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Abstract—Machine learning (ML) training jobs are resource
intensive. High infrastructure costs of computing clusters encour-
age multi-tenancy in GPU resources. This invites a scheduling
problem in assigning multiple ML training jobs on a single
GPU while minimizing task interference. Our paper introduces a
clustering-based privacy-preserving job scheduler that minimizes
task interference without accessing sensitive user data. We
perform ML workload characterization, made available publicly
[1], and do exploratory data analysis to cluster ML workloads.
Consequently, we build a knowledge base of inter and intra-
cluster task interference to minimize task interference.

I. INTRODUCTION

Enterprise solutions encourage multi-tenancy [2]–[4] of

GPU resources for ML training jobs. In multi-tenancy, the

competitor job plays a significant role in the training time of

the concerned ML job as they compete for the same GPU

resources. For efficient scheduling of ML training jobs on

the same resources, existing schedulers for GPU sharing [5]

[6] does not address preserving user privacy. User-sensitive

model information can be defined as accessing sensitive hyper-

parameters like batch size, model architecture, and the number

of epochs to make scheduling decisions. Our paper proposes

a privacy-preserving job scheduler that does not access user-

sensitive information to make efficient scheduling decisions.

II. DESIGN METHODOLOGY

We perform workload characterization for five different ML

training jobs over 66 metrics like network and memory usage,

CPU and GPU utilization, and monitor several system statis-

tics. To preserve user privacy, we remove all user-sensitive

data like model architecture, epoch, batch size, the dataset

used, and the task ID. Next, for our two target variables,

maximum GPU utilization percent (MGUP) and maximum

GPU time spent accessing memory percent (MGMAP), we

evaluate their correlation to the other attributes through ex-

ploratory data analysis tools. Consequently, to bolster the

size of the dataset regarding the target variables and selected

attributes, we perform interpolation concerning the batch size.

The enlarged dataset is then fed into a clustering algorithm

to group the ML jobs. Fig. 1 shows the synthetic dataset

generation methodology.

For the clustered jobs, we perform extensive experiments to

determine the inter and intra-cluster task interference through

Fig. 1. Synthetic Data Generation Methodology

two metrics of Individual Slow Down (ISD) and Packing
Saving (PS). ISD is calculated as the percent of additional time

required to execute a job in parallel to its competitor task to

the time required for it to run individually in the GPU. PS
is calculated as the percent of time saved when two jobs run

concurrently to them executing sequentially. Based on the task

interference analysis for a set of unknown jobs, we propose

our scheduling algorithm that balances both PS and ISD.

III. EVALUATIONS

In this section, we discuss our evaluation results in detail.

• Data Collection: We characterize ML workload over

66 different attributes for five ML training jobs. The

five ML training jobs include image classification, image

segmentation, Reinforcement Learning (RL), Generative

Adversarial Networks (GAN), and Natural Language Pro-

cessing (NLP). In regards to image classification, work-

load characterization is done for MobileNet [7], ResNet-

50 [8], InceptionV3 [9], EfficientNetV2 [10] and NasNet-

mobile [11] on the GTSRB dataset [12]. For image

segmentation, characterization is done on the oxford-IIIT

pet dataset1. We implement the cart-pole environment

from OpenAI for characterizing a task from the RL

domain. We implemented standard Deep Convolutional

GAN architecture for MNIST [13] and five small BERT

[14] models for sentiment analysis on IMDB movie

review dataset for ML workload characterization in GAN

and NLP domain respectively. The 49 collected data

points featuring 66 attributes are released publicly [1].

• Feature Selection: We perform exploratory data analysis

to study the impact of the 66 collected attributes over our

two target variables, namely, (MGUP) and (MGMAP).

1https://www.robots.ox.ac.uk/vgg/data/pets/
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Fig. 2. Shows the relative ranking of all the attributes for our target
variable, MGUP. Mean ranks are represented by orange bars, with the standard
deviation of the attributes for all the feature selection techniques marked by
blue bars. With every new attribute, the red line, which refers to the mean
average rank, grows by one.

Fig. 3. Reconstruction error when synthetic data is used to re-generate ground
truth. Low error across several cases demonstrates successful reconstruction
of ground truth from generated synthetic data.

Correlation to the attributes is analyzed through Pear-

son’s correlation coefficient, while feature extraction is

done through random forests, ridge, and lasso regression.

Implementation details regarding the construction of the

decision trees and feature space exploration can be found

in our GitHub repo. [1] Feature extraction results for

MGMAP are presented in Fig. 2.

• Synthetic Data Generation: Various interpolation tech-

niques like linear, spline, krogh, cubic, barycentric, and

pchip concerning batch size are used to generate synthetic

data to increase the dataset size four times to its original.

To estimate the quality of the synthetic samples, we

used the synthetic samples as pseudo-ground truth to re-

construct the ground truth. The re-constructed error for

target variable MGMAP across the dataset is as shown in

Fig. 3.

• Task Interference Analysis through Clustering: We

perform K-means clustering on our two target variables,

alongside the selected feature, maximum GPU time spent

accessing memory percent (MGTSAMP). Computing the

distortion score through the elbow method yielded the

presence of 3 clusters, which are presented in Fig. 4. We

run extensive experiments based on the clustering results

to build a knowledge base of inter and intra-cluster task

interference regarding ISD and PS. The results are as

presented in Fig. 5.

• Scheduler Analysis: Based on our inference in terms

of ISD and PS for the inter and intra-cluster task in-

terference, we design our scheduling algorithm. From

Fig. 5, we infer that jobs from cluster 1, when executed

Fig. 4. Clustering results based on MGUP, MGMAP, and MGTSAMP

Fig. 5. Inter and Intra class task interference measured as PS percent on
the left, followed by ISD percent on the right. For fig. on the left, Intf. (0,1)
indicates the interference (PS) of job from cluster 1 when executed in parallel
with job from cluster 0, on NVIDIA v100 GPU. For fig. on the right, Intf.1
(0,1) indicates the interference (ISD) of job from cluster 1 when executed in
parallel with job from cluster 0, on NVIDIA v100 GPU.

in parallel with jobs from cluster 2, yield the best PS
while encountering the least ISD. For verification, we

scheduled 24 ML training jobs, with 8 jobs from each

cluster, randomly sampled from the five categories of

ML jobs. The detailed results of the specific jobs that

were scheduled can be found in our GitHub repo [1].

The scheduling results are demonstrated in Fig. 6.

Fig. 6. Comparison of our proposed scheduler to random and First Come
First Serve (FCFS) ones in terms of individual slowdown percent, and packing
saving percent.

IV. CONCLUSION

Our proposed scheduler handles the trade-off between ISD
and PS efficiently. We see a 1.19 percent gain in PS with 0.37

percent fall in the ISD compared to the random scheduler.

Similar trade-off is achieved in comparison to FCFS scheduler

also. To schedule unknown jobs, we can execute the jobs for

one epoch, and using the attribute values of MGUP, MGMAP,

and MGTSAMP, can assign it to a cluster. Based on our

knowledge base, we can then schedule the jobs that efficiently

to balance the trade-off between ISD and PS while addressing

user privacy.
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