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Abstract

Generative models are more informative
about underlying phenomena than discrim-
inative ones and offer superior uncertainty
quantification and out-of-distribution robust-
ness. However, these advantages often come
at the expense of reduced classification ac-
curacy. The Information Bottleneck objec-
tive (IB) formulates this trade-off in a clean
information-theoretic way, but its practical
application is hampered by a lack of accu-
rate high-dimensional estimators of mutual
information (MI), its main constituent. To
overcome this limitation, we develop the the-
ory and methodology of IB-INNs, which op-
timize the IB objective by means of Invert-
ible Neural Networks (INNs), without the
need for approximations of MI. Our exper-
iments show that IB-INNs allow for a precise
adjustment of the generative/discriminative
trade-off: They learn accurate models of the
class conditional likelihoods, generalize well
to unseen data and reliably detect out-of-
distribution examples, while at the same
time exhibiting classification accuracy close
to purely discriminative feed-forward net-
works.

Code available at github.com/VLL-HD/FrEIA

1 INTRODUCTION

The distinction between discriminative and generative
classifiers (DCs vs. GCs) is fundamental to machine
learning. DCs directly predict posterior class prob-
abilities p(Y |X), where X and Y denote input and
output variables respectively. GCs instead model the
joint probability p(X,Y ), usually as a product of class
priors p(Y ) and conditional data likelihoods p(X|Y ).

They are able to generate synthetic data, and poste-
rior class probabilities can simply be inferred by Bayes’
rule p(Y |X) = p(X|Y )p(Y )/Ep(Y ) [p(X|Y )].

DCs optimize prediction performance directly and
therefore achieve better results in this respect. How-
ever, their models for p(Y |X) tend to be most accurate
near decision boundaries (where it matters), but dete-
riorate away from them (where deviations incur no no-
ticeable loss). Consequently, they are poorly calibrated
(Guo et al., 2017) and out-of-distribution data can not
be recognized at test time (Ovadia et al., 2019). In
contrast, GCs model full likelihoods p(X|Y ) and thus
implicitly full posteriors p(Y |X), which leads to the
opposite behavior – better predictive uncertainty at
the price of reduced accuracy.

In practice, models trained in a purely generative
way (in particular with maximum likelihood), achieve
highly unsatisfactory accuracy, so that some recent
work has called into question the overall effective-
ness of GCs (Fetaya et al., 2019; Nalisnick et al.,
2019b). Others have introduced different architectures
and augmented losses (Jacobsen et al., 2019; Nalisnick
et al., 2019a), that lead to an improvement of the dis-
criminative capabilities. In-depth studies of the ideal
cases (Bishop & Lasserre, 2007; Bishop, 2007) revealed
the existence of a trade-off, controlling the balance be-
tween discriminative and generative performance. The
existence of a trade-off is not self evident, as in princi-
ple, a more accurate generative model should also lead
to better classification.

We propose the Information Bottleneck (IB) objective
(Tishby et al., 2000) as an alternative viewpoint of
this phenomeneon, when applied to generative classi-
fication. IB formulates the discriminative/generative
trade-off in a very general information-theoretic form:
It postulates existence of a latent space Z, where all in-
formation flow between X and Y is channeled through
(hence the method’s name). In order to optimize pre-
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Figure 1: Our generative classifier as the Information
Bottleneck Invertible Neural Network (IB-INN).

dictive performance, IB attempts to maximize the mu-
tual information I(Y,Z) between Y and Z. Jointly, it
strives to minimize the mutual information I(X,Z) be-
tween X and Z, forcing the model to ignore irrelevant
aspects of X, which do not contribute to classification
performance and only increase the potential for over-
fitting. The objective can therefore be expressed as

LIB = I(X,Z)− βI(Y,Z) . (1)

Unfortunately, practical application of IB as a loss
function is difficult because existing estimators for mu-
tual information (MI) are not sufficiently reliable in
high dimensions. The Variational Information Bottle-
neck (VIB, Alemi et al., 2017; Kolchinsky et al., 2017)
provides a feasible approximation in form of an upper
bound for IB, which however does not work as well
as the asymptotically exact solution presented in this
work.

Using Invertible Neural Networks (INNs), we can, for
the first time, train generative classifiers directly with
the IB objective, cf. Fig. 1. This major advance arises
from two critical properties of this network type: (i)
the transformation between X and Z has a tractable
Jacobian determinant, and (ii) the latent space Z can
be shaped as a Gaussian Mixture Model (GMM). As
a result, the IB objective is analytically expressible in
terms of the change-of-variables formula, allowing for
standard gradient descent training without additional
approximations. Moreover, properties (i) and (ii) fa-
cilitate latent space exploration which enables out-of-
distribution detection and the analysis of class simi-
larities. The trade-off parameter β occurring in the IB
loss (1) allows us to explicitly alter the trade-off be-
tween our model’s classification performance and it’s
generative modeling capabilities. When β is adjusted
properly, our experiments reveal that IB-INNs simul-
taneously exhibit high predictive accuracy, well cali-
brated uncertainties and allow to reliably detect out-
of-distribution examples.

To summarize, we combine two concepts – the Infor-
mation Bottleneck (IB) objective and Invertible Neu-
ral Networks (INNs) – into a new generative classifier
type called IB-INN. Our contributions are as follows:

• We derive an asymptotically exact formulation of
the IB loss for a special GC type by utilizing INNs.

• We show experimentally that our models out-

µ1

µ2

×
uncertain class

×
confident class 1

×
confident class 2

but out-of-distribution

Figure 2: Illustration of the latent output space of a
generative classifier. The two class likelihoods for Y =
{1, 2} are parameterized by their means µ{1,2}. The
dotted line represents the decision boundary between
the two classes. A confident, an uncertain, and an out-
of-distribution sample is illustrated.

perform existing GCs on CIFAR10/100 in terms
of classification error, and incur at worst minor
degradation relative to feed-forward DCs.

• We demonstrate good uncertainty quantification
in terms of accurate posterior calibration and re-
liable outlier detection.

2 METHOD

In the following, upper case letters denote random
variables (RVs) (e.g. X) and lower case letters their
instances (e.g. x). The probability density function of
an RV is written as p(X), the evaluated density as
p(x) (or p(X = x) when ambiguous), and all RVs are
understood as vector quantities. We distinguish true
distributions from modeled ones by the letters p and
q respectively. The distributions q always depend on
model parameters, but we do not make this explicit to
avoid notation clutter. The proofs to all Propositions
are provided in the appendix.

Our models have two kinds of learnable parameters:

1. An invertible neural network with parameters θ
bijectively maps inputs X to latent variables Z

INN: Z = gθ(X)⇔ X = g−1θ (Z) (2)

2. A Gaussian mixture model with means µy and
unit covariance matrices is used as a reference dis-
tribution for the latents Z

q(Z |Y ) = N (µy, I) (3)

q(Z) =
∑
y

p(y)N (µy, I) (4)

where y are the class labels. For simplicity, we
assume that the label distribution is known, i.e.
q(Y ) = p(Y ).
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Our derivation rests on a quantity we call mutual
cross-information in analogy to the well-known cross-
entropy

CI(U, V ) = Eu,v∼p(U,V )

[
log

q(u, v)

q(u)q(v)

]
(5)

Note that the expectation is taken over the true distri-
bution, whereas the logarithm involves model distribu-
tions. The following proposition (proof in Appendix)
clarifies the relationship between mutual information
I and CI:

Proposition 1. Assume that q(.) can be chosen from
a sufficiently rich model family (e.g. a universal den-
sity estimator). Then for every η > 0 there is a model
such that ∣∣I(U, V )− CI(U, V )

∣∣ < η (6)

and I(U, V ) = CI(U, V ) if p(u, v) = q(u, v).

2.1 Estimating Mutual Information with
INNs

Estimation of the mutual cross-information CI(X,Z)
between inputs and latents is problematic for deter-
ministic mappings from X to Z (Amjad & Geiger,
2018), and specifically for invertible networks, which
are bijective by construction. In this case, the joint
distributions q(X,Z) and p(X,Z) are not valid Radon-
Nikodym densities and both CI and I are therefore un-
defined. We resolve this degeneracy by means of data
augmentation: Instead of inputting X to the network,
we feed it with a noisy version X ′ = X + E , where
E ∼ N (0, σ2I) = p(E) is Gaussian with mean zero and
covariance σ2I. This is motivated by practical experi-
ence: For normalizing flows and similar models, such
noise augmentation is required anyway to dequantize
X (i.e. to turn discrete pixel values into real numbers).
In other words, the INN actually learns the mapping
ZE = gθ(X + E), which guarantees that CI(X,ZE) is
well-defined. Minimizing CI(X,ZE) according to the
IB principle means that gθ(X + E) is encouraged to
amplify the noise E and ignore the data X, see Fig. 3.
If the global minimum can be reached, I and CI will
coincide, as CI(X,ZE) is an upper bound (cf. Prop. 1):

Proposition 2. For the specific case that ZE =
gθ(X + E), it holds that I(X,ZE) ≤ CI(X,ZE).

We now derive the training procedure for flow-type
networks with the noise-augmented CI(X,ZE) in the
limit of small noise σ → 0. Full details found in ap-
pendix. We decompose the mutual cross-information
into two terms

CI(X,ZE) = Ex,ε∼p(X),p(E)
[
− log q

(
ZE = gθ(x+ ε)

) ]
+Ex,ε∼p(X),p(E)

[
log q

(
ZE = gθ(x+ ε)

∣∣X = x
) ]︸ ︷︷ ︸

:=C

INN ZE = gθ(X + E)

X+E
σ

X

ZE

σ|J |

Z

Figure 3: The more the noise is amplified in relation
to the noise-free input, the lower the mutual cross-
information between noisy latent vector ZE and noise-
free input X.

The first expectation can be approximated by the em-
pirical mean over a finite dataset, because the Gaus-
sian mixture distribution q(ZE) is known analytically.
To approximate the second term, we first note that
the condition X = x can be replaced with Z = gθ(x),
because gθ is bijective and both conditions convey the
same information

C = Ep(X),p(E)
[

log q
(
ZE = gθ(x+ ε)

∣∣Z = gθ(x)
) ]

We now linearize gθ by its first order Taylor expansion

gθ(x+ ε) = gθ(x) + Jxε+O(σ2)

where Jx = ∂gθ(X)
∂X

∣∣
x

denotes the Jacobian at X = x.

Inserting this into C, the O(σ2) can be moved out
of the expectation due to the dominated convergence
theorem (DCT):

C = Ep(X),p(E)
[

log q
(
gθ(x) + Jxε

∣∣ gθ(x)
) ]

+O(σ2)

Since ε is Gaussian with mean zero and covariance σ2I,
the conditional distribution is Gaussian with mean
gθ(x) and covariance σ2JxJ

T
x . The expectation with

respect to p(E) is thus the negative entropy of a mul-
tivariate Gaussian and can be computed analytically
as well

C = Ep(X)

[
−1

2
log
(

det(2πeσ2JxJ
T
x )
)]

+O(σ2)

= Ep(X)

[
− log |det(Jx)|

]
− d log(σ)− d

2
log(2πe) +O(σ2)

with d the dimension of X. To avoid running the model
twice (for x and x + ε), we approximate the expecta-
tion of the Jacobian determinant by 0th-order Taylor
expansion as

Ep(X)

[
log |det(Jx)|

]
= Ep(X),p(E)

[
log |det(Jε)|

]
+O(σ)
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where Jε is the Jacobian evaluated at x+ε instead of x.
The residual can be moved outside of the expectation
because of DCT, and because Jε is always bounded in
our networks.

Putting everything together, we drop terms from
CI(X,ZE) that are independent of the model or van-
ish with rate at least O(σ) as σ → 0. The resulting
loss LX becomes

LX = Ep(X),p(E)
[
− log q

(
gθ(x+ε)

)
− log

∣∣det(Jε)
∣∣ ]
(7)

Since the network’s generative distribution is defined
by the change of variables formula as

qX(x) = q
(
Z = gθ(x)

) ∣∣ det(Jx)
∣∣, (8)

we recognize LX as the negative log-likelihood of the
perturbed data under qX

LX = Ep(X),p(E)
[
− log qX(x+ ε)

]
(9)

The crucial difference between CI(X,ZE) and LX is
the elimination of the term −d log(σ). It is huge for
small σ and would dominate the model-dependent
terms, making minimization of CI(X,ZE) very hard.
Intuitively, CI(X,ZE) diverging for σ → 0 highlights
why CI(X,Z) is undefined. In practice, we estimate

LX by the empirical mean L(N)
X on a training set

{xi, εi}Ni=1 of size N :

L(N)
X =

1

N

N∑
i=1

[
− log q

(
gθ(xi + εi)

)
− log

∣∣det(Ji)
∣∣ ]

(10)

where Ji is the Jacobian of gθ evaluated at xi + εi.

It remains to be shown that replacing I(X,ZE) with

L(N)
X in the IB loss Eq. 1 does not fundamentally

change the solution of the learning problem in the
limit of large N , small σ and sufficient model power.
Sufficient model power here means that the family of
generative distributions realizable by gθ should be a
universal density estimator. This is the case if gθ can
represent increasing triangular maps (Bogachev et al.,
2005), which has been proven for certain network ar-
chitectures explicitly (e.g. Jaini et al., 2019; Huang
et al., 2018). Propositions 1 & 2 then tell us that we
may optimize CI(X,ZE) as an estimator of I(X,ZE).
The above derivation of the loss can be strengthened
into

Proposition 3. For any ε, η > 0 and 0 < δ < 1 there
are σ0 > 0 and N0 ∈ N, such that ∀N ≥ N0 and
∀σ < σ0,

Pr
(∣∣∣CI(X,ZE) + d log

√
2πeσ2 − L(N)

X

∣∣∣ < ε
)
> 1−δ

and

Pr

(∥∥∥∥ ∂

∂θ
CI(X,ZE)−

∂

∂θ
L(N)
X

∥∥∥∥ < η

)
> 1−δ

holds uniformly for all model parameters θ.

The first statement proves consistence of L(N)
X , and the

second justifies gradient-descent optimization on the

basis of L(N)
X . Proofs can be found in the appendix.

2.2 The IB-INN

Similarly to the first term in the IB-loss in Eq. 1, we
also replace the mutual information I(Y, Z) with

CI(Y,ZE)

=Ex,y∼p(X,Y ),ε∼p(E)

[
log

q
(
ZE=gθ(x+ε), y

)
q
(
ZE=gθ(x+ε)

)
p(y)

]

Inserting the likelihood q(z | y) = N (z;µy, I) of our
latent Gaussian mixture model and recalling that
q(Y ) = p(Y ), this can be decomposed into

CI(Y,ZE) = Ey∼p(Y ) [− log p(y)] (11)

+Ex,y∼p(X,Y ),ε∼p(E)

[
log

q
(
gθ(x+ ε) | y

)
p(y)∑

y′ q
(
gθ(x+ ε) | y′

)
p(y′)

]

The first expectation is independent of the model and
can be dropped, whereas the second is the expectation
of the GMM’s log-posterior log q(y | z). Since all mix-
ture components have unit covariance, the elements
of Z are conditionally independent and the likelihood
factorizes as q(z | y) =

∏
j q(zj | y), so that q(y | z) can

be interpreted as a naive Bayes classifier. In contrast to
a naive Bayes classifier in data space, which typically
performs badly because raw features are not condition-
ally independent, our training process pushes latent
features towards conditional independence and results
in very accurate classification.

Defining the loss L(N)
Y as the empirical mean of the

log-posterior in a training set {xi, yi, εi}Ni=1 of size N,
we get

L(N)
Y =

1

N

N∑
i=1

log
N
(
gθ(xi + εi);µyi , I

)
p(yi)∑

y′ N
(
gθ(xi + εi);µy′ , I

)
p(y′)

(12)

and our model parameters θ and {µ1, ..., µK} are
trained by gradient descent of the IB-INN loss

L(N)
IB-INN = L(N)

X − βL(N)
Y (13)
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Figure 4: Illustration of the loss landscape for our IB formulation (left, middle) and standard class-conditional
negative-log-likelihood (right). The loss is shown for an input x belonging to class Y =1, green areas correspond
to low loss. The green and orange arrows indicate attractive and repulsive interactions with the cluster centers.

2.3 Advantages of the IB-Loss

In this section we will interpret and discuss the nature
of the loss function in Eq. 13. We also form an intu-
itive understanding of why it is more suitable than the
class-conditional negative-log-likelihood (‘class-NLL’)
traditionally used for generative classifiers of this type.
The findings are represented graphically in Fig. 4.
LX-term: As demonstrated in Eq. 9, the term is the
(unconditional) negative-log-likelihood loss used for
normazling flows, with the difference that q(Z) is a
GMM rather than a unimodal Gaussian. We conclude
that this loss term encourages the INN to become an
accurate likelihood model under the marginalized la-
tent distribution and completely ignores any class con-
tent.
LY -term: Examining Eq. 12, we see that for any pair
g(x + ε), y, the cluster centers (µY 6=y) of the other
classes are repulsed, while gθ(x + ε) and the cor-
rect cluster center µy are drawn together. Note that
the class-NLL loss only captures the second aspect,
and therefore has a much weaker training signal. We
can also view this in a different way: by substituting

q(x|y)
∣∣det

(
Jθ(x)

)∣∣−1 for q(z|y) the second summand
of Eq. 11 simplifies to log q(y|x), since the Jacobian
cancels out. This means that the LY loss directly max-
imizes the correct class probability, while ignoring the
data likelihood. Again, this improves the training sig-
nal, as Fetaya et al. (2019) showed that the data like-
lihood dominates the class-NLL loss, so that the dis-
criminative aspect is not properly learned.
Classical class-NLL loss: For β = 1, the IB-INN
loss reduces to the class-NLL loss, because the first
summand in Eq. 10 cancels with the denominator in
Eq. 12. The INN is then no longer penalized for over-
lapping mixture components, and the GMM looses its
class discriminatory nature, as Fig. 4 illustrates. This
is explained in more detail by Fetaya et al. (2019),
who show that indeed the class-NLL loss causes a
vanishingly small training signal for the class separa-
tion: points are only drawn towards the correct class,
but there is no term repulsing them from the incor-
rect classes. For an unregularized model trained with

class-NLL, this causes all cluster centers to collapse
together, leading the INN to effectively just model the
marginal data likelihood.

2.4 Practical Implementation

We learn µY as a free parameter jointly with the re-
maining model parameters in an end-to-end fashion us-
ing the loss in Eq. 13. The entire training is performed
in log-space for numerical stability, as the likelihoods
become both too large and too small otherwise (see
Appendix Sec. 2 for details). We apply two additional
techniques while learning the model, label smoothing
and loss rebalancing:
Label smoothing We observed that the individual
class means µY drift apart during training, because
training with hard labels enforces the Gaussian mix-
ture components to become perfectly separated. This
can cause problems during training, as there is a high
loss barrier between the clusters due to LX , prevent-
ing points from moving smoothly from one class to
the other during training. To avoid this effect, we sim-
ply apply a small amount of label smoothing (Szegedy
et al., 2016), where the one-hot training vectors are
softened with α = 0.05 in our case. We do the same
for all comparison models.
Loss rebalancing To avoid the laborious process of
having to adjust hyperparameters for vastly different
loss magnitudes, we employ the following rebalancing
scheme: Firstly, we divide the loss LX by the number
of dimensions of X. This ensures that LX remains in a
similar range when changing e.g. the input image size,
as it scales linearly with the number of input dimen-
sions. Secondly, we define a matching β̃ ≡ β/dim(X).
Lastly, we reweight the entire loss by a factor 2/(1+β̃).
This ensures that the loss keeps the same magnitude
when changing β̃ over wide ranges. Thanks to this re-
balancing scheme, we can use the same learning rate
and hyperparameters for all experiments:

L(N)
IB =

2

1 + β̃

(
L(N)
X

dim(X)
− β̃L(N)

Y

)
(14)
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3 EXPERIMENTS

We construct our IB-INN by combining the design ef-
forts of various previous works on INNs and normaliz-
ing flows. In brief, we use a Real-NVP design consisting
of affine coupling blocks (Dinh et al., 2017), with added
improvements from recent works, such as Kingma &
Dhariwal (2018); Jacobsen et al. (2019, 2018); Ardiz-
zone et al. (2019). A more detailed description of the
architecture is provided in the appendix.

3.1 Comparison of Methods

In addition to the IB-INN, we train several alterna-
tive methods. For each, we use exactly the same INN
model, or an equivalent feed-forward ResNet model.
Every method has the exact same hyperparameters
and training procedure, the only difference being the
loss function, and the lack of invertibility for pure feed-
forward models.
Feed-forward As a baseline, we train a feed-forward
ResNet (He et al., 2016) with softmax cross entropy
loss. Each affine coupling is simply replaced by a
ResNet block. Except for the invertibility, the archi-
tectures are identical.
i-RevNet (Jacobsen et al., 2018): To rule out any
differences stemming from the constraint of invertibil-
ity, we additionally train the INN as a standard soft-
max classifier, by projecting the outputs to class logits.
While the architecture is invertible, the model it is not
generative and trained as a standard feed-forward clas-
sifier.
Variational Information Bottleneck (VIB): We
train the VIB, as presented by Alemi et al. (2017), us-
ing a feed-forward ResNet. Note that the authors de-
fine their β in the opposite way, by weighting I(X,Z).
For consistency we convert this to our definition of β̃.
Class-NLL: As a standard generative classifier, we
firstly train an INN with a GMM in latent space
completely naively as a conditional generative model,
using the class-conditional maximum likelihood loss
Lclass-NLL = −E log

(
qθ(x|y)

)
. Secondly, we also train

a regularized version, to increase the classification ac-
curacy. The regularization consists of constraining the
class centroids µY to points on a sphere with a fixed ra-
dius. As the radius becomes comparable to the typical
intra-class distances, the training signal for the classi-
fication is amplified. We therefore choose

√
dim(Z) as

radius.

3.2 Quantitative measurements

In the following, we describe the scores reported in
Tab. 1.
Calibration error: In general, the calibration curve
measures whether the confidence of a model agrees
with its actual performance. All prediction outputs

are binned according to their predicted probability P
(‘confidence’), and it is recorded which fraction of pre-
dictions in each bin was correct, Q. For a perfectly cal-
ibrated model, we have P = Q, e.g. predictions with
30% confidence are correct 30% of the time. There are
various metrics to measure deviation from this perfect
behaviour, and we largely adhere to those used by Guo
et al. (2017). Exact descriptions found in Appendix.
Specifically, we consider the expected calibration error
(ECE), the maximum calibration error (MCE), and a
quantity termed the overconfidence (OVC). The over-
confidence measures the normalized fraction of highly
confident but wrong predictions. It should be ∈ [0, 1]
for a well calibrated model, and is� 1 for an overcon-
fident one. Because we find the metrics to be partly
inconsistent, we also include the geometric mean of all
three (i.e. 3

√
ECE ·MCE ·max(1,OVC)). The geomet-

ric mean is used because it properly accounts for the
different magnitudes of the metrics. Note, that we only
penalize the OVC if it is above the upper bound for a
well-calibrated model.
Out-of-distribution (OoD) prediction entropy:
For data that is OoD, we expect from a model that it
returns uncertain class predictions, as it has not been
trained on such data. In the ideal case, each class is as-
signed the same probability of 1/(nr. classes). The per-
formance measure commonly used for this, e.g. by Ova-
dia et al. (2019), is to measure this through the discrete
entropy of the class prediction outputs H(Y |XOod),
which should be as high as possible.
OoD detection score: For OoD detection, we use
the (unconditional) negative log-likelihood (NLL) pre-
dicted by each model as an outlier score. This is a basic
approach, but also the most common in the generative
classifier literature. For the VIB, the situation is differ-
ent: as opposed to a VAE, it does not estimate p(X)
due to the missing reconstruction loss. As a substi-
tute, we use the ELBO loss (also termed ‘info-loss’ in
the VIB literature), that stems from the I(X,Z)-term.
Note, in the original VIB work, no OoD detection was
performed, and this approach is not standard practice,
so we only list these results for completeness.
To quantify the OoD detection capabilities of each
model, we record the degree of separability between
in-distribution data and OoD data: for a random in-
lier and a random outlier, what is the probability that
the outlier has the higher outlier score. The detection
score would be 1.0 for perfectly separated in- and out-
liers, and 0.5 if each point is assigned a random score.
Note, this definition is exactly equal to the widely used
ROC-AUC metric.
OoD datasets: The inlier dataset consist of CI-
FAR10/100 images, i.e. 32×32 colour images showing
10/100 object classes. Additionally we created four dif-
ferent OoD datasets, that cover different aspects, see
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RGB rotation
(CIFAR10)

Small noise (CIFAR10)

QuickDraw ImageNet

Figure 5: Examples from each OoD dataset used in
the evaluation. The inlier data are original CIFAR10
images.

Fig. 5. Firstly, we create a random 3D rotation ma-
trix with an adjustable rotation angle α, and apply it
to the RGB color vectors of each pixel of CIFAR10
images. We set a fixed value of α = 0.3π for quanti-
tative comparisons. Secondly, we add random uniform
noise with a small amplitude to CIFAR10 images, as
an alteration of the image statistics. Thirdly, we use
the QuickDraw dataset of hand drawn objects (Ha &
Eck, 2018), and filter only the categories correspond-
ing to CIFAR10 classes and color each grayscale line
drawing randomly. Therefore the semantic content is
the same, but the image modality is different. Lastly,
we downscale the ImageNet validation set to 32 × 32
pixels. In this case, the semantic content is different,
but the image statistics are very similar to CIFAR10.
However, we find that none of the models can reliably
detect the ImageNet data as OoD, so we use this pri-
marily to measure the prediction entropy behaviour on
OoD data.

3.3 Quantitative Model Comparison

A comparison of all models is performed in Table 1 for
CIFAR10 and CIFAR100. To our best knowledge, in
the literature so far, generative classifiers have never
been used for CIFAR100, as this is generally very chal-
lenging.

In summary, we find that the IB-INN has slightly worse
classification performance than a standard DC, which
is in line with the performance drop from feed-forward
to invertible architecture (i-RevNet). However, the un-
certainties in the form of calibration error and entropy
on OoD data, are far superior. For ablation where only
LY is used (β̃ → ∞), the performance is more com-
parable to a standard DC, demonstrating that it is
really the IB objective giving the improvements. In ad-
dition, the OoD detection is on par or better than for
the other GCs. Furthermore, the GCs naively trained
with class-NLL make no meaningful predictions on ei-
ther dataset. While the regularized version achieves
better accuracy, and maintains the OoD detection ca-
pabilities, the calibration and uncertainty is very poor.
Lastly, we find that the VIB brings some improvement
over a standard feed-forward model in terms of uncer-

0.
02

0.
30

4.
63

18
.0

5
50

.1
2

Figure 6: Each column shows a latent space interpo-
lation between two images (leftmost and rightmost).
Each row corresponds to a model trained with a dif-
ferent β̃. We find that the generative performance de-
creases with higher β̃.

tainties, especially for CIFAR100, but still inferior to
IB-INN.

3.4 Effect of Beta

To study the trade-off between classification perfor-
mance and modeling capabilities parameterized by β̃,
we train 24 IB-INN models for different β̃ ranging from
0.02 to 50. For comparison, we also train correspond-
ing VIB models, and summarize our findings in Fig. 8.
As expected, the classification accuracy improves as
we increase β̃, while the uncertainty estimates become
worse. The trend of OoD detection depends on the
dataset: It is is almost constant for the RGB rotated
data, improves for the hand-drawn data, and degrades
for the noisy data. This is due to whether the focus
on class information is helpful in detecting OoD data,
or whether simply modeling natural images suffices.
The classification accuracy of the VIB stays almost
constant over the whole range, and the uncertainties
also show little variations, indicating that the used loss
function is indeed only a rough bound on the true IB.

3.5 Latent Space Exploration

To better understand what the IB-INN learns, we an-
alyze the latent space in different ways. Firstly, Fig. 7
shows the layout of the latent space GMM through a
linear projection. We find that the clusters of ambigu-
ous classes, e.g. truck and car, are connected in la-
tent space, to account for uncertainty. Secondly, Fig. 6
shows interpolations in latent space between two test
set images, using models trained with different val-
ues of β̃. We observe that for low β̃, the IB-INN
has a very well structured latent space, resulting in
good generative capabilities and plausible interpola-
tions. For larger β̃, the interpolation quality continu-
ally degrades.
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β̃ = 0.02 β̃ = 1.2 β̃ = 18.05 β̃ = 35.65

airplanes cars birds cats deer dogs frogs horses ships trucks

Figure 7: GMM Latent space behaviour by increasing β̃. The class separation increases with larger β̃. Note
however, how ambiguous classes (truck and car) stay connected, to account for uncertainty.
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Figure 8: Effect of changing the parameter β̃ (logarithmic x-axis) on the different performance measures (y-axis).
The VIB results are the dotted lines for comparison, except for OoD detection. The inlier dataset is CIFAR10.
The arrows indicate if a larger or smaller score is better. While classification accuracy improves with β̃, the
uncertainty measures grow worse. The trend for the OoD detection depends on the OoD data used, and whether
the focus on class information is important for the detection. The special case β = 1 (class-NLL) translates
to β̃ ≈ 3 · 10−4, where the classification accuracy is unusable (cf. Table 1). All curves shown separately in the
appendix.

Table 1: Results on the CIFAR10 and CIFAR100 datasets. All models have the same number of parameters and
were trained with the same hyperparameters. All values except entropy and overconfidence are given in percent.
The arrows indicate whether a higher or lower value is better. The prediction entropy of the model trained with
standard class-NLL is not taken into account, because the entropy is equally high on in-distribution data due to
the poor classification performance. The OoD detection score for VIB is also not taken into account, see text.

CIFAR10 Classif. Calibration error (↓) OoD prediction entropy (↑) OoD detection score (↑)
err. (↓) Geo. mean Expec. Max Overc. Geo. mean RGB-rot Draw Noise ImgNet Geo. mean RGB-rot Draw Noise ImgNet

IB-INN (ours, β̃ = 1) 9.88 1.969 0.93 8.20 0.00 0.865 0.86 1.07 0.59 1.02 54.03 86.5 21.3 86.3 53.6
IB-INN, only LY (β̃ → ∞) 8.29 6.690 1.22 23.81 10.32 0.587 0.55 0.68 0.43 0.74 58.72 59.7 96.4 50.9 40.6

IB-INN, only LX (β̃ = 0) – – – – – – – – – – 44.68 79.3 12.1 80.4 51.9
Class-NLL 84.98 62.016 11.21 86.16 247.00 (1.067) (1.03 1.22 0.97 1.06) 48.55 80.2 18.6 71.6 52.0
Class-NLL (regularized) 20.57 24.176 3.93 20.30 177.33 0.002 0.00 0.00 0.00 0.00 48.95 82.0 16.1 79.1 54.9

VIB (β̃ = 1) 7.29 4.466 0.68 27.83 4.71 0.342 0.35 0.38 0.19 0.52 (47.38) (46.4 52.2 50.0 41.7)
Standard ResNet 6.76 5.656 0.73 40.61 6.12 0.344 0.35 0.44 0.18 0.51 – – – – –
i-RevNet 9.09 2.224 0.54 14.78 1.37 0.611 0.74 0.90 0.25 0.82 – – – – –

CIFAR100 Classif. Calibration error (↓) OoD prediction entropy (↑) OoD detection score (↑)
err. (↓) Geo. mean Expec. Max Overc. Geo. mean RGB-rot Draw Noise ImgNet Geo. mean RGB-rot Draw Noise ImgNet

IB-INN (ours, β̃ = 1) 36.59 1.157 0.15 6.67 1.54 2.314 2.58 2.43 2.11 2.17 51.21 79.1 27.9 61.7 50.6
IB-INN, only LY (β̃ → ∞) 33.86 1.171 0.15 4.68 2.34 2.394 2.53 2.62 2.17 2.29 60.92 68.6 99.3 49.5 40.8

IB-INN, only LX (β̃ = 0) – – – – – – – – – – 39.67 74.2 8.5 77.9 50.3
Class-NLL 98.59 34.452 1.47 92.86 298.65 (1.982) (1.89 2.37 1.75 1.97) 41.52 75.6 10.0 78.2 50.4
Class-NLL (regularized) 79.08 32.392 1.40 94.58 257.30 0.025 0.02 0.01 0.06 0.05 41.96 73.6 10.4 78.7 51.3

VIB (β̃ = 1) 42.92 1.259 0.18 8.63 1.26 1.960 2.20 1.61 1.97 2.11 (48.00) (43.0 56.8 46.1 47.1)
Standard ResNet 29.14 4.863 0.23 17.26 29.03 2.012 2.21 2.16 1.78 1.92 – – – – –
i-RevNet 34.27 2.880 0.24 17.76 5.50 1.762 2.16 1.71 1.55 1.69 – – – – –
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4 RELATED WORK

Generative Classification: An in-depth analysis
of the trade-offs between discriminative and gener-
ative models was first performed by Ng & Jordan
(2001) and was later extended by Bouchard & Triggs
(2004); Bishop & Lasserre (2007); Xue & Tittering-
ton (2010), who investigated the possibility of balanc-
ing the strengths of both methods via a hyperparam-
eter. Promising applications of these ideas to natural
language processing, based on neural networks, were
recently presented by Shen et al. (2017); Yogatama
et al. (2017); Wang & Wu (2018). Li et al. (2019)
showed that generative classifiers may be more robust
against adversarial attacks, and Hwang et al. (2019)
demonstrated their robustness against missing data.
On the other hand, Fetaya et al. (2019) found that
conditional normalizing flows have poor discriminative
performance, making them unsuitable for classification
tasks.
Information Bottleneck: The IB was introduced by
Tishby et al. (2000) as a tool for information-theoretic
optimization of compression methods. This idea was
expanded on by Chechik et al. (2005); Gilad-Bachrach
et al. (2003); Shamir et al. (2010) and Friedman et al.
(2013). A relationship between IB and deep learn-
ing was first proposed by Tishby & Zaslavsky (2015),
and later experimentally examined by Shwartz-Ziv &
Tishby (2017), who use IB for the understanding of
neural network behavior and training dynamics. A
close relation of IB to dropout, disentanglement, and
variational autoencoding was discovered by Achille &
Soatto (2018), which led them to introduce Informa-
tion Dropout as a way to take advantage of IB in
discriminative models. The approximation of IB in
a variational setting was proposed independently by
Kolchinsky et al. (2017) and Alemi et al. (2017), who
especially demonstrate improved robustness against
adversarial attacks.

5 CONCLUSIONS

We addressed the application of the Information Bot-
tleneck (IB) to Invertible Neural Networks (INNs) as a
loss function. We find that we can formulate an asymp-
totically exact version of the IB, which results in an
INN that is a generative classifier. From our experi-
ments, we conclude that the IB-INN provides higher
quality uncertainties and out-of-distribution detection,
while reaching almost the same classification accuracy
as standard feed-forward methods, and generally out-
performs other supervised generative classifiers on CI-
FAR10 and CIFAR100.
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– Appendix –

6 PROOFS AND DERIVATIONS

6.1 Mutual Cross-Information as Estimator
for MI

In our case, we only require CI(X,ZE) and CI(Y,ZE),
but we show the correspondence for two unspecified
random variables U , V , as it may be of general interest.
However, note that our estimator will likely not be
particularly useful outside of our specific use-case, and
other methods should be preferred (e.g. Belghazi et al.,
2018).

For the joint input space Ω = U × V, we assume that
U is a compact domain in Rd, and V is either also
a compact domain in Rl (Case 1), or discrete, i.e. a
finite subset of N (Case 2). In Case 1, we assume that
p(U, V ) is absolutely continuous with respect to the
Lebesgue measure, and in Case 2, p(U |v) is absolutely
continuous for all values of v ∈ V.

In Case 1, q(U), q(V ), q(U, V ), the densities can all be

modeled separately, by three flow networks g
(U)
θ (u),

g
(V )
θ (v), g

(UV )
θ (u, v). Although in our formulation, we

are later able to approximate the latter two through
the first.

In Case 2, we only model q(U |V ), and assume
that q(V ) is either known beforehand and set to
p(V ) (e.g. label distribution), or the probabilities
are parametrized directly. Either way, q(U, V ) =
q(U |V )q(V ) and q(U) =

∑
v∈V q(U, v).

Proposition 1. Assume that the q(.) densities can
be chosen from a sufficiently rich model family (e.g.
a universal density estimator). Then for every η > 0
there is a model such that∣∣I(U, V )− CI(U, V )

∣∣ < η (15)

and I(U, V ) = CI(U, V ) if p(U, V ) = q(U, V ).

Proof. Writing out the definitions explicitly, and rear-
ranging, we find

CI(U, V ) = I(U, V ) +DKL

(
p(U, V )

∥∥q(U, V )
)

−DKL

(
p(U)

∥∥q(U)
)
−DKL

(
p(V )

∥∥q(V )
)

(16)

Shortening the KL terms to D1, D2 and D3 for con-
venience:

|Iθ∗(U, V )− I(U, V )| = |D1 −D2 −D3| (17)

≤ D1 +D2 +D3 (18)

≤ 3 max(D1, D2, D3) (19)

At this point, we can simply apply results from mea-
sure transport: if the gθ are from a family of uni-
versal density estimators, we can choose θ∗ to make
max(D1, D2, D3) arbitrarily small by matching p and
q. This was shown in general for increasing triangular
maps, e.g. in Hyvärinen & Pajunen (1999), Theorem
1 for an accessible proof, or Bogachev et al. (2005) for
a more in-depth approach (specifically Corollary 4.2).
Generality was also proven for several concrete archi-
tectures, e.g. Jaini et al. (2019), Huang et al. (2018).

For the second part of the Proposition, we note the
following: if p(U, V ) = q(U, V ), we have D1 = D2 =
D3 = 0, and therefore CI(U, V ) = I(U, V ).

6.2 Loss Function LX
In the following, we use the subscript-notation for the
cross entropy:

hq(U) = Eu∼p(U) [− log q(u)] , (20)

to avoid confusion with the joint entropy that arises
with the usual notation (h(p(U), q(U))).

We use an INN gθ representing a homeomorphic trans-
form, where the network parameter space Θ is a com-
pact subdomain of Rn. We assume that gθ(u) and
Jθ are uniformly bounded, and furthermore the ab-
solute Jacobian determinant |det Jθ| is also uniformly
bounded from below by a constant > 0. We also as-
sume Jθ is continuous and differentiable in both X and
θ. All these assumptions are fulfilled for most architec-
tures used in practice, and certainly for the coupling
block design. As Jθ is bounded, this also implies that
gθ is Lipschitz-continuous. The X input space X is a
compact subdomain of Rd.
Proposition 2. For the case given in the paper, that
ZE = gθ(X + E), it holds that I(X,ZE) ≤ CI(X,ZE).

Proof. In the following, we first use the invariance of
the (cross-)information to homeomorphic transforms.
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Then, we use p(X+E|X) = q(X+E|X) = p(E) (known
exactly) and write out all the terms, most of which
cancel. Finally, we use the inequality that the cross
entropy is larger than the entropy, hq(U) ≥ h(U) re-
gardless of q. The equality holds iff the two distribu-
tions are the same.

CI(X,ZE)− I(X,ZE) = CI(X,X+E)− I(X,X+E)
(21)

= hq(X)− h(X) + 0 (22)

≥ 0 (23)

With equality iff p(X) = q(X).

We now want to show that the network optimization
procedure that arises from the empirical loss, in par-
ticular the gradients w.r.t. network parameters θ, are
consistent with those of CI(X,ZE):

Proposition 3. The defined loss is a consistent esti-
mator for CI(X,ZE) up to a known constant, and a
consistent estimator for the gradients. Specifically, for
any ε1, ε2 > 0 and 0 < δ < 1 there are σ0 > 0 and
N0 ∈ N, such that ∀N ≥ N0 and ∀σ < σ0,

Pr
(∣∣∣CI(X,ZE) + d log

√
2πeσ2 − L(N)

X

∣∣∣ < ε1

)
> 1−δ

and

Pr

(∥∥∥∥ ∂

∂θ
CI(X,ZE)−

∂

∂θ
L(N)
X

∥∥∥∥ < ε2

)
> 1−δ

holds uniformly for all model parameters θ.

The loss function is as defined in the paper:

LX = hq(ZE)− Ex∼p(X+E)
[

log
∣∣ det Jθ(x)

∣∣] (24)

as well as its empirical estimate usingN samples, L(N)
X .

We split the proof into two Lemmas, which we will
later combine.

Lemma 1. For any η1, η2 > 0 and δ > 0 there is an
N0 ∈ N so that

Pr
(∣∣L(N)

X − LX
∣∣ < η1

)
> 1− δ (25)

Pr
(∣∣ ∂
∂θ
L(N)
X − ∂

∂θ
LX
∣∣ < η2

)
> 1− δ (26)

∀N ≥ N0

Proof. For the first part (Eq. 25), we simply have to
show that the uniform law of large numbers applies,
specifically that all expressions in the expectations are
bounded and change continuously with θ. For the Ja-
cobian term in the loss, this is the case by definition.
For the hq(ZE)-term, we can show the boundedness

of log q occurring in the expectation by inserting the
GMM explicitly. We find

− log(q(z)) ≤ max
y

[(z − µy)2/2] + const. (27)

while we know that z = gθ(x) is bounded. Therefore,
the uniform law of large numbers (Newey & McFad-
den, 1994, Lemma 2.4) guarantees existence of an N1

to satisfy the condition for all θ ∈ Θ.

For the second part (Eq. 26), we will show that the gra-
dient w.r.t. θ and the expectation can be exchanged,
as the gradient is also bounded by the same arguments
as before. We find that the conditions for exchanging
expectation and gradient are trivially satisfied, again
due to the bounded gradients (see L’Ecuyer (1995),
assumption A1, with Γ set to the upper bound). This
results in an N2 ∈ N for which Eq. 26 is satisfied. As
a last step, we simply define N0 := max(N1, N2).

Lemma 2. For any η1, η2 > 0 there is an σ0 > 0, so
that ∥∥∥CIθ(X,ZE) + d log

√
2πeσ2 − LX

∥∥∥ < η2 (28)∥∥∥∥ ∂∂θ(CIθ(X,ZE)− LX)
∥∥∥∥ < η2 (29)

∀σ < σ0

Proof. In the following proof, we make use of the O(·)
notation, see e.g. De Bruijn (1981):

We write f(σ) = O(g(σ)) (σ → 0) iff there
exists a σ0 and an M ∈ R, M > 0 so that

‖f(σ)‖ < M g(σ) ∀σ ≤ σ0. (30)

Furthermore, to discuss the limit case, it is necessary
we reparametrize the noise variable E in terms of noise
S with a fixed standard normal distribution:

E = σS with p(S) = N (0, 1) (31)

To begin with, we use the invariance of CI under the
homeomorphic transform gθ. This can be easily verified
by inserting the change-of-variables formula into the
definition. See e.g. Cover & Thomas (2012) Sec. 8.6.
This results in

CI(X,ZE) = CI(Z,ZE) = hq(ZE)− hq(ZE |Z) (32)

Next, we series expand ZE around σ = 0. We can use
Taylor’s theorem to write

ZE = Z + Jθ(Z)E +O(σ2) (33)

We have written the Jacobian dependent on Z, but
note that it is still ∂gθ/∂X, and we simply substituted
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the argument. We put this into the second entropy
term hq(ZE |Z) in Eq. 32, and then perform a zero-
order von Mises expansion of hq. In general, the iden-
tity is

hq(W + ξ) = hq(W ) +O(‖ξ‖) (‖ξ‖ → 0), (34)

and we simply put ξ = O(σ2) (the identity applies in
the same way to the conditional cross-entropy). Intu-
itively, this is what we would expect: the entropy of an
RV with a small perturbation should be approximately
the same without the perturbation. See e.g. Serfling
(2009), Sec. 6 for details. Effectively, this allows us to
write the residual outside the entropy:

hq(ZE |Z) = hq
(
Z + Jθ(Z)E +O(σ2)

∣∣Z) (35)

= hq
(
Z + Jθ(Z)E

∣∣Z)+O(σ2) (36)

= hq
(
Jθ(Z)E

∣∣Z)+O(σ2) (37)

At this point, note that qθ(Jθ(Z)E|Z) is simply a mul-
tivariate normal distribution, due to the conditioning
on Z. In this case, we can use the entropy of a multi-
variate normal distribution, and simplify to obtain the
following:

−hq(JθE|Z) = E
[

1

2
log
(
det(2πσ2JθJ

T
θ )
)]

(38)

= E
[

1

2
log
(
(2πσ2)d det(Jθ)

2
)]

(39)

= d log
√

2πeσ2 + E [log |det Jθ|] . (40)

Here, we exploited the fact that Jθ(Z) is an invertible
matrix, and used d = dim(Z). Finally, as in practice
we only want to evaluate the model once, we use the
differentiability of Jθ to replace

E [log |det Jθ(Z)|] = E [log |det Jθ(ZE)|]+O(σ). (41)

The residual can be written outside of the expectation
as we know it is bounded from our assumptions about
gθ and Jθ (Dominated Convergence theorem).

Putting the terms together, we obtain

CI(X,ZE) = hq(ZE)− d log
√

2πeσ2

− E [log |det Jθ|] +O(σ) (42)

= LX − d log
√

2πeσ2 +O(σ) (43)

Through the definition of O(·), Eq. 28 is satisfied. To
show that the gradients also agree (Eq. 29), we must
ensure that the O(σ) term is uniformly convergent to 0
over θ, i.e. there is a single constant M in the definition
of O(·) that applies for all θ ∈ Θ. This is directly the
case, as gθ is Lipschitz continuous and the outputs are
bounded (Arzela - Ascoli theorem).

We can now combine the two Lemmas 1 and 2, to show
Proposition 3.

Proposition 3 - Proof.

Proof. The Proposition follows directly from Lemmas
1 and 2: for a given ε1, ε2 and δ, we choose each ηi =
εi/2, and apply the triangle inequality, meaning there
exists an N0 and σ0 so that∣∣∣CI(X,ZE) + d log

√
2πeσ2 − L(N)

X

∣∣∣
≤
∣∣∣CI(X,ZE) + d log

√
2πeσ2 − LX

∣∣∣+
∣∣∣LX − L(N)

X

∣∣∣
<
ε1
2

+
ε1
2

And therefore Pr(. . . ) > 1 − δ. Equivalently for the
gradients.

7 NETWORK ARCHITECTURE

As in previous works, our INN architecture consists
of so-called coupling blocks. In our case, each block
consists of one affine coupling (Dinh et al., 2017), il-
lustrated in Fig. 9, followed by random and fixed soft
permutation of channels (Ardizzone et al., 2019), and
a fixed scaling by a constant, similar to ActNorm lay-
ers introduced by Kingma & Dhariwal (2018). For the
coupling coefficients, each subnetwork predicts multi-
plicative and additive components jointly, as done by
Kingma & Dhariwal (2018). Furthermore, we adopt
the soft clamping of multiplication coefficients used by
Dinh et al. (2017).

For downsampling blocks, we introduce a new scheme,
whereby we apply the i-RevNet downsampling (Jacob-
sen et al., 2018) only to the inputs to the affine trans-
formation (u2 branch in Fig. 9), while the affine co-
efficients are predicted from a higher resolution u1 by
using a strided convolution in the corresponding sub-
network. After this, i-RevNet downsampling is applied
to the other half of the channels u1 to produce v1, be-
fore concatenation and the soft permutation. We adopt
this scheme as it more closely resembles the standard
ResNet downsampling blocks, and makes the down-
sampling operation at least partly learnable.

We then stack sets of these blocks, with downsampling
blocks in between, in the manner of [8, down, 25, down,
25]. Note, we use fewer blocks for the first resolution
level, as the data only has three channels, limiting the
expressive power of the blocks at this level. Finally,
we apply a discrete cosine transform to replace the
global average pooling in ResNets, as introduced by
Jacobsen et al. (2019), followed by two blocks with
fully connected subnetworks.

We perform training with SGD, learning rate 0.1, mo-
mentum 0.9, and batch size 128, as in the original
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Forward computation (left to right):

v1 = u1, v2 = T (u2;nn(v1))

Inverse computation (right to left):

u1 = v1, u2 = T−1(v2;nn(u1))

Figure 9: Illustration of a coupling block. T represents some invertible transformation, in our case an affine trans-
formation. The transformation coefficients are predicted by a subnetwork (nn), which contains fully-connected
or convolutional layers, nonlinear activations, batch normalization layers, etc., similar to the residual subnetwork
in a ResNet (He et al., 2016). Note that the subnetwork does not have to be inverted itself.

ResNet publication by (He et al., 2016). We train for
450 epochs, decaying the learning rate by a factor of
10 after 150, 250, and 350 epochs.

8 ADDITIONAL EXPERIMENTS

In Figure 11 we show the trajectory of a sample
in latent space, when gradually increasing the RGB-
rotation OoD augmentation used in the paper. It trav-
els from in-distribution to out-of-distribution. Note
that such images were never seen during training.

Figure 10 provides all the performance metrics dis-
cussed in the paper over the range of β̃.
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Figure 10: Effect of changing the parameter β̃ (x-axis) on the different performance measures (y-axis). The VIB
results are added as dotted lines for comparison. The arrows indicate if a larger or smaller score is better. Details
are explained in the paper.

Figure 11: The scatter plot shows the location of test set data in
latent space. A single sample is augmented by rotating the RGB
color vector as described in the paper. The small images show the
successive steps of augmentation, while the black arrow shows the
position of each of these steps in latent space. We observe how the
points in latent space travel further from the cluster center with
increasing augmentation, causing them to be detected as OoD.


