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Abstract

Gaussian Processes (GPs) are flexible nonparametric statistical models equipped1

with principled uncertainty quantification for both noise and model uncertainty.2

However, their cubic inference complexity requires them to be combined with3

approximation techniques when applied to large datasets. Recent work demon-4

strated that such approximations introduce an additional source of uncertainty,5

computational uncertainty, and that the latter could be quantified, leading to the6

computation-aware GP, also known as IterGP. In this short communication, we7

demonstrate that IterGP is not “robust”, in the sense that a quantity of interest,8

the posterior influence function, is not bounded. Subsequently, drawing inspira-9

tion from recent work on Robust Conjugate GPs, we introduce a novel class of10

GPs: IterRCGPs. We carry out a number of theoretical analyses, demonstrating11

the robustness of IterRCGPs among other things.12

1 Introduction13

Gaussian Processes (GPs, Rasmussen and Williams (2006)) are a class of probabilistic models en-14

joying many properties such as universal approximation or closed-form computations. Due to their15

principled uncertainty quantification, they are becoming increasingly popular when applied in high-16

stakes domains like medical datasets (Cheng et al., 2019; Chen et al., 2023) or used as a surrogate17

model in Bayesian Optimization (Garnett, 2023). This being said, GPs suffer from a cubic infer-18

ence complexity, hindering their use on large datasets. As a remedy, approximation techniques19

like Sparse Variational Gaussian Processes (Titsias, 2009) or the Nyström approximation are often20

used (Williams and Seeger, 2000; Wild et al., 2023).21

These approximations introduce bias in uncertainty quantification, which, as recently demonstrated,22

can be quantified and combined with mathematical uncertainty, leading to the development of23

computation-aware GPs (Wenger et al., 2022), also known as IterGPs. This combined uncertainty24

is shown to be the correct measure for capturing overall uncertainty, as limited computation intro-25

duces computational error. While this analysis applies to standard GPs, many practical applications26

require variations, e.g., to deal with heteroscedasticity or outliers.27

Recent work by Altamirano et al. (2024) introduced the robust conjugate GP (RCGP), which unifies28

three classes of GPs. RCGP retains conjugacy, enabling a closed-form posterior while exhibiting29

a robustness property. However, like standard GPs, RCGP faces significant inference complexity,30

necessitating approximation methods such as sparse variational RCGP, and therefore suggesting the31

use of the framework developed by Wenger et al. (2022).32

Contributions. Our work can be seen as bridging the gap between computation-aware GPs and33

Robust Conjugate GPs. As such, our contributions are mainly theoretical and can be summarized as34

follows:35

Submitted to Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information
Processing Systems (BDU at NeurIPS 2024). Do not distribute.



• We present IterRCGP, a novel computation-aware Gaussian Process (GP) framework that36

extends IterGPs by accommodating a broader range of observation noise models.37

• We demonstrate that IterRCGP inherits the robustness properties characteristic of RCGP.38

• We establish that IterRCGP exhibits convergence behavior and worst-case errors analogous39

to IterGP.40

2 Preliminaries41

We first introduce notations for GP regression (Rasmussen and Williams, 2006). Let D =42

{(x1, y1), . . . , (xn, yn)} be a dataset, with (xj , yj) ∈ Rd × R such that yj = f(xj) + ϵ and43

ϵ ∼ N (0, σ2
noise) for all j. The latent function f is modeled with a GP prior:44

f(x) ∼ GP(m(x), k(x,x′)). (1)

This defines a distribution over functions f whose mean is E[f(x)] = m(x) and covariance45

cov[f(x), f(x′)] = k(x,x′). k is a kernel function measuring the similarity between in-46

puts. For any finite-dimensional collection of inputs {x1, . . . ,xn}, the function values f =47

[f(x1), . . . , f(xn)]
⊤ ∈ Rn follow a multivariate normal distribution f ∼ N (m,K), where48

m = [m(x1), . . . ,m(xn)]
⊤ and K ∈ Rn×n = [k(xj ,xl)]1≤j,l≤n is the kernel matrix.49

Given D, the posterior predictive distribution p(f(x) | D) is Gaussian for all x with mean µ∗(x)50

and variance k∗(x,x), such that51

µ∗(x) = m(x) + k⊤
x (K+ σ2

noiseI)
−1(y −m),

k∗(x,x) = k(x,x)− k⊤
x (K+ σ2

noiseI)
−1kx,

where y = [y1, . . . , yn] ∈ Rn and kx = [k(x,x1), · · · , k(x,xn)]
⊤ ∈ Rn.52

Next, we introduce an extension of GPs: Robust Conjugate Gaussian Processes (RCGPs).53

Robust conjugate Gaussian process. RCGP follows the generalized Bayesian inference frame-54

work, substituting the classical likelihood with the loss function Lw
n (Altamirano et al., 2024) defined55

as56

Lw
n (f ,x,y) =

1

n

 n∑
j=1

w2(xj , yj)s
2
model(xj , yj) + 2∇y[w

2(xj , yj)smodel(xj , yj)]

 , (2)

where smodel(x, y) = σ−2
noise(f(x) − y), σ2

noise > 0. The core component of Lw
n is the weighting57

function w, which depends on x and y. Altamirano et al. (2024)[Table 1] provides three weighting58

functions corresponding to homoscedastic, heteroscedastic, and outliers-robust GPs. Building on59

Lw
n , the authors further define the RCGP’s predictive posterior distribution pw(f(x)|D) as follows:60

µ̂∗(x) = m(x) + k⊤
x

v̂︷ ︸︸ ︷
(K+ σ2

noiseJw)−1(y −mw) (3)

k̂∗(x,x) = k(x,x)− k⊤
x K̃

−1kx (4)

for w = (w(x1, y1), . . . , w(xn, yn))
⊤, K̃ = K + σ2

noiseJw, mw = m + σ2
noise∇y log(w

2), and61

Jw = diag(
σ2
noise

2 w−2). A key advantage of RCGP is its robustness to outliers and non-Gaussian62

errors. While vanilla GPs exhibit an unbounded posterior influence function, RCGP, under certain63

conditions, maintains a bounded posterior influence function (Altamirano et al., 2024)[Proposition64

3.2].65

3 Computation-aware RCGPs66

In the same spirit of Wenger et al. (2022), we treat the representer weights v̂ introduced in Equation 367

as a random variable with the prior p(v̂) = N (v̂;0, K̃−1). We then update p(v̂) by iteratively68
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applying the tractable matrix-vector multiplication. For a particular iteration i ∈ {0, . . . , n}, we69

have the current belief distribution p(v̂) = N (v̂; ṽi, Σ̃i) where70

ṽi = ṽi−1 + Σ̃i−1K̃si(s
⊤
i K̃Σ̃i−1K̃si)

−1α̃i = C̃i(y −mw) (5)

Σ̃i = Σ̃i−1 − Σ̃i−1K̃si(s
⊤
i K̃Σ̃i−1K̃si)

−1s⊤i K̃Σ̃i−1 (6)

α̃i = s⊤i K̃(v̂ − ṽi−1)︸ ︷︷ ︸
ri−1

(7)

C̃i = K̃−1 − Σ̃i (8)

Here, si denotes the policy corresponding to a specific approximation method (Wenger et al.,71

2022)[Table 1]. This policy serves as the projection of the residual ri−1 results in αi. The belief72

regarding the representer weights encodes the computational error as an added source of uncertainty,73

which can be integrated with the inherent uncertainty of the mathematical posterior.74

We obtain the predictive posterior of IterRCGP by integrating out the representer weights:75

p(f(x)|D) =
∫
p(f(x)|v̂)p(v̂)dv̂ = N (f ; µ̂i(x), k̂i(x,x)) where76

µ̂i(x) = m(x) + k⊤
∗ ṽi (9)

k̂i(x,x) = k(x,x)− k⊤
x K̃

−1kx + k⊤
x Σ̃ikx︸ ︷︷ ︸

kcomp.
i (x,x)

= k(x,x)− k⊤
x C̃ikx︸ ︷︷ ︸

combined uncertainty

(10)

IterRCGP follows [Algorithm 1] from Wenger et al. (2022) to compute an estimate weights ṽi and77

the rank-i precision matrix approximation C̃i.78

4 Theoretical results79

In this section, we present the theoretical properties of IterRCGP, building upon the IterGP frame-80

work and the RCGP class. Our theoretical analysis primarily aims to establish the following key81

results:82

• Robustness property of IterGP and IterRCGP (Proposition 1).83

• Convergence of IterRCGP’s posterior mean in reproducing kernel Hilbert space (RKHS)84

norm (Proposition 2) and pointwise (Corollary 4).85

• Combined uncertainty of IterRCGP is a tight worst-case bound on the relative distance86

to all potential latent functions shifted by the function mw consistent with computational87

observations, similar to its IterGP counterpart (Proposition 3).88

We establish the robustness properties of IterGP and IterRCGP using the Posterior Influence Func-89

tion (PIF) as the robustness criterion. Appendix 1 provides a detailed definition of PIF. The propo-90

sition presented below is closely related to Altamirano et al. (2024)[Proposition 3.2].91

Proposition 1. (Robustness property)92

Suppose f ∼ GP(m, k), ε ∼ N (0, σ2
noiseI) and let C ′

k ∈ R; k = 1, 2, 3 be constants independent93

of ycm. For any given iteration i ∈ {0, . . . , n}, IterGP regression has the PIF94

PIFIterGP(y
c
m,D, i) = C ′

1(ym − ycm)2 (11)

which is not robust: PIFIterGP(y
c
m,D, i) → ∞ as |ycm| → ∞. In contrast, for the IterRCGP with95

supx,y w(x, y) < ∞,96

PIFIterRCGP(y
c
m,D, i) = C ′

2(w(xn, y
c
n)

2ycn)
2 + C ′

3 (12)

Therefore, if supx,y y w(x, y)
2 < ∞, IterRCGP regression is robust since97

supyc
m
|PIFIterRCGP(y

c
m,D, i)| < ∞.98

The proposition demonstrates that IterGP and IterRCGP inherit the same robustness properties as99

their respective counterparts, GP and RCGP. Specifically, the condition supx,y w(x, y) < ∞ ensures100

each observation has a finite weight, which is the key factor underpinning robustness.101

The following proposition is analogous to [Theorem 1] in Wenger et al. (2022).102
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Proposition 2. (Convergence in RKHS norm of the robust posterior mean approximation)103

Let Hk be the RKHS w.r.t. kernel k, σ2
noise > 0 and let µ̂∗ − m ∈ Hk be the unique solution to104

following minimization problem105

argminf∈Hk
Lw
n (f ,x,y) +

1

2n
∥f∥2Hk

(13)

which is equivalent to the mathematical RCGP mean posterior shifted by prior mean m. Then for106

i ∈ {0, . . . , n} the IterRCGP posterior mean µ̂i satisfies:107

∥µ̂∗ − µ̂i∥Hk
≤ ρ̂(i)c(Jw)∥µ̂∗ −m∥Hk

(14)

where ρ̂ is the relative bound errors corresponding to the number of iterations i and the constant108

c(Jw) =
√
1 + λmax(Jw)

λmin(K) → 1 as λmax(Jw) → 0.109

Appendix B provides more details about the relative bound errors. Proposition 2 provides a bound110

on the RKHS-norm error between the posterior mean of IterRCGP and the mathematical posterior111

mean of RCGP.112

The final proposition parallels [Theorem 2] in Wenger et al. (2022), demonstrating that the combined113

uncertainty is a tight bound for all functions g that could have yielded the same computational114

outcomes.115

Proposition 3. (Combined and computational uncertainty as worst-case errors)116

Let σ2
noise ≥ 0 and k̂i(·, ·) = k̂∗(·, ·) + kcomp.

i (·, ·) be the combined uncertainty of IterRCGP. Fur-117

thermore, let g = [g(x1), · · · , g(xn)] ∈ Rn. Then, for any new x ∈ X we have118

sup
∥g−mw∥Hkσw ≤1

g(x)− µ̂g(x)︸ ︷︷ ︸
math. err.

+ µ̂g(x)− µ̂g
i (x)︸ ︷︷ ︸

comp. err.

=

√
k̂i(x,x) + σ2

noise (15)

sup
∥g−mw∥Hkσw ≤1

µ̂g(x)− µ̂g
i (x)︸ ︷︷ ︸

comp. err.

=
√
kcomp.
i (x,x) (16)

where µ̂g(·) = k(·,X)K̃−1(g − mw) is the RCGP’s posterior and µ̂g
i (·) = k(·,X)C̃i(g − mw)119

IterRCGP’s posterior mean for the latent function g and the function mw lies in Hkσw .120

The consequence of Proposition 3 is then formalized through the following corollary:121

Corollary 4. (Pointwise convergence of robust posterior mean)122

Assume the conditions of Proposition 3 hold and assume the latent function g ∈ Hkσw . Let µ̂ be the123

corresponding mathematical RCGP posterior mean and µ̂i the IterRCGP posterior mean. It holds124

that125

|g(x)− µ̂i(x)|
∥g∥Hkσw

≤
√
k̂i(x,x) + σ2

noise (17)

µ̂(x)− µ̂i(x)

∥g∥Hkσw

≤
√

kcomp.
i (x,x) (18)

5 Conclusion126

In this paper, we demonstrated that computation-aware GPs as presented by Wenger et al. (2022)127

lack robustness in the PIF sense. Subsequently, we introduced Iter RCGPs, a novel class of provably128

robust computation-aware GPs. Since our work mainly involves theoretical analyses, our immediate129

perspective is to run numerical experiments using synthetic and real-world datasets. Next, one130

interesting avenue for applying Iter RCGPs is that of Bayesian Optimization (BO), a domain where131

uncertainty quantification is key to coming up with good exploration policies.132

Indeed, the issue of refined uncertainty quantification has recently gained attention in BO. One ap-133

proach addresses this by jointly optimizing the selection of the optimal data point along with the134

SVGP parameters and the locations of the inducing points (Maus et al., 2024). Another study incor-135

porates conformal prediction into BO by leveraging the conformal Bayes posterior and proposing136

generalized versions of the corresponding BO acquisition functions (Stanton et al., 2023).137
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A Proof of Proposition 1165

Posterior influence function. Given the dataset D = {(xj , yj)}nj=1, we define the contamination166

of D indexed by m ∈ {1, . . . , n} as Dc
m = (D \ (xm, ym)) ∪ (xm, ycm). PIF in general, aims167

to measure the impact of ycm on inference through the divergence between the contaminated and168

uncontaminated posteriors p(f |Dc
m) and p(f |D):169

PIF(ycm,D) = KL(p(f |D)∥p(f |Dc
m)) (S1)

where we call a posterior robust if supy∈Y |PIF(ycm,D)| < ∞.170

We then establish the following lemma to prove Proposition 1.171

Lemma 5. For an arbitrary matrice Ŝ ∈ Rm×n and positive semidefinite matrice B̂ ∈ Rn×n, we172

have that173

Tr((ŜB̂Ŝ⊤)−1) = Ŝ+⊤B̂−1/2ĜB̂−1/2Ŝ+ (S2)

where we define Ĝ = I− B̂−1/2(I− Ŝ+Ŝ)(B̂−1/2(I− Ŝ+Ŝ))+ and + denotes the Moore-Penrose174

inverse.175

Proof:176

177

The whole proof is derived from an answer to a question posted on the Mathematics Stack Exchange178

Forums, which we write here for conciseness.179

Denote Ô = I− Ŝ+Ŝ and H(α) = (Ŝ(αI+ B̂−1)−1Ŝ⊤)−1. Note that180

(ŜB̂Ŝ⊤)−1 = lim
α→0

H(α) (S3)

By applying Woodbury matrix identity, we can rewrite H(α) as follows:181

H(α) =

(
1

α
ŜŜ⊤ − 1

α
ŜB̂−1/2

(
I+

1

α
B̂−1

)−1
1

α
B̂−1/2Ŝ⊤

)−1

(S4)

Since ŜŜ⊤ is invertible, we can apply the Woodbury matrix identity for the second time to obtain182

H(α) = α(ŜŜ⊤)−1 − (ŜŜ⊤)−1ŜB̂−1/2

(−(I+
1

α
B̂−1) +

1

α
B̂−1/2Ŝ⊤(ŜŜ⊤)−1ŜB̂−1/2)−1B̂−1/2Ŝ⊤(ŜŜ⊤)−1 (S5)

= α(ŜŜ⊤)−1 + (ŜŜ⊤)−1ŜB̂−1/2(I+
1

α
B̂−1/2(I− Ŝ⊤(ŜŜ⊤)−1Ŝ)B̂−1/2)−1

B̂−1/2Ŝ⊤(ŜŜ⊤)−1 (S6)

We note that183

Ŝ⊤(ŜŜ⊤)−1 = Ŝ+ (S7)

I− Ŝ⊤(ŜŜ⊤)−1Ŝ = Ô (S8)

Then, we rewrite H(α) as follows:184
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H(α) = α(ŜŜ⊤)−1 + Ŝ+⊤B̂−1/2

(
I+

1

α
B̂−1/2ÔÔB̂−1/2

)−1

B̂−1/2Ŝ+ (S9)

Applying the Woodbury matrix identity for the third time provides185

H(α) = α(ŜŜ⊤)−1 + Ŝ+⊤B̂−1/2(I− B̂−1/2Ô(αI+ ÔB̂−1Ô)−1ÔB̂−1/2)B̂−1/2Ŝ+ (S10)

Since the Moore-Penrose inverse of a matrice A is a limit:186

A+ = lim
α→0

(A⊤A+ αI)−1A⊤ = lim
α→0

A⊤(AA⊤ + αI)−1 (S11)

We can take the limit of H(α) as α → 0 and apply the limit relation above to obtain the following187

result:188

(ŜB̂Ŝ⊤)−1 = Ŝ+⊤B̂−1/2 (I− B̂−1/2Ô(B̂−1/2Ô)+)︸ ︷︷ ︸
Ĝ

B̂−1/2Ŝ+ (S12)

PIF for the IterGP. IterGP regression has the PIF for some constant C ′
1 ∈ R.189

PIFIterGP(y
c
m,D, i) = C ′

1(ym − ycm)2 (S13)

and is not robust: PIFIterGP(y
c
m,D, i) → ∞ as |ycm| → ∞.190

Proof:191

Let p(f |D) = N (f ;µi,Ki) and p(f |Dc
m) = N (f ;µc

i ,K
c
i ) be the uncontaminated and contaminated192

computation-aware GP, respectively. Here,193

µi = m+Kvi (S14)

Ki = KCiσ
2
noiseIn (S15)

µc
i = m+Kvc

i (S16)

Kc
i = KCiσ

2
noiseIn (S17)

Note that both Ki and Kc
i share the same matrice Ci. Then, the PIF has the following form:194

PIFIterGP(y
c
m,D, i) =

1

2
(Tr(Kc

iKi)− n+ (µc
i − µi)

⊤(Kc
i )

−1(µc
i − µi) + ln

(
det(Kc

i )

det(Ki)

)
(S18)

Based on Altamirano et al. (2024), the PIF leads to the following form:195

PIFIterGP(y
c
m,D, i) =

1

2

(
(µc

i − µi)
⊤(Kc

i )
−1(µc

i − µi)
)

(S19)

Notice that the term µc
i − µi can be written as196

µc
i − µi = (m+Kvc

i )− (m+Kvi) (S20)
= K(vc

i − vi) (S21)
= K(Ci(y

c −m)−Ci(y −m)) (S22)
= K(Ci(y

c − y)) (S23)

7



Substituting the RHS of Eq. (S23) to µc
i − µi in Eq. (S19), we obtain197

PIFIterGP(y
c
m,D, i) =

1

2
(Ci(y

c − y))⊤K
(
KCiσ

2I
)−1

K(Ci(y
c − y)) (S24)

=
1

2
(yc − y)⊤C⊤

i Kσ−2
noiseI(y

c − y) (S25)

Note that y and yc have only one exception for the m−th element. Thus, we have198

PIFIterGP(y
c
m,D, i) =

1

2
[C⊤

i Kσ−2I]mm(ycm − ym)2 (S26)

PIF for the IterRCGP. For the IterRCGP with supx,y w(x, y) < ∞, the following holds199

PIFIterRCGP(y
c
m,D, i) ≤ C ′

2(w(xm, ycm)2ycm)2 + C ′
3 (S27)

for some constants C ′
2, C

′
3 ∈ R. Therefore, if supx,y y w(x, y)

2 < ∞, the computation-aware200

RCGP is robust since |PIFIterRCGP(y
c
m,D, i)| < ∞.201

Proof:202

Without loss of generality, we aim to prove the bound for m = n. We can extend the proof for an203

arbitrary m ∈ {1, . . . , n}. Let pw(f |D) = N (f ; µ̂i, K̂i) and pw(f |Dc
m) = N (f ; µ̂c

i , K̂
c
i ) be the204

uncontaminated and contaminated computation-aware RCGP, respectively. Here,205

µ̂i = m+KC̃iṽi (S28)

K̂i = KC̃iσ
2
noiseJw (S29)

µ̂c
i = m+KC̃c

i ṽ
c
i (S30)

K̂c
i = KC̃c

iσ
2
noiseJwc (S31)

where wc = (w(x1, y1), . . . , w(xn, y
c
n))

⊤. The PIF has the following form206

PIFIterRCGP(y
c
m,D, i) =

1

2

Tr((K̂c
i )

−1K̂i)− n︸ ︷︷ ︸
(1)

+(µ̂c
i − µ̂i)

⊤(K̂c
i )

−1(µ̂c
i − µ̂i)︸ ︷︷ ︸

(2)

+ ln

(
det(K̂c

i )

det(K̂i)

)
︸ ︷︷ ︸

(3)


(S32)

We first derive the bound for (1):207

(1) = Tr((K̂c
i )

−1K̂i)− n (S33)

= Tr
(
(KC̃c

iσ
2
noiseJwc)−1KC̃iσ

2
noiseJw

)
− n (S34)

= Tr(σ−2
noiseJ

−1
wc(C̃c

i )
−1C̃iσ

2
noiseJw)− n (S35)

≤ Tr(σ−2
noiseJ

−1
wc(C̃c

i )
−1)Tr(C̃iσ

2
noiseJw)− n (S36)

≤ Tr(σ−2
noiseJ

−1
wc)Tr(C̃c

i )
−1)Tr(C̃iσ

2
noiseJw)− n (S37)

The first and second inequality come from the fact that Tr(AF) ≤ Tr(A)Tr(F) for two positive208

semidefinite matrices A and F. Since Tr(C̃iσ
2
noiseJw) does not contain the contamination term, we209
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can write C̄1 = Tr(C̃iσ
2
noiseJw). Let B = (S⊤

i K̃
cSi)

−1 such that Cc
i = S⊤

i BS⊤
i . Observe that210

matrice B is positive semidefinite. Thus, we can apply Lemma 5 to obtain the bound of Tr((C̃c
i )

−1):211

Tr((C̃c
i )

−1) = Tr((S⊤
i BS⊤

i )
−1) (S38)

= Tr(S+⊤
i B−1/2GB−1/2S+

i ) (S39)

≤ Tr(S+
i S

+⊤
i )Tr(B−1/2B−1/2)Tr(G) (S40)

where212

Tr(G) = Tr(I−B−1/2(I− S+
i Si)(B

−1/2(I− S+
i Si))

+) (S41)

= n− Tr(B−1/2(I− S+
i Si)(I− S+

i Si)
+B−1/2+) (S42)

≤ n− Tr(B−1/2+B−1/2)Tr((I− S+
i Si)(I− S+

i Si)
+) (S43)

The inequality S40 stems from the trace circular property and the inequality of the product of two213

semidefinite matrices. Note that Tr(G) ≤ n since B−1/2+B−1/2 and (I − S+
i Si)(I − S+

i Si)
+ in214

S43 are positive semidefinite matrice; thus both have non-negative trace value. Therefore, we find215

that216

Tr((C̃c
i )

−1) ≤ nTr(S+
i S

+⊤
i )Tr(B−1) (S44)

≤ nTr(S+
i S

+⊤
i )Tr(SiS

⊤
i )Tr(K̃

c) (S45)

= C̄2Tr(K+ σ2
noiseJwc) (S46)

where we define C̄2 = nTr(S+
i S

+⊤
i )Tr(SiS

⊤
i ). We then plug S46 into S37 to obtain217

(1) ≤ Tr(σ−2
noiseJ

−1
wc)Tr(K+ σ2

noiseJwc)C̄1C̄2 − n (S47)

=

 n∑
j=1

(
σ−2
noisew

2(xj , yj)
) n∑
k=1

(
Kkk + σ2

noisew
−2(xk, yk)

) C̄1C̄2 − n (S48)

≤

(
n2 sup

x,y
w2(x, y) sup

x̂,ŷ
w−2(x̂, ŷ)

)
C̄1C̄2 − n = C̄3 (S49)

Next, we derive the bound for (2). Following Altamirano et al. (2024), we have that218

(2) ≤ λmax((K̂
c
i )

−1)∥µ̂c
i − µ̂i∥21 (S50)

We expand λmax((K̂
c
i )

−1) and derive the following bound:219

λmax((K̂
c
i )

−1) = λmax(σ
−2J−1

wc(C̃c
i )

−1K−1) (S51)

≤ λmax(σ
−2
noiseJ

−1
wc)λmax((C̃

c
i )

−1)λmax(K
−1) (S52)

= λmax(σ
−2
noiseJ

−1
wc)λmin(C̃

c
i )λmax(K

−1) (S53)

≤ λmax(σ
−2
noiseJ

−1
wc)

(
λmin((K̃

c)−1)
)
λmax(K

−1) (S54)

≤ λmax(σ
−2
noiseJ

−1
wc)λmin((K̃

c)−1)λmax(K
−1) (S55)

≤ λmax(σ
−2
noiseJ

−1
wc)(λmax(K) + λmax(σ

2
noiseJwc))λmax(K

−1) (S56)
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The first inequality follows from the maximum eigenvalue of the product of two positive semidefinite220

matrices. The fact that the maximum eigenvalue of a matrice is equal to the minimum eigenvalue221

of the inverse leads to the second equality. Recall that C̃c
i = (K̃c)−1 −Σi. Since C̃c

i , (K̃c)−1 and222

Σi are positive semidefinite matrices, the third inequality holds. The fourth inequality stems from223

the equivalence of the maximum eigenvalue and the addition property of the maximum eigenvalue224

of two positive semidefinite matrices.225

Since J−1
wc = diag((wc)2), and supx,y w(x, y) < ∞, it holds that λmax(σ

−2
noiseJ

−1
wc) = C̄4 < +∞226

and λmax(σ
2
noiseJwc) = C̄5 < +∞, such that227

λmax((K̂
c
i )

−1) ≤ C̄4(λmax(K) + C̄5)λmax(K
−1) = C̄6 (S57)

We substitute C̄6 into (2) to obtain228

(2) ≤ C̄6∥µ̂c
i − µ̂i∥21 (S58)

= C̄6∥(m+Kṽc
i )− (m+Kṽi)∥21 (S59)

= C̄6∥K(C̃c
i (y −mwc)− C̃i(y −mw))∥21 (S60)

≤ C̄6∥K∥F ∥C̃c
i (y −mwc)− C̃i(y −mw)∥21 (S61)

≤ C̄6∥K∥F (∥(K̃c)−1(y −mwc)− (K̃)−1(y −mw)∥21 + ∥Σ̃c

i (y −mwc)− Σ̃i(y −mw)∥21)
(S62)

≤ qC̄6∥K∥F (∥(K̃c)−1(y −mwc)− (K̃)−1(y −mw)∥21 (S63)

= qC̄6∥K∥F ((K+ σ2
noiseJwc)−1(y −mwc)− (K+ σ2

noiseJw)(y −mw)∥21 (S64)

for a constant q > 0. The second equality follows from Wenger et al. (2022)[Eq. (S45)]. The first in-229

equality follows the Cauchy-Schwarz inequality. The second inequality stems from the definition of230

C̃i, C̃c
i , and the triangle inequality. Finally, the last inequality holds since (K̃−1

i − Σ̃i), K̃
−1
i , Σ̃i ⪰231

0.232

Applying results from Altamirano et al. (2024), we obtain233

(2) ≤ qC̄6∥K∥F ((K+ σ2
noiseJwc)−1(y −mwc)− (K+ σ2

noiseJw)(y −mw)∥21 (S65)

≤ qC̄6∥K∥F 2((C̄7 + C̄8)
2 + (C̄9 + C̄10)

2(w(xn, y
c
n)

2ycn)
2) (S66)

≤ C̄11 + C̄12(w(xn, y
c
n)

2ycn)
2 (S67)

where C̄11 = qC̄6∥K∥F 2(C̄7 + C̄8)
2 and C̄12 = qC̄6∥K∥F 2(C̄9 + C̄10)

2. The terms234

C̄7, C̄8, C̄9, C̄10 equal to C̃6, C̃8, C̃7, C̃9 in Altamirano et al. (2024).235

The term (3) can be written as follows:236

(3) = ln

(
det(K̂c

i )

det(K̂i)

)
(S68)

= ln

(
det(C̃c

iσ
2
noiseJwc)

det(C̃iσ2
noiseJw)

)
(S69)

= ln(det(σ−2
noiseJ

−1
w C̃−1

i )det(C̃c
i )det(σ

2
noiseJwc)) (S70)

Observe that we can write C̄13 = ln(det(σ−2
noiseJ

−1
w C̃−1

i ) since it does not contain the contimation237

term. Furthermore, we obtain238
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(3) = ln(C̄13det(C̃
c
i )det(σ

2
noiseJwc)) (S71)

≤ ln(C̄13det((K̃
c)−1) det(σ2

noiseJwc)) (S72)

= ln

(
C̄13

det(σ2
noiseJwc)

det(K+ σ2
noiseJwc)

)
(S73)

≤ ln

(
C̄13

det(σ2
noiseJwc)

det(K) + det(σ2
noiseJwc)

)
(S74)

The first inequality holds since ((K̃c
i )

−1 − Σ̃
c

i ), (K̃
c
i )

−1, Σ̃
c

i ⪰ 0, so det((K̃c
i )

−1) ≥ det(Σ̃
c

i ). The239

last inequality leverages the fact that det(A + F) ≥ det(A) + det(F) for A and F are positive240

semidefinite matrices. Since det(K),det(σ2
noiseJwc) ≥ 0, we find that241

ln

(
det(σ2

noiseJwc)

det(K) + det(σ2
noiseJwc)

)
≤ 1 (S75)

Leading to the following inequality:242

(3) ≤ ln(C̄13) = C̄14 (S76)

Finally, putting the three terms together, we obtain the following bound:243

PIFIterRCGP(y
c
m,D, i) ≤ C̄3 + C̄11 + C̄12(w(xn, y

c
n)

2ycn)
2 + C̄14 (S77)

= C ′
2(w(xn, y

c
n)

2ycn)
2 + C ′

3 (S78)

where C ′
2 = C̄12 and C ′

3 = C̄3 + C̄11 + C̄14.244

B Proof of Proposition 2245

Unique solution of the empirical-risk minimization problem. We first show the existence of a246

unique solution to the empirical risk minimization problem corresponding to RCGP. For this pur-247

pose, we set m = 0. Following Altamirano et al. (2024) (proof of [Proposition 3.1]), we can rewrite248

Lw
n and formulate the RCGP objective as the following empirical-risk minimization problem:249

f̂ = argminf∈Hk

1

2n

f⊤λ−1J−1
w f − 2f⊤λ−1J−1

w (y −mw) +Q(x,y, λ)︸ ︷︷ ︸
Lw

n

+∥f∥2Hk

 (S79)

where250

Q(x,y, λ) = y⊤λ−1diag(2λ−1w2)y − 4λ∇yy
⊤w2 (S80)

for λ > 0. We then show the unique solution to S79 through the following lemma:251

252

Lemma 6. If λ > 0 and the kernel k is invertible, the solution to S79 is a unique, and is given by253

f̂(x) = kx(K+ λJw)−1(y −mw) =

n∑
j=1

αjk(x,xj),x ∈ X (S81)
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where254

(αi, . . . , αn) = (K+ λJw)−1(y −mw) ∈ Rn (S82)

Proof:255

The optimization problem in S79 allows us to apply the representer theorem (Schölkopf et al., 2001).256

It implies that the solution of S79 can be written as a weighted sum, i.e.,257

f̂ =

n∑
j=1

αjk(.,xj) (S83)

for α1, . . . , αn ∈ R. Let α = [α1, . . . , αn]
⊤ ∈ Rn. Substituting S83 into S79 provides258

argminα∈Rn

1

2n
(λ−1α⊤KJ−1

w Kα− 2λ−1α⊤KJ−1
w (y −mw) +Q(x,y, λ) + ∥f̂∥2Hk

) (S84)

where ∥f̂∥2Hk
= α⊤Kα, following the reproducing property. Taking the differentiation of the259

objective w.r.t. α, setting it equal to zero, and arranging the result yields the following equation:260

K(K+ λJw)α = K(y −mw) (S85)

Since the objective in S84 is a convex function of α, we find that α = (K + λJw)−1(y − mw)261

provides the minimum of the objective (S79 and S84). Furthermore, we can verify that Lw
n is a262

convex function w.r.t. f . Therefore, we conclude that α = (K + λJw)−1(y − mw) provides263

the unique solution to S79. As a remark, Proposition 6 closely connects with [Theorem 3.4] in264

Kanagawa et al. (2018).265

266

Relative bound errors. We also provide the equivalence of Proposition 2 in Wenger et al. (2022):267

268

Proposition 7. For any choice of actions a relative bound error ρ̂(i) s.t. ∥v̂− ṽi∥K̃ ≤ ρ̂(i)∥v̂∥K̃ is269

given by270

ρ̂(i) = (v̄⊤(I− C̃iK̃)v̄)1/2 ≤ λmax(I− C̃iK̃) ≤ 1 (S86)

where v̄ = v̂/∥ṽ∥K̃.271

The proof is direct since we only need to substitute Ci, K̂,v∗ in Wenger et al. (2022) with C̃i, K̃, v̂,272

respectively.273

Proof of Proposition 2. Lemma 6 implies there exists a unique solution to the corresponding RCGP274

risk minimization problem. Choosing ρ̂(i) as described in Proposition 7, we have that ∥v̂− ṽi∥2K̃ ≤275

ρ̂(i)∥v̂ − ṽ0∥K̃, where ṽ0 = 0. Then, for i ∈ {0, . . . , n} we find that276

∥v̂ − ṽi∥2K ≤ ∥v̂ − ṽi∥2K̃ ≤ ρ̂2(i)∥v̂ − ṽ0∥2K̃ (S87)

≤ ρ̂(i)2
(
∥v̂ − ṽ0∥2K +

λmax(Jw)

λmin(K)
λmin(K)∥v̂ − ṽ0∥22

)
(S88)

≤ ρ̂(i)2
(
∥v̂ − ṽ0∥2K +

λmax(Jw)

λmin(K)
∥v̂ − ṽ0∥2K

)
(S89)

≤ ρ̂(i)2
(
1 +

λmax(Jw)

λmin(K)

)
∥v̂ − ṽ0∥2K (S90)
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The third inequality stems from the definition of Jw and the fact that the maximum eigenvalue of277

a diagonal matrice is the largest component of its diagonal. Applying result from Wenger et al.278

(2022), we have that279

∥v̂ − ṽi∥2K = ∥µ̂∗ − µ̂i∥2Hk
(S91)

Combining both results and defining c(Jw) =
(
1 + λmax(Jw)

λmin(K)

)
, we obtain280

∥µ̂∗ − µ̂i∥Hk
= ∥v̂ − ṽi∥K ≤ ρ̂(i)c(Jw)∥v̂ − ṽ0∥K = ρ̂(i)c(Jw)∥µ̂∗ −m∥Hk

(S92)

C Proof of Proposition 3281

Here, we refer to σ2
noise as σ2 to simplify the notation. Let cj = (C̃ik

σw(X,x))j for j = 1, . . . , n,282

where we define kσw(., .) = k(., .) + σ2

2 δw(., .), where283

δw(x,x
′) = {

w−2(x, y) x = x′ andx ∈ D
2 x = x′ andx /∈ D
0 x ̸= x′

(S93)

Since g,m ∈ Hkσw , it implies that g−m ∈ Hkσw . Then, applying [Lemma 3.9] in Kanagawa et al.284

(2018) provides285

(
sup

∥g−mw∥Hkσw ≤1

g(x)− µ̂g
i (x)

)2

=

 sup
∥g−mw∥Hkσw ≤1

g(x)−
n∑

j=1

cj(g(xj)−mw(xj))

2

(S94)

= ∥kσw(.,x)− k(x,X)C̃ik
σw(X, .)∥2Hkσw (S95)

= ⟨kσw(.,x), kσw(.,x)⟩Hσw
k

− 2⟨kσw(.,x), k(x,X)C̃ik
σw(X, .)⟩Hσw

k
+

⟨k(x,X)C̃ik
σw(X, .), k(x,X)C̃ik

σw(X, .)⟩Hσw
k

(S96)

By reproducing property, we have286

= kσw(x,x)− 2kσw(x,X)C̃ik
σw(X,x) + k(x,X)C̃ik

σw(X,X)C̃ik
σw(X,x) (S97)

if x ̸= xj or σ2 = 0, it holds that kσw(x,X) = k(x,X). By definition, we have kσw(X,X) = K̃287

and by Wenger et al. (2022)[Eq. (S42)], it holds that C̃iK̃C̃i = C̃i. Therefore, we obtain288

= k(x,x) + σ2 − 2k(x,X)C̃ik(X,x) + k(x,X)C̃iK̃C̃ik(X,x) (S98)

= k(x,x) + σ2 − k(x,X)C̃ik(X,x) (S99)

= k̂i(x,x) + σ2 (S100)

For the last result, we analogously choose cj = ((K̃−1 − C̃i)k
σw(X,x))j . Then, we obtain289
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(
sup

∥g−mw∥Hkσw ≤1

µ̂g(x)− µ̂g
i (x)

)2

=

 sup
∥g−mw∥Hkσw ≤1

n∑
j=0

cjg(xj)

2

(S101)

= ∥k(x,X)(K̃−1 − C̃i)k
σw(X, .)∥2Hkσw (S102)

= kσw(x,X)K̃−1K̃K̃−1kσw(X,x)− 2kσw(x,X)K̃−1K̃C̃ik
σw(X,x)+

kσw(x,X)C̃iK̃C̃ik
σw(X,x) (S103)

= k(x,X)(K̃−1 − C̃i)k(X,x) (S104)

= kcomp.
i (x,x) (S105)
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