information
and a background layer (RGB). Unlike existing methods that generate these layers
sequentially, our approach introduces a harmonized generation mechanism that
enables dynamic interactions between the layers for more coherent outputs. We
demonstrate the effectiveness of our method through extensive qualitative and
quantitative experiments, showing significant improvements in visual coherence,
image quality, and layer consistency compared to baseline methods.

1 Introduction

Layered content generation, particularly creating images with transparency, is crucial in creative
industries that rely on layer-based composition. While large-scale diffusion models [7, 16} 8] excel at
generating single images, their application to compositional layer generation remains underexplored.
Recent efforts have shown promise in generating single transparent images [[10} 14, |2, 9], highlighting
the need to better align these models with established creative workflows.

However, harmonizing distinct layers into a visually coherent composite presents significant chal-
lenges. First, realistic composition demands interactions beyond simple alpha blending, such as
grounding, shadows, and illumination, which are difficult to achieve when layers are generated
independently. Second, preserving continuous transparency for elements like glass or reflections is a
problem for pipelines that rely on segmentation, as binary masks cannot capture the nuances of an
alpha channel.

Addressing these issues, we propose a novel latent diffusion model pipeline that generates a transpar-
ent foreground layer (RGBA) and a background layer (RGB) simultaneously. Our method facilitates
harmonized interaction between the layers, in contrast to sequential generation approaches [4, [10]]
that can lead to inconsistencies. The core of our framework is a novel **attention-level blending**
mechanism, which utilizes cross-attention and self-attention masks to guide the co-generation of both
layers. This allows for dynamic, fine-grained interactions that improve the realism and coherence of
the final composition.

Our contributions are: (1) a new pipeline that generates harmonized foreground (RGBA) and
background (RGB) layers with natural interactions; (2) a novel attention-level blending scheme for
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Figure 1: Qualitative Results. We present qualitative results on multi-layer generation over different
visual concepts. In each column, we show the high-quality results of foreground layer, background
layer and their generative blending respectively, in terms of text-image alignment, transparency and
harmonization. We present more results in the supplementary material.

seamless and cohesive composition; and (3) extensive experiments demonstrating that our method
outperforms baselines in visual coherence, image quality, and layer consistency.

2 Methodology

Our pipeline returns a foreground image with an o channel (RGBA), a background RGB image,
and their composite RGB in a single sampling run, doing so with no weight updates. We reuse
the transparent—foreground branch of LayerDiffuse [10], denoted €p,FG, and team it with a frozen,
off-the-shelf text-to-image diffusion model €y, which is responsible for both the background and
the blended view. Both denoisers share the same timestep schedule and exchange information only
through their attention tensors; therefore the pretrained output distributions of the two networks
remain unchanged.

2.1 Priors from attention

Our blending strategy is driven by two complementary guidance maps. One captures static structure
which locates the boundary of the foreground object (structure prior), while the other captures layer-
wise content confidence, how strongly the prompt steers each block of the network as the image forms
(content confidence prior).

Structure prior. We extract the structure prior once, from the last self-attention block of the
foreground denoiser €y pq, because this layer is closest to the point where the object appears sharply
in latent space. Let m’ € RM*M be the head-averaged self-attention matrix of that block (L is
-1
the deepest layer index). For each spatial token ¢ we compute s, = (Ejﬂ/il(m{;f) , sh =
1 —norm(s;), yielding a fixed map s’ € [0, 1]™ that highlights tokens whose attention rows are dense,
typical for the foreground object (Fig. [2). This map is reused, unchanged, at every transformer depth
during fusion.
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Figure 2: Visualization of the masks extracted as generative priors. Throughout the generation
process, we extract a structure prior s and a content confidence prior c. To combine the structure
and content information, we construct masksos; and maskpqrq during the blending process. As
visible from the provided maps (as priors), We can both capture the overall object structure with the
structure prior s and incorporate the content with ¢, where their combination provides a precise mask
reflecting both quantities (see the example “the car"). Also note that the masks we construct also
capture transparency information throughout the masking process (see the example “a glass bottle").
We retrieve the provided masks for the diffusion timestep ¢t = 0.87".

Content-confidence prior. While foreground location is largely stable across depth, the influence
of the text prompt evolves from coarse to fine detail. We therefore compute a content-confidence map
for every transformer block. For a given block index ¢, we average the H cross-attention heads and
keep the channel that corresponds to the <EOS> text token, obtaining ¢* € [0, 1] (¢ =1,...,L).
Because CLIP’s encoder is unidirectional, the <EOS> token accumulates information from the entire
prompt, so ¢* offers a compact, up-to-date measure of how strongly each token is being driven by the
text at depth ¢ (Fig. [2). These attention layer-specific maps allow our masks to adapt as the image
content sharpens through the network.

Together, the layer-invariant structure prior s’ and the layer-dependent content maps {c} supply the
spatial weights used to build the soft and hard blending masks in the next section.

2.2 Mask extraction

We combine the two attention-based priors into a pair of spatial masks that will guide all later fusion
steps. First, we form a soft mask by an element-wise product of the structure scores s’ € [0, 1]
and the content-confidence map ¢ € [0, 1], followed by a min—max rescaling over the token set,
masksor = norm(s’ ® ¢). This mask holds fractional weights in [0, 1] and therefore supports
smooth interpolation between foreground and background activations. For operations that require a
crisper decision we pass the soft mask through a centred sigmoid gate, maskpqrq = cr(d (maskgor, —

0.5)), d=10 where the slope parameter d controls the hardness of the boundary (see supplement for
a sensitivity analysis). Figure 2] visualizes typical soft and hard masks produced by this two-step
process.

2.3 Attention-level Blending

During each transformer block our method maintains three latent streams: Lrg for the foreground
branch of €y rq, Lpr, for the composite branch of €y, and Lpg for the background branch of the
same model. Let apc, apr, apc € RM*P denote the self-attention outputs of the current block,
where M is the number of spatial tokens and D the hidden dimension. Guided by the masks, we
first inject foreground information into the composite stream through a soft, convex combination
ag, = apc © maskeor, + apr, © (1 — maskgost ), which copies foreground activations wherever
the mask weight is high while leaving the remainder of the composite activations untouched. The
updated composite activations then feed back into the foreground stream through the harder binary
mask ape = afp, © maskpad + arg © (1 — maskyaea), ensuring that both branches stay in
sync over regions judged to belong to the foreground. Finally, the same soft-mask operation is
applied between afy;, and apg, allowing the background stream to adapt to the evolving composite
without overwriting areas that should remain purely background. Identical equations are applied to
the cross-attention outputs of the block. Because these updates involve only element-wise arithmetic,
and require no gradient computation; full pseudo-code is given in Algorithm 1 of the supplementary
material.
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Table 1: Quantitative Results. We quantitatively evaluate the output distribution for the foreground
and background images with CLIP-score, KID, and FID metrics. Furthermore, we also conduct a
user study to evaluate the blending performance of our framework perceptually.

Foreground Background Blending
CLIP KID FID | CLIP KID FID | User Preference
LayerDiffuse [10] | 38.46 0.0014 0.09 | 38.27 0.0400 1.17 | 2.960 +£ 0.692
Ours 38.97 0.0012 0.09 | 41.95 0.0058 0.14 | 3.233 + 0.566

3 Experiments

In all of our experiments, we use SDXL model as the diffusion model. Following the implementation
released by [[10], we use the model checkpoint RealVisXL_V4. (ﬂ unless otherwise stated. While
using the non-finetuned SDXL, ¢y as the background and blended image generators, we use the
weights released by [10] for the foreground diffusion model eg, F We conduct all of our experiments
on a single NVIDIA L40 GPU.

3.1 Quantitative Results

Quantitative Results We compare our framework with [10], a state-of-the-art method that generates
a transparent foreground, an RGB background, and their blended result. Our evaluation assesses the
quality of the individual layers and the final composite. For the foreground and background layers,
we measure text-prompt alignment using CLIP score [5]. We also evaluate distributional realism
using FID [3] and KID [1] scores, comparing our outputs to a reference distribution of foregrounds
from [[10]] and backgrounds from a base SDXL model. This analysis confirms our method improves
background quality and alignment with the base model while maintaining high-fidelity foreground
generation.

User Study To assess the perceptual harmony of the final blended image, we conducted a user study
with 50 participants. Participants were shown 40 image triplets (foreground, background, and our
blended composite) and asked to rate the quality of the final blend on a 1-to-5 scale (1=not satisfactory,
5=very satisfactory). The results, presented in Table[I] show our method receives significantly higher
ratings, confirming that our compositions are more visually coherent and appealing. Additional
details about the study setup are in the supplementary material.

4 Discussion

Limitations and Future Directions The present work concentrates on the widely used two-layer
case (foreground + background); extending our attention-guided fusion to richer multi-layer or
hierarchical scenes is an exciting next step. Our results already benefit greatly from self- and cross-
attention masks, yet further gains are possible with more robust mask extraction or lightweight
refinement. Finally, because we rely on frozen latent-diffusion checkpoints, the method inherits
their scene priors (for example, a mild bias toward centered subjects)—opening opportunities for
bias-mitigation strategies or task-specific fine-tuning. A fuller discussion and illustrative failure cases
appear in the supplementary material.

Conclusion We present an attention-guided diffusion pipeline that produces a harmonized fore-
ground RGBA, a clean background RGB, and their composite in a single training-free pass. Given
structure and content confidence priors, extracted from the frozen foreground branch, steers an unmod-
ified SDXL backbone so both layers evolve together, yielding visually coherent results. Qualitative,
quantitative, and user-study evaluations demonstrate clear gains over layered-generation and latent-
blending baselines. Future work will extend the method to multi-layer scenes and release a public
layered-image dataset to support tasks such as text-guided inpainting and advanced harmonization.

"https://huggingface.co/SG161222/RealVisXL_V4.0
https://huggingface.co/lllyasviel/LayerDiffuse_Diffusers
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