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ABSTRACT

In the data selection problem, the objective is to choose a small, representative
subset of data that can be used to efficiently train a machine learning model. Sener
and Savarese [ICLR 2018] showed that given an embedding representation of the
data and certain underlying geometric assumptions, k-center clustering heuristics
can be employed to perform data selection. This notion was further explored by
Axiotis et. al. [ICML 2024], who proposed a data selection approach based on k-
means clustering and sensitivity sampling. However, these approaches all assume
the datasets intrinsically exhibit certain geometric properties that can be captured
by clustering, whereas a large number of datasets actually possess algebraic struc-
ture that are better utilized by low-rank approximation, feature selection, or princi-
pal component analysis. In this paper, we introduce a new data selection technique
based on low-rank approximation and residual sampling. Given an embedding
representation of the data with specific assumptions, which intuitively correspond
to algebraic or angular notions of Lipschitzness, we give a method that selects
roughly k& + 6% items whose average loss approximates the average loss of the
entire dataset, up to a relative (1 + £) error and an additive e®y, term, where Oy,
denotes the optimal rank-% cost for fitting the input embedding. We complement
our theoretical guarantees with empirical evaluations, showing that for a number
of important real-world datasets, our data selection approach outperforms previ-
ous strategies based on uniform sampling or sensitivity sampling.

1 INTRODUCTION

The unprecedented growth of both datasets and models has fueled the success of modern machine
learning, culminating in foundation models with remarkable capabilities across domains. Yet, this
success comes at a steep cost: training and fine-tuning these models requires immense computational
resources, extensive datasets, and long training cycles, rendering the process nearly impossible for
most academic groups and small-scale companies. Importantly, however, it is now well understood
that using the entire dataset is rarely necessary—carefully chosen subsets of data often suffice to
achieve nearly the same performance, with only a marginal increase in error. This observation raises
a fundamental and urgent question: how can we efficiently identify the most informative subset of
training data without compromising model quality?

While uniform sampling can often perform reasonably well in practice, it is inherently suboptimal
on complex, imbalanced, or redundant datasets. To better capture the utility of individual data points
for training, a large body of work on data selection and active learning aims to identify examples
that are most informative given their uniqueness, quality, or relationship to the model’s current
knowledge. Although no universally optimal active learning strategy exists (Dasgupta, 2004), many
heuristics have proven effective in practice (Settles, 2009; Ren et al., 2020). Active learning is
typically framed as an iterative process: a model is trained, then used to score and select a sub-
set of unlabeled points for annotation. State-of-the-art methods rely on uncertainty-based criteria,
such as margin or entropy, which prioritize points on which the model is least confident. However,
when applied at scale, such strategies face two key limitations. First, computing selection scores
requires evaluating the model on the entire dataset, which is computationally prohibitive for modern
large-scale architectures. Second, practical training pipelines, especially those involving CNNs or
foundation models, require acquiring and processing data in batches rather than one point at a time.



This induces correlations among selected samples, which substantially reduces the effectiveness of
uncertainty-based heuristics and limits their impact on training efficiency.

A major step forward was made by Sener & Savarese (2018), who reframed active learning as
a coreset selection problem. Their insight was that the difficulty of applying uncertainty-based
methods in modern training pipelines stems from two central obstacles:

(1) First, training must proceed in batches, not one example at a time. Effective batch acquisi-
tion requires both informativeness and diversity, yet diversity often conflicts with standard
objectives such as margin maximization, leading to redundant or near-duplicate selections.

(2) Second, computing uncertainty scores requires running inference over the entire dataset,
which is already prohibitive for CNNs and becomes intractable for current large-scale ar-
chitectures.

To overcome these barriers, Sener & Savarese (2018) proposed to directly seek a small subset of data
that serves as a coreset: training on the coreset should yield nearly the same model as training on the
full dataset. In formal terms, the gradients (or losses) averaged over the coreset should approximate
those of the entire dataset, so that optimization on the subset faithfully reproduces the effect of
optimization on all data. Since computing these gradients exactly is impractical, they introduced
a geometric relaxation: given an embedding representation of the data, one can approximate the
coreset by solving a variant of the classical k-center problem. This formulation is both natural and
widely applicable, as embeddings can be obtained from pretrained encoders such as BERT (Devlin
et al., 2019a), word2vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014), ResNet (He et al.,
2016), or CLIP (Radford et al., 2021). Empirically, this approach delivered state-of-the-art results in
image classification benchmarks, demonstrating that geometric coreset selection can substantially
outperform uncertainty-based heuristics in batch training scenarios.

Unfortunately, while embedding-based selection methods based on k-center and its k-clustering
variants can be effective in some settings, they often exhibit critical limitations in modern machine
learning applications. In high-dimensional datasets, clustering focuses on local groupings of points
and can fail to capture the dominant directions of variance, meaning that selected subsets may miss
the most informative components of the data. Low-rank approximation methods, by contrast, ex-
plicitly aim to preserve these dominant directions, ensuring that small subsets retain the essential
spectral structure of the dataset. This phenomenon has been recently observed in the context of
Low-Rank Adaptation (LoRA) (Hu et al., 2022; Xu et al., 2024; Wu et al., 2024; Li et al., 2024),
where low-rank updates capture the most important components of the parameter space and enable
efficient adaptation, whereas naive clustering of embeddings may overlook key directions. These
observations suggest that, while clustering retains value in some cases, low-rank-based selection
can provide a more reliable foundation for data-efficient training on large-scale models. Indeed,
for many foundational tasks in data analysis and machine learning, the central loss function can be
expressed as a low-rank approximation objective. Examples include principal component analysis
(PCA), matrix completion, and dimensionality reduction.

2 METHODOLOGY AND CONTRIBUTIONS

Fine-tuning a Large Language Model (LLM) for a specialized task, such as translation, can be
extremely costly when using the entire dataset, even if ample data is available. In practice, it is
often preferable to select a small subset of points that preserves the essential structure of the data
while still allowing the model to achieve high performance. Directly computing data importance,
for example through model-based loss or margin scores, is typically impractical because it requires
evaluating every data point with the full LLM, which is computationally expensive.

In this work, we propose a framework for data selection under low-rank losses that addresses
this challenge by combining accurate but costly scores on a small fraction of the data with fast-
to-compute embeddings or sketches that capture the dominant directions of the dataset. Surpris-
ingly, simple embeddings derived from pre-trained models, such as BERT (Devlin et al., 2019a) or
word2vec (Mikolov et al., 2013), are often sufficient to approximate the low-rank structure relevant
for selecting informative points, even for much larger target models. We construct a low-rank sketch
of the dataset to estimate leverage scores, which informally quantify the importance of each point
with respect to the orthogonal space of the sketch, and then sample rows proportionally to these



scores. This ensures that the selected subset reflects the main directions of variance, rather than
merely promoting diversity as in clustering-based coresets.

By focusing on preserving the dominant spectral components, this framework offers a robust and ef-
ficient alternative to both naive subsampling and clustering-based data selection in high-dimensional
and large-scale settings. Beyond the theoretical guarantees, the approach is simple, scalable, and
broadly applicable. We demonstrate its effectiveness empirically on both a standard tabular dataset
and challenging Llama3-8B (Dubey et al., 2024) fine-tuning on three tasks, outperforming the accu-
racy of existing baselines.

To derive theoretical guarantees for our low-rank sampling framework, we assume the follow-
ing smoothness condition on the loss function ¢ and the low-dimensional factor V. Let V =
span{vy, ..., v} be a k-dimensional subspace, for instance corresponding to the top singular vec-
tors, principal components, or basis directions from a low-rank factorization. For any point y € R,
decompose

y=oqvr +- -+ agop+r(y), r(y) = Projy.(y),

where ; = (y,v;) and r(y) is the component orthogonal to V, i.e., the projection of y onto VL.
Let v(y) = Projy, (y) = aqv1 + - -+ + g,

Assumption 2.1. We assume there exist constants \,~y > 0 such that

k

[€(y) — L) < Alr@)l3. 16(o(y)) = (afb(vr) + -+ agblon)| < 7 Y laf — 1] £(vy).
i=1

Intuitively, this condition decomposes the loss at y into two components: a weighted sum of the
losses along each basis direction v;, with weights o?, and a penalty proportional to the squared
norm of the component orthogonal to V, ||r(y)]|3.

These assumptions are natural in many machine learning settings. For example, in low-rank re-
gression, PCA, or matrix completion, the dominant directions of the data capture most of the vari-
ance, while deviations along the orthogonal directions contribute minimally to the loss. In LLM
fine-tuning or embedding-based models, top singular vectors often align with the most informative
components, and residual directions carry less signal. Similar behavior is observed in low-rank
adaptation techniques such as LoRA (Hu et al., 2022; Xu et al., 2024; Wu et al., 2024; Li et al.,
2024), where trainable low-rank matrices capture the key directions in the parameter space. This
indicates that many real-world datasets are approximately low-rank, making these assumptions a
reasonable abstraction for constructing coresets and selecting informative data efficiently. Then our
main theorem is as follows:

Theorem 2.2. [Coreset Guarantee for Loss Approximation] Let D be a dataset of n points with an
embedding E, and suppose the loss function ¢ satisfies Assumption 2.1 with constants v, \. Let

®e(D) = min 1D — Dy
rankk(Dk)Sk:

denote the best rank-k approximation cost of D. Then there exists a randomized algorithm that con-
structs a weighted subset S C D of size s = O ( E%) with weights w(x) such that, with probability
at least 0.9,

> la) =Y w(x) )

xeD zeS

< e (Z f(l’)+7||D||fw+7k‘|D|max£+2>\cI>k(D)> .
zeD

Equivalently, the weighted average loss on S is within a (1 & €) factor of the true average loss, up
to an additive term proportional to Oy (D) /n.

Theorem 2.2 formalizes the intuition that a small, carefully selected subset of data can effectively
represent the loss of the entire dataset under low-rank structure assumptions. The theorem guaran-
tees that a weighted subset S of size O (E%) suffices to approximate the total loss over D within a
factor of (1 &+ ¢), up to an additive term proportional to @ (D), the optimal rank-k approximation
error. The additive error in the theorem depends on ®; (D), the optimal low-rank approximation
error. Datasets that are nearly low-rank yield smaller ®; (D), and hence the coreset more accurately



preserves the total loss. This also indicates a tradeoff analogous to clustering: if the data con-
tains significant outliers or high-rank noise, the bound increases, reflecting the inherent difficulty
of representing such datasets with few points. Unlike clustering-based methods, however, the low-
rank approach explicitly targets directions of high variance and information content, making it more
robust in high-dimensional or unbalanced settings. Practically, this result implies that training or
fine-tuning models on S incurs minimal loss in accuracy while substantially reducing computational
cost. Our experiments show that using subsets constructed via Theorem 2.2 achieves competitive or
superior performance compared to existing uniform or sensitivity sampling-based selection meth-
ods, providing a new practical sampling strategy for active regression (Chen & Price, 2019; Chen &
Derezinski, 2021; Parulekar et al., 2021; Musco et al., 2022; Woodruff & Yasuda, 2023).

3 PROBLEM DEFINITION

3.1 BATCH DATA SELECTION AND L0OSS DECOMPOSITION

We formally define the batch data selection problem in the context of low-rank losses. Let D =
{(zi,v:)}—, be a dataset sampled i.i.d. from a distribution P over X x ). Given a sample = and
its label g, an algorithm A trains a model to produce a predicted label 7, and incurs a loss based on
the discrepancy between y and §. We denote this loss by ¢(x, y;.A4). The goal is to select a subset
S C D of size at most s and associate a weight function w : S — R™ such that

ZZ i, yi A Z ( )£<xaya-’4>

zeS

is minimized, while keeping the number of expensive model evaluations (i.e., queries to ) small.
Observe that the expected loss of .4 can be decomposed as

n

1
]E(z,y)~7>£(1'»y§d4) < ‘E(z,y)NPE(xvyvA) - E Zé(xivyu ‘ |C| Z Ij7y]7
=1

Generalization Error Training Error
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Coreset Loss

where S = {(Z;,7;)},jec is a coreset constructed from S via some algorithm A. This decom-
position clarifies the sources of error in batch selection: the generalization error measures the gap
between empirical and population loss, the training error captures how well the model fits the se-
lected coreset, and the coreset loss quantifies how faithfully the coreset approximates the full dataset.
Our low-rank sampling strategy explicitly targets minimizing the coreset loss while requiring only a
small number of expensive evaluations of ¢, ensuring efficient and effective model training.

We remark that like Axiotis et al. (2024), our formulation of data selection allows for weighted
sampling, where each selected point can carry an individual weight w(x), rather than assuming uni-
form weights like Sener & Savarese (2018). This is natural in the low-rank setting, where sampling
probabilities derived from leverage scores or spectral sensitivities inherently produce non-uniform
contributions to the coreset. Furthermore, rather than focusing on the loss after retraining the model
on the subset, we consider the current model loss ¢(x, y; A). Intuitively, if a subset S approximates
the loss of the full dataset well under the current model, it contains representative points that capture
the dominant directions of the data. This allows subsequent training on .S to closely approximate
training on the entire dataset without requiring assumptions on the label distribution or zero training
loss. By framing the problem in this way, we can provide strong theoretical guarantees for low-rank
coresets while maintaining flexibility and applicability to a wide range of models and loss functions.

3.2 ADDITIONAL PRELIMINARIES

Let V = span{vj,...,v;} C R? be a k-dimensional subspace with an orthonormal basis
{v1,...,vx}. For the standard inner product (z,v;) , the projection of a vector x € R? onto V'



is defined as
k

Proj(z,V) = Z(az,vi)vi.

i=1

Let A € R™*? be a data matrix. The singular value decomposition (SVD) of Ais A = UXV T,
where U € R™" and V' € R*9 are orthogonal matrices containing the left and right singular
vectors, respectively, and ¥ € R™*< is a diagonal matrix with non-negative singular values o; >
(o) Z e Z 0

For a target rank £ < min(n,d), the best rank-k approximation of A in the Frobenius norm is
obtained by truncating the SVD to the top k singular values Ay = UpXg VkT, where U, € R"*F,
Vi € R¥% and 33, € R**F contain the top k singular vectors and singular values. The Eckart-
Young-Mirsky theorem (Eckart & Young, 1936) guarantees that
A =arg min ||A- B|%,
B

eRnXd

rank(B)<k

i.e., Ay is the unique rank-% matrix that minimizes the squared Frobenius norm of the approximation
error. The optimal cost is often denoted by

min(n,d)
®u(4):= min [A-Bli= > o
rank(B)<k i=k+1

This low-rank approximation captures the most significant directions of variance in the data, and
forms the foundation for coresets and data selection under low-rank losses.

3.3 ALGORITHM: SENSITIVITY SAMPLING FOR LOW-RANK L0OSS APPROXIMATION

To efficiently construct the low-rank approximation coreset, we propose an algorithm that leverages
sensitivity sampling based on the low-rank structure of D. Instead of clustering, we use low-rank
approximation techniques (e.g., via singular value decomposition) to compute importance scores
for data points. From the above assumptions, we show that a carefully selected small subset of
data, constructed via sensitivity sampling based on low-rank structure provides a provably accurate
approximation of the overall loss. The proof of Theorem 2.2 leverages the low-rank structure of
the dataset to construct an importance-weighted coreset. The key idea is to decompose each data
point z into two components: its projection v(x) onto a low-rank subspace V, and its residual r(z)
orthogonal to V. The Lipschitz-like and basis decomposition assumptions ensure that the loss £(x)
can be tightly approximated by the contributions along the basis directions plus a small penalty for
the residual. Intuitively, this means that the dominant directions of variance capture most of the loss,
while the orthogonal directions contribute only a limited, controllable amount.

Using this decomposition, the algorithm defines a sensitivity score for each point, reflecting how
much it contributes to the total loss relative to its projection and residual. Sampling points propor-
tionally to these scores ensures that high-impact points are more likely to be included in the coreset.
By weighting the sampled points appropriately, the resulting estimator becomes unbiased. A stan-
dard concentration inequality is then used to bound the deviation of the weighted sum from the total
loss, giving the high-probability guarantee. Overall, the proof formalizes the intuition that a small,
carefully weighted subset of points suffices to approximate the loss of the entire dataset, with an ad-
ditive term proportional to the optimal rank-% approximation error &5 (D). We defer the full proof
of Theorem 2.2 to Appendix B.

4 REAL-WORLD DATASET EXPERIMENTS

4.1 CREDIT CARD DATASET

We evaluate on the Default of Credit Card Clients dataset (Yeh, 2016; Yeh & Lien, 2009), which
contains 30 000 records described by 23 attributes, including six months of previous bill statements,
repayment statuses, credit limits and demographic variables. The binary label represents default on



Algorithm 1 Sensitivity Sampling for Low-Rank Loss Approximation

Input: Dataset D = {x1,...,x,}; target rank k; error parameter ¢ > 0; Constants ), corre-
sponding to Assumption 2.1.
Output: A weighted subset .S C D of size s that approximates the total loss.
1: Compute a rank-k approximation V' of D (e.g., via SVD) and let vy, . .., vy be a basis for V
2: For each point z € D, compute the residual vector

r(z) < z —Proj(z,V).

w

Let Proj(z, V) = ajv1 + ... + agug
o(z) + (y+ D(adl(v1) + ... + oil(ve)) + vkE + Alr(2)]3,
5: Normalize the scores to obtain a probability distribution:
o(x)
p) = -
EyED U(y)

®

Set s [5_2 (2 + 2{)—‘
Sample s points from D independently according to {p(x)}sep-

for each sampled point = do
Set its weight w(x) < #m.

10: return S with associated weight function w(-).

Lo D

the next month’s payment (22% positive rate). This heterogeneous, imbalanced dataset is a standard
benchmark for subsampling and downstream classification.

Experimental setup. All coreset experiments begin by loading the full dataset, renaming the col-
umn default payment next month to Class, dropping the ID, and applying z-score nor-
malization to all 23 feature columns. We then compute the per-point squared norms ¢; = ||z;||3 and
the true sum Lo = 1, £;. We vary coreset size s € {1000, 2000, 3000, 4000, 5000} and repeat
100 independent trials of each method to average results.

For random sampling we draw s points with replacement uniformly at random and assign each
weight n/s. For clustering, we run a K-Means++ algorithm with maximum 300 iterations. We repeat
the clustering 10 times and pick the best results. on the standardized data, select the nearest training
point to each centroid, and weight it by its cluster size. For sensitivity sampling (Algorithm 1),
werun TruncatedSVD (n_components=5) from scikit-learn (Pedregosa et al., 2011) to obtain
projection vectors, compute projected-loss term (y+1) a®¢(v;), basis-loss term 7, k, £, and residual-
loss term A ||r;]|?> with parameters v = 5, A = 1, smoothing 10~%, normalize to probabilities p;,
sample s points with replacement according to p;, and assign weights 1/(s p;).

In the coreset-error experiment (Figure 1a) we measure error = |y ; wjllz;ll3 —  Ltruel, for
each trial and average across trials. In the downstream accuracy experiment (Figure 1b) we first fit
a full logistic regression model (solver=’'1liblinear’, class_.weight='balanced’,
max_iter=1000) on the training set to obtain per-point logistic losses for sensitivity sampling,
then for each s and each method train a logistic model with identical hyperparameters on the
weighted coreset and evaluate test accuracy on the held-out 20%.

Results and discussion. Figure 1a shows that sensitivity sampling results in the lowest approxima-
tion error at every sample size, reducing error by an order of magnitude relative to random sampling
and by roughly 50% compared to clustering at s = 1000, with all methods converging as s in-
creases. Figure |b then shows that logistic regression trained on sensitivity coresets attains up to
74% test accuracy at s = 5000, clustering coresets reach around 70%, and random sampling only
about 67%. These results confirm that the low-rank sensitivity algorithm not only tightens coreset-
error bounds but also translates into improved predictive performance on an imbalanced, real-world
financial dataset.
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Fig. 1: Comparison of Random, Clustering, and Low-Rank Sensitivity sampling on the Default
Credit Card dataset.

4.2 LLM FINE-TUNING EXPERIMENTS

4.2.1 SETTING

Models and datasets. We fine-tune the standard instruction-tuned Llama3-8B model (Dubey et al.,
2024) on three challenging downstream datasets: Grade-School Math (GSMS8k) (Cobbe et al., 2021)
with 7.47k training and 1.32k test samples, VIGGO (Juraska et al., 2019) with 5.1k training and
1.08k test samples, and SQL generation (Yu et al., 2018; Zhong et al., 2017) with 30k training and
1k test samples. This fine-tuning setup is widely used and has appeared in multiple research papers
(Ashkboos et al., 2025; Chen et al., 2025; Nikdan et al., 2024). These tasks are specifically selected
because the base models perform poorly on them, making them well-suited for fine-tuning. We
closely follow the evaluation strategy of Ashkboos et al. (2025).

Hyperparameters. We largely adopt the training hyperparameters from the HALO code base
(Ashkboos et al., 2025). For fine-tuning Llama3-8B-Instruct, we use the Adam optimizer for one
epoch with learning rates 6 x 1075, 4 x 1075, and 3 x 10~5 for GSM8k, ViGGO, and SQL, respec-
tively. All dataset samples are encoded using the standard and efficient BERT embeddings (Devlin
et al., 2019b). For clustering, we employ k-means++ and map each centroid to its closest sample
in the dataset. The clustering procedure is repeated 10 times, and the best results are retained. For
landmark selection in low-rank approximation, we employ leverage score sampling. By default, the
number of clusters/landmarks is set to 20% of the total number of available samples, following the
experimental setting of Axiotis et al. (2024). Regarding the parameters of Assumption 2.1, we tune
the \ value and pick the top performing one when applicable. Additionally, we set v = 0, and com-
pute « values in the embeddings space using Kernel Ridge Regression (KRR) with an RBF kernel
to find the linear combination of landmark loss values.

Baselines. We consider three baselines: 1) Full training: where the data selection is skipped and the
model is trained on the full dataset, 2) Uniform sampling, where the subset samples are selected uni-
formly at random, and 3) Clustering-based sensitivity sampling (Axiotis et al., 2024), which similar
to our method, uses sensitivity sampling, but relies on clustering rather than low-rank approximation.

4.2.2 RESULTS

Table 1: End-to-end fine-tuning validation accuracy on different baselines and datasets. BERT
embeddings are used and k is fixed to 25% of the dataset. SS stands for Sensitivity Sampling.

Dataset ‘ GSM8k ViGGO SQL Average

Sampling Ratio | 25% 125%  625% | 25% 125%  625% | 25% 125%  625% |25% 125% 6.25%

Uniform Sampling | 67.7£0.3 653+£0.2 63.5+£0.5|863+07 683+4.1 262+62|756+05 741+05 662+35|765 692 520
Clustering-based SS | 70.2 £0.1 66.6 +12 652+ 1.1|866+28 728+1.7 303+£3.9|756+05 73.7+05 683+3.6|77.5 710 546
Low-rank SS (ours) | 68.440.1 67.1+0.9 654+1.6|883+02 697452 288+1.1|761+0.2 744+02 704+1.0|77.6 704 549

Full (100%) | 69.3+0.5 | 94.0 + 0.3 | 79.9 £ 0.5 | 81.1




Main results. We begin by fine-tuning the Llama3-8B model on 25%, 12.5%, and 6.25% of each
dataset, selected using various sampling methods. Table | reports the validation accuracy of our
method compared to the baselines. The results show that our method consistently outperforms
uniform sampling. On average, it also achieves higher accuracy than clustering-based sensitivity
sampling (Axiotis et al., 2024) in most cases, demonstrating the benefit of leveraging low-rank
approximation for data selection.

Runtime discussion. The selection process for both cluster-based and low-rank sensitivity sampling
requires forward passes on k = 20% of the dataset. Assuming a backward pass is twice as expensive
as a forward pass (Kaplan et al., 2020), this corresponds to approximately 6.67% of the total runtime
for training on the full dataset.

Study on dataset structure. Here we analyze the training split of GSM8k to examine whether it
exhibits a more clustered or low-rank structure. To this end, across a range of k values, we perform
the following experiments:

1) We cluster the per-sample embeddings into % clusters and compute the average euclidean
distance from each sample to its closest cluster center, and compare this with the average
low-rank approximation error when representing the dataset using k basis samples.

11) We measure the average loss difference between each sample’s true loss and that of its
nearest cluster center, and compare it against the average difference between the true loss
and the low-rank approximated loss.

E —e— Cluster SS s —e— Cluster SS
e 2.07 Lowrank SS 5 030 Lowrank SS
£ S
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: :
L 4
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(a) Average projection/clustering error (b) Average loss approximation error

Fig. 2: Comparison of cluster-based and low-rank sensitivity sampling methods on the GSM8k
dataset using BERT embeddings. The values of k are expressed as percentages of the entire dataset.

Figure 2 shows that, in both cases, the dataset yields a smaller error under the low-rank approxi-
mation, supporting our claim that the dataset (GSMSKk in this case) is more aligned with a low-rank
structure than with a purely clustered one.

Average loss approximation quality. We next investigate how well the (weighted) subset selected
by each method approximates the average loss. We vary k and A, and in each case, select 2000 sam-
ples from the GSM8k dataset and measure the average loss approximation error (A(.S), Section 3.1).
Figure 3 presents heatmaps for both cluster-based and low-rank sensitivity sampling, showing that
low-rank consistently achieves lower error. An interesting observation in the clustering case is that,
at A = 1, increasing the number of clusters degrades the approximation quality. This occurs be-
cause a large A causes the sampling score to be dominated by the geometric distance 7, leading the
algorithm to prioritize outliers over points from high-loss regions. When the number of clusters
k increases, the data space is partitioned more finely, reducing r for inlier points and further bias-
ing the selection toward outliers. Consequently, the selected subset becomes less representative of
the overall distribution, resulting in poorer average loss approximation. A similar effect occurs for
low-rank sampling at A > 100, though these cases are omitted from the plots for clarity.

Alternative objective and embedding. Following Axiotis et al. (2024), we repeat our 12.5%
selection experiments on GSMSKk, but replace the loss with the norm of per-sample gradients in
Algorithm 1. Gradient norm serves as a proxy for capturing training dynamics (Axiotis et al., 2024).
Figure 4 compares cluster-based and low-rank sensitivity sampling across different A values. The
results indicate a slight advantage for low-rank sampling, which also appears more robust to the
choice of A, consistently outperforming uniform sampling for all values considered. Additionally,
the same figure presents results for replacing BERT embeddings (Devlin et al., 2019b) with GTR-
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Fig. 3: Average loss approximation error across different £ and A values. In each case, 2000
(weighted) samples are selected from the GSM8k dataset, and the average of 100 trials is reported.

base embeddings (Ni et al., 2021). The results indicate that our positive findings remain consistent
with these embeddings as well.
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Fig. 4: Comparison of alternative objective functions (loss vs. gradient norm) and embedding func-
tions, including BERT (Devlin et al., 2019b) and GTR (Ni et al., 2021), in terms of end-to-end
validation accuracy, across various A choices. Experiments are conducted on the GSM8k dataset
with k fixed at 20%, and the selected subset size fixed at 12.5% of the dataset.

5 CONCLUSION

In this work, we introduced a novel data selection framework based on low-rank approximation,
diverging from traditional clustering methods. We proposed a sensitivity sampling algorithm that
constructs a small, weighted coreset to approximate the loss of the full dataset. Our main theoretical
result, Theorem 2.2, provides a rigorous guarantee for this approach, with an error bound directly
tied to the dataset’s alignment with a low-rank structure.

Our empirical evaluations confirmed the practical benefits of this method. Across both a standard
tabular dataset and challenging Llama3-8B fine-tuning on three tasks, our low-rank approach out-
performed uniform sampling and clustering-based techniques in both approximation quality and
downstream model performance. Our work provides a scalable, theoretically-grounded, and ef-
fective solution for data-efficient training, offering a robust alternative by leveraging the low-rank
structure of data to identify the most informative samples.



REFERENCES

Saleh Ashkboos, Mahdi Nikdan, Soroush Tabesh, Roberto L. Castro, Torsten Hoefler, and Dan
Alistarh. Halo: Hadamard-assisted lower-precision optimization for llms. arXiv preprint
arXiv:2501.02625, 2025. 7

Kyriakos Axiotis, Vincent Cohen-Addad, Monika Henzinger, Sammy Jerome, Vahab Mirrokni,
David Saulpic, David Woodruff, and Michael Wunder. Data-efficient learning via clustering-
based sensitivity sampling: Foundation models and beyond. arXiv preprint arXiv:2402.17327,
2024. 4,7, 8

Klaus Brinker. Incorporating diversity in active learning with support vector machines. In Machine
Learning, Proceedings of the Twentieth International Conference (ICML), pp. 59-66, 2003. 14

Junyu Chen, Junzhuo Li, Zhen Peng, Wenjic Wang, Yuxiang Ren, Long Shi, and Xuming
Hu. Lota-qaf: Lossless ternary adaptation for quantization-aware fine-tuning. arXiv preprint
arXiv:2505.18724,2025. 77

Xue Chen and Michal Derezinski. Query complexity of least absolute deviation regression via robust
uniform convergence. In Conference on Learning Theory, COLT, pp. 1144-1179, 2021. 4

Xue Chen and Eric Price. Active regression via linear-sample sparsification. In Conference on
Learning Theory, COLT, pp. 663-695, 2019. 4

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021. 7

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information
Processing Systems 17 Neural Information Processing Systems, NIPS, pp. 337-344,2004. 1, 13

Begiim Demir, Claudio Persello, and Lorenzo Bruzzone. Batch-mode active-learning methods for
the interactive classification of remote sensing images. IEEE Trans. Geosci. Remote. Sens., 49
(3):1014-1031, 2011. 14

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT, pp. 4171-4186, 2019a. 2

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019b. 7, 8, 9

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024. 3,7

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211-218, 1936. 5

Ehsan Elhamifar, Guillermo Sapiro, Allen Y. Yang, and S. Shankar Sastry. A convex optimization
framework for active learning. In IEEE International Conference on Computer Vision, ICCV, pp.
209-216, 2013. 14

Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling using the
query by committee algorithm. Mach. Learn., 28(2-3):133-168, 1997. 14

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the 33nd International Conference on Machine
Learning, ICML, pp. 1050-1059, 2016. 14

10



Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In Proceedings of the 34th International Conference on Machine Learning, ICML, pp. 1183-1192,
2017. 14

Ravi Ganti and Alexander Gray. Upal: Unbiased pool based active learning. In Artificial Intelligence
and Statistics, pp. 422-431. PMLR, 2012. 13

Alon Gonen, Sivan Sabato, and Shai Shalev-Shwartz. Efficient active learning of halfspaces: an
aggressive approach. The Journal of Machine Learning Research, 14(1):2583-2615, 2013. 13

Yuhong Guo. Active instance sampling via matrix partition. In Advances in Neural Information
Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems, pp.
802-810, 2010. 14

Yuhong Guo and Dale Schuurmans. Discriminative batch mode active learning. In Advances in
Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference
on Neural Information Processing Systems, pp. 593—600, 2007. 14

Steve Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings of the
24th international conference on Machine learning, pp. 353-360, 2007. 13

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 770—
778, 2016. 2

Steven C. H. Hoi, Rong Jin, Jianke Zhu, and Michael R. Lyu. Batch mode active learning and its
application to medical image classification. In Machine Learning, Proceedings of the Twenty-
Third International Conference (ICML), pp. 417-424, 2006. 14

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Interna-
tional Conference on Learning Representations, ICLR, 2022. 2, 3

Ajay J. Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active learning for im-
age classification. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR) 2009, pp. 2372-2379, 2009. 14

Ajay J. Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class batch-mode active learning
for image classification. In IEEE International Conference on Robotics and Automation, ICRA,
pp. 1873-1878. IEEE, 2010. 14

Juraj Juraska, Kevin K Bowden, and Marilyn Walker. Viggo: A video game corpus for data-to-text
generation in open-domain conversation. arXiv preprint arXiv:1910.12129,2019. 7

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020. &

Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. Active learning with gaus-
sian processes for object categorization. In IEEE 11th International Conference on Computer
Vision, ICCV, pp. 1-8, 2007. 14

Xin Li and Yuhong Guo. Adaptive active learning for image classification. In 2013 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 859-866. IEEE Computer Society, 2013. 14

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In The Twelfth
International Conference on Learning Representations, 2024. 2, 3

David J. C. MacKay. Information-based objective functions for active data selection. Neural Com-
put., 4(4):590-604, 1992. 14

Andrew Kachites McCallum and Kamal Nigam. Employing EM and pool-based active learning for
text classification. In Proceedings of the Fifteenth International Conference on Machine Learning
(ICML),, pp. 350-358, 1998. 14

11



Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. In Ist International Conference on Learning Representations, ICLR,
Workshop Track Proceedings, 2013. 2

Cameron Musco, Christopher Musco, David P. Woodruff, and Taisuke Yasuda. Active linear regres-
sion for [, norms and beyond. In 63rd IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pp. 744-753, 2022. 4

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernandez Abrego, Ji Ma, Vincent Y Zhao,
Yi Luan, Keith B Hall, Ming-Wei Chang, et al. Large dual encoders are generalizable retrievers.
arXiv preprint arXiv:2112.07899, 2021. 9

Mahdi Nikdan, Soroush Tabesh, Elvir Crncevi¢, and Dan Alistarh. Rosa: Accurate parameter-
efficient fine-tuning via robust adaptation. arXiv preprint arXiv:2401.04679, 2024. ']

Aditya Parulekar, Advait Parulekar, and Eric Price. L1 regression with lewis weights subsampling.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM, pp. 49:1-49:21, 2021. 4

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011. 6

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP, pp. 1532-1543, 2014. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Proceed-
ings of the 38th International Conference on Machine Learning, ICML, pp. 8748-8763, 2021.
-

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin
Wang. A survey of deep active learning. CoRR, abs/2009.00236, 2020. URL https://arxiv.
org/abs/2009.00236. 1

Nicholas Roy and Andrew McCallum. Toward optimal active learning through sampling estima-
tion of error reduction. In Proceedings of the Eighteenth International Conference on Machine
Learning (ICML), pp. 441-448, 2001. 14

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In 6th International Conference on Learning Representations, ICLR, Conference Track
Proceedings, 2018. 2, 4

Burr Settles. Active learning literature survey. 2009. 1, 14

Fabian Stark, Caner Hazirbas, Rudolph Triebel, and Daniel Cremers. Captcha recognition with
active deep learning. In GCPR Workshop on New Challenges in Neural Computation, volume 10,
pp- 94,2015. 13

Simon Tong and Daphne Koller. Support vector machine active learning with applications to text
classification. J. Mach. Learn. Res., 2:45-66, 2001. 14

Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang Lin. Cost-effective active learning for
deep image classification. IEEE Trans. Circuits Syst. Video Technol., 27(12):2591-2600, 2017.
13

Zheng Wang and Jieping Ye. Querying discriminative and representative samples for batch mode
active learning. ACM Trans. Knowl. Discov. Data, 9(3):17:1-17:23, 2015. 14

12


https://arxiv.org/abs/2009.00236
https://arxiv.org/abs/2009.00236

Kai Wei, Rishabh K. Iyer, and Jeff A. Bilmes. Submodularity in data subset selection and active
learning. In Proceedings of the 32nd International Conference on Machine Learning, ICML, pp.
1954-1963, 2015. 14

David P. Woodruff and Taisuke Yasuda. New subset selection algorithms for low rank approxi-
mation: Offline and online. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC, pp. 1802-1813, 2023. 4

Bingyang Wu, Ruidong Zhu, Zili Zhang, Peng Sun, Xuanzhe Liu, and Xin Jin. {dLoRA}: Dy-
namically orchestrating requests and adapters for {LoRA}{LLM} serving. In /8th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 911-927, 2024.
2,3

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language

-

models. In The Twelfth International Conference on Learning Representations, ICLR, 2024. 2, 3

Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G. Hauptmann. Multi-class
active learning by uncertainty sampling with diversity maximization. Int. J. Comput. Vis., 113(2):
113-127, 2015. 14

I-Cheng Yeh. Default of credit card clients. UCI Machine Learning Repository, 2016. 5

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2):
2473-2480, 2009. 5

Kai Yu, Jinbo Bi, and Volker Tresp. Active learning via transductive experimental design. In
Machine Learning, Proceedings of the Twenty-Third International Conference (ICML 2006), pp.
1081-1088, 2006. 14

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.
7

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103,2017. 7

A RELATED WORKS

Deep learning and convolutional neural networks. Deep learning methods, particularly convolu-
tional neural networks (CNNs), have become the standard for large-scale image classification and
related tasks. CNNs are especially powerful because they exploit spatial structure in images through
convolutional filters, enabling models to learn hierarchical representations of features directly from
raw pixels. While these models achieve state-of-the-art performance, they typically require very
large labeled datasets to train effectively. This dependency on large-scale supervision motivates the
study of techniques that can reduce the labeling burden without sacrificing performance, such as
active learning and subset selection.

Active learning. A large body of work has examined the theoretical underpinnings of active learn-
ing. Classical results show that greedy selection is impossible in a fully agnostic setting (Dasgupta,
2004), yet refined analyses demonstrate stronger guarantees under assumptions such as realizabil-
ity (Gonen et al., 2013) or bounded disagreement coefficients Hanneke (2007). Other approaches
justify greedy strategies in the batch setting via importance sampling Ganti & Gray (2012). Al-
though these works provide rigorous guarantees, they do not address the large-scale deep learning
problems that motivate our study.

Complementing these theoretical contributions, several algorithms have been designed specifically
for CNNs. Wang et al. (2017) propose auto-labeling of confident predictions while querying un-
certain points, and Stark et al. (2015) develop a method tailored for CAPTCHA recognition. These
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CNN-oriented techniques succeed in narrow domains but do not scale to general-purpose image
classification tasks.

A different stream of research views active learning through the lens of optimization. Formulations
that balance uncertainty and diversity often cast the problem as a discrete program with convex
relaxations (Elhamifar et al., 2013; Yang et al., 2015; Guo, 2010), but these require n? variables
for n data points, making them impractical for large datasets. More specialized efforts adapt active
learning to k-nearest neighbors, naive Bayes, or logistic regression (Wei et al., 2015; Hoi et al., 2006;
Guo & Schuurmans, 2007; Yu et al., 2006). Within this optimization-oriented family, Demir et al.
(2011) propose a two-stage approach that first filters uncertain points and then enforces diversity.
Our method is closely related but is the first to be applied directly to CNNs. Indeed, the most similar
efforts are by Joshi et al. (2010) and Wang & Ye (2015): the former introduces a related optimization
problem without theory, while the latter minimizes maximum mean discrepancy. Neither is designed
or tested for CNNs, whereas our framework builds on these ideas by introducing the notion of core-
set loss, providing both a theoretical foundation and practical applicability to deep models.

Finally, classical acquisition strategies remain an influential part of the literature. Early surveys such
as Settles (2009) summarize information-theoretic approaches (MacKay, 1992), ensemble-based
methods (McCallum & Nigam, 1998; Freund et al., 1997), and uncertainty-driven heuristics (Tong &
Koller, 2001; Joshi et al., 2009; Li & Guo, 2013). In particular, uncertainty-based sampling focuses
on querying ambiguous points, using entropy (Joshi et al., 2009) or margin-based distances (Tong
& Koller, 2001; Brinker, 2003). Bayesian active learning has also been widely studied, traditionally
with Gaussian processes to estimate error reduction or predictive improvement (Roy & McCallum,
2001; Kapoor et al., 2007). While powerful in small-scale settings, these approaches do not scale
to modern CNNs. Recent work reinterprets dropout as approximate Bayesian inference (Gal &
Ghahramani, 2016), extending Bayesian methods to deep architectures, with follow-up experiments
on modest datasets (Gal et al., 2017). Our experiments, however, show that these methods remain
limited in batch settings and fail to scale effectively.

B MISSING PROOFS

Theorem 2.2. [Coreset Guarantee for Loss Approximation] Let D be a dataset of n points with an
embedding E, and suppose the loss function ¢ satisfies Assumption 2.1 with constants v, \. Let

(D)= min D= Delly
rankk(Dk)Sk

denote the best rank-k approximation cost of D. Then there exists a randomized algorithm that con-
structs a weighted subset S C D of size s = O (E%) with weights w(x) such that, with probability
at least 0.9,

D la) =Y w(z) ()

xeD zeS

<e (Z E(JJ)+’y||D||§r+fyk|D|max€+2)\<I>k(D)> G))

zeD

Equivalently, the weighted average loss on S is within a (1 & €) factor of the true average loss, up
to an additive term proportional to Oy (D) /n.

Proof. Let
L:= Z £(x)
reD

be the total loss over the dataset D, and define

®y(D) = mi D-V|3
D)= min | [
the best rank-k approximation error of D. For every point « € D, let v(x) = Proj(z, V') be the
projection of z onto the chosen low-rank approximation V' and let 7(z) = = — Proj(z, V') be the
orthogonal complement so that z = v(z) + r(x). By the Lipschitz condition (with constant \), we

have for every x € D:
|0(z) — £(v(@))| < X |Ir(@)]]3-
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Suppose we have v(z) = v + . .. + agvg. Then we also have
[e(0()) — (@26(00) + .. + ab(u))| < 7 (joF — 1éwr) + ... + |} — 1}e(wn))
where v(z) = ayv1 + ... + agvg. Hence by triangle inequality, we have
U(z) < (afl(vr) + ...+ aplvr)) + v (Jof — 1[f(v1) + ... + |ag — 1|€(vk)) + Allr(2)[|3

< (v+ D(0flvr) + .- + ail(vp)) + vk - max (vg) + Allr(2)|3
and
(a€(v1) + ... + ail(vr)) < 0(x) + (Jof = 1Je(v1) + ... + |ag — 1[é(vr)) + Allr ()3
< @) + (|23 + k) - max £(vx) + Allr(2)][3.

Let £ > maxy, ¢(v;). Then we next define the sensitivity score for each z € D as the following:
o(z) = (v + D(il(ve) + .. + aGl(v)) + ¥k + Allr(2)]13,
where v(z) = aqv1 + ... + agvg. Assign the sampling probability by normalizing these scores:
p(x) = #, where T := Z o(y).

yeD

We now select s independent samples (with replacement) from D according to p(x); define S =

{x1,...,xs} as the resulting multiset. For every sample x € S, define its weight as
1
w(x) =
@) sp(x)

Hence, the weighted loss estimator is

Through the linearity of expectation,

Eft(e)u()] = 3 pla) —n == 3 ta) =

xeD

so E[Z] = L; that is, the estimator is unbiased.

For a single sample, let

Then its second moment is

E[X? = Zp(w)( ) ) DI iu

= sp(x)

Substituting p(x) = o(x)/T, we get the following

EX? = 23 Ua)?
2 2 [+ D(@lw0) -+ a3lon) + AkE + @B

Since £(z) < (v + 1)(a2l(v1) + ... + ail(vg)) + vkE) + M|r(x)|)3, it follows that

0(z)?
(v + D(eil(vr) + ... + ajl(v)) + 7kE + Allr(2)[3

< {(z).

Thus,
T LT
E[X?] < ) Z l(z) = o
xeD
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Summing over all s samples, we have

- L
> EX7 < —.
i=1 s

Using the bound T' < L + (|| D||% + k|D|)¢ + AR, where
R:=) |Ir(@)]3,
z€D

we obtain ,
s L D||% + k|D AR
Sz < (LE20DIE + HDDE+AR)”

i=1

S

For any point z € D, its weighted contribution is

(z)w(z) = g(j)p(lx) . g(:')a(Tw)
Since ¢(x) < o(x), it follows that

L+~(|D||% + k|D[)§ + AR

Lz)w(z) < .

<

T
S

Thus, if we set

M -

_ L+A(IDJ3 + HD)E + AR
s )
then | X;| < M for every sample.

Let

Z=Y X;=> wx)l(x).
i=1

€S
By Bernstein’s inequality, for any ¢ > 0,

t2
Pr(|Z—-L|>t) < — .
r(' |2 >6Xp< 22;_1E[X§]+§Mt>

Set K = || D||% + k| D| so that (|| D||% + k| D|)¢ = vK¢ and set

ti= 5(L+7K§+)\<I>k(D)).

Then,

e2(L 4+ yKE + A (D)) )

o <|Z ~ L= g(LﬂKfH q)k(D))) = oxp <2<L+VK§“ B 4 2L KGR ([ 4 y K¢+ A Dy (D))

By choosing
2e
-2
= 2 —) s
s {5 ( + 3 -‘

the exponent can be made sufficiently large so that the probability of failure is below 0.1. That is,
with probability at least 0.9,

D Ua) =Y w(z) )

zeD eSS

< 5(L+“/K§+>\(1>k(D))-
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