
Under review as submission to TMLR

Input and Output Privacy in Cross-Silo Federated Settings:
an MPC+DP Approach

Anonymous authors
Paper under double-blind review

Abstract

We address the problem of training a machine learning model on data held by multiple
data holders in a cross-silo federated setup while ensuring privacy guarantees. Existing
Federated Learning (FL) solutions with Differential Privacy (DP) or Secure Multiparty
Computation (MPC) with DP are often limited to either horizontal or vertical partitioning
and typically suffer from accuracy loss compared to a centralized setting. We propose an
MPC-based approach for training differentially private linear models that supports any
partitioning scenario and effectively combines MPC and DP. Our solution employs MPC
protocols for both model training and output perturbation using Laplace-like noise. By
simulating a trusted curator through MPC, our approach provides the benefits of global
DP without requiring an actual trusted party. The resulting MPC+DP method achieves
accuracy comparable to a centralized DP setup while maintaining privacy guarantees in a
cross-silo federated setup.

1 Introduction

Machine Learning (ML) models are widely deployed in real-world applications. However, training accurate
and effective ML models often requires access to large amounts of data. In many practical scenarios, relevant
training data is fragmented across multiple organizations and remains siloed due to privacy concerns, regulatory
constraints, and/or competitive advantage. This necessitates cross-silo federated learning approaches, where
ML models can be trained collaboratively across multiple data holders (clients in federated learning) without
compromising data privacy.

Furthermore, in a federated scenario, data can be distributed in various ways. One common scenario are
horizontally distributed settings where each data holder has records (rows) of data with the same feature set
(HFL). For example, hospitals treating COVID-19 patients could collaborate to build a model that predicts
the length of hospital stay by combining their individual patient records. Another scenario are vertically
distributed settings, where different data holders hold different features (columns) about the same set of
individuals (VFL). An example of this is an ML model that relies on lab test results as well as healthcare bill
payment information about patients, which are usually managed by different departments within a hospital
system. Data can also be distributed in a mixed manner that fits neither the horizontal nor the vertical
partitioning scheme. In the 2023 U.S. U.K. PETs Prize competition, for instance, participants were challenged
to develop a federated learning solution for financial fraud detection with data from banks and from the
Society for Worldwide Interbank Financial Telecommunication (SWIFT) (Vos et al. (2024)). In this scenario,
SWIFT has data about transactions between customers across banks, while each bank has more detailed data
about its own customers. An ideal federated learning setup should support any data distribution, enabling
privacy-preserving analytics over pooled datasets. This allows collaboration for privacy-preserving model
training across organizations and within different departments of the same organization.

The importance of enabling privacy-preserving model training in federated setups has spurred a large research
effort in this domain, most notably in the development and use of Privacy-Enhancing Technologies (PETs),
prominently including Federated Learning (FL) (Kairouz et al. (2021)), Differential Privacy (DP) (Dwork

1

Under review as submission to TMLR

et al. (2014)), Secure Multiparty Computation (MPC) (Cramer et al. (2015)), and Homomorphic Encryption
(HE) (Lauter (2022)). Each of these techniques has its own (dis)advantages.

DP has become the gold standard for providing formal privacy guarantees in trained ML models, mitigating
the risk of leaking sensitive training data – often referred to as “output privacy” (Ding et al. (2017); Apple
Differential Privacy Team (2017); Hartmann & Kairouz (2023)). These privacy guarantees come at the cost
of accuracy loss that is inversely proportional to the privacy budget. In centralized settings, where all data is
available in one place, these trade-offs tend to be less severe, making DP more practical in such scenarios
(global DP) (Ponomareva et al. (2023)).

Federated settings employ approaches based on (combinations of) FL, MPC, or HE, allowing data holders to
train models without sharing their raw data, thereby ensuring “input privacy”. But these approaches do not
guarantee protection of the underlying datasets (such as against membership inference and reconstruction
attacks) once the trained model is published i.e. after federated training, and hence they are often combined
with DP. Most studies in federated settings focus on the combination of FL and DP1 and incur severe utility
loss when compared to the centralized setting. Our research aims to mitigate this utility loss by combining
MPC and DP in federated settings, effectively emulating global DP from the centralized setting. While
existing studies have explored MPC-DP combinations (see Sec. 3.3), most focus specifically on horizontally
federated learning (HFL). In contrast, our proposed approach works with any arbitrary data distribution in a
federated setting.

CONCAT NORM LR DP

Secure
concatenation of

data from
multiple sources

Secure L2
normalization

(row-wise)

Secure training of
Logistic Regression
with regularization

Secure addition of
noise for output

perturbation

 Computing Servers (MPC parties) run MPC protocols to train DP-LR

Secret
share

Secret
share

Secret
share

. .
 .

. .

D
at

a
ho

ld
er

s
se

cr
et

 s
ha

re
pr

iv
at

e
da

ta

Published
Differentially Private
Logistic Regression

Figure 1: Overview of our modular approach: Data holders secret-share their private data with computing
servers (illustrated here with 3 servers), which train an ϵ-DP model using MPC. Noise is generated and
added within MPC itself to ensure DP guarantees, without reliance on a trusted entity. For linear models:
Step 1: πCONCAT merges secret shares of data from all data holders to form secret shares of a single union
dataset, thus mimicking a centralized setup. Step 2: πNORM normalizes the secret-shared data, row-wise, to
satisfy L2-norm requirements for output perturbation. Step 3: πLR trains an LR model with regularization
on normalized secret shares of data. Step 4: πDP generates secret shares of noise and adds it to the secret
shares of the weights of the trained model. Finally the DP model is published.

Our Approach. Unlike traditional FL, where each client trains local models on their respective datasets,
our approach comprises of computing servers (MPC parties)2 that run MPC protocols. These MPC protocols
train ML models over secret shares of the combined dataset without requiring any entity to disclose its
private information to anyone. This enables our approach to work with any data distribution. Our focus is
on generalized linear models (Castro Torres & Akbaritabar (2024)). To ensure differential privacy guarantees,
we adapt an output perturbation technique from the centralized setting (Chaudhuri et al. (2011)).3 The MPC
parties, after training the ML model, run MPC protocols to generate secret shares of the necessary noise and
add it to the secret shares of weights of the trained model to satisfy DP requirements. We show that this
procedure yields the same accuracy as in the global DP model. Indeed, the MPC protocols effectively play

1Either through local DP or distributed DP; see Section 3.1 in Ponomareva et al. (2023).
2MPC parties can be different from the data holders, as in an MPC-as-a-service scenario.
3For our datasets, our results show that output perturbation performs best; and is in general efficient for our scenario.

2

Under review as submission to TMLR

the role of a trusted curator implementing global DP. The resulting model can be published in the clear, or
used for private inference on top of MPC. We summarize our contributions below.

• We propose a combination of MPC and DP to train linear models in a federated setting that yields ML
utility similar to the centralized setting.

• Our proposed modular approach works for any arbitrary distributed datasetting.
• We propose a modular MPC protocol to sample noise from a multidimensional power exponential

distribution, generating Laplace-like noise. Unlike recent works that focus on DP-SGD like mechanisms
(gradient or objective perturbation), our focus is on output perturbation.

• We demonstrate the effectiveness of our approach on real-world datasets. Our solution obtained the
highest accuracy in the iDASH2021 Track III competition on confidential computing, where the challenge
was to propose a federated learning algorithm for training of a model to predict the risk of wild-type
transthyretin amyloid cardiomyopathy using medical claims data from different hospitals, while providing
DP guarantees.4

2 Preliminaries

2.1 Differential Privacy

DP is concerned with providing aggregate information about a dataset D without disclosing information
about specific individuals in D (Dwork et al. (2014)). A dataset D′ that differs in a single entry from D is
called a neighboring database. A randomized algorithm A is called (ϵ, δ)-DP if for all pairs of neighboring
databases D and D′, and for all subsets S of A’s range,

P(A(D) ∈ S) ≤ eϵ · P(A(D′) ∈ S) + δ. (1)

In other words, A is DP if A generates similar probability distributions over outputs on neighboring datasets
D and D′. The parameter ϵ ≥ 0 denotes the privacy budget or privacy loss, while δ ≥ 0 denotes the probability
of violation of privacy, with smaller values indicating stronger privacy guarantees in both cases. ϵ-DP is
a shorthand for (ϵ, 0)-DP. A can for instance be an algorithm that takes as input a dataset D of training
examples and outputs an ML model. An (ϵ, δ)-DP randomized algorithm A is commonly created out of an
algorithm A∗ by adding noise that is proportional to the sensitivity of A∗. We describe the noise generation
technique that we use to this end in detail in Sec. 4.

2.2 Secure Multiparty Computation

MPC is an umbrella term for cryptographic approaches that allow two or more parties to jointly compute
a specified output from their private information in a distributed fashion, without revealing the private
information to each other (Cramer et al. (2015)). MPC is concerned with the protocol execution coming
under attack by an adversary which may corrupt one or more of the parties to learn private information or
cause the result of the computation to be incorrect. MPC protocols are designed to prevent such attacks
being successful, and can be mathematically proven to guarantee privacy and correctness. We follow the
standard definition of the Universal Composability (UC) framework (Canetti (2000)), in which the security
of protocols is analyzed by comparing a real world with an ideal world. For details, see Evans et al. (2018).

An adversary can corrupt a certain number of parties. In a dishonest-majority setting the adversary is able
to corrupt half of the parties or more if he wants, while in an honest-majority setting, more than half of the
parties are always honest (not corrupted). Furthermore, the adversary can have different levels of adversarial
power. In the semi-honest model, even corrupted parties follow the instructions of the protocol, but the
adversary attempts to learn private information from the internal state of the corrupted parties and the
messages that they receive. MPC protocols that are secure against semi-honest or “passive” adversaries
prevent such leakage of information. In the malicious adversarial model, the corrupted parties can arbitrarily
deviate from the protocol specification. Providing security in the presence of malicious or “active” adversaries,
i.e. ensuring that no such adversarial attack can succeed, comes at a higher computational cost than in the

4http://www.humangenomeprivacy.org/2021/competition-tasks.html

3

http://www.humangenomeprivacy.org/2021/competition-tasks.html

Under review as submission to TMLR

passive case. The protocols in Sec. 4 are sufficiently generic to be used in dishonest-majority as well as
honest-majority settings, with passive or active adversaries. This is achieved by changing the underlying
MPC scheme to align with the desired security setting.

As an illustration, we describe the well-known additive secret-sharing scheme for dishonest-majority 2PC with
passive adversaries. In Sec. 5 we additionally present results for honest-majority 3PC and 4PC schemes with
passive and active adversaries; for details about those MPC schemes we refer to Araki et al. (2016); Dalskov
et al. (2021). In the additive secret-sharing 2PC scheme there are two computing parties, nicknamed Alice
and Bob. All computations are done on integers, modulo an integer q. The modulo q is a hyperparameter
that defines the algebraic structure in which the computations are done. A value x in Zq = {0, 1, . . . , q− 1} is
secret shared between Alice and Bob by picking uniformly random values x1, x2 ∈ Zq such that x1 + x2 = x
mod q. x1 and x2 are additive shares of x (which are delivered to Alice and Bob, respectively). Note that
no information about the secret value x is recovered by any of the individual shares x1 or x2, but the
secret-shared value x can be trivially revealed by combining both shares x1 and x2. The parties Alice and
Bob can jointly perform computations on numbers by performing computations on their own shares, without
the parties learning the values of the numbers themselves.

For protocols in the passive-security setting, we use [[x]] as a shorthand for a secret sharing of x, i.e.
[[x]] = (x1, x2). Given secret-shared values [[x]] = (x1, x2) and [[y]] = (y1, y2), and a constant c, Alice and Bob
can jointly perform the following operations, each by doing only local computations on their own shares:5

• Addition of a constant (z = x + c): Alice and Bob compute (x1 + c, x2). Note that Alice adds c to
her share x1, while Bob keeps the same share x2. This operation is denoted by [[z]]← [[x]] + c.

• Addition (z = x + y): Alice and Bob compute (x1 + y1, x2 + y2) by adding their local shares of x and
y. This operation is denoted by [[z]]← [[x]] + [[y]].

• Multiplication by a constant (z = c · x): Alice and Bob compute (c · x1, c · x2) by multiplying their
local shares of x by c. This operation is denoted by [[z]]← c[[x]].

Multiplication of secret-shared values [[x]] and [[y]] is done using a so-called multiplication triple (Beaver
(1992)), which is a triple of secret-shared values [[u]], [[v]], [[w]], such that u and v are uniformly random values
in Zq and w = u · v. Given that they have a multiplication triple, Alice and Bob can compute [[d]] = [[x]]− [[u]]
and [[e]] = [[y]]− [[v]], and, in a communication step, open d and e by disclosing their respective shares of d
and e to each other. Next, they can compute [[z]] = [[w]] + d · [[v]] + e · [[u]] + d · e, which is equal to [[x · y]].
We denote this operation by [[z]]← πMUL([[x]], [[y]]). Each multiplication requires a fresh multiplication triple.
Such triples can be predistributed by a trusted initializer (TI). In case a TI is not available or desirable, Alice
and Bob can simulate the role of the TI, at the cost of additional pre-processing time and computational
assumptions, see Mohassel & Zhang (2017).

Building on these cryptographic primitives, MPC protocols for other operations can be developed, including
for privacy-preserving training of ML models and noise generation to provide DP guarantees (see Sec. 4).
Our protocols use well known subprotocols for division πDIV of secret-shared values, square root πSQRT of
secret-shared values, and generation of random values from a uniform distribution πGR−RANDOM (Keller
(2020)).

3 Related Work

Our approach preserves input privacy, i.e., it ensures that the training datasets are not exposed (except under
ϵ-DP guarantees) to anyone but their original data holders during (1) model training and (2) publication or
inference. As we describe below, existing methods either do not fully protect input privacy, or they do so at
the cost of higher accuracy loss than our approach.

5We often omit the modular notation for conciseness.

4

Under review as submission to TMLR

3.1 MPC/HE based Model Training

Many cryptography based methods have been proposed for privacy-preserving learning of ML models with
data from multiple data holders, including for linear regression models (Gascón et al. (2017); Agarwal et al.
(2019)), (ensembles of) decision trees (Lindell & Pinkas (2000); de Hoogh et al. (2014); Abspoel et al. (2021);
Adams et al. (2022)), and neural network architectures (Mohassel & Zhang (2017); Wagh et al. (2019); Guo
et al. (2020); De Cock et al. (2021)).

These techniques protect input privacy during training while still, in principle, producing the same ML models
that one would obtain in the clear (i.e. when no encryption is used). The latter is both a blessing, as there is
no accuracy loss, and a problem, as upon model publication or during inference, the trained models leak
the same kind of information as models trained in-the-clear (Fredrikson et al. (2015); Tramèr et al. (2016);
Song et al. (2017); Carlini et al. (2019)). Because these methods do not provide DP guarantees, we do not
compare with them in Sec. 5.

3.2 DP and FL based Model Training

Much of the literature on training DP models (Abadi et al. (2016)) is developed for the global DP (a.k.a. central
DP) paradigm, which assumes the existence of a trusted curator (aggregator) who collects all the data and
then trains a DP model over it, e.g. by adding noise to the gradients or the model coefficients. These methods
do not preserve input privacy, since data holders need to disclose their datasets to the aggregator. A local
DP approach in which privacy loss is controlled by having the data holders add noise to their input data or
local models before disclosing it to the aggregator, results in substantial utility degradation. We eliminate the
need for a trusted curator by simulating this entity through MPC protocols that are run either directly by
the parties themselves or as in a MPC-as-a-service model6.

Another related existing approach combines Federated Learning (FL) with DP. In FL, each of the data holders
participates in model training on their end and only exchanges trained model parameters or gradients with
the central server (Kairouz et al. (2021)). A widely adopted method to provide DP guarantees in FL setting
is through local DP, where the data holders can add noise to protect the values that they send to the central
server. In Sec. 5 we compare with such an approach in which the data holders perturb their model coefficients
before sending them to the central server for aggregation. Another accurate alternative to addressing the
utility loss associated with local DP is distributed DP, which primarily works with Gaussian-like mechanisms,
whereas our approach relies on variants of the Laplace mechanism. Moreover, these approaches work only in
the horizontally distributed datasetting, while our approach (see Sec. 4) works in the vertically distributed
setting as well.

3.3 Combinations of MPC and DP

The key idea in our proposed approach is to train DP models while performing as much of the computations
as possible in MPC protocols in order to preserve accuracy. MPC and DP for ML have been well studied
in isolation, but the strong privacy protections that can result from their synergy are still being explored
(Wagh et al. (2021); Das et al. (2025)). We combine MPC and DP to protect training data privacy during
training and during inference. In practice, we simulate the trusted curator present in the centralized DP
model by using MPC. While in the past such an approach was avoided, due to the high computational cost
of training the models on top of MPC, we argue that, with advances in protocols and computing power, the
higher utility that can be obtained in this way justifies its adoption in several situations. The idea to replace
the trusted curator from the global DP paradigm with MPC to get better privacy at the same high utility is
gaining traction. Böhler & Kerschbaum (2021) for instance have explored this idea for detecting the top k
most frequent items across different datasets. They let each party locally compute partial noises which are
then combined, which is different from our approach of letting the parties execute an MPC protocol to jointly
sample secret-shared noise.

6MPC-as-a-sevice assumes an infrastructure setup where the MPC parties are the independent and non-colluding servers
(controlled by different entities). This model allows for data from multiple data holders, i.e. the number of data holders can be
different from the number of computing parties.

5

Under review as submission to TMLR

Combining MPC with DP has been proposed in the context of FL, where the data is either horizontally
distributed (see e.g. Maddock et al. (2024); Acar et al. (2017); Jayaraman et al. (2018); Pathak et al. (2010))
or vertically distributed (see e.g. Tajeddine et al. (2020)). Existing solutions use cryptographic protocols (not
necessarily MPC) and DP, such as in Pathak et al. (2010); Chase et al. (2017); Jayaraman et al. (2018); Byrd
& Polychroniadou (2020); Truex et al. (2019), in order to train individual models on the datasets held by
the data holders and aggregate these models by averaging their coefficients. These approaches are designed
for horizontally partitioned data. Gu et al. (2021) propose a framework for combining MPC and FL, but it
only works for the case of horizontally partitioned data. Moreover, each (MPC) server in Gu et al. (2021)
generates noise using the Gaussian mechanism locally, secret shares and then adds to the gradient updates –
adopting distributed DP which does not achieve accuracy similar to the centralized setup. Choquette-Choo
et al. (2021) propose a framework that combines HE, MPC and DP inspired by PATE to collaboratively
train a model in a way that is applicable only to a horizontal setting. All of the above mentioned solutions
do not work for vertically partitioned data, unlike our method. Moreover, our solution trains the final model
on the union of all the individual datasets, thus essentially obtaining the same utility that is achievable in
the trusted curator scenario.

Very few recent solutions combine MPC and DP to work for any arbitrary partition, i.e., a single framework
that works for horizontal, vertical, and mixed data distributions. Pentyala et al. (2024) do so for synthetic
data generation rather than training DP linear models. While Das et al. (2025)’s solution could in principle
work with any arbitrary distribution, their focus is on gradient perturbation, where each MPC party locally
generates secret shares of samples from a Gaussian distribution. In contrast, our solution applies output
perturbation and is based on a Laplace-like mechanism.7 To the best of our knowledge, no solutions exist
for training ϵ-DP linear models with output perturbation in arbitrarily partitioned scenarios that achieve
accuracy at par with a centralized setup.

4 Method

4.1 Overview

We work in the scenario described in Fig. 1 distinguishing between the data holders who hold the training
datasets, and the computing servers who run the MPC protocols for model training, noise generation, and
noise addition. Our solution works in scenarios in which each data holder (e.g. hospital or bank) is also a
MPC party (i.e. owns the computing server), as well as in scenarios where the data holders outsource the
computations to untrusted servers (computing servers) instead (i.e. MPC-as-a-service scenario). Though we
demonstrate our solution for 2, 3 and 4 computing servers, the MPC protocols we propose are generic in
nature and so our solution works with any number of computing servers as well as data holders. This can be
achieved by choosing an appropriate underlying MPC scheme for the desired number of computing servers
(which are MPC parties) (see Sec. 2.2)

The data holders secret share their data with a set of computing servers. In all MPC protocols used in this
paper, secret sharings are in Zq with q = 2λ, i.e. a power 2 ring. 8 Since all computations in MPC are done
over integers in Zq (see Sec. 2.2), the data holders first convert the real numbers in their data to integers
using a fixed-point representation (Catrina & Saxena (2010)) and subsequently split the integer values into
secret shares which are sent to the computing servers (see Fig. 1). While the original value of a secret-shared
number can be trivially revealed by combining the shares, the secret-sharing based MPC schemes ensure that
nothing about the inputs is revealed to any subset of the computing servers that can be corrupted by an
adversary. This means, in particular, that no server by itself learns anything about the actual values of the
inputs.

Next, the computing servers proceed by performing computations on the secret shares. The servers run MPC
protocols that output an ML model protected by DP. The resulting model can be used for private inference

7Das et al. (2025) follows the concept of distributed DP for Gaussian distributions and does not require joint noise sampling,
whereas our approach relies on a Laplace-like mechanism necessitating joint sampling to provide pure DP.

8In Sec. 5 we present results with λ = 64 for a varying number of data holders, and for 2, 3, and 4 computing parties.

6

Under review as submission to TMLR

(on top of the underlying MPC protocol) or made open to the public because it is protected with ϵ−DP
guarantees and preserves privacy. In particular, the computing servers:

1. Jointly run πCONCAT to merge the distributed data.

2. Jointly run MPC protocol πLR to L2 normalize the training data, and to subsequently infer a LR
model using L2 regularization from the normalized data. At the end of this protocol, the coefficients
of the model are secret-shared between the parties.

3. Jointly run MPC protocol πDP to add a noise vector to the secret-shared model coefficients. At the
end of this protocol, the noisy coefficients of the model are secret shared between the parties.

4. Disclose their shares of the LR coefficients so that they can be combined in a final ϵ-DP LR model.

As the noise in step 3 is generated and added to the weights using MPC, the computing parties will not learn
it, hence they will not be able to retrieve the actual model coefficients from the noisy coefficients that are
disclosed in step 4.

The core of our solution is the MPC protocol πDP that implements a mechanism for providing ϵ-DP. It does
so by perturbing the coefficients of a trained logistic regression (LR) model with the addition of a noise vector
η that is sampled according to the density function

h(η) ∝ e− nϵΛ
2 ∥η∥ (2)

In the above expression, n is the number of instances that were used to train the LR model, and Λ is
the regularization strength parameter used during training. This technique provides ϵ-DP provided that
(C1) each input feature vector has an L2 norm of at most 1; and (C2) the LR model is trained using L2
regularization. If (C1) and (C2) are fulfilled, then the sensitivity of LR with regularization parameter Λ is
at most 2

nΛ (Chaudhuri & Monteleoni (2008); Chaudhuri et al. (2011)).

Note that our proposed method is modular in nature. For example, πCONCAT can be an MPC protocol that
simply concatenates and unions the datasets, or runs a secure alignment protocol before securely joining
them (Wang et al. (2024)).9 At the end of πCONCAT, the computing servers hold secret shares of the merged
training examples [[S]].

4.2 Protocol πLR for Model Training

At the beginning of the LR training protocol, the computing servers have secret shares of a set of labeled
training examples S = {([[x]], [[t]])}, each consisting of a secret-shared input feature vector x of length m and
a secret shared label t. πLR is based on an existing MPC protocol for training a LR with full gradient descent
(GD) (Keller (2020)). We extended this protocol in two ways. First, to satisfy condition (C1), before the start
of model training, we let the computing parties apply L2 normalization to the secret shares of each training
example [[xnorm]] by running πNORM. Pseudocode for πNORM is provided separately in Prot. 1 because we also
need it as a subprotocol for πDP. If the data is horizontally distributed across the data holders, then each
data holder can apply sample-wise L2 normalization to their own instances before secret sharing the training
instances with the computing servers. The computing servers in this case can skip the use of πNORM for this
purpose, which will reduce the training runtime. Second, to comply with condition (C2), we implemented
regularization by changing the weight update rule to [[∆w]]← C[[∆w]]− α[[∆w]]− Λα[[w]]. In this expression,
[[w]] and [[∆w]] are the weights and gradients as maintained in secret-shared form throughout the model
training; C is the momentum; α is the learning rate; and Λ is the regularization penalty. Pseudocode for πLR
is provided in Appendix A.

9In Sec. 5, for simplicity we assume that the records are already aligned in case of vertical partitioning and the computing
servers need to simply concatenate them using the right axis. This assumption does not affect the demonstration of our novel
contributions, as the results remain valid and πCONCAT itself is not a novel component.

7

Under review as submission to TMLR

Protocol 1: πNORM for secure L2 normalization
Input : A secret-shared vector [[x]] of length d
Output : Secret-shared L2 normalized vector [[xnorm]]

1 Declare vector [[xnorm]] of length d
2 [[S]]← 0
3 for i = 1 to d do
4 [[S]]← [[S]] + πMUL([[xi]], [[xi]])
5 end
6 [[v]] = πDIV(1, πSQRT([[S]]))
7 for i = 1 to d do
8 [[xnorm

i]]← πMUL([[xi]], [[v]])
9 end

10 return [[xnorm]]

4.3 Protocol πDP for Noise Generation

At the end of MPC protocol πLR, the coefficients w of the trained LR model are secret-shared between
the servers. Next, the servers run the MPC protocol πDP, presented in pseudocode in Prot. 2, to generate
noise and add it to the model coefficients to provide DP guarantees. Protocol πDP implements the output
perturbation method (or sensitivity method) (Chaudhuri & Monteleoni (2008); Chaudhuri et al. (2011))
while providing input privacy. While the original output perturbation method relies on the fact that the
model coefficients are known or disclosed to a single entity, such as a trusted curator, we do not make such
an assumption. Instead, the model coefficients remain secret-shared among the computing servers, neither of
which knows the true values of the model coefficients. The challenge is for the computing servers to jointly
generate noise that is appropriate for the true model coefficients that they cannot see, without learning the
true value of the noise. Indeed, no entity should learn the true value of the noise, so that the noisy model
coefficients can safely be disclosed at the end of the process (see step 4 in the overview at the beginning of
this section), without leaking information that would violate the DP guarantees.

Protocol 2: πDP for secure output perturbation
Input : A secret-shared vector [[w]] with d model coefficients wi; regularization penalty Λ; total number

n of training examples; privacy budget ϵ.
Output : Secret-shared vector [[w̃]] with perturbed model coefficients

1 [[s]]← πGSS(d)
2 [[s]]← πNORM([[s]], d)
3 [[γ]]← [[0]]
4 for i = 1 to d do
5 [[u]]← πGR−RANDOM(0, 1)
6 [[u]]← −πLN([[u]])
7 [[γ]]← [[γ]] + [[u]]
8 end
9 c← 2/(n · ϵ · Λ)

10 [[γ]]← c[[γ]]
11 Initialize vector [[w̃]] of length d to [[0]]
12 for i = 1 to d do
13 [[si]]← πMUL([[si]], [[γ]])
14 [[w̃i]]← [[wi]] + [[si]]
15 end
16 return [[w̃]]

8

Under review as submission to TMLR

In the output perturbation method, sensitivity is defined using the L2 norm, and the noise vector is sampled
from a particular instance of a multidimensional power exponential distribution h(η) ∝ e− nϵΛ

2 ∥η∥. Following
Sánchez-Manzano et al. (2002), the computing servers can obtain secret shares of a vector s sampled according
to the distribution h(η), by following these steps, in which d is the length of the vector (i.e. the number of
model coefficients):

Protocol 3: πGSS for secure sampling of a vector from a Gaussian distribution
Input : Vector length d.
Output : A secret-shared vector [[s]] of length d sampled from Gaussian distribution with mean 0 and

variance 1
1 Declare vector [[s]] of length d
2 for i = 0 to d/2 do
3 [[u]]← πGR−RANDOM(0, 1)
4 [[v]]← πGR−RANDOM(0, 1)
5 [[r]]← πSQRT(−2πLN([[u]]))
6 [[θ]]← 2π[[v]]
7 [[s2i]]← πMUL([[r]], πCOS([[θ]]))
8 [[x2i+1]]← πMUL([[r]], πSIN([[θ]]))
9 end

10 if d is odd then
11 [[p]]← πGSS(2)
12 [[sd−1]]← [[p0]]
13 end
14 return [[s]]

1. Generate a d-dimensional Gaussian vector s. That is, each coordinate of the vector is sampled from a
Gaussian distribution with mean zero and variance one. To this end, Line 1 in Prot. 2 calls πGSS (see
pseudocode in Prot. 3) which relies on the transform by Box & Muller (1958) to generate samples of
the Gaussian unitary distribution, namely ⌈d/2⌉ pairs of Gaussian samples. For each pair, on Line
3–4 in Prot. 3, the computing servers securely generate secret shares of two random numbers u and
v uniformly distributed in [0,1] by executing πGR−RANDOM. In πGR−RANDOM, each server generates l
random bits, where l is the fractional precision of the power 2 ring representation of real numbers,
and then the servers define the bitwise XOR of these l bits as the binary representation of the random
number jointly generated. On Line 5–8 in Prot. 3, the servers then jointly compute a secret sharing
of

√
−2 ln(u) · cos(2πv) and of

√
−2 ln(u) · sin(2πv) using MPC protocols πSQRT, πSIN, πCOS, and πLN

(Keller (2020)). In case d is odd, one more sample needs to be generated. The servers do so on Line
11–12 in Prot. 3 by executing πGSS to sample a vector of length 2 and only retain the first coordinate.

2. Normalize s, that is divide each coordinate of s by its L2 norm (Line 2 in Prot. 2). After steps 1-2,
the servers have secret-shares of a random d-dimensional vector on the unit sphere (this follows from
the spherical symmetry of the multivariate Gaussian distribution).

3. In this step the computing servers change the magnitude of the vector obtained above to an
appropriate value by sampling the gamma distribution Γ(d, 2

nϵΛ) to obtain a value γ, and multiplying
each coordinate of the normalized vector produced in step 2 with γ. To generate a secret-shared
sample [[γ]] from the Γ(d, 2

nϵΛ) distribution, on Line 3–8 in Prot. 2, the computing servers generate
secret shares of d independent samples from the exponential distribution with rate parameter one
(here denoted by Exp(1)) and add them. To generate secret shares of one such sample we use the
inverse transform sampling over MPC, which consists of computing − ln u, where u is a random
number with precision equal to l bits generated by the computing servers within the interval [0, 1]:

9

Under review as submission to TMLR

(a) On Line 5 the servers execute πGR−RANDOM as in Prot. 3 to generate a random number with
precision l in [0, 1]. Denote this number by u.

(b) On Line 6 the servers compute secret shares of − ln(u).

Finally, on Line 9–11 the servers scale the sum by multiplying the secret shares with the factor 2
nϵΛ .

On Line 13, they then multiply each coordinate of s with γ to obtain the appropriate magnitude.

The obtained vector is then added to the vector of model coefficients on Line 14.

The importance of protocol πDP stems from the fact that it enables the computing servers to generate secret
shares of noise, without each server learning the true value of the noise that they add to the model coefficients
in Line 14 of Prot. 2. The correctness of the protocol follows from the correctness of the inverse transform
sampling algorithm, and the fact that Exp(1) = Γ(1, 1) and that

∑d
i=1 Γ(1, 1) = Γ(d, 1). Moreover, it follows

from the definition of the Gamma distribution that c · Γ(d, 1) = Γ(d, c). The security of the whole protocol
follows from the security guarantees provided by the cryptographic primitives (Keller (2020)).

5 Results

5.1 iDASH Competition Results

We submitted our approach to a competition hosted by a National Center for Biomedical Computing funded
by the NIH. In Track III of the iDASH 2021 competition, participants were invited to submit solutions for
learning a ML model from training data hosted by two virtual centers, while providing DP guarantees. The
centers represent data holders who have medical records of respectively 831 patients and 882 patients. Both
datasets have the same schema, consisting of 1,874 boolean input attributes and a boolean target variable.
The goal is to train a classifier for diagnosis of transthyretin amyloid cardiomyopathy using medical claims
data (Huda et al. (2021)). Solutions submitted to the competition were required to run on two machines.
They were evaluated in terms of (1) training runtime on two nodes with Intel Xeon E3-1280 v5 processors (4
physical cores, hyper-threading enabled) and 64 GiB memory; (2) accuracy on a held-out test of 429 patients.

Tab. 1 contains the results for the best performing teams satisfying the ϵ-DP requirement (with ϵ set as 3 by
the organizers). The first row corresponds to the approach presented in Sec. 4. We implemented the πLR and
πDP protocols in MP-SPDZ, an open source framework for MPC (Keller (2020)).10 Being aware of the pitfalls
of implementing DP with floating point arithmetic, our implementation follows the best practice of using
fixed-point and integer arithmetic as recommended by, for example, OpenDP (The OpenDP Team (2020))11.
As the underlying MPC scheme for the iDASH2021 competition, we used semi2k (a semi-honest adaptation
of Cramer et al. (2018)) with mixed circuits that employ techniques using secret random bits (extended
doubly-authenticated bits; edaBits) (Escudero et al. (2020)). This MPC scheme enables secure 2PC against
semi-honest adversaries and complied with the requirements of the competition. As the regularizer for LR
training, we used N(w) = 1

2 w ·w, in which w denotes the vector of weights (coefficients) of the LR model,
i.e. we used Λ = 1.

Table 1: Results for ϵ-DP with ϵ = 3 and data from two data holders, as provided by the iDASH2021
competition organizers

Approach PETs Accuracy3 Runtime3

1. πLR+πDP (Sec. 4) MPC & DP 86.25% ∼ 15,000 sec
2. feat. sel. and LR ensemble DP 85.31% 31.942 sec
3. baseline (Sec. 5.1) DP 84.85% 0.27 sec
4. decision tree based DP 84.38% 0.09 sec

10See https://anonymous.4open.science/r/IDASH-MPCheavy-6D69/ for our code.
11See Appendix B for more details.

10

https://anonymous.4open.science/r/IDASH-MPCheavy-6D69/

Under review as submission to TMLR

All methods in Tab. 1 provide ϵ-DP guarantees. The differences among the methods are in the utility
(accuracy) and in the time taken to train a DP model. Our πLR +πDP approach achieved the highest accuracy
of all methods, while taking the longest time to complete. Indeed, the runtime for the πLR +πDP approach is
orders of magnitude larger than the runtimes for the other methods. This is because the πLR +πDP approach
is the only method in Tab. 1 that uses MPC, while the other methods do not rely on cryptographic techniques.
Approach 2 was based on feature selection and training an ensemble of LR models on selected feature subsets,
while approach 4 was based on training a decision tree in a DP manner; these approaches were not created
by us, and, to the best of our knowledge, their description has not been published in the open literature. In
addition to the method from Sec. 4 we submitted an MPC-free baseline method to iDASH2021. We describe
this method, which corresponds to approach 3 in Tab. 1, below as we also use it for further analysis and
comparison in Sec. 5.2.1.

Baseline Method. The baseline technique follows a FL setup with horizontally distributed data in which
each data holder locally trains a model on their data and adds noise to the model parameters at their end.
Each data holder then shares its noisy parameters with a central server who performs averaging of the noisy
model parameters and sends the result to the data holders. At the end of this process, each data holder holds
the aggregated trained model. In more detail, in the baseline technique, each data holder:

1. Applies L2 normalization to its own instances;

2. Trains a LR model on its normalized instances;12

3. Adds noise to the trained LR coefficients as per the output perturbation method (Chaudhuri et al.
(2011)).

After going through steps 1-3, the data holders can each publish their perturbed LR coefficients, which we
subsequently average to create a final model. Because steps 1–3 provide ϵ-DP (Chaudhuri et al. (2011)), and
since the datasets do not have common entries (a case of parallel composition), the overall solution provides
ϵ-DP due to the post-processing property of differential privacy.

5.2 Utility

5.2.1 Horizontally and Vertically Distributed Data

For the results in Tab. 2 we distributed the data evenly among different numbers of data holders, both
horizontally and vertically. We assume that the record alignment for vertical partitioning is already done
using privacy preserving techniques as in Mohassel et al. (2020) prior to the start of the training. The baseline
technique is only applicable when the data is horizontally distributed, while the πLR +πDP approach works
in the vertically distributed scenario as well. Even in the horizontally distributed scenario, the πLR +πDP
approach is preferable because it yields a higher accuracy, which becomes even more evident when the data
is distributed among multiple data holders. The accuracy of the πLR +πDP approach is independent of the
number of data holders and the partitioning of data, as regardless of the partitioning, the computing servers
still train a model over all the training data with πLR and subsequently add noise once to the globally trained
model coefficients with πDP, effectively simulating the global DP paradigm but without the involvement of a
trusted curator. The baseline technique on the other hand adheres to the local DP paradigm in which each
data holder adds noise to its local model, resulting in more noise in the final aggregated model. Furthermore,
the utility of the πLR +πDP approach is independent of the number of instances and/or features owned by
each individual data holder, while the accuracy of the baseline technique degrades when individual data
holders do not have sufficient instances to train local models that generalize well. This is especially relevant
in biomedical applications that are characterized by high-dimensional datasets with relatively few instances.

5.2.2 Effect of Privacy Budget ϵ on Accuracy of Models Trained with πLR +πDP

Table 3 shows the effect of the privacy budget ϵ on the accuracy of models trained with the πLR +πDP
approach. The accuracy is measured over one of the folds of the train and test data from Sec. 5.2.1. The

12We used the LR implementation from sklearn for this with penalty=‘l2’ (L2 regularization) and C = 1 (the inverse of Λ).

11

Under review as submission to TMLR

Table 2: 5-fold CV accuracy results for varying number of data holders for ϵ-DP with ϵ = 1.

horizontally distributed vertically distributed
data holders baseline πLR +πDP baseline πLR +πDP

2 85.79% 87.98% − 87.98%
4 83.36% 87.98% − 87.98%
8 76.92% 87.98% − 87.98%

training is done for 1000 epochs and Λ = 1. The results are as expected, with a larger privacy budget –
i.e. less stringent privacy requirements – yielding more accurate models. The observation that the accuracy
for ϵ = 1 is at par with the accuracy for ϵ =INF (i.e. when no noise is added) is explained by the fact that
adding some noise can positively impact the generalization capability of the model.

Table 3: Accuracy of models trained with πLR +πDP for different values of ϵ

ϵ Accuracy

0.001 37.72%
0.01 50.58%
0.1 62.57%
0.5 72.51%
1 87.42%
INF 86.84%

5.2.3 Comparison with Other Perturbation Techniques

For the πLR +πDP approach (Sec. 4) and the baseline technique (Sec. 5.1), we adopted the sensitivity method
that perturbs the model coefficients, i.e. the output perturbation method that was proposed as Algorithm 1
in Chaudhuri et al. (2011). In Tab. 4 we compare the output perturbation technique with other perturbation
techniques, namely objective perturbation and gradient perturbation. For objective perturbation, we ran
experiments with Algorithm 2 from Chaudhuri et al. (2011) that adds noise to the objective function itself.13

For gradient perturbation, we ran experiments with DP-SGD (Abadi et al. (2016)) that adds noise to the
gradients.14 For DP-SGD, we computed the required noise multiplier for given ϵ = 1, δ = 1e− 5, batch size
of 1, 300 epochs, and the number of training examples each data holder holds. This was then passed as an
argument to DP-SDG optimizer along with a clipping threshold of 1, learning rate of 0.1, and number of
micro batches equal to the batch size.

In the baseline-OP method in Tab. 4, each data holder trains a differentially private LR model locally by
perturbing the objective function. The resultant coefficients of the local models are then averaged, resulting
in a final DP model. The baseline-DPSGD method is entirely similar, but in this method each data
holder trains a differentially private LR model by perturbing the gradients learned during training, i.e. with
DP-SGD.

As can be seen in Tab. 4, contrary to what one would expect based on the analysis in Chaudhuri et al. (2011),
the accuracy results with this objective function perturbation method were not good on the iDASH2021 data,
and far worse than those with the output perturbation method. We attribute this to the high-dimensional
nature of the iDASH2021 data (many features and relatively few instances) which is very different from the
datasets used for evaluation in Chaudhuri et al. (2011). Similarly, the LR models trained with DP-SGD on
the iDASH2021 data are significantly less accurate than those protected with output perturbation.

13We implemented this approach using IBM’s Diffprivlib library
https://github.com/IBM/differential-privacy-library.

14We implemented this approach using TF-Privacy
https://www.tensorflow.org/responsible_ai/privacy/.

12

https://github.com/IBM/differential-privacy-library
https://www.tensorflow.org/responsible_ai/privacy/

Under review as submission to TMLR

Table 4: Accuracy results obtained with 5-fold CV for ϵ-DP with ϵ = 1 and 2 data holders

Perturbation Accuracy

Our Approach output πLR +πDP (Sec. 4) 87.98%
baseline (Sec. 5.1) 85.79%

Other Approaches objective baseline-OP 49.40%
gradient baseline-DPSGD 69.77%

Table 5: Accuracy results for output perturbation obtained with 5-fold CV for ϵ-DP with ϵ = 1 on horizontally
partitioned data

Data Holders Privacy Technique Accuracy

our approach (πLR +πDP, Sec. 4) 87.98%

2 Pathak et al. (2010) 86.43%
Jayaraman et al. (2018) - MPC Grad P 86.42%

our approach (πLR +πDP, Sec. 4) 87.98%

4 Pathak et al. (2010) 85.02%
Jayaraman et al. (2018) - MPC Grad P 85.10%

our approach (πLR +πDP, Sec. 4) 87.98%

8 Pathak et al. (2010) 84.10%
Jayaraman et al. (2018) - MPC Grad P 84.24%

5.2.4 Comparison with Other Methods on Horizontally Partitioned Data

We evaluate our MPC+DP approach and compare against existing literature (Pathak et al. (2010) and
Jayaraman et al. (2018)) that adopts a combination of PETs to train LR models and provide DP guarantees
with the output perturbation technique.15 The main distinction with our method, is that – similar as in
the Baseline method we adopted in Sec. 5 – these existing approaches let each data holder train a model
locally and then add noise to the averaged model parameters using MPC+DP techniques. Because each data
holder is required to train a model locally, these existing methods only work in scenarios where the data is
horizontally partitioned, unlike our method which is suitable for vertically partitioned scenarios as well. We
also note that the amount of noise added by each technique is different.

For the results in Tab. 5 we distributed the data evenly among different numbers of data holders, in a
horizontal manner. We report 5-fold CV accuracy results averaged for 100 runs of noise generation mechanism
to consider the randomness in the noise generation. We observe that for 2 data holders, all the techniques
have close performance in terms of accuracy. Similar as for the Baseline method in Sec. 5, the accuracy of
the models trained by existing methods drops with an increase in the number of data holders. This may
be because in existing approach, LR models are trained locally by the data holders, while our approach
benefits from training an LR model on the combined data and learns a more generalized model. Moreover,
our techniques are independent of how the data is distributed among data holders, unlike the methods in
Tab. 5 that work only for horizontally distributed data.

5.3 Computational Efficiency

As Tab. 6 shows, the number of computing servers, the corruption threshold, and respective MPC schemes
do have a substantial effect on the training time. The experiments for Tab. 6 were run with the same
training data as in Tab. 1 on co-located F32s V2 Azure virtual machines each of which contains 32 cores, 64
GiB of memory, and network bandwidth of upto 14 Gb/s. Every computing party ran on a separate VM
instance (connected with a Gigabit Ethernet network). The times reported include computing as well as

15https://github.com/bargavj/distributedMachineLearning

13

https://github.com/bargavj/distributedMachineLearning

Under review as submission to TMLR

Table 6: Runtimes of πLR +πDP for different number r of computing servers

r Security Horizontally distributed Vertically distributed MPC scheme
2 Passive 35687 sec 38056.92 sec Cramer et al. 2018
3 Passive 75.83 sec 454.83 sec Araki et al. 2016
3 Active 500.28 sec 1649.07 sec Dalskov et al.2021
4 Active 160.50 sec 838.02 sec Dalskov et al.2021

Table 7: Runtimes of πLR +πDP for different number r of computing servers

MPC scheme r Runtimes Comm. overhead

Goyal et al. (2021) (Passive)

3 954.91 sec 57922.70 MB
4 1022.16 sec 83667.90 MB
5 2725.58 sec 366679.00 MB
7 5064.27 sec 711226.33 MB

Cramer et al. (2000) & 3 21213.21 sec 5247186.89 MB
4 23244.34 sec 7248822.06 MB

Chida et al. (2018) (Active) 5 68176.24 sec 25728263.60 MB
7 131391.00 sec 70080327.38 MB

communication times. The training was run for 1000 epochs. with ϵ = 1, Λ = 1 and with edaBits for mixed
circuit computations.

In the horizontally distributed case, the data holders can L2-normalize their instances locally while in the
vertically partitioned case the computing servers need to run MPC protocol πNORM; this accounts for the
difference in runtime between the horizontal and vertical partitioning. As expected, the corruption threshold
has the most effect on the run time. Protocols that are secure for an honest majority of players (the protocols
presented in Araki et al. (2016), and Dalskov et al. (2021)) are much faster than protocols secure against a
dishonest majority (Cramer et al. (2018)). For the same corruption threshold, protocols secure against passive
adversaries are faster than protocols secure against active adversaries. The four party protocol proposed in
Dalskov et al. (2021) manages to obtain good run times for the case of active adversaries by further reducing
the corruption threshold to 25%, i.e. one player out of four can be corrupted by an adversary and the protocol
is still secure.

Our results show that MPC implementations for honest majority in the case of realistic sized datasets for
genetic studies (a few hundred patients, and a few thousand features) are practical. We can train such models
and add DP guarantees on top of MPC in less than 1.3 min for the case of honest majority protocols with
passive security. Even in the case of stronger adversarial models, the training can be finished in a few hours,
which is still practical for many applications where the increased accuracy payoff is valuable, especially with
data that is distributed across multiple holders (Tab. 2).

5.3.1 Scalability of πLR+πDP with Number of Computing Servers

The number of data holders in our solution is distinct from the number of computing servers. Our solution is
general and works with any number of computing servers as well as data holders. In Table 7, we report the
runtimes and communication overheads to train a LR model with a varying number of computing servers r
ranging from 3 to 7. To have a comparison of runtimes and communication overhead for different values of r,
we use the same MPC scheme for each security setting. The chosen MPC schemes can be used with any
value of r > 2, and are different from the schemes that we use in Table 6 which were specific and efficient
schemes for the given value of r. It is due to this use of different schemes that we observe a huge difference

14

Under review as submission to TMLR

in runtimes when compared to the runtimes reported earlier. The schemes in Table 7 are run with secret
sharings in Zq where q is a prime number16 and with edaBits for mixed circuit computations.

The training was run on the complete training dataset from iDASH2021 consisting of 1713 training samples
and 1874 features for 1000 epochs with GD, ϵ = 1, and Λ = 1. The runtimes reported include computing as
well as communication times. The total amount of data sent by all the computing parties is shown in the last
column. The runtimes and the communication overhead increase with an increasing number of computing
servers. This is because each server now needs to communicate with a higher number of parties servers, and
the runtimes include communication times. Also, the active security settings take longer runtimes than their
passive counterparts for a given r. These results are in line with the literature in MPC. The communication
overhead in settings with a larger number of computing servers can be reduced with the use of a bulletin
board functionality that enables efficient communication among many servers who are simultaneously involved
in computations (Agarwal et al. (2019)).

5.4 Experiments on other datasets

We further evaluate our approach on the BC-TCGA and GSE2034 datasets of the iDASH 2019 competition.17

Both datasets contain gene expression data from breast cancer patients which are normal tissue/non-recurrence
samples (negative) or breast cancer tissue/recurrence tumor samples (positive) Xie et al. (2016). We perform
experiments with a 5-fold CV, where the training data is distributed between 2 data holders in each fold.

GSE2034 Each instance in this train dataset is characterized by 12,634 continuous input attributes and a
boolean target variable. There are 895 instances in total. In each iteration of the 5-fold CV, each data holder
owns 447-448 instances, 20% of which is held out for testing.

BC-TCGA Each instance in this train dataset is characterized by 17,814 continuous input attributes and
a boolean target variable. There are 1,875 instances in total. In each iteration of the 5-fold CV, each data
holder owns 937-938 instances, 20% of which are held out for testing.

The secure training is run for 20 epochs for the BC-TCGA dataset and 300 epochs for the GSE2034 dataset
with Λ = 1 and ϵ = 1. Table 8 shows accuracy results obtained with a 5-fold CV. To appreciate the inherent
difference in difficulty between the GSE2034 and the BC-TCGA classification tasks, as the first row of
results in Table 8 we include the accuracies obtained with a model trained in the central learning paradigm,
i.e. when all the training data resides with a single data holder, and no noise is added to the model coefficients,
i.e. ϵ =INF. The other rows correspond to the federated setup from Sec. 5 with 2 data holders. The results
are in line with the observation from Sec. 5 that the πLR +πDP approach provides higher utility.

Table 8: Accuracy averaged over 5-fold CV with Λ = 1

GSE2034 BC-TCGA

instances n 895 1,875
features d 12,634 17,814

central learning; 1 data holder 65.55% 98.28%
baseline (Sec. 5.1); 2 data holders 51.92% 91.37%
πLR+πDP (Sec. 4); 2 data holders 64.55% 95.69%

Runtime for πLR+πDP; passive 3PC 276.38 sec 57.30 sec

We additionally report the runtime to train the model using πLR +πDP for these datasets to illustrate the
variability in runtimes with respect to the number of training samples, epochs and a number of features in
the dataset. We see an increase in runtimes for per epoch when compared to the runtimes per epoch on
iDASH, which is attributed to a large number of features (about 10x of iDASH2021 for BC-TCGA and 7x for

16Defaults to None in MP-SPDZ and can be a maximum of bit length 256.
17http://www.humangenomeprivacy.org/2019/competition-tasks.html

15

http://www.humangenomeprivacy.org/2019/competition-tasks.html

Under review as submission to TMLR

GSE2034). The runtimes for other threat models will follow a similar trend. We see that for larger datasets
like these it is still practical to maintain the utility of the model while providing both input and output
privacy guarantees.

6 Conclusion

We proposed a modular approach to train privacy-preserving linear models in a federated setting. To this
end, we combined MPC and DP in a way that effectively offers the advantages of global DP but without the
involvement of a trusted curator, as this curator is simulated by an MPC protocol instead. Our approach
makes no assumptions about the data partitioning scenario, the number of computing parties or data holders,
or the security setting in which it is applied. On the basis of linearity, πLR is interchangeable with all linear
learners without requiring reevaluation of noise variance. Our solution based on this approach led to 1st place
in Track III of the iDASH 2021 Genome Privacy competition.

The trade-off between our MPC+DP approach that provides global DP and the baseline federated method
with local DP can be summarized as operating cost (or running time) versus model accuracy. We empirically
demonstrated the added utility of collaborative learning with MPC over the standard federated approach.
The effect is particularly apparent as the number of disjoint collaborators grows. We also note that the
baseline method as well as the existing methods that combine MPC with DP in FL, cannot be applied in
cases where data is vertically partitioned which is a commonly-found scenario in medicine and advertising. In
contrast, our MPC+DP method enables collaboration across a strictly larger space of applications.

Based on performance results, our protocol is extensible to larger datasets while remaining within a realistic
time span for model training. It could be further improved through custom protocol implementations or
the presence of a correlated randomness dealer in suitable scenarios. To further improve upon accuracy,
a probable research direction is to introduce MPC protocols for feature selection Li et al. (2021) in both
horizontal and vertical partitioning schemes.

Broader Impact Statement

Privacy-preserving machine learning is becoming increasingly important as organizations seek to leverage data
while adhering to strict privacy regulations. Our research contributes towards this by proposing a modular
and effective approach to collaborative training of ϵ-DP models in arbitrarily partitioned data scenarios.
Our research has impact in various domains, including healthcare, finance, and government analytics, where
sensitive data from multiple silos must be analyzed as a whole without direct access to raw records; and
where simple generalized linear models are effective and in use. While our method enhances privacy, it is
important to consider potential trade-offs such as computational overhead and reduced accuracy due to
DP, and potential attacks on implementations of DP. Users can replace the proposed protocols, as they are
modular in nature, with much more efficient sub-protocols if available and explore optimizing these trade-offs
to maximize the practical deployment.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Procedings of the 23rd ACM SIGSAC Conference on Computer
and Communications Security, pp. 308–318, 2016.

Mark Abspoel, Daniel Escudero, and Nicolaj Volgushev. Secure training of decision trees with continuous
attributes. Proceedings on Privacy Enhancing Technologies, (1):167–187, 2021.

Abbas Acar, Z Berkay Celik, Hidayet Aksu, A Selcuk Uluagac, and Patrick McDaniel. Achieving secure
and differentially private computations in multiparty settings. In IEEE Symposium on Privacy-Aware
Computing, pp. 49–59, 2017.

Samuel Adams, Chaitali Choudhary, Martine De Cock, Rafael Dowsley, David Melanson, Anderson CA
Nascimento, Davis Railsback, and Jianwei Shen. Privacy-preserving training of tree ensembles over
continuous data. Proceedings on Privacy Enhancing Technologies, (2):205–226, 2022.

16

Under review as submission to TMLR

Anisha Agarwal, Rafael Dowsley, Nicholas D. McKinney, Dongrui Wu, Chin-Teng Lin, Martine De Cock, and
Anderson C. A. Nascimento. Protecting privacy of users in brain-computer interface applications. IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 27(8):1546–1555, 2019.

Apple Differential Privacy Team. Learning with privacy at scale. Technical report, Apple Ma-
chine Learning Research, December 2017. URL https://machinelearning.apple.com/research/
learning-with-privacy-at-scale.

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-honest secure three-party
computation with an honest majority. In Proceedings of the 23rd ACM SIGSAC Conference on Computer
and Communications Security, pp. 805–817, 2016.

Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum (ed.),
Advances in Cryptology — CRYPTO ’91, pp. 420–432. Springer Berlin Heidelberg, 1992.

Jonas Böhler and Florian Kerschbaum. Secure multi-party computation of differentially private heavy hitters.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp.
2361–2377, 2021.

George E.P. Box and Mervin E. Muller. A note on the generation of random normal deviates. Annals of
Mathematical Statistics, 29(2):610–611, 1958.

David Byrd and Antigoni Polychroniadou. Differentially private secure multi-party computation for federated
learning in financial applications. In Proceedings of the first ACM international conference on AI in finance,
pp. 1–9, 2020.

R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13(1):
143–202, 2000.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer: Evaluating and
testing unintended memorization in neural networks. In 28th USENIX Security Symposium, pp. 267–284,
2019.

Andrés F Castro Torres and Aliakbar Akbaritabar. The use of linear models in quantitative research.
Quantitative Science Studies, 5(2):426–446, 2024.

O. Catrina and A. Saxena. Secure computation with fixed-point numbers. In 14th International Conference
on Financial Cryptography and Data Security, volume 6052 of Lecture Notes in Computer Science, pp.
35–50. Springer, 2010.

Melissa Chase, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, and Peter Rindal. Private collaborative
neural network learning. Cryptology ePrint Archive, 2017.

Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In Advances in Neural
Information Processing Systems, pp. 289–296, 2008.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical risk
minimization. Journal of Machine Learning Research, 12(3), 2011.

Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast
large-scale honest-majority mpc for malicious adversaries. In Annual International Cryptology Conference,
pp. 34–64. Springer, 2018.

Christopher A Choquette-Choo, Natalie Dullerud, Adam Dziedzic, Yunxiang Zhang, Somesh Jha, Nicolas
Papernot, and Xiao Wang. CaPC learning: Confidential and private collaborative learning. 2021.

Ronald Cramer, Ivan Damgård, and Ueli Maurer. General secure multi-party computation from any linear
secret-sharing scheme. In International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 316–334. Springer, 2000.

17

https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://machinelearning.apple.com/research/learning-with-privacy-at-scale

Under review as submission to TMLR

Ronald Cramer, Ivan Damgard, and Jesper Nielsen. Secure Multiparty Computation and Secret Sharing.
Cambridge University Press Print, New York, 2015.

Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping Xing. SPDZ2k : Efficient MPC
mod 2k for dishonest majority. In Annual International Cryptology Conference, pp. 769–798. Springer,
2018.

Anders Dalskov, Daniel Escudero, and Marcel Keller. Fantastic four: Honest-majority four-party secure
computation with malicious security. In 30th USENIX Security Symposium, 2021.

Sankha Das, Sayak Ray Chowdhury, Nishanth Chandran, Divya Gupta, Satya Lokam, and Rahul Sharma.
Communication efficient secure and private multi-party deep learning. Proceedings on Privacy Enhancing
Technologies, 2025.

Martine De Cock, Rafael Dowsley, Anderson C. A. Nascimento, Davis Railsback, Jianwei Shen, and Ariel
Todoki. High performance logistic regression for privacy-preserving genome analysis. BMC Medical
Genomics, 14(23), 2021.

Sebastiaan de Hoogh, Berry Schoenmakers, Ping Chen, and Harm op den Akker. Practical secure decision
tree learning in a teletreatment application. In Intern. Conf. on Financial Cryptography and Data Security,
pp. 179–194. Springer, 2014.

Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately. In Advances in
Neural Information Processing Systems, volume 30, pp. 3571–3580, 2017.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Improved primitives for
MPC over mixed arithmetic-binary circuits. In Annual International Cryptology Conference, pp. 823–852.
Springer, 2020.

D. Evans, V. Kolesnikov, and M. Rosulek. A pragmatic introduction to secure multi-party computation.
Foundations and Trends in Privacy and Security, 2(2-3):70–246, 2018.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 1322–1333, 2015.

Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner, Samee Zahur, and David
Evans. Privacy-preserving distributed linear regression on high-dimensional data. Proceedings on Privacy
Enhancing Technologies, 2017(4):345 – 364, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 249–256,
2010.

Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan Song. Atlas: efficient and
scalable mpc in the honest majority setting. In Annual International Cryptology Conference, pp. 244–274.
Springer, 2021.

Xiaolan Gu, Ming Li, and Li Xiong. PRECAD: privacy-preserving and robust federated learning via
crypto-aided differential privacy. arXiv preprint arXiv:2110.11578, 2021.

Chuan Guo, Awni Hannun, Brian Knott, Laurens van der Maaten, Mark Tygert, and Ruiyu Zhu. Secure
multiparty computations in floating-point arithmetic. arXiv:2001.03192, 2020.

Florian Hartmann and Peter Kairouz. Distributed differential privacy for federated learning. Tech-
nical report, Google Research, March 2023. URL https://blog.research.google/2023/03/
distributed-differential-privacy-for.html.

18

https://blog.research.google/2023/03/distributed-differential-privacy-for.html
https://blog.research.google/2023/03/distributed-differential-privacy-for.html

Under review as submission to TMLR

Ahsan Huda, Adam Castaño, Anindita Niyogi, Jennifer Schumacher, Michelle Stewart, Marianna Bruno,
Mo Hu, Faraz S Ahmad, Rahul C Deo, and Sanjiv J Shah. A machine learning model for identifying
patients at risk for wild-type transthyretin amyloid cardiomyopathy. Nature communications, 12(1):1–12,
2021.

Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. Distributed learning without distress:
privacy-preserving empirical risk minimization. In Advances in Neural Information Processing Systems 31,
pp. 6346–6357, 2018.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and trends® in machine learning, 14(1–2):1–210, 2021.

Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pp. 1575–1590, 2020.

Kristin Lauter. Private AI: Machine learning on encrypted data. In Recent advances in industrial and applied
mathematics, pp. 97–113. Springer, 2022.

Xiling Li, Rafael Dowsley, and Martine De Cock. Privacy-preserving feature selection with secure multiparty
computation. In International Conference on Machine Learning, pp. 6326–6336. PMLR, 2021.

Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Proceedings of the 20th Annual
International Cryptology Conference on Advances in Cryptology, pp. 36–54, 2000.

Samuel Maddock, Graham Cormode, and Carsten Maple. Flaim: Aim-based synthetic data generation in the
federated setting. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 2165–2176, 2024.

Ilya Mironov. On significance of the least significant bits for differential privacy. In Proceedings of the 2012
ACM conference on Computer and communications security, pp. 650–661, 2012.

Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving machine learning.
In IEEE Symposium on Security and Privacy (SP), pp. 19–38, 2017.

Payman Mohassel, Peter Rindal, and Mike Rosulek. Fast database joins and psi for secret shared data.
In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp.
1271–1287, 2020.

Manas A Pathak, Shantanu Rane, and Bhiksha Raj. Multiparty differential privacy via aggregation of locally
trained classifiers. In Advances in Neural Information Processing Systems 23, pp. 1876–1884, 2010.

Sikha Pentyala, Mayana Pereira, and Martine De Cock. CaPS: collaborative and private synthetic data
generation from distributed sources. In 41st International Conference on Machine Learning (ICML), pp.
40397 – 40413, 2024.

Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H Brendan McMahan,
Sergei Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta. How to dp-fy ml: A practical guide to
machine learning with differential privacy. Journal of Artificial Intelligence Research, 77:1113–1201, 2023.

Eusebio Gómez Sánchez-Manzano, Miguel Angel Gomez-Villegas, and Juan-Miguel Marín-Diazaraque. A
matrix variate generalization of the power exponential family of distributions. Communications in Statistics-
Theory and Methods, 31(12):2167–2182, 2002.

Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learning models that remember too
much. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 587–601, 2017.

Razane Tajeddine, Joonas Jälkö, Samuel Kaski, and Antti Honkela. Privacy-preserving data sharing on
vertically partitioned data. arXiv preprint arXiv:2010.09293, 2020.

19

Under review as submission to TMLR

The OpenDP Team. The OpenDP White Paper. Technical report, Harvard University Privacy Tools Project,
May 2020. Available at https://opendp.org/.

Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine learning
models via prediction APIs. In 25th USENIX Security Symposium, pp. 601–618, 2016.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. A
hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th ACM Workshop on
Artificial Intelligence and Security, pp. 1–11, 2019.

Jelle Vos, Sikha Pentyala, Steven Golob, Ricardo Maia, Dean Kelley, Zekeriya Erkin, Martine De Cock, and
Anderson Nascimento. Privacy-preserving membership queries for federated anomaly detection. Proceedings
on Privacy Enhancing Technologies, 3:186–201, 2024.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-party secure computation for neural
network training. Proceedings on Privacy Enhancing Technologies, (3):26–49, 2019.

Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. DP-cryptography: marrying differential
privacy and cryptography in emerging applications. Communications of the ACM, 64(2):84–93, 2021.

Jiabo Wang, Elmo Xuyun Huang, Pu Duan, Huaxiong Wang, and Kwok-Yan Lam. PSA: private set alignment
for secure and collaborative analytics on large-scale data. arXiv preprint arXiv:2410.04746, 2024.

Haozhe Xie, Jie Li, Qiaosheng Zhang, and Yadong Wang. Comparison among dimensionality reduction
techniques based on random projection for cancer classification. Computational Biology and Chemistry, 65:
165–172, 2016.

A Pseudocode

Pseudocode for πLR is presented in Prot. 4. πLR is based on an existing MPC protocol for training a LR with
gradient descent (Keller (2020)), which we extended in two ways to satisfy the conditions:

(C1) each input feature vector has an L2 norm of at most 1;
(C2) the LR model is trained using L2 regularization.

At the beginning of protocol πLR, the computing parties have secret shares of a set of labeled training examples.
To satisfy condition (C1), on Line 1–3 the computing parties first apply L2 normalization to the secret shares
of each training example by running protocol πNORM; pseudocode for πNORM is provided separately in Prot. 1
in the paper.

The computing parties then begin secure training on the privately L2 normalized data from all the data
holders. The training begins with initializing the secret shares of the weights (coefficients) of the LR model
using Glorot uniform initializer (Glorot & Bengio (2010)). To this end, the computing parties execute protocol
πINIT on Line 4. The training is carried out for niter number of iterations (epochs), which is a public constant
agreed upon by all computing parties along with the learning rate α, the regularization penalty Λ, and the
momentum C. In each epoch, the MP-SPDZ module πFWD for a secure forward pass is called on Line 6,
followed by the MP-SPDZ module πBKWD for a backward pass on Line 7. The secret shares of the weights
are then updated for every epoch using the MP-SPDZ module for updating the weights. We modified this
module to satisfy (C2) with L2 regularization as per Line 8 in Prot. 4.

B Implementation of DP in MPC Protocols

It is well documented that implementing DP mechanisms using floating-point arithmetic can lead to catas-
trophic privacy compromises Mironov (2012). The most privacy-conscious choice, taken, for instance, by
the OpenDP project18 is to use fixed-point and integer arithmetic whenever possible. Our MPC protocols

18https://opendp.org/

20

https://opendp.org/
https://opendp.org/

Under review as submission to TMLR

Protocol 4: πLR for secure logistic regression training
Input : A set S = {([[x]], [[t]])} of secret-shared training examples, each consisting of a secret-shared

input feature vector x of length m and a secret shared label t; learning rate α; regularization
penalty Λ; momentum C; number of iterations niter.

Output : A secret-shared vector [[w]] of weights wi that minimize the sum of squared errors over the
training data

1 for training examples ([[x]], [[t]]) in S do
2 [[x]]← πNORM([[x]], m)
3 end
4 [[w]]← πINIT ▷ MP-SPDZ module for Glorot uniform initializer
5 for i = 1 to niter do
6 Run πFWD ▷ MP-SPDZ module for forward pass
7 Run πBKWD ▷ MP-SPDZ module for backward pass
8 Run πUPDATE ▷ Modified MP-SPDZ module for weight updates with the modified update rule for

computing ∆w: [[∆w]]← C[[∆w]]− α[[∆w]]− Λα[[w]]
9 end

10 return [[w]]

operate on fixed-point notation thus following the above paradigm. The accuracy of the model is another
point where the precision of weights could affect the overall result. Keeping this in mind, we used 32 bits of
precision, which is more than sufficient to ensure the correct behavior of the training procedure.

We would like to stress that the finite precision issue is inherent to any implementation of DP on a digital
computer – it is not specific to our work on DP implemented by MPC protocols. DP theory was created, for
the most part, based on continuous distributions. However, all the practical libraries implement DP using
finite precision arithmetic. That includes, for example, all the implementations of DP-SGD (which is based on
the Gaussian mechanism). Das et al. (2025) adopt the discrete distributed Gaussian mechanism following the
properties of a Gaussian distribution. Proposing a discrete version of the multidmensional power exponential
distribution we use in this paper is research in itself. We further note that our proposed approach is modular
in nature and πGSS can be replaced by the appropriate sampling protocols for discrete distributions.

It is legitimate to wonder if security guarantees break down in the case when continuous DP mechanisms are
implemented on digital computers. However, that question, which has to be asked of all implementations of
DP mechanisms based on continuous distributions, is outside the scope of this paper.

21

	Introduction
	Preliminaries
	Differential Privacy
	Secure Multiparty Computation

	Related Work
	MPC/HE based Model Training
	DP and FL based Model Training
	Combinations of MPC and DP

	Method
	Overview
	Protocol LR for Model Training
	Protocol DP for Noise Generation

	Results
	iDASH Competition Results
	Utility
	Horizontally and Vertically Distributed Data
	Effect of Privacy Budget on Accuracy of Models Trained with LR +DP
	Comparison with Other Perturbation Techniques
	Comparison with Other Methods on Horizontally Partitioned Data

	Computational Efficiency
	Scalability of LR +DP with Number of Computing Servers

	Experiments on other datasets

	Conclusion
	Pseudocode
	Implementation of DP in MPC Protocols

