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Abstract
We introduce the Attention-Indexed Model (AIM), a theoretical framework for analyzing learning
in deep attention layers. Inspired by multi-index models, AIM captures how token-level outputs
emerge from layered bilinear interactions over high-dimensional embeddings. Unlike prior tractable
attention models, AIM allows full-width key and query matrices, aligning more closely with
practical transformers. Using tools from statistical mechanics and random matrix theory, we
derive closed-form predictions for Bayes-optimal generalization error and identify sharp phase
transitions as a function of sample complexity, model width, and sequence length. We propose a
matching approximate message passing algorithm and show that gradient descent can reach optimal
performance. AIM offers a solvable playground for understanding learning in modern attention
architectures.

1. Introduction
The Transformer architecture [43] has transformed machine learning, achieving state-of-the-art results
in natural language processing [9, 23], computer vision [16], and beyond. Its core innovation—the
self-attention mechanism—enables models to capture long-range dependencies between tokens.
Despite their empirical success, transformers remain poorly understood theoretically, especially
regarding how data structure, attention bias, and training dynamics interact in finite-sample regimes.
While mechanistic interpretability has shed light on trained models, the learning process itself—what
is statistically and computationally learnable from limited data—remains unexplained. A common
strategy toward progress is to study simplified models in high-dimensional regimes, where the
blessing of dimensionality [15] can yield tractable characterizations of learning. A key ingredient in
this approach is a synthetic data model that captures salient aspects of real-world structure.

Theoretical understanding of fully connected neural networks has advanced significantly through
the analysis of Gaussian single-index and multi-index models in the high-dimensional limit [1–
3, 5–7, 10, 14, 33, 44]. In statistical physics, similar models appear as teacher-student perceptrons
[20, 21, 37, 45] or committee machines [4, 17]. These setups typically assume i.i.d. Gaussian inputs,
with targets depending on a small number of random projections—“indices”—of the input. They
provide a rich theoretical playground for jointly analyzing learning dynamics, generalization, and
architectural biases.

Recent work has extended this framework to model key aspects of transformers, introducing the
sequence multi-index (SMI) model [11–13]. While insightful, existing SMI models require the width
of the key and query matrices to be much smaller than the token embedding dimension—a regime
where only narrow attention layers can be analyzed. In contrast, practical transformers typically use
key and query widths comparable to the embedding dimension. This motivates our contribution: a
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high-dimensional yet analyzable model where learnable matrices have extensive rank. We call this
the attention-indexed model.
The attention-indexed model (AIM). We introduce a new class of high-dimensional functions
designed to model pairwise relationships between tokens. Analogous to classical multi-index
models, the attention-indexed model defines outputs y as nonlinear functions of high-dimensional
token embeddings xa ∈ Rd for a = 1, . . . , T . We define L attention indices h(ℓ) ∈ RT×T with
components h(ℓ)ab . The labels y for each input X ∈ RT×d are generated via a general output function
g : RL×T×T → RT×T

h
(ℓ)
ab ≡

xaSℓ x
⊤
b − δabTrSℓ√

d
, y = g

(
{h(ℓ)}Lℓ=1

)
. (1)

Here each Sℓ ∈ Rd×d is a learnable matrix. The diagonal mean is subtracted to avoid divergence
as d → ∞, ensuring the fluctuations of h(ℓ) remain O(1). While our theory applies to general
rotationally invariant Sℓ, a motivating example is when Sℓ ≃ QℓK

⊤
ℓ ∈ Rd×d, as in self-attention

[43], with key and query matrices Kℓ, Qℓ ∈ Rd×rℓ . We refer to rℓ as the width of the ℓth layer; it
typically controls the rank of Sℓ, though we also consider rℓ > d. For analytical simplicity, we
assume tied key and query, Qℓ = Kℓ = Wℓ, so that

Sℓ =
1√
rℓ d

WℓW
⊤
ℓ ∈ Rd×d , Wℓ ∈ Rrℓ×d . (2)

2. Setting
We consider a dataset D = {yµ , xµ

a} of n samples. Each sample consists of the embeddings of T
tokens xµ

a ∈ Rd, taken as standard Gaussian xµ
a ∼ N (0, Id) and of T × T matching output matrices

yµ encoding pair-wise information on the original tokens. We stress that the Gaussian assumption
for the data can be relaxed in the same spirit as in [46, Assumption 2.2].

We generate yµ using an attention-indexed model as given in (1) with matrices {S∗
ℓ }ℓ=1,...,L

that are symmetric and extracted independently from a rotationally invariant ensemble PS(S) =
PS(O

⊤SO) for any d× d rotation matrix O. We fix the normalizations such that EPS
[TrS] = κ1d

and EPS
[TrS2] = κ2d and with κ1, κ2 = O(1). We assume that the empirical spectral distribution

of S ∼ PS converges to a a distribution µS for d → +∞. This setting can be relaxed in several
directions, allowing for different prior distributions P (ℓ)

S for different layers, as well as considering
non-symmetric matrices [40].

We consider the Bayes-optimal (BO) learning setting: the statistician knows the generative
process of the dataset, i.e. the non-linearity g in (1) and the prior distribution PS , and observes a
dataset D but not the specific set of weights {S∗

ℓ }ℓ=1,...,L used to generate said dataset. The task
is then to optimally estimate the weights S∗ (estimation task), i.e. find the estimator Ŝ(D) that
minimizes

Eest(Ŝ) = ED,S∗
1

d

L∑
ℓ=1

||Ŝ(D)ℓ − S∗
ℓ ||2F , (3)

We will call the error achieved by the optimal estimator the BO estimation error.
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The BO estimator can be computed from the knowledge of the posterior distribution, i.e. the
probability that a given set of weights S was used to generate the observed dataset

P (S1, ..., SL|D) =
1

Z(D)
L∏

ℓ=1

PS

(
Sℓ

) n∏
µ=1

δ
(
yµ − g

(
h(1)(S1,x

µ) , ... , h(L)(SL,x
µ)
))

, (4)

where the attention indices h(ℓ) ∈ RT×T were defined in (1) and Z(D) is a normalization factor.
The BO estimator with respect to the estimation error is the mean of the posterior distribution.

3. Results for single-layer attention
We now apply our general framework to the following single-layer (L = 1) tied-attention model

yab = σβ

(
xaS x⊤

b − δab√
d

)
= σβ

( 1√
rd
xaWW⊤ x⊤

b − δab√
d

)
(5)

where we parametrized the weight matrix S as a tied-attention with extensive-width r = ρd and
W ∈ Rd×r has independent entries Wij ∼ N (0, 1). For the activation, we consider the case of
Hardmax σhard and Softmax σsoft (x), both applied row-wise in (5):

σhard(z1 . . . zT )i = δ(i = argmax
j

xj) , and σsoft(z1 . . . zT )i =
eβzi∑T
j=1 e

βzj
. (6)

We stress that both these tasks are well-defined only for T ≥ 2, as the T = 1 the output of both
activations equals 1 regardless of the input. As discussed in the introduction, the model with hardmax
provides an interesting token-association task.
Hardmax target. The BO treatment of the hardmax activation for generic number of tokens T
is challenging as detailed in the Appendix. We provide an explicit solution in the T = 2 case in
Appendix D. We plot the estimation error in Figure 1 left, for several values of the attention width
ratio ρ, comparing with runs of the associated AMP Algorithm 1 in the Appendix at size d = 100.
We observe that for all finite α the estimation error is strictly positive, and that it approaches zero
as α grows with rate compatible with O(1/α). Moreover, as soon as α > 0, we observe that
the estimation error is smaller than 1, i.e. the value achieved in the absence of data. In the limit
of small width our results simplify. Notice that in this limit the correct sample scale is given by
ᾱ = α/ρ = n/(dr), as the matrix to infer is not extensive-width anymore. In this limit there appears
a so–called weak recovery threshold, a value of sample complexity below which the estimator reaches
the same performance as if there were no data. We characterize it analytically

ᾱhardmax
weak =

1

4Ey,ω

[∑T=2
a≤b gout(y(ω, V ), ω, V )⊗2

ab

]
q=0,Q=1

≈ 0.563 . (7)

Softmax target. We now discuss the target function that uses a softmax non-linearity (6). This
choice of activation allows for an analytic treatment for any number of tokens T ≥ 2, and any finite
value of the softmax inverse temperature β ∈ R+.
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Figure 1: (Left) Bayes optimal-error for the single-layer attention-indexed model with T = 2 tokens
and hardmax activation. We also plot the corresponding AMP algorithm (dots) at d = 100,
over 16 realizations of the data and teacher weights. Error bars are computed with respect
to the mean. (Right) Hardmax small width limit. We rescale the sample complexity to
ᾱ = α/ρ. The gray vertical line represents the weak recovery threshold of Eq.(7).

Result 1 (Bayes-optimal errors for softmax tied-attention, T ≥ 2) Consider the model (5) with
softmax activation, T ≥ 2 and inverse temperature β ∈ R+. In the high-dimensional limit d, n→∞
with α = n/d2 finite, the asymptotic BO estimation error is given by:

MMSE =
α(T 2 + T − 2)

q̂
, 1− (T 2 + T − 2)α =

4π2

3q̂

∫
µ1/q̂(x)

3dx (8)

with µ1/q̂ = µS ⊞ µs.c.,1/
√
q̂ the free convolution of the spectral distribution of the matrix S in Eq.(2)

and the semicircle distribution with variance ∆ = 1/
√
q̂.

We plot the BO estimation error given in Result 1 in Figure 2 left. We observe that the BO estimation
error vanishes at a finite value of α (the so-called strong recovery threshold). Interestingly, the BO
error given in Result (1) is independent of the value of the inverse temperature β and reduces to the
case of a single-token model with linear activation [30], modulo a rescaling of the sample ratio α to
2α/(T 2 + T − 2) (notice that the rescaling is not just given by the total number unordered couples
of tokens T (T + 1)/2, as it would be in the case of a multi-token case with bijective activation, see
App. D). The softmax activation is almost invertible, meaning that given the output, the input is
fully determined apart for a common additive shift (acting as a noise correlated with the data), and
is additionally constrained by the symmetry of the attention matrix. Result (1) precisely quantifies
the amount of samples required to estimate this undetermined shift. More precisely, fix a given
estimation error. Then, achieving this error with the BO estimator in the softmax case with T ≥ 2
requires a factor 1 + 2/(T (T + 1)) more samples than the case of a fully bijective activation.

On the other hand, we remark that the AMP algorithm for the softmax activation at T ≥ 2 is
not a simple rescaling of the AMP for the single-token linear-activation case given, as the AMP
output function gout, given in Appendix D, is indeed very different from the one in [30]. Thus, AMP
processes the data in a non-trivial, optimal way to perform this effective inversion of the softmax
activation. We plot experiments for AMP at d = 100 in the T = 2, 3 case in Figure 2 right (purple
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Figure 2: (Left) Bayes-optimal estimation error for the softmax tied-attention model (Result 1),
eq. (5) for T = 2 tokens. (Right) We show, in black dashed lines the theoretical prediction
of the BO estimation error computed for the rescaled sample complexity α/(T 2 + T − 2)
and ρ = 0.5. We show the performance of the corresponding AMP algorithm, and compare
the BO performance with those of Adam GD and its averaged version AGD with d = 100.
We average each numerical experiment (GD,AGD,AMP) over 16 realizations of the data
and teacher weights. Error bars are the standard deviation on the mean.

and blue dots, to be compared with the prediction of Result (1) given by the black line), and observe
a nice agreement. We also remark that while the BO performance is independent of the inverse
temperature β, as long as it is finite, again AMP output function is not.

Thanks to the mentioned reduction, one can transfer directly several results from [30] to the
case of softmax tied-attention, including an explicit prediction for the strong recovery threshold
(the value of α after which the BO error is zero), the slope of the error at strong recovery, and the
small-width and large-width limits (see App. E). In particular, the strong recovery threshold satisfies
αsoftmax
recovery = (1− (max{0, 1− ρ})2)/(T 2 + T − 2). We remark again that this threshold does not

coincide with the naive counting argument, which would give a factor T (T + 1) at denominator
instead.

Finally, we consider the performance of gradient descent minimizing the MSE loss with train-
ing set generated by Eq. (5) (we optimize using the ADAM optimizer [24]). In line with pre-
vious work [18, 30], we also consider the Averaged GD (AGD) estimator given by ŜGD,avg =∑M

m=1W
final
m (W final

m )⊤/M
√
rd, where we average over M initial matrices W (0)

m , and W final
m is

the corresponding set of weights at convergence. We plot the results of our numerical experiments
at d = 200 for both GD and AGD in Figure 2 right. As already observed in [18, 30], AGD reaches
performances compatible with the BO estimation error, while GD has worse error. We remark that
both variants seem to achieve perfect recovery at the BO threshold. This phenomenon, at this point
well documented within this class of models, is still not understood.
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Appendix A. Further related work

The attention-indexed model (AIM) is motivated by a generative perspective, capturing how struc-
tured token-level outputs arise from layered bilinear interactions between high-dimensional embed-
dings—mirroring attention computations in transformers. The idea of modeling learning through
such structured synthetic data dates back to the teacher–student setting in the perceptron literature
[17, 20, 37], and more recently to single-index and multi-index models [1–3, 5–7, 10, 14, 33, 44].

While many theoretical studies explore simplified transformer variants, most do not rely on or
benefit from the high-dimensional limit. These include works that analyze one-layer attention under
finite embedding dimension [31, 34, 38, 39, 47], or study training dynamics in the linear, kernel,
or random feature regimes [19, 22, 25]. Others use infinite-width approximations without access
to generalization error [8, 36]. By contrast, theoretical analysis of nonlinear attention layers with
trainable key and query matrices in the limit of high embedding dimension—together with sharp
control of generalization—is less explored. As far as we are aware, only a few works address this
regime [11, 12, 32, 42], and they all assume attention matrices of finite width.

Methodologically, our approach builds on techniques from high-dimensional multi-index models,
particularly those developed in [4, 41], and their recent generalizations to sequence learning with
multiple low-width self-attention layers [42]. The main technical challenge addressed in this paper is
extending these tools to the case where the width r of the attention matrices scales proportionally
with the embedding dimension—i.e., the extensive-width regime—going beyond the key limitations
of prior analyses.

To tackle this, we leverage recent results on the ellipsoid fitting problem [26–28] and its connec-
tion to two-layer neural networks with quadratic activations and extensive width [30, 46]. Remarkably,
the linear AIM model with T = L = 1 is mathematically equivalent to such quadratic networks,
allowing us to adopt these methods. We generalize this connection to arbitrary T, L. This is enabled
by a central conceptual tool, the AIM index, which disentangles the complexity of deep attention
models. It allows us to split the problem into two subproblems: (i) how structure propagates across
layers and tokens, and (ii) how attention matrices are learned from those structures. This separation
is crucial in extending the theory to multiple layers and tokens. Finally, we note that we focus here on
the tied case Q = K for clarity. The untied setting Q ̸= K is amenable to similar analysis following
[18], and we leave its treatment for future work.

Appendix B. Notations and model description and known theory results

In this appendix we first remind all the notations and settings of the Attention Indexed Models. We
then remind mathematical concepts and definitions that are present in the main text.

Throughout this work, we use ℓ, k = 1, . . . , L as the layer index where L is the total number of
layer matrices used, while a, b = 1, . . . , T are the token index and T is the total number of tokens.
Then i, j = 1, . . . , d are the indices for the dimensions and d is the embedding dimension of each
token, and µ = 1 . . . N is the sample index and N is the total number of samples. We will also use
u, v = 0 . . . n as the replica indices from 0 to n.

We list below the specifics of our model:

• X ≡ X0 ∈ RT×d : The matrix of T tokens (rows), each token of embedding dimension d.

• Sℓ ∈ Rd×d symmetric matrices for ℓ = 1, . . . , L and extracted independently from a ro-
tationally invariant ensemble PS(S) = PS(O

⊤SO) for any rotation matrix O. We fix the

10
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normalizations such that EPS
[TrS] = κ1d and EPS

[TrS2] = κ2d and with κ1, κ2 = O(1).
Contextually, we assume that the empirical spectral distribution of S will converge to a well
defined measure µS . For the purpose of the analysis, we will specify our general frame-
work to symmetric matrices of the form Sℓ = W⊤W/

√
rℓd where W ∈ Rd×r with entries

Wij ∼ N (0, 1). We refer to the finite quantities ρl > 0 as the width ratios of each layer.

• We define the AIM as the following model:

y = g
(
{h(ℓ)}Lℓ=1

)
(9)

with the generic map g : RL×T×T → RT×T which depends on the quadratic preactivations

h
(ℓ)
ab ≡

xaSℓ x
⊤
b − δabTrSℓ√

d
(10)

In the following appendix, we will show the tight link between the generic definition of the
AIM with deep attention networks.

In the rest of this appendix, we recall the definition of the semicircle and Marcenko-Pastur laws
in the contex of random matrix theory. In particular

σsc,∆ =

√
4∆− x2

2π∆
I{|x| ≤ 2

√
∆} , µMP,ρ(x) =

(1− ρ)δ(x) + ρ

√
(λ+−x)(x−λ−)

2πx , if ρ ≤ 1

ρ

√
(λ+−x)(x−λ−)

2πx , if ρ > 1
(11)

Finally, we recall the following following definitions.

• Standard normal pdf and cdf

ϕ(z) =
e−z2/2

√
2π

, Φ(z) =

∫ z

−∞
ϕ(t) dt = 1

2

(
1 + erf(z/

√
2)
)

(12)

• Bivariate normal density and cdf with correlation c

ϕ2(u, v; c) =
exp
[
−u2−2cuv+v2

2(1−c2)

]
2π
√
1− c2

, Φ2(u, v; c) =

∫ u

−∞

∫ v

−∞
ϕ2(t1, t2; c) dt2 dt1. (13)

We also remark that we formally define the Dirac delta function δ(x) = limσ→0N (0, σ)(x) as
the limit to zero variance of a centered Gaussian.

We finally define the row-wise softmax function with inverse temperature β acting on the matrix
h ∈ RT×T matrix:

σβ(hab) = Softmax(βhab) =
exp(βhab)∑
b exp(βhab)

(14)

11
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Appendix C. From Deep Self–Attention to the Attention-indexed models

In this appendix we highlight the connection between the AIM models defined in Eq. (1) with those
of two crucial architectures employed in the analysis of Large Language Models (LLMs), namely
deep attention networks and their sequence-to-sequence (seq2seq) version. In particular, we show
that both the deep self–attention encoder and its sequence–to–sequence (seq2seq) variant can be
rewritten exactly as an attention-indexed model of the form (1).

We keep the notation of the main text and the previous appendix: tokens are indexed by a, b ∈ [T ],
embeddings by xa∈Rd, and every layer l ∈ [L] carries a tied key–query weight matrix1 Sl∈Rd×d

with extensive width rl = ρld and rotationally–invariant prior PS .

Deep encoder. Let X0∈RT×d be the matrix whose rows are the token embeddings, (X0)a : = x⊤a .
A deep self–attention network with a residual (skip) connection and readout strength c ≥ 0 is given
by the recursive formula:

Xℓ =
[
c IT + σβ

(
1√
d
Xℓ−1SℓX

⊤
l−1

)]
Xℓ−1, ℓ = 1, . . . , L, (15)

where σ : RT×T → RT×T is the row–wise softmax with inverse temperature β > 0 implicitly
contained in the symbol σ(·).
Define the pre–activations

h
(ℓ)
ab :=

1√
d
xaSℓx

⊤
b , ℓ = 1, . . . , L, a, b ∈ [T ], (16)

and the sequence of token–space operators

B0 := IT , Bℓ :=
[
c IT + σβ

(
Bℓ−1h

(ℓ)B⊤
ℓ−1

)]
Bℓ−1, ℓ = 1, . . . , L, (17)

One verifies inductively that

Xℓ = BℓX0, ℓ = 0, . . . , L, (18)

so that every hidden representation depends on the data only through the collection
{
h(1), . . . , h(ℓ)

}
.

In particular the deep-attention output

y = σβ

(
1√
d
XL−1SLX

⊤
L−1

)
= gdeep

(
h(1), . . . , h(L)

)
∈ RT×T , (19)

with2 gdeep(h
(1), . . . , h(L)) := σβ

(
BL−1(h

(1:L−1))h(L)B⊤
L−1(h

(1:L−1))
)
. Equation (19) is exact

and has the attention-indexed model structure (1): the whole deep network collapses to a deterministic
multivariate function gdeep of the L bilinear indices {xaSℓx

⊤
b }ℓ,a,b.

Seq2seq variant. If the last layer keeps the token embeddings instead of collapsing them, i.e.

XL = σβ

(
1√
d
XL−1SLX

⊤
L−1

)
XL−1, (20)

1. For simplicity we restrict to the single–head, tied setting; extending to multi–head merely introduces an additional
block index.

2. The explicit form of gdeep is obtained by inserting (18) with l = L− 1.

12
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with exactly the same algebra

XL = gseq

(
h(1), . . . , h(L)

)
X0, gseq(h

(1:L)) := σβ
(
BL−1h

(L)B⊤
L−1

)
BL−1. (21)

Thus the seq2seq readout is also an attention-indexed model: a (matrix-valued) function of the same
quadratic statistics, followed by a fixed linear map X0.

Note that in the particular case of just L = 1 layer the seq2seq map simplifies into:

X1 = gseq

(
{h(1)}Ta≤b

)
X0, gseq(h

(1)) = σβ
(
B0h

(1)B⊤
0

)
B0 = σβ(h

(1)) = gdeep(h
(1)) (22)

From this paragraph we can hence conclude that, as shown in equations (19) and (21), any L-layer
tied self-attention network with extensive-width weights is information-theoretically equivalent to
an attention-indexed model with L indices. Consequently all the Bayes–optimal analysis carried
out in Secs. 2–3 applies verbatim to deep self-attention and to its seq2seq counterpart: learning
the matrices {Sℓ} under the deep architecture is statistically equivalent to learning them under the
attention-indexed model (1).

Appendix D. Bayes optimal analysis of Attention-Indexed Models (AIM)

We study a model described by the general setting:

yµ ∼ Pout

(xµ
aSℓ x

µ ⊤
b − δabTrSℓ√

d

)a,b=1,...,T

ℓ=1,...,L
(23)

with xa rows of X ∈ RT×d, Sℓ ∈ Rd×d symmetric and y ∈ RT×T . Indices range from µ = 1 . . . N
samples, with d,N >> 1. Instead the number of tokens and layers T, L << d : we interpret Eq. 23
as yµ outputs generated by a model of attention from data X that are processed in a bilinear way
through :

y = g

(
{x

µ
aSℓ x

µ ⊤
b − δabTrSℓ√

d
}Lℓ=1

)
. (24)

or

yµ = gdeep(h
(1), . . . , h(L)) = BL

c

(
{x

µ
aSℓ x

µ ⊤
b − δabTrSℓ√

d
}ℓ=1...L
a,b=1...T

)
∈ RT×T (25)

and

Pout

(xµ
aSℓ x

µ ⊤
b − δabTrSℓ√

d

)a,b=1,...,T

ℓ=1,...,L
= δ
(
y −BL

c (
xµ
aSℓ x

µ ⊤
b − δabTrSℓ√

d
)
)

(26)

In our setting, the matrices Sℓ are symmetrical for each layer ℓ and we consider multiple layers
indices ℓ = 1, . . . , L. xa is the a-th row of X for a, b = 1, . . . , T . Each row xa ∈ Rd has
i.i.d.Gaussian entries, so xµai ∼ N (0, 1).

We define the preactivations

h
(ℓ) µ
ab =

xµ
a Sℓ x

µ ⊤
b − δabTrSℓ√

d
(27)
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Since the matrices Sℓ are symmetric, so are the preactivations of the model. Finally, for conve-
nience, we rewrite the preactivations of the model in terms of the symmetrized sensing matrices

Zµ
ij,ab ≡ (xµ

i,ax
µ
j,b + xµ

j,ax
µ
i,b − 2δijδab)/

√
2d(1 + δab) ∈ R (28)

The preactivations of the model can thus be expressed as :√
2− δab h

(ℓ) µ
ab = Tr(SℓZ

µ
ab) (29)

In the rest of the analysis , we will refer to this equivalent representation of the model by considering
symmetrized data, incorporating the factor

√
2− δab in the output function.

D.1. Replica analysis of AIM and their state evolution

Starting from the posterior distribution of the model:

P (S1, ..., SL|D) =
1

Z(D)
L∏

ℓ=1

PS

(
Sℓ

) n∏
µ=1

δ
(
yµ − g

(
h(1)(S1,x

µ) , ... , h(L)(SL,x
µ)
))

, (30)

the replicated partition function of the model in Eq. (23) is:

〈
Z(D)n

〉
= Ey,X

∫ L∏
ℓ=1

n∏
u=0

dSu
ℓ P0

(
Su
ℓ

) n∏
µ=1

T∏
a≤b

Pout

(
yµ
∣∣ { h

(ℓ),µ,u
ab√
2− δab

}
)
δ
(
h
(ℓ),µ,u
ab −Tr(Su

ℓ Z
µ
ab

))
,

(31)
where P0(S

u
ℓ ) is the rotational invariant prior distribution of each Sℓ, and h

(ℓ),µ,u
ab are the replicated

preactivations in terms of the symmetrized data as explained in (29). u is the replica index, we
work in a Bayes optimal setting. Above, µ ∈ {1, . . . , N} enumerates data samples, ℓ ∈ {1, . . . , L}
indexes the distinct layers, u ∈ {0, . . . , n} indexes the replicas, and a, b ∈ {1, . . . , T} are the token
indices.

We compute the expectation with respect to the data exploiting the Gaussian-equivalence princi-
ple:

EXδ
(
h
(ℓ),µ,u
ab − Tr(Su

ℓ Z
µ
ab)
)
7→ Ph

(
{h(ℓ),µ,uab }ℓ,µ,a,b,u

)
, (32)

where Ph is a joint Gaussian distribution with the means and covariances:

E
[
h
(ℓ),µ,u
ab − Tr(Su

ℓ Z
µ
ab)
]
= 0, Covxµ

(
h
(ℓ) u
a≤b , h

(k) v
c≤d

)
=

1

d
[2 δacδbd] Tr (S

u
ℓ S

v
k) (33)

We introduce the order parameters measuring the Su
ℓ –Sv

k overlaps:

Quv
ℓk :=

1

d
Tr
(
Su
ℓ Sv

k

)
, for ℓ, k = 1, . . . , L, u, v = 0, . . . , n. (34)

We enforce the definitions of the overlaps by inserting δ-functions:

L∏
ℓ,k=1

n∏
u≤v=0

δ
(
d2Quv

ℓk − d Tr
[
Su
ℓ Sv

k

])
, (35)

14
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and introduce the corresponding conjugate fields Q̂uv
ℓk . We insert

δ
(
d2Quv

ℓk − dTr[Su
ℓ Sv

k ]
)
=

∫
dQ̂uv

ℓk exp
{
i
Q̂uv

ℓk

2

(
d2Quv

ℓk − d Tr[Su
ℓ Sv

k ]
)}

. (36)

Hence the replicated partition function can be schematically written:〈
Z(D)n

〉
=

∫ (∏
u,ℓ

dSu
ℓ P0(S

u
ℓ )
)∫ ( ∏

u≤v,ℓ,k

dQuv
ℓk dQ̂uv

ℓk

)
× exp

[ i
2

∑
u≤v,ℓ,k

Q̂uv
ℓk

(
d2Quv

ℓk

)]
× exp

[
− i d

2

∑
u≤v,ℓ,k

Q̂uv
ℓk Tr(Su

ℓ S
v
k)
]

×
N∏

µ=1

[∫ ∏
u,ℓ

dh
(ℓ),µ,u
ab Ph

(
{h(ℓ),µ,u}

) ∏
u,ℓ,a≤b

Pout(y
µ
ab |

h
(ℓ),µ,u
ab√
2− δab

)
]
, (37)

In a replica-symmetric (RS) scenario, we let

Quv
ℓk =

{
Qℓk, (u = v),

qℓk, (u ̸= v).
(38)

and:

iQ̂uv
ℓk =

{
Q̂ℓk, if u = v

−q̂ℓk, if u ̸= v
(39)

Hence, e.g. the exponent
∑

ℓ,k,u,v i Q̂
uv
ℓ,k d

2Quv
ℓ,k becomes

i d2
∑
ℓ,k

[(n+ 1)

2
Q̂ℓk Qℓk −

n(n+ 1)

4
q̂ℓk qℓk

]
. (40)

Likewise, −∑ℓ,k,u,v Q̂
uv
ℓkTr(S

u
ℓ S

v
k) can be reorganized in a form that leads in the limit n → 0 to

typical terms Q̂ℓℓ = 0 or similar. Moreover Q̂uv
ℓk = − q̂ℓk

2 .
So finally the replicated partition function, hence, takes the following form:

⟨Z(D)n⟩ =
∫ ∏

u≤v,ℓ,k

dQuv
ℓk dQ̂

uv
ℓk exp

 i

2
d2

∑
u≤v,ℓ,k

Q̂uv
ℓkQ

uv
ℓk

 IinIout (41)

with:

d2Iin(q̂) =

∫ ∏
u,ℓ

dSu
ℓ P0(S

u
ℓ ) exp

− i d

2

∑
u≤v,ℓ,k

Q̂uv
ℓk Tr (Su

ℓ S
v
k)

 , (42)

Iout(q) =

∫ dy

∫ ∏
u,ℓ,a≤b

dh
(ℓ) u
ab P

(
{h(ℓ) uab }

)∏
u,ℓ

Pout

(
y| h

(ℓ) u
ab√

2− δab

)N

. (43)
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The free entropy per degree of freedom of the problem is defined as

Φ = lim
d→∞

1

d2
lim

N→∞
lim
n→0

1

n
ln⟨Zn⟩ . (44)

After introducing N = αd2 data samples, the free entropy decomposes into a prior contribution and
an output contribution:

Φ = extr{q,q̂}

{
−Tr qq̂

4
+ Iin(q̂) + αIout(q)

}
. (45)

Thus obtaining the state equations:

q = 4 ∂q̂Iin(q̂) (46)

q̂ = 4α ∂qIout(q) (47)

D.2. Prior Term Computation

First we compute under the RS ansatz:

− i d

2

n∑
u≤v=0

Q̂uv
ℓk Tr (Su

ℓ S
v
k) = −

i d

2

(
n∑

u=0

Q̂ℓk Tr (S
u
ℓ S

u
k ) +

∑
u<v

(−q̂ℓk) Tr (Su
ℓ S

v)

)
(48)

= −Q̂ℓk d

2

n∑
u=0

Tr (Su
ℓ S

u
k ) +

q̂ℓk d

2

∑
u<v

Tr (Su
ℓ S

v
k) (49)

= −d

2

(
Q̂ℓk +

q̂ℓk
2

) n∑
u=0

Tr (Su
ℓ S

u
k ) +

q̂ℓk d

4

n∑
u,v=0

Tr (Su
ℓ S

v
k) (50)

We remind that each Sℓ is a rank-ρℓd rotationally invariant matrix of order O(d× d). The prior
factor that emerges from the partition function, after decoupling the replica indices by applying a
Hubbard-Stratonovich transformation, reads:

Iin(q̂) =

∫ L∏
ℓ=1

n∏
u=0

dSu
ℓ P0(S

u
ℓ ) exp

{
− i d

2

L∑
ℓ,k=1

n∑
u≤v=0

Q̂
(u,v)
ℓk Tr

(
Su
ℓ S

v
k

)}
(51)

=

∫
dS̄P0(S̄) exp

{
L∑
ℓ,k

−d

2

(
Q̂ℓk +

q̂ℓk
2

) n∑
u=0

Tr (Su
ℓ S

u
k ) +

q̂ℓk d

4

n∑
u,v=0

Tr (Su
ℓ S

v
k)

}
(52)

=

∫
dS̄P0(S̄) exp

{
−

L∑
ℓ,k

∑
u

q̂ℓ,k d

4
Tr(Su

ℓ S
u
k ) +

L∑
ℓk

∑
u,v

q̂ℓkd

4
Tr(Su

ℓ S
v
k)

}
(53)

=

∫
dS̄P0(S̄)D(Y ) exp

{
−

L∑
ℓ,k

∑
u

q̂ℓk d

4
Tr(Su

ℓ S
v
k) +

L∑
ℓ,k

∑
u

√
q̂ℓk d

2
Tr(Su

kYℓ)

}
(54)

=

∫
D(Y )

{∫
dS̄P0(S̄) exp

{
−d

4

L∑
ℓ,k

q̂ℓk Tr(SℓSk) + d
L∑
ℓ,k

√
q̂ℓk
2

Tr(SkYℓ)

}n+1

(55)
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where D(Yℓ) are GOE(d) measures ∀ℓ ∈ [L] and Yℓ ∈ Rd×d and also S̄ ∈ [Rd×d]L. In Eq.(73) we
used the identity:

EY∼GOE(d)

[
e

d
2
Tr[SY ]

]
= e

d
4
Tr[S2]

Finally, taking the zero replica n→ 0 limit, we can write the prior contribution to the free entropy
of the model as :

Iin(q̂) = lim
d→∞

1

d2

∫
DY1 . . . DYLZin(Y1, . . . , YL; q̂) logZin(Y1, . . . , YL; q̂)

Zin({Yℓ}Lℓ=1; q̂) =

∫ [ L∏
ℓ=1

dSℓ PS(Sℓ)

]
exp
[
−d

4

L∑
ℓ,k=1

q̂ℓk Tr(SℓSk) +
d

2

L∑
ℓ,k=1

√
q̂ℓk Tr(YℓSk)

]
.

(56)

The matrices Yℓ ∈ Rd×d are the auxiliary fields introduced by the Hubbard–Stratonovich
transformation. Notably, they can be interpreted as “noisy measurements” of the Sℓ matrices with
coupled indices. In particular, the denoising problem which is solved by the free-entropy contribution
of the prior is :

Y ij
ℓ =

∑
k

√
q̂ℓk Sij

k + Zij
ℓ ∀i, j, ℓ (57)

with Zℓ GOE(d) matrices and Sℓ ∈ Rd×d rotationally invariant matrices, leading to an exponential
term of the form of−1

2

∑
ℓTr((

∑
k

√
q̂ℓkSk−Yℓ)2). Such equivalence between the matrix denoising

problem in (57) and (56) is analogous to those of [18, 30].

D.3. Output Channel Computation

Starting from the replicated partition function in Eq.(41), we can see that the output channel contri-
bution to the free entropy of the model, factorized with respect to the data, is given by:

Iout(q) =

∫ dy

∫ ∏
u,ℓ,a≤b

dh
(ℓ) u
ab P

(
{h(ℓ) uab }

)∏
u,ℓ

Pout

(
y| h

(ℓ) u
ab√

2− δab

)N

. (58)

where we consider only the upper triangular token indices a ≤ b.
Ph

(
{h(ℓ),uab }

)
is a multivariate Gaussian distribution with means and covariance:

E[h(ℓ)ab ] = 0 Covxµ

(
h
(ℓ) u
a≤b , h

(k) v
c≤d

)
=

1

d
[2 δacδbd] Tr (S

u
ℓ S

v
k) = [2 δacδbd]Q

uv
ℓk (59)

Under the RS ansatz and in the limit n→ 0, we can decouple the replicas through another Hubbard-
Stratonovich transformation. The exponent involving h

(ℓ) u
ab becomes:

−1

2

n∑
u,v=0

∑
a≤b,c≤d

∑
ℓ,k

(
h
(ℓ) u
ab

)(
Σ−1
h

)uv,ℓk
ab,cd

(
h
(k) v
cd

)
(60)

Substituting back, the output term becomes:
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Iout(q) =

∫ dy

∫ ∏
u,ℓ

∏
a≤b

dh
(ℓ) u
ab exp

−1

2

n∑
u,v=0

∑
a,b,c,d

∑
p,q

h
(ℓ) u
ab

(
Σ−1
h

)uv,pq
a≤b,c≤d

h
(k) v
cd

∏
u

Pout

(
y|{h(ℓ) uab }ℓ

)N

(61)
For a fixed channel ℓ and for each token pair (a, b) with a ≤ b, the covariance in the replica

space is given by

(Σh)
uv,ℓk
a≤b,c≤d = [2 δacδbd] Q

uv
ℓk = [2 δacδbd]

[
(Qℓk − qℓk) δuv + qℓk

]
, (62)

The inverse of the covariance matrix is given by:

[
(Σ−1)ab

]uℓ, vq
=

1

2

[[
(Q− q)−1

]
ℓk
δuv −

L∑
s=1

L∑
t=1

[
(Q− q)−1

]
ℓs
qst
[
Q−1

]
tk

]
(63)

Introducing Mℓ :=
∑n

u=0 h
(ℓ) u
ab , we can rewrite the Gaussian exponent in Eq.(61) as:

−1

4

[∑
u,ℓ,k

h
(ℓ) u
ab

[
(Q− q)−1

]
ℓk
h
(k) u
ab −

∑
ℓ,k

Mℓ

(∑
s,t

[
(Q− q)−1

]
ℓs
qst
[
Q−1

]
tk

)
︸ ︷︷ ︸

=:Cℓk

Mk

]
. (64)

We now introduce L auxiliary Gaussian variables for this token pair, η(ℓ)ab ∼ N (0, 1) (ℓ =
1, . . . , L), via

exp
(
1
4

∑
ℓ,k

M
(ℓ)
ab CℓkM

(k)
ab

)
=

∫ L∏
s=1

dη
(s)
ab√
2π

exp
(
−1

2

∑
s

(η
(s)
ab )

2 + 1
2

∑
ℓ,k

η
(ℓ)
ab

√
Cℓk M

(k)
ab

)
, (65)

where the square root is intended over the whole matrix. After some algebra, we can manipulate the
Gaussian exponent in the following way:

−1

4

∑
ℓ,k

(
h
(ℓ) u
ab −

L∑
s=1

√
2qℓs η

(s)
ab

)[
(Q− q)−1

]
ℓk

(
h
(k) u
ab −

L∑
t=1

√
2qkt η

(t)
ab

)
− 1

2

∑
r

(η
(r)
ab )

2. (66)

We finally recognize:

−1

2

L∑
ℓ=1

L∑
k=1

(
h
(ℓ) u
ab − ω

(ℓ)
ab

)
[V −1

ab ]ℓk
(
h
(k) u
ab − ω

(k)
ab

)
− 1

2

∑
r

(η
(r)
ab )

2 (67)

with

ω
(ℓ)
ab =

L∑
k=1

√
2qℓk η

(k)
ab , V (ℓk) = 2(Qℓk − qℓk) (68)

Hence we finally recognize a Gaussian term of the form:
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∫ T∏
a≤b

dLhabN (hab;ωab;Vab)Pout (y | huab) (69)

Since replicas are decoupled through η, we can finally write out output channel term as:

Iout(q) =

∫ dy

∫ ∏
a≤b,ℓ

dη
(ℓ)
ab√
2π

e−
(η

(ℓ)
ab

)2

2

∫ T∏
a≤b

dLhabN (hab;ωab, Vab)Pout

(
y | { h

(ℓ)
ab√

2− δab
}Lℓ=1

)N(n+1)

(70)
Which, as for the prior term, we can write as :

Iout(q) =

[∫
dy

∫
Dη (Zout(y, ω, V ))

]N(n+1)

(71)

and:

Zout(y, ω, V ) =

∫ ∏
a≤b

dLhabN (hab;ωab, Vab)Pout

(
y | { h

(ℓ)
ab√

2− δab
}Lℓ=1

)
(72)

Where we defined the measure over the auxiliary variables as

Dη =
L∏

ℓ=1

Dη(ℓ) =
L∏

ℓ=1

∏
a≤b

dη
(ℓ)
ab√
2π

exp
[
−(η

(ℓ)
ab )

2

2

]
. (73)

Expanding Eq.(71) for small number of replicas n we get:

Iout(q) =

∫
dy

∫
DηZout(y, ω, V ) lnZout(y, ω, V ) , (74)

Recalling the state equations found in Eq.(61) we get:

q̂ = 4α

∫
Dη

∫
dy

(
∂Zout(y, ω, V )

∂q
(1 + lnZout(y, ω, V ))

)
(75)

we can hence use the identity for fixed layer indices:

∂qZout(y, ω, V ) =
1

2q

T∑
a≤b=1

e
1
2

∑
c≤d η

(ℓ)2
cd ∂

η
(ℓ)
ab

[
e−

1
2

∑
c≤d η

(ℓ)2
cd ∂

η
(ℓ)
ab

Zout(y, ω, V )
]

(76)

We can hence write, starting from Eq. (75):

q̂ =
2α

q

∫
Dη dy(1 + logZout(y, ω, V ))

∑
a≤b

e
1
2

∑
c≤d η

(ℓ)2
cd ∂

η
(ℓ)
ab

[
e−

1
2

∑
c≤d η

(ℓ)2
cd ∂

η
(ℓ)
ab

Zout(y, ω, V )
]

(77)
Performing an integration by parts with respect to η

(k)
ab and rearranging yields:

q̂ =
2α

q

∫
Dη
∫

dy
∑
a≤b

(∂
η
(ℓ)
ab

Zout(y, ω, V )(∂
η
(k)
ab

Zout(y, ω, V ))

Zout(y, ω, V )
(78)
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For each token pair (a, b) we define the denoising function:

(gout(y, ω, V ))
(ℓ)
ab =

∂

∂ω
(ℓ)
ab

lnZout(y, ω, V ) . (79)

Then, recalling that ω(ℓ)
ab =

√
2q η

(ℓ)
ab , we can express the output channel state equation of our model

as:

q̂ℓk = 4α Eη,y

∑
a≤b

(gout(y, ω, V ))
(ℓ)
ab (gout(y, ω, V ))

(k)
ab

 , ℓ = 1, . . . , L a ≤ b = 1, . . . , T

(80)
The expectation E(η,y) is taken over the joint measure

L∏
ℓ=1

Dη(ℓ)

and the output y is drawn from the channel density

Pout

(
y | {h(ℓ)ab }ℓ

)
, h

(ℓ)
ab ∼ N

(
ω
(ℓ)
ab , V

(ℓk)
ab

)
,

with:

Pout

(
y
∣∣∣ {h(ℓ)ab }ℓ

)
= δ({yab − g({h(ℓ)ab }∀ℓ)ab}∀ab) (81)

or particularly, for the deep attention case:

Pout

(
y
∣∣∣ {h(ℓ)ab }ℓ

)
= δ({yab −BL

c ({h(ℓ)ab }∀ℓ)ab}∀ab) (82)

D.4. The fixed point of AMP is described by the state equations

We start by defining a new variable ω∗
µ, ab such that yµ = g({ω∗

µ, ab/
√
2− δab}a≤b), where we can

assume that E[(ω∗
µ, ab)ℓ (ω

∗
µ, ab)k] = 2Qt

ℓk. Our first step is to define the quantities mt and qt on the
iterates of AMP

mt
ℓk = Tr[Ŝt

ℓS
∗
k ]/d , qtℓk = Tr[Ŝt

ℓŜ
t
k]/d . (83)

We now claim, in analogy with [18, 30, 42, 48] that for every sample µ and every couple of tokens
a ≤ b the variables ωt

µ, ab at each time converge to independent centered Gaussian variables with the
following covariances

E[(ωt
µ, ab)ℓ (ω

t
µ, ab)k] = 2qtℓk , E[(ω∗

µ, ab)ℓ (ω
t
µ, ab)k] = 2mt

ℓk , (84)

By Nishimori’s identities [35] we can assume mt = qt. The equation (80) is now immediately
recovered (modulo the substitution V → 2(Q− qt) which will come after)

q̂tℓk ≈ 4αEy, ωt

T∑
a≤b

[
gout(y, ω

t, V t)
(ℓ)
ab gout(y, ω

t, V t)
(k)
ab

]
(85)
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Algorithm 1: AMP
Input: Observations yµ ∈ RT×T and “sensing matrices”

Zµ
ij,ab =

xµ
i,ax

µ
j,b + xµ

j,ax
µ
i,b − 2δijδab√

2d(1 + δab)
∈ R

Result: The estimators Ŝℓ

Initialize Ŝ 0
ℓ ∼ PS Initialize Ĉ 0 = 2(κ2 − κ21) IL t← 0

while not converged do
// Estimate variance and mean of Tr[Zµ

abSℓ]

V t ← 2Ĉt ω t
µ,ab ← Tr[Zµ

abŜ
t]− (1− δ0t) gout(y

µ, ωt−1
µ , V t−1)ab · V t

// Estimate variance and mean of Sℓ from “output” observations

q̂ t
ℓk ←

4α

n

∑n
µ=1

∑T
a≤b gout(y

µ, ωt
µ, V

t)
(ℓ)
ab · gout(yµ, ωt

µ, V
t)
(k)
ab , Rt

ij ← Ŝ t
ij + (q̂ t)−1 ·

2

d

∑n
µ=1

∑T
a≤b gout(y

µ, ωt
µ, V

t)ab · Zµ
ij,ab

// Update estimator with “input” information

Ŝ t+1
ℓ ← gin(R

t, q̂ t)ℓ Ĉ t+1
ℓk ← 1

d2
∇Rk

· gin(Rt, q̂ t)ℓ

t← t+ 1
end

where

y = g

({
ω∗
ab√

2− δab

}T

a≤b

)
,

(
ωt
ab

ω∗
ab

)
∼ N

(
0 ,

(
2qt 2mt

2mt 2Q

))
(86)

Again as in [18, 30, 42, 48] we will have that in distribution

Rt
ij = S∗

ij + (q̂t)−1Ξt
ij (87)

We are ready to close the circle: going back to the definition of qt we write

qtℓk = ERt Tr
[
gin
(
Rt, q̂t

)
ℓ
gin
(
Rt, q̂t

)
k

]
/d , (88)

which is exactly the second equation emerging from (56). Notice how the expectation is taken over
the random variable Rt

ij in (87). The last step is to notice that

Ĉt
ℓk = Tr[(Ŝt

ℓ − S∗
ℓ )(Ŝ

t
k − S∗

k)]/d
2 = Q− qt (89)

such that V t = 2(Q− qt).

Appendix E. The case of L = 1 layer

In this Appendix we restrict the theoretical results derived for an arbitrary number of layers to the
particular case of L = 1 layer. In this particular case, the order parameters q and q̂ become scalar
quantities. Moreover, in the following analysis we specialize to the extensive-rank choice:

S =
1√
rd

WW⊤ ∈ Rd×d W ∈ Rd×r (W )ij ∼ N (0, 1) (90)

with rank ratio ρ = r/d = O(1). Thus, the spectral distribution of the symmetric matrix S is that of
the Marcenko-Pastur law for Wishart matrices described in App.(B).
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E.1. Prior channel state equation

Starting from Eq.(56) for L = 1 layer, we get::

Iin(q̂) = lim
d→∞

1

d2

∫
DY Zin(Y ; q̂) logZin(Y ; q̂)

Zin(Y ; q̂) =

∫
dS P0(S) exp

(
−d

2

(
Q̂+

q̂

2

)
Tr
(
STS

)
+

√
q̂d

2
Tr
(
Y TS

))
.

(91)

Again, at the 0-replica order n = 0 and Q̂ = 0, integrating over Y :∫
DY Zin(Y ; q̂) =

∫
DY

∫
dS P0(S) exp

(
− q̂d

4
Tr(S⊤S) +

√
q̂d

2
Tr
(
Y ⊤S

)
− 1

4
Tr
(
Y ⊤Y

))
=

∫
dS P0(S) exp

(
q̂d

4
Tr
(
S⊤S

))
exp

(
− q̂d

4
Tr
(
S⊤S

))
=

∫
dS P0(S) = 1 (92)

Now, note that the exponent in Zin(Y ; q̂) can be rearranged as:

− q̂d
4 Tr(STS) +

√
q̂d

2
Tr(STY ) = −d

4
Tr
(
q̂ STS − 2

√
q̂ STY

)
.

Observe

Tr
[
(
√
q̂ S − Y )T (

√
q̂ S − Y )

]
= q̂Tr(STS) − 2

√
q̂ Tr(STY ) + Tr(Y TY ).

Hence

− q̂
4 Tr(S

TS) +

√
q̂

2
Tr(Y TS) = −1

4 Tr
[
(
√

q̂ S − Y )2
]
+ 1

4 Tr(Y
TY ).

Therefore:

I0(Y ) = exp
[
+1

4 Tr(Y
TY )

]
×
∫

dS P0(S) exp
[
−1

4 Tr
(√

q̂ S − Y
)2]

.

Ignoring the factor exp(14 Tr(Y
TY )) that is independent of S, we see that∫
dS P0(S) exp

[
−d

4 Tr
(√

q̂ S − Y
)2]

which plays the role of a posterior density for S given Y =
√
q̂ S + Z with Z a GOE(d) noise.

In the large-d limit, let us parametrize S by its eigenvalues:

S = U ΛUT

where Λ = diag(λ1, . . . , λd). Then

dS =
[ d∏
i=1

dλi

] ∣∣∆({λi})
∣∣ dU with ∆({λi}) =

∏
1≤i<j≤d

∣∣λi − λj

∣∣,
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Then the exponent
Tr
[
−1

4 (
√

q̂ S − Y )2
]

becomes
−1

4 Tr
(√

q̂ U ΛUT − Y
)2

.

We can factor out the integral over U ∈ O(d) and for d large:∫
O(d)

exp
(
q̂ d
2 Tr[ΛUT Y U ]

)
DU ≈ exp

[
d2

2 IHCIZ

(
q̂; µΛ, µY

)]
,

where IHCIZ is an explicit functional in the limit d → ∞ of dimension 2/d2 times the log of that
integral, and µΛ is the limiting spectral distribution of Λ/

√
d.

The prior contribution of the free entropy is given by

Φprior(q̂) = lim
d→∞

1

d2
E
[
ln I0(Y )

]
, (93)

or more explicitly :

Φprior(q̂) = lim
d→∞

1

d2
E
[
ln

∫
P0(S) e

−d
4 Tr(

√
q̂ S−Y )2 dS

]
. (94)

This term can be explicitly computed and mapped to a matrix estimation problem. i.e. a denoising
problem as follows:

Φprior(q̂) = lim
d→∞

1

d2
EY ln I0(Y ) = − q̂ Q

4
+

1

2
IHCIZ

(
q̂;µ0, µ0 ⊞ σsc,1/

√
q̂

)
+ const, (95)

where Q = 1 + ρ.Then, one has the relation from [29] :

−1

2
Σ
(
µq̂

)
+

1

4q̂
Eµq̂

[X2]− 1

2
IHCIZ

(
q̂;µ0, µq̂

)
− 3

8
+

1

4
ln q̂ +

1

4q̂
Eµ0 [X

2] = 0, (96)

where we have defined µq̂ = µ0 ⊞ σsc,1/
√
q̂ and Σ(µ) is the noncommutative entropy:

Σ(µ) =

∫
µ(dx)µ(dy) ln |x− y|.

In our normalization (with Q = 1 + ρ), rearranging yields

1

2
IHCIZ(q̂;µ0, µq̂) = −

1

2
Σ(µq̂) +

1

4

[
2Qq̂ + 1

]
− 3

8
− 1

4
ln q̂. (97)

Plugging back into the free entropy, we obtain

Φprior(q̂) = −
q̂ Q

4
+

[
−1

2
Σ(µq̂) +

1

4
(2Qq̂ + 1)− 3

8
− 1

4
ln q̂

]
+ const. (98)

Taking the derivative with respect to q̂ yields the “prior state” equation. In fact, differentiating
we obtain

∂Φ

∂q̂
= −q

4
+

Q

4
− 1

4q̂
− 1

2

∂

∂q̂
Σ
(
µq̂

)
= 0. (99)
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Using the derivative:
∂

∂q̂
Σ
(
µq̂

)
= −2π2

3q̂2

∫
µq̂(x)

3 dx, (100)

this condition becomes

−q

4
+

Q

4
− 1

4q̂
+

π2

3q̂2

∫
µY (x)

3 dx = 0. (101)

which is exactly our desired state equation.
To sum up, in the problem

Y =
√

q̂ S + Z, Z ∼ GOE(d), (102)

the law of Y is asymptotically µS ⊞ σsc, 1/
√
q̂. we finally get:

q = Q− 1

q̂
+

4π2

3 q̂ 2

∫ [
µY (x)

]3
dx, (103)

with µY = µS ⊞ σsc, 1/
√
q̂.

For the computation of µY , we recall that if µY = µS ⊞ σsc,α, we can write

RµY (z) = RµS (z) + Rσsc, α(z). (104)

For the semicircle of radius α, we haveRσsc, α(z) = α2 z. For µS (Marchenko–Pastur distribu-
tion with parameter ρ), we have

RµMP,ρ(z) =
ρ√
ρ− z

. (105)

In our case α = 1/
√
q̂, then

RµY (z) =
ρ√
ρ− z

+ α2 z. (106)

FromRµY (z) = g−1
µY

(−z)− 1
z , one obtains an equation for gµY (z), with:

gµY (z) =

∫
µY (dx)

x− z
. (107)

So, using the identity z = 1
x +RµY (x), where x = gµY (z). So we get

z =
1

x
+

ρ√
ρ− x

+ α2 x. (108)

Hence the final polynomial in x is:

(
1√
ρ
α2)x3 − (

z√
ρ
+ α2)x2 + (z +

1√
ρ
−√ρ)x− 1 = 0 ⇐⇒ x = gµY (z). (109)

We look for the solution of this equation with largest imaginary part. Moreover, we compute
the discriminant of this third order equation in order to correctly quantify the edges of the spectral
density we want to numerically compute.

Recalling α2 = 1/q̂, the imaginary part of x yields µY (Stieltjes–Perron inversion), i.e.

µY (x0) = lim
ϵ→0+

1

π
Im gµY (x0 − i ϵ). (110)
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E.2. Output channel state equation

For L = 1 layers we obtain the state equation for the output channel contribution :

q̂ = 4αE(η,y)

[∑
a≤b

(gout(y, ω, V ))2ab

]
(111)

Where we reming ηab ∼ N (0, 1) with a ≤ b = 1, . . . , T and ωab =
√
2q ηab, V = 2(Q − q),

Q = 1 + ρ. The denoising function is given by :

(gout(y, ω, V ))ab = ∂ωab
lnZout(y, ω, V ) (112)

and:
Zout(y, ω, V ) =

∫ ∏
a≤b

dhabN (hab, ωab, V ) δ
(
y − f(h)

)
(113)

where f(h) depends on the precise choice of the model. In particular, in the following sections we
consider the three cases dealt in the main text. In the following, we first consider a linear output
channel for a generic number of tokens T . This simple case serves as a baseline for the more
interesting case of the softmax channel, namely the self-attention layer for an arbitrary number of
tokens. We also consider the hardmax variant of the model treated in the main text for T = 2 tokens.

E.3. Linear output channel for generic number of tokens

We consider Pout(yab | hab) = δ(yab − hab√
2−δab

). Then

Zout(y, ω, V ) =

∫ [∏
a≤b

N
(
hab;ωab, V

)] ∏
a≤b

δ
[
yab −

hab√
2− δab

]
dh. (114)

Enforcing hab =
√
2− δabyab , this gives directly:

Zout(y, ω, V ) =
∏
a≤b

[ 1√
2π V

exp
(
− (

√
2−δabyab−ωab)

2

2V

)]
. (115)

Hence

lnZout(y, ω, V ) =
∑
a≤b

[
−1

2 ln(2π V ) − (
√
2− δabyab − ωab)

2

2V

]
. (116)

We recall that ωab(η) depends linearly on ηab, e.g.:

ωab =
√

2q ηab, Vab = 2(Q− q), Q = 1 + ρ. (117)

Then

(gout(y, ω, V ))ab =
∂

∂ωab
lnZout(y, ω, V ) = − ∂

∂ωab

[(√2− δabyab − ωab(η))
2

2V

]
= +

(
√
2− δabyab − ωab)

V
.

(118)
Thus ∑

a≤b

(gout(y, ω, V ))2ab =
∑
a≤b

(
[
√
2− δabyab − ωab(η) ]

1

2(Q− q)

)2
. (119)
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We can compute the expectation:

E
[∑
a≤b

(gout(y, ω, V ))2ab

]
=

∫(∏
a≤b

dηab
e−η2ab/2√

2π

) ∫(∏
a≤b

dyab

)
Zout(y, ω, V )

∑
a≤b

(gout(y, ω, V ))2ab.

(120)
We can simply use:∫

dyab
1√
2π V

exp
(
−(
√
2− δabyab − ωab)

2

2V

) [√
2− δabyab − ωab

]2
= V. (121)

Therefore,∫ (∏
a≤b

dyab

)
Zout(y, ω, V )

∑
a≤b

(gout(y, ω, V ))2ab =
∑
a≤b

[( 1

2(Q− q)

)2
V

]
. (122)

Thus each term becomes ( 1

2(Q− q)

)2
2(Q− q) =

1

2(Q− q)
. (123)

Hence the entire sum is ∑
a≤b

1

2(Q− q)
=

T (T + 1)

4

1

Q− q
. (124)

Notice that this result does not depend on η. Consequently, the outer integral over η becomes 1.Hence
we arrive to the final form of the linear output channel state equation:

q̂ = 4αE(η,y)

[∑
a≤b

(gout(y, ω, V ))2ab

]
= 4α

∑
a≤b

[
E(η,y)gout(y, ω, V ))2ab

]
= 4α

T (T + 1)

4(Q− q)
(125)

which finally simplifies into the output channel state equation:

q̂ =
T (T + 1) α

Q− q
(126)

As an example, in Fig.3 we show the fixed point solution for the state evolution equations for
the linear output channel. The prior equation (8) remains unchanged, while we use Eq.(125) for
simulating the linear output channel results. We also show in vertical dashed lines the recovery
threshold found by the simple counting problem:

T (T + 1)

2
αcount = ρ− ρ2

2
(127)

The linear output channel matches perfectly the counting recovery threshold, unlike in the softmax
case shown in Eq.(8).
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Figure 3: Illustration of the Bayes-optimal error for the linear output channel baseline in Eq.(114),
for T = 2 tokens and several values of the width ratio ρ = r/d. The model reaches zero
BO error at finite α. The recovery threshold matches perfectly the one find by the simple
counting argument in (127), plotted in short vertical lines.

E.4. Softmax output channel for generic number of tokens T

We compute the quantity:

Zout(y, ω, V ) =

∫ ∏
a≤b

dhab
1√

2πVab
e
− (hab−ωab)

2

2Vab

∏
a≤b

δ(yab − Softmax{ β√
2− δab

hab}). (128)

where we remind the factor
√
2− δab is present due to the symmetrization of the problem (i.e.

multiply and divide by
√
2− δab), allowing a much simpler treatment of the BO analysis in change

of this slight modification of the output channel.
From now on, we define the quantity τab =

√
2− δab. We thus aim to compute the quantity:

Zout(y, ω, V ) =

∫ ∏
a≤b

dhabδ(y − σ(
hab
τab

)
∏
a≤b

N (hab, ωab, Vab) (129)

We introduce the variable zab = hab/τab and exploit dhN (h, µ, σ) = dzN (z, µ/τ, σ/τ2), we get:

Zout(y, ω, V ) =

∫ ∏
a≤b

dzab δ
(
y − σ(z)

)∏
a≤b

N
(
zab,

ωab
τab

, Vab

τ2ab

)
=

=

∫ ∏
a≤b<T

dtabN
(
tab,

ωab
τab
− sa,

Vab

τ2ab

) T∏
a=1

dsaN
(
sa,

ωaT
τaT

, VaT

τ2aT

) (130)

where in the last equality we introduced the inverse mapping of the row-wise softmax function,
defined in Eq.(14). In particular, we introduce:

eβtab =
eβzab

eβzaT
=

eβzab∑T
b=1 e

βzab

( eβzaT∑T
b=1 e

βzab

)−1
=

yab
yaT

∀a ≤ b < T (131)
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which leads to:
tab =

1

β
log(

yab
yaT

) = ϕab(y) ∀a ≤ b < T (132)

while for b = T :

yTa

yTT
=

eβzTa

eβzTT
=

eβzaT

eβzTT
= eβ(sa−sTT ) → sa = sTT + ϕTa(y) ∀a < T (133)

having introduced the change of variables:

zab → tab = zab − zaT → zab = tab + sa = ϕab + ϕTa + sTT ∀a ≤ b < T (134)

and
zaT → sa = zaT → zaT = sa = sTT + ϕTa ∀a < T (135)

Having this mapping clear and introducing the short-hand notation ω̃ = ω/τ and Ṽ = V/τ2,
sTT = x, we can see that we can reduce the computation of Eq.(130) to that of one simple scalar
integral in the variable x = sT , namely:

Zout(y, ω, V ) =

∫
dxN (x, ω̃TT , ṼTT )

T−1∏
a=1

N (x+ ϕTa(y), ω̃aT , ṼaT )
∏

a≤b<T

N (ϕab(y) + ϕTa(y) + x, ω̃ab, Ṽab) =

=

∫
dx exp

{
−1

2

[ T∑
a=1

(x+ ϕTa − ω̃aT )
2)

ṼaT

+
∑

a≤b<T

(ϕab + ϕTa + x− ω̃ab)
2

Ṽab

]}
(136)

We thus obtain a simple gaussian integral whose exponential is of the form :

−1

2

[
x2
(∑
a≤b

Ṽ −1
ab

)
+2x

( T∑
a=1

ϕTa − ω̃aT

ṼaT

+
∑

a≤b<T

ϕab + ϕTa − ω̃aT

Ṽab

)
+
( T∑
a=1

(ϕTa − ω̃aT )
2

ṼaT

+
∑

a≤b<T

(ϕab + ϕTa − ω̃ab)
2

Ṽab

)
(137)

Having computed this simple gaussian integral, we can hence compute the quantity of interest:

logZ =
1

2Ṽ

[ T∑
a=1

ϕTa − ω̃aT

ṼaT

+
∑

a≤b<T

ϕab + ϕTa − ω̃aT

Ṽab

]2
−1

2

[ T∑
a=1

(ϕTa − ω̃aT )
2

ṼaT

+
∑

a≤b<T

(ϕab − ϕTa − ω̃ab)
2

Ṽab

]
+cost

(138)
with Ṽ =

∑
a≤b Ṽ

−1
ab and again ϕab(y) = 1

β log yab
yaT

, ω̃ab = ωab√
2−δab

,Ṽab = V ab
2−δab

,ωa =
√
2qηab,

Vab = V = 2(Q− q), h ∼ N (ω̃, Ṽ ), y = σ(h). The constant term contains those terms independent
from ω, as we are finally interested in the denoising function , which is the derivative:

gout(y, ω, V )ab = ∂ωab
logZout(y, ω, V ) (139)

We thus compute the denoising function deriving with quantity logZout(y, ω, V ) with respect to
ω̃, thus computing τij∂ωij logZout(y, ω, V ) for i ≤ j < T and for j = T . We also consider that∑T

a≤b Ṽ
−1
ab = 1

V

∑T
a≤b(2− δab) =

T 2

V , V = 2(Q− q).
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Finally, we obtain the final form of the denoising function of the softmax output channel in Eq.(5)
for an arbitrary number of tokens, substituting back the original V and ω:

V (gout)ij = −
τij
T 2

[ T∑
a≤b

τ2abϕTa−
T∑

a≤b

τabωab+

T−1∑
a≤b

τ2abϕab

]
+τijϕT i−ωij+δ(j < T )ϕijτij (140)

We now complete this appendix by computing the quantity Eη,y
∑

a≤b(gout)
2
ab . To do so, we

exploit the following relations:

ϕab = hab − haT h ∼ N (ω̃, Ṽ )→ τabhab =
√

2q ηab +
√
V ξab a ≤ b ≤ T (141)

with ηab, ξab ∼ N (0, 1) and

ϕTa = hTa − hTT = haT − hTT (142)

We thus substitute these relationships inside Eq.(140) and finally compute Eη,ξ
∑

a≤b(gout)
2
ab. After

a long but simple algebraic calculation, it is possible to show that the denoiser function reduces to
simply:

V (gout)ij = = τij
√
V ξTT −

τij
T 2

T 2∑
a≤b

τab
√
V ξab +

τij
τiT

√
V ξiT −

τij
τTT

√
V ξTT + δ(j < T )

√
V ξij − δ(j < T )

τij
τiT

√
V ξiT =

= − τij
T 2

T 2∑
a≤b

τab
√
V ξab +

√
V ξiT δ(j = T ) + δ(j < T )

√
V ξij =

= − τij
T 2

T 2∑
a≤b

τab
√
V ξab +

√
V ξij

(143)

which finally gives:

Eη,ξV

T∑
i≤j

(gout)
2
ij = =

T (T + 1)

2
− 2

T 2

T∑
i≤j

T∑
a≤b

τijτabEξijξab +
1

T 4

T∑
i≤j

T∑
a≤b

T∑
c≤d

τ2ijτabτcdEξabξcd =

=
T (T + 1)

2
− 2

T 2

T∑
i≤j

τ2ij +
1

T 4

T∑
i≤j

T∑
a≤b

τ2ijτ
2
ab =

=
T 2 + T − 2

2
(144)

Hence, we can finally conclude that the output channel state equation we obtain for a self-attention
layer with an arbitrary number of tokens is:
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q̂ = 4αEη,ξ

T∑
i≤j

(gout)
2
ij =

4α(T 2 + T − 2)

2V
=

α(T 2 + T − 2)

Q− q
(145)

which is the result presented in the main text in Eq.(8). We highlight this final result holds for any
value of the softmax inverse temperature 0 < β < +∞.

E.5. Hardmax output channel for 2 tokens

We now discuss the hardmax output channel case, in the special case of T = 2 tokens. Following
Eq.(6) in the main text, we need to compute the quantity:

Zout(y, ω, V ) =

∫ ∏
a≤b

dhab
1√

2πVab
e
− (hab−ωab)

2

2Vab

∏
a≤b

δ(yab − σhard({
1√

2− δab
hab}a)b. (146)

with :
σhard(z1 . . . zT )i = δ(i = argmax

j
xj) (147)

In this setting, in particular when T = 2, the output label of e.g. y11 becomes

y11 = Θ(h11 − h12) (148)

and similarly for the other labels. Here Θ(u) is the Heaviside function:

Θ(u) =

{
1, u > 0,

0, u < 0.
(149)

For the computation of the quantity in Eq.(146), it is convenient to make a change of variables
by introducing the differences:

u = h11 −
h12√
2
, v = h22 −

h12√
2
. (150)

We can thus rewrite in the case of T = 2 tokens:

Iout(η, y) =

∫
dh12N (h12;ω12, V12)

{∫
u∈R(y11)

du N (u+
h12√
2
;ω11, V11)

}

×
{∫

v∈R(y22)
dv N (v +

h12√
2
;ω22, V22)

}
,

(151)

where the integration ranges are defined by the hard–threshold:

R(y11) =
{
{u > 0}, if y11 = 1,

{u < 0}, if y11 = 0,
R(y22) =

{
{v > 0}, if y22 = 1,

{v < 0}, if y22 = 0.

Now, by shifting the Gaussian factors we have

N (u+ h12;ω11, V11) = N (u; ω11 −
h12√
2
, V11), (152)
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and similarly for the v–integral. Thus, the expression becomes

Zout(y, ω, V ) =

∫
dh12N (h12;ω12, V12) F11(

h12√
2
;ω) F22(

h12√
2
;ω) , (153)

with

F11(
h12√
2
;ω) =

∫
u∈R(y11)

du N (u; ω11 −
h12√
2
, V11) = Φ

(
s11

ω11 − h12√
2√

V11

)
, (154)

F22(
h12√
2
;ω) =

∫
v∈R(y22)

dv N (v; ω22 −
h12√
2
, V22) = Φ

(
s22

ω22 − h12√
2√

V22

)
, (155)

where Φ(z) is the standard Gaussian CDF and

s11 = 2y11 − 1 =

{
+1, y11 = 1,

−1, y11 = 0,
s22 = 2y22 − 1 =

{
+1, y22 = 1,

−1, y22 = 0.

Thus, in the hard–threshold limit the output channel integral is given by:

Zout(y, ω, V ) =

∫ +∞

−∞
dh12 N (h12;ω12, V12) Φ

(
s11

ω11 − h12√
2√

V11

)
Φ
(
s22

ω22 − h12√
2√

V22

)
(156)

We can further manipulate this expression.
Writing h12 = ω12 +

√
V12 Z with Z ∼ N (0, 1); then, using independence,

Zout(y, ω, V ) = EZ

[
Φ
(
u1 − λ1Z

)
Φ
(
u2 − λ2Z

)]
, (157)

where

u1 = s11

√
2ω11 − ω12√

2V11
, u2 = s22

√
2ω22 − ω12√

2V22
, (158)

λ1 = s11

√
V12

2V11
, λ2 = s22

√
V12

2V22
. (159)

A classical identity for jointly Gaussian variables gives

EZ

[
Φ(a+ bZ) Φ(c+ dZ)

]
= Φ2

(
a√
1+b2

, c√
1+d2

; bd√
(1+b2)(1+d2)

)
. (160)

Where Φ2 is the cdf of the bivariate normal density defined in Appendix (B). Applying this
relation to our model yields:

Zout(y, ω, V ) = Φ2

(
κ1, κ2; c

)
(161)

with the compact parameters

κ1 = s11

√
2ω11 − ω12√
2V11 + V12

, κ2 = s22

√
2ω22 − ω12√
2V22 + V12

, (162)

c = s11s22
V12√

(2V11 + V12)(2V22 + V12)
= s11s22

1

3
(V11 = V22 = V12). (163)
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We can hence compute denoising function:

(gout(y, ω, V ))ab =
∂

∂ωab
lnZout(y, ω, V ). (164)

Because Vab is ω-independent, the chain rule gives

∂

∂ω11
Φ2(κ1, κ2; ρ12) =

∂κ1
∂ω11

ϕ2(κ1, κ2; ρ12),
∂κ1
∂ω11

=

√
2s11√

2V11 + V12
. (165)

The four independent derivatives are therefore

gout(y, ω, V )11 =

√
2s11√

2V11 + V12

ϕ2(κ1, κ2; ρ12)

Φ2(κ1, κ2; ρ12)
(166)

gout(y, ω, V )22 =

√
2s22√

2V22 + V12

ϕ2(κ2, κ1; ρ12)

Φ2(κ1, κ2; ρ12)
(167)

gout(y, ω, V )12 = −
( s11√

2V11 + V12
+

s22√
2V22 + V12

) ϕ2(κ1, κ2; ρ12)

Φ2(κ1, κ2; ρ12)
(168)

This expression can be compactly rewritten as:

gout(y, ω, V )ab =
1√

6(Q− q)

ϕ(k1, k2, c)

Φ(k1, k2, c)

( √
2s1 −(s1 + s2)

−(s1 + s2)
√
2s2

)
ab

, (169)

where ϕ(k1, k2, c) is the p.d.f. of a bi-variate Gaussian with zero mean, variances 1/(1 − c2) and
covariance c/(1 − c2), and Φ(k1, k2, c) is its c.d.f (see Appendix B). Moreover, sa = 2(yaa − 1),
ka = sa(

√
2ωaa − ω12)/

√
6(Q− q), c = s1s2/3 and ωab =

√
2q ηab.

E.6. Generalization error and sequence-to-sequence version of the model

In this section we draw some consideration on the generalization error of the model, in the setting of
a self-attention layer as in (19) and its sequence-to-sequence version as in (20).

In the main text, we showed the expression of the Bayes-Optimal estimation error. In the case of
one layer of self-attention this reads:

Eest =
1

d
∥S∗ − Ŝ∥2F = Q− q (170)

Regarding the generalization error, we may instead want to compute and plot a different quantity,
namely:

Egen(ŷ) = ED,S∗Eynew,xnew ||ŷ(xnew,D)− ynew||2F , (171)

with:
ŷBO
D (xtest ) := E [ytest | xtest ,D] =

∫
Ez [fS (xtest )]P(S | D)dS

Recalling the fact that, for one layer of self-attention, we simply have the relation y = σβ(h) =

σβ({hab/
√
2− δab}ab), we can introduce the change of variables hab =

xaSx⊤
b −δab TrS√

d
and get the

expression:
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Egen =
∑
a,b

Exab

∫
dhabdĥab∥σ(hab)−σ(ĥab)∥2δ(hab−

xaSx
⊤
b − δabTrS√

d
)δ(ĥab−

xaŜx
⊤
b − δabTr Ŝ√

d
)

(172)
We now exploit the fact that, as we know, the preactivations concentrate to:

Exab
δ(hab−

xaSx
⊤
b − δabTrS√

d
)δ(ĥab−

xaŜx
⊤
b − δabTr Ŝ√

d
) = N

((hab
ĥab

)
,

(
0
0

)
,

(
q q
q Q∗

)
2
)
= P (hab, ĥab)

(173)
Then, the overall generalization error is given by

Egen =
T∑

a,b=1

E(hab,ĥab)∼P (hab,ĥab)

[
σ({hab})− σ({ĥab})

]2
(174)

Now we slightly modify our model of a self-attention layer by considering its sequence-to-
sequence (seq2seq) version y = σβ({ hab√

2−δab
}ab)x ∈ RT×d. In particular we aim to compute and

plot the generalization error in this new setting.
To do so, we define y = Ax and ŷ = Âx with A = σβ(h) and Â = σβ(ĥ) where we leave

the factor
√
2− δab implicit. We exploit the concentration of our input data, in order to compute

the Frobenius norm of y − ŷ = (A − Â)x. Recalling the fact that the input data are iid with
xµai ∼ N (0, 1), we use the fact that

d∑
i=1

xt′ixt′′i ≈ δtt′ (175)

with high probability when d is large. Hence:

||(A− Â)x||2F =
∑
t,i

[
∑
t′
(Att′ − Âtt′)xt′i]

2 =
∑
t,i

∑
t′,t′′

(Att′ − Âtt)(Att′′ − Âtt′′)xt′,ixt′′,i (176)

but using the concentration property of x we finally get:

||(A− Â)x||2F =
∑
t,i

∑
t′,t′′

(Att′ − Âtt′)(Att′′ − Âtt′′)xt′,ixt′′,i =
∑
t,t′

(Att′′ − Âtt′)
2 = ||A− Â||2F

(177)
We hence have shown that in the case of L = 1 layer, the sequence to sequence version of the

model shows the same identical state evolution with respect to a single self attention layer.

E.7. Gradient descent and the details on the numerical experiments

In this section we analyze the performances of gradient descent for the L = 1 layer models considered
in Eq.(5),(6). We compute the estimation error running gradient descent on S = WW⊤/

√
r. In

particular we run the gradient descent (GD) algorithm over the loss :

L(W ) =

n∑
µ=1

(
yµ − σβ

(
xaWW⊤ x⊤

b − δabTrWW⊤
√
r d

))2

, (178)

We iterate GD as:
W t+1 = W t − γ ∇W tL(W t) (179)

with γ the learning rate.
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Appendix F. Small/Large width limit of the prior channel

We recall that the state equations are of the form

Q− q =
1

q̂
− 4π2

3q̂2

∫
dxµ1/q̂(x)

3

q̂ = 2αF (Q− q, q)

(180)

where µ1/q̂ is the spectral distribution of S∗ + 1√
q̂
Z and Q = d−1Tr(S2

∗). In our examples, S∗ is√
ρ times a standard Wishart, with Q = 1 + ρ.

F.1. Small width limit

We follow [30, Section E.1.1]. Call t = ρ/q̂, and ᾱ = α/ρ. Call ν the distribution of
√
ρ(S∗ +

1√
q̂
Z) =

√
ρS∗ +

√
tZ, i.e.

ν(y) = ρ−1/2µ1/q̂(ρ
−1/2y) . (181)

Notice that this is precisely the ν defined in [30, Eq. 56]. Then we have

Q− q =
1

q̂
− 4π2

3q̂2

∫
dxµ1/q̂(x)

3

=
t

ρ
− 4π2t2

3ρ2
ρ

∫
dy [ρ−1/2µ1/q̂(ρ

−1/2y)]3

=
t

ρ
− 4π2t2

3ρ

∫
dy ν(y)3

=
t

ρ

[
1− 4π2t

3

∫
dy ν(y)3

]
≈
{
t(2− t) if t ≤ 1

1 if t > 1

(182)

where we used [30, Eq. 57 and following] to take the limit of small κ at leading order. Thus, the
equations can be recast to

Q− q =

{
t(2− t) if t ≤ 1

1 if t > 1

t =
1

2ᾱF (Q− q)
.

(183)

In particular, we have a weak recovery threshold. Indeed, as long as

ᾱ <
1

2F (1)
(184)

we have that Q − q = 1, i.e. the same error as the average from the prior (BO estimator with no
data).
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Figure 4: Low width limit of the self-attention model for L = 1 layer and T = 2 tokens in Eq.(5).
We rescale the sample ratio as ᾱ = n/dr and we plot several values of the width ratio
ρ = r/d. We correctly predict the weak recovery threshold in Eq.(184).

In Fig.4 we plot the low width behavior of the self-attention model for L = 1 layer and T = 2
tokens in Eq.(5), for which we recover the simple output channel state equation in Eq.(145), thus
giving :

F (Q− q, q) =
T 2 + T − 2

2(Q− q)
(185)

F.2. Large width limit for softmax

Recall that Q = 1 + ρ and q ∈ [ρ, 1 + ρ], so that Q− q ∈ [0, 1] even in the ρ→∞ limit. Then we
have

Q− q =
1

q̂
− 4π2

3q̂2

∫
dxµ1/q̂(x)

3

=
1

q̂

[
1− 4π2

3q̂ρ

∫
dy [
√
ρµ1/q̂(

√
ρy)]3

]
=

1

q̂

[
1− 4π2

3q̂ρ

∫
dy µ1/ρq̂(y)

3

]
≈ 1

q̂

[
1− 1

1 + q̂

]
≈ 1

1 + q̂
,

(186)

where we used [30, Section E.2]. Thus, we get the equation

q̂ =
α(T 2 − T + 2)

Q− q
= α(T 2 − T + 2)(1 + q̂) (187)

so we get

q̂ =
α(T 2 − T + 2)

1− α(T 2 − T + 2)
(188)
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which gives the large ρ result:

MMSE =
1

1 + q̂
= 1− α(T 2 − T + 2) . (189)
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