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Abstract

A ubiquitous learning problem in today’s digital market is, during repeated inter-
actions between a seller and a buyer, how a seller can gradually learn optimal
pricing decisions based on the buyer’s past purchase responses. A fundamental
challenge of learning in such a strategic setup is that the buyer will naturally have
incentives to manipulate his responses in order to induce more favorable learning
outcomes for him. To understand the limits of the seller’s learning when facing
such a strategic and possibly manipulative buyer, we study a natural yet powerful
buyer manipulation strategy. That is, before the pricing game starts, the buyer
simply commits to “imitate” a different value function by pretending to always
react optimally according to this imitative value function.
We fully characterize the optimal imitative value function that the buyer should
imitate as well as the resultant seller revenue and buyer surplus under this optimal
buyer manipulation. Our characterizations reveal many useful insights about what
happens at equilibrium. For example, a seller with concave production cost will
obtain essentially 0 revenue at equilibrium whereas the revenue for a seller with
convex production cost is the Bregman divergence of her cost function between
no production and certain production. Finally, and importantly, we show that a
more powerful class of pricing schemes does not necessarily increase, in fact,
may be harmful to, the seller’s revenue. Our results not only lead to an effective
prescriptive way for buyers to manipulate learning algorithms but also shed lights
on the limits of what a seller can really achieve when pricing in the dark.

1 Introduction

Pricing is a basic question in microeconomics [24] as well as a ubiquitous problem in today’s digital
markets [16]. In its textbook style setup, there are two agents: a buyer (he) and a seller (she). The
seller produces d types of divisible goods for sale and has production cost c(x) for producing bundle
x ∈ Rd+ of the d goods. Using a standard linear pricing scheme with unit price pi for goods i ∈ [d],
the seller charges the buyer x · p when he purchases bundle x ∈ Rd+ under price vector p ∈ Rd+.
Naturally, the buyer’s optimal bundle for purchase depends on his value function v(x) about the
products. We assume that, given price vector p, the rational buyer will always pick the optimal bundle
that maximizes his quasilinear utility [v(x)− x · p]. The key question of interest is how the seller
can compute the revenue-maximizing optimal prices assuming rational buyer purchase behaviors.
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The above basic problem can be easily solved if the seller has access to the buyer’s value function
v(x). However, in practice, this value function is usually private and unknown to the seller. To address
this challenge, there has been a rich line of recent research which looks to design the optimal pricing
scheme against an unknown buyer. Some of these work have adopted learning-based approaches that
aim to compute the profit maximizing price by interacting with the buyer and gleaning information
about the buyer’s utility function [3, 33, 32]. These are motivated by the wide spread of e-commerce
today where the seller can repeatedly interact with the same buyer or buyers from the same population
with similar preferences. For example, in online advertising, ad exchange platforms learn to price
advertisers from past behaviors; in online retailing, retailers learn to price customers from their past
purchase history; and in crowdsourcing, platforms learn to reward workers’ efforts. Another line
of works look to design dynamic pricing mechanisms that dynamically adjusts the price based on
the observed past buyer purchase behaviors with the objective of maximizing the aggregated total
revenue [4, 5, 26, 27, 38].

A key challenge of pricing against such unknown buyers, regardless through learning or dynamic
pricing, is that the buyer may manipulate his responses in order to mislead the seller’s algorithm and
induce more favorable outcomes for themselves. This is a fundamental issue when learning from
strategic data sources, and is particularly relevant in this pricing setup due to the strategic nature
of the problem. In this case, the buyer controls the information content to the seller, therefore he
naturally has incentives to utilize this advantage to gain more payoff by strategically misleading
the seller’s algorithms. Indeed, as observed in previous studies, online advertisers may strategically
respond to an ad exchange platform’s prices in order to induce a lower future price [22]; Consumers
strategically time their purchases in order to obtain lower prices at online retailing platforms [23].

To understand the limits of the seller’s optimal pricing against such a strategic and possibly ma-
nipulative buyer, we put forward a natural model which augments the above basic pricing problem
with only one additional step — i.e., we assume that the game starts with the buyer committing to a
different value functions, coined the imitative value function, after which the seller will compute the
optimal pricing scheme against this imitative buyer value function. The buyer’s commitment to an
imitative value function captures a simple yet powerful buyer manipulation strategy that can be used
against any seller learning algorithms — that is, the buyer simply behaves consistently according
to this imitative value function during the entire interaction process. Intuitively, the motivation of
such commitment assumption comes directly from the fact that the seller has no information about
the buyer and has to optimize pricing “in the dark”. Consequently, if the buyer consistently behaves
according to some different imitative value function, the seller is not able to distinguish this buyer
from another buyer who truly has the value function (see more justifications of the commitment
assumption in Section 3). Moreover, such an imitation strategy is also easy to execute in practice by
the buyer regardless whether the seller is learning from him or is adopting dynamic pricing schemes.
In fact, the buyer could even just report his imitative value function to the seller directly at the
beginning of any interaction. In this situation, no learning or dynamic pricing will be needed as the
buyer will indeed always behave according to the imitative value function. Therefore, all the seller
can do is to directly apply the optimal pricing scheme for the buyer’s imitative value function.

We remark that such imitation-based manipulation strategy has attracted much interest in recent works,
with similar motivations as us — i.e., trying to understand how to manipulate learning algorithm or
conversely, how to design strategy-aware learning algorithms to mitigate such manipulation. However,
most of these works have focused on the general Stackelberg game model [19, 10] as well as the
Stackelberg security games [18, 30, 29]. Our optimal pricing problem is also a Stackelberg model
and thus a natural fit for the study. The crucial difference between our work and previous studies
is that both agents in our model have continuous utility functions whereas all these previous works
[19, 18, 30, 10] have discrete agent utility functions. Therefore, our model leads to a functional
analysis and optimization problem, which is more involved. Fortunately, we show that the optimal
functional solution can still be characterized by leveraging the structure of the pricing problem.

1.1 Our Results and Implications

Given the effectiveness and easy applicability of the buyer’s imitative strategy described above, this
paper studies what the optimal buyer imitative value function is and how it would affect buyer’s
surplus and the seller’s revenue. Our main result provides a full characterization about the optimal
buyer imitative value function. We show that the optimal buyer imitative value function u∗ features
a specific bundle of products x∗ that is most desirable to the buyer. Interestingly, it turns out
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that u∗ is a Leontief-type piece-wise linear concave value function [2] such that the buyer would
only proportionally value a fraction of the desired bundle x∗ and nothing else. Moreover, we also
characterize the seller revenue and buyer surplus at equilibrium as well as necessary and sufficient
conditions under which the seller obtains strictly positive revenue.

The optimal buyer imitative value function turns out to depend crucially on the seller’s production cost
function. When the cost function is concave, we show that the optimal buyer imitative value function
u∗ will “squeeze” the seller revenue essentially to 0. The fortunate news for the seller, however,
is that finding out the u∗ turns out to be an NP-hard task for the buyer. In fact, we prove that it is
NP-hard to find the u∗ that can guarantee a polynomial faction of the optimal buyer surplus. For the
widely adopted convex production cost, we show that the equilibrium seller revenue is the Bregman
divergence between production 0 and the x∗ bundle mentioned above. This illustrates an interesting
message that convex production costs are “better” at handling buyer’s strategic manipulations. Note
that production costs are indeed more often believed to be convex since economic models typically
assume that marginal costs increase as quantity goes up [35, 34].

All our characterizations so far focus on the standard linear pricing scheme. Our last result examines
the possibility of using a more general class of pricing schemes to address the buyer’s strategic
manipulation. Surprisingly, we show that for the strictly more general class of concave pricing
functions (i.e., the seller is allowed to use any concave function as a pricing function), the equilibrium
will remain the same as described above. Therefore, the more general pricing schemes do not
necessarily help to address buyer’s manipulation behavior. In fact, we show that there exist examples
where strictly broader class of pricing functions leads to strictly worse seller revenue. This is because
more general pricing schemes may “overfit” buyer’s incentives, which renders it easier to manipulate.
This illustrates an interesting phenomenon in learning from strategic data sources and shares similar
spirit to overfitting in standard machine learning tasks.

1.2 Additional Related Works

Due to space limit, here we only briefly discuss the most related works while refer readers to Appendix
A.1 for more detailed discussions and comparisons. Closely related to ours is a recent study by Tang
and Zeng [36]. They study the bidders’ problem of committing to “imitate” a fake value distribution
in auctions and acting consistently as if the bidder’s value were from the fake distribution. This is
similar in spirit to our buyer’s commitment to an imitative value function. However, there is significant
difference betweens our setting and that of [36], which leads to very different conclusions as well.
Specifically, the seller in [36] auctions a single indivisible item with no production costs whereas
our seller sells multiple divisible items with production costs. Another recent work [28] also studies
buyer’s strategic manipulation against seller’s pricing algorithms, but in a single-item multi-buyer
situation. Moreover, they assume a fixed seller learning strategy (thus not adaptive to buyer’s strategy)
with separated exploration-exploitation phases motivated by [4]. Another very relevant literature is
learning the optimal prices or optimizing aggregated total revenue by repeatedly interacting with a
single buyer [4, 5, 26, 27, 38]. These works all focus on designing learning algorithms that can learn
from strategically buyer responses. Our work complements this literature by studying the limits of
what learning algorithms can achieve. Moreover, the setups of these previous works are also different
from us – they either assume buyer values are drawn from distributions [4, 5, 27] or the seller sells a
single indivisible good with discrete agent utilities. Thus, their results are not comparable to us.

There have also been studies on learning the optimal prices from truthful revealed preferences, i.e.,
assuming the buyer will honestly best respond to seller prices [8, 39, 6, 42, 3, 33, 32]. Our works
try to understand if the assumption of truthful revealed preferences does not hold and if the buyer
will strategically respond to the seller’s learning, what learning outcome could be expected when the
buyer simply imitates a different value function that is optimally chosen. From this perspective, these
works serve as a key motivation for the present paper. More generally, our work subscribes to the
general line of research on learning from strategic data sources. Most works in this space has focused
on classification [11, 20, 43, 17, 25, 21, 12], regression problems [31, 15, 13] and distinguishing
distributions [40, 41]. Our work however focuses on learning the optimal pricing scheme.

2 Preliminaries

Basic Setup of the Optimal Pricing Problem. A seller (she) would like to sell d different types
of divisible goods to a buyer (he). It costs her c(x) to produce x ∈ Rd bundle of these goods. Let
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X ⊂ Rd denote the set of all feasible bundles that the seller can produce. We assume X is convex,
closed and has positive measure. As a standard assumption [24, 33, 8, 6, 39], the buyer has a concave
value function v(x) for any goods bundle x ∈ X . We do not make any assumption about the seller’s
production cost c(x), except that it is monotone non-decreasing. For normalization, we assume
0 ∈ X and v(0) = c(0) = 0.

The seller aims to find a revenue-maximizing pricing scheme assuming rational buyer behaviors. A
seller pricing scheme is a function p(x) that specifies the sale price for any bundle x. By convention,
p(0) = 0 always. Let the set P denote the set of all pricing functions that are allowed to use by the
buyer. The majority of this paper will focus on the textbook-style linear pricing scheme [24]. A
linear pricing scheme is parameterized by a price vector p (to be designed) such that p(x) = p · x
where i’th entry pi is interpreted as the unit price for goods i. Let set

PL = {p : p(x) = p · x for some p ∈ Rd+}

denote the set of all linear pricing functions. In Section 6 we will also study the broader classes of
concave pricing schemes where the set P consists of all monotone non-decreasing concave functions.

For any price function p ∈ P , a rational buyer looks to purchase bundle x∗ that maximizes his utility;
That is, x∗ = arg maxx∈X

[
v(x)− p(x)

]
. Ties are broken in favor of the seller.2 The buyer’s best

response can thus be viewed as a function x∗(p) of the seller’s price function p(x). Knowing that the
buyer will best respond, the seller would like to pick the pricing function p∗ ∈ P to maximize her
revenue. Formally, p∗ is the solution to the following bi-level optimization:

p∗ = argmax
p∈P

[p(x∗(p))− c(x∗(p))], where x∗(p) = argmax
x∈X

[
v(x)− p(x)

]
(1)

The optimal solution
(
p∗,x∗(p∗)

)
to such a bi-level optimization problem forms an equilibrium of

this pricing game. More formally, this is often called the optimal Stackelberg equilibrium or strong
Stackelberg equilibrium [14, 33]. We call p∗ the equilibrium pricing function and x∗ the equilibrium
bundle. Note that this is a challenging functional optimization problem since the seller is picking
a function p ∈ P , while not a vector variable. However, when P = PL is the set of linear pricing
scheme, the above problem becomes a bi-level variable optimization problem since any p(x) ∈ PL
can be fully characterized by a price vector p.

Terminologies from Convex Analysis. We defer basic definitions like convex/concave functions
and super/sub-gradients to Appendix B, and only mention two useful notations here: (1) the set of
super/sub-gradient for concave/convex function f is denoted as ∂f(x); (2) The Bregman divergence
of a function f is defined as Df (z,x) = f(z)− f(x)−∇f(x) · [z− x]. Df (z,x) is an important
distance notion and is strictly positive for strictly convex functions when z 6= x.

3 A Model of Pricing Against a Deceptive Buyer in the Dark (PADD)

As mentioned in related work section 1.2, the literature of algorithms to learn pricing schemes from
unknown buyers is massive. This work, however, takes a different perspective and seeks to understand
how a buyer can strategically deceive the seller, through a simple yet effective class of manipulation
strategies. Our model naturally captures a buyer’s strategic responses to seller’s pricing algorithms
when the seller has no prior knowledge about the buyer, i.e., pricing “in the dark”.

Thus, we study a buyer manipulation strategy that is oblivious to any pricing algorithm. That is, the
buyer simply imitates a different value function u(x) by consistently responding to any seller acts
according to u(x). Consequently, whatever the seller learns will be with respect to this imitative value
function u(x). Alternatively, one can think of the buyer as committing to always behave according
to value function u(x). Nevertheless, the buyer’s objective is still to maximize his true utility by
carefully crafting an imitative value function u(x) to commit to. Given the buye’s commitment to
value function u(x), the best pricing scheme for the seller is to use the optimal pricing function
against buyer value function u(x). Similar to v(x), the imitative value functions u(x) is assumed
to be concave and monotone non-decreasing as well. Let set C denote the set of all such functions.
These resulted in the following model of Pricing Against a Deceptive buyer in the Dark (PADD):

2This is usually without loss of generality since the seller can always induce desirable tie breaking by
providing a negligible additional incentive to the buyer.
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• The buyer with true value function v(x) (unknown to seller) commits to react optimally
according to an imitative value function u(x) ∈ C.

• The seller learns the buyer’s imitative value function u(x) and compute the optimal pricing
function p∗ ∈ P by solving bi-level Optimization Problem (1) w.r.t. u(x).

• The buyer observes the seller’s pricing function p∗, and then follows his commitment to
react optimally w.r.t. to u(x) by purchasing bundle x∗ = arg maxx∈X [u(x)− p(x)].

We remark that such commitment to a fake value function is not uncommon in the literature; similar
assumptions have been adopted in many recent works in, e.g., auctions [36], general Stackelberg
games [19, 10] and security games [18, 30, 29]. The buyer’s ability of making such a commitment
fundamentally comes from the fact that the seller has no prior knowledge about the buyer’s true value
function v(x), i.e., has to “price in the dark”. We refer curious reader to Appendix A.2 for a more
detailed discussion about this assumption.

Naturally, the buyer with true value function v(x) would like to find the optimal imitative value
function u∗(x) to maximizes his utility. This results in the following equilibrium definition.
Definition 1 (Equilibrium of PADD). The equilibrium of PADD consists of the optimal imitative value
function u∗ ∈ C that the buyer commits to, the seller’s optimal pricing function p∗ ∈ P against
u∗(x), and the buyer’s response bundle x∗ ∈ X . Formally, (u∗, p∗,x∗) is an equilibrium for a buyer
with true value function v(x) to PADD if

u∗ = argmax
u∈C

[v(x∗)− p∗(x∗)], where p∗ = argmax
p∈P

[p(x∗)− c(x∗)],

where x∗ = argmax
x∈X

[
u∗(x)− p∗(x)

]
. (2)

The equilibrium of PADD gives rise to a challenging tri-level functional optimization problem.3 Note
that, the dependence of the buyer’s objective [v(x∗) − p∗(x∗)] on u is indirectly through the two
argmax problems afterwards. The buyer is assumed to know the production cost function c(x), which
is needed to compute his optimal u∗. This can be easily justified in situations where the seller has
been on the market for some time, therefore her production cost gradually becomes public knowledge.

4 The Equilibrium of PADD under Linear Pricing, and Implications

In this section, we characterize the equilibrium of PADD under linear pricing schemes, i.e., P =
PL = {p : p(x) = p · x for some p ∈ Rd+} consists of all linear pricing functions. A linear pricing
function is determined by a non-negative price vector p ∈ Rd+. To distinguish functionals from vector
variables, we will use PL = {p : p ∈ Rd+} to denote the set of all possible non-negative price vectors
so that each p ∈ PL uniquely corresponds to a linear pricing function in PL. Under linear pricing,
the equilibrium in Def. 1 denoted by (u∗,p∗,x∗) is characterized by Eq. (2) where P = PL.

Even with linear pricing, this is still a very challenging tri-level functional optimization problem
since u∗ is a function chosen from the set of all possible functions from X to R+, denoted by set C.
A first thought one might have is: why doesn’t the buyer simply imitate u∗(x) = c(x). We will see
later that this is not — in fact far from being — optimal since it makes the game zero-sum and the
seller will pick a price that guarantee 0 revenue, e.g., a price of∞. This leads the trade to happen at 0
production, which is clearly not optimal for the buyer. The optimal u∗ should provide some incentive
for the seller to produce some amount x∗ that is in some sense the best for the buyer. We will provide
two concrete examples in the next section in Figure 2.

The main result of this section is the following characterization for the equilibrium of PADD. This
general characterization does not depend on any specific property about function v(x), c(x).
Theorem 1. In the equilibrium of PADD under linear pricing, the optimal buyer imitative value
function u∗ can w.l.o.g. be written as the following concave function parameterized by production
amount x∗ ∈ X and a real value p∗ ∈ R+:

u∗(x) = p∗ ·min{x1
x∗1
, · · · xd

x∗d
, 1} (3)

3Even for linear pricing where P = PL, this is still a functional optimization problem since the buyer’s
imitative value function u is an arbitrary function in C.
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where

x∗ = arg max
x∈X

[
v(x)− sup

α∈[0,1)

c(x)− c(αx)

1− α
]

and p∗ = sup
α∈[0,1)

c(x∗)− c(αx∗)
1− α

(4)

Moreover, under imitative value function u∗(x),

1. For any vector λ ∈ ∆d in the d-dimensional simplex, the linear pricing scheme with price
vector p∗ = (λ1

p∗

x∗1
, λ2

p∗

x∗2
, · · · , λd p

∗

x∗d
) is optimal for u∗.

2. In any of the above optimal linear pricing schemes, the buyer’s optimal bundle response is
always x∗ and the buyer payment will always equal p∗.

3. At equilibrium, the buyer surplus is [v(x∗)− p∗] and the seller revenue is [p∗ − c(x∗)].

Note that the u∗ described by Equation (3) may not be the unique optimal buyer imitative value
function, but it is one of the optimal ones. Moreover, any optimal imitative value function will result
in the same buyer surplus and seller revenue.

Interpretation of Theorem 1. Before a formal proof, it is worthwhile to take a closer look at the
characterization of the buyer’s optimal imitative value function u∗ characterized by Theorem 1 and
the special pricing problem it ultimately induces. At a high level, the buyer has a desirable amount of
products x∗ in mind, characterized by the first equation in (4). He would pretend that his value for
x∗ equals p∗. Moreover, the value of any production amount x will linearly depend on the minimum
possible coordinate-wise fraction of x∗ that x contains, i.e., the min{x1

x∗1
, · · · xd

x∗d
, 1} term in u∗.4

-------------------------------------------------------------------------

----------------------------------------------------------

Figure 1: Illustration of
p∗ in Theorem 1.

The p∗ is chosen as the largest possible slope of the segment between
c(x∗) to c(αx∗) among all possible α ∈ [0, 1) (see Figure 1 for an
illustration in one dimension about how p∗ is chosen based on the cost
function c). This is certainly a very carefully chosen value. Note that

p∗ = sup
α∈[0,1)

c(x∗)− c(αx∗)
1− α

≥ c(x∗)− c(0)

1− 0
= c(x∗),

which implies non-negativity of the seller’s revenue [p∗ − c(x∗)]. In
fact, the seller can achieve strictly positive revenue if and only if the
above ≥ is strict. Finally, the optimal buyer imitative value function u∗
leads to a special pricing problem for the seller. Since the buyer’s value
is designed such that he is only interested in purchasing some fraction
r ∈ [0, 1] of x∗, the seller’s optimal pricing will charge rp∗ for the bundle
x = rx∗ and this total charge rp∗ can be distributed arbitrarily over the d products, e.g., by charging
λirp

∗ = λi
p∗·xi

x∗i
for product i where

∑d
i=1 λi = 1. Overall, Theorem 1 fully characterized what the

pricing problem is like at the equilibrium of PADD.
Remark 1. Theorem 1 only provides a structural characterization about the equilibrium but does
not imply that the equilibrium (u∗,p∗,x∗) can be computed efficiently since we still need to solve
the optimization problem (4) to find the optimal x∗. As we will show later, this turns out actually to
be an NP-hard problem in general. This is an interesting situation where the result reveals useful
structural insights despite its computational intractability.

Proof Sketch of Theorem 1. The proof of Theorem 1 is somewhat involved. We give a sketch here
and defer formal arguments to Appendix C. The most challenging part is to find the optimal function
u∗ ∈ C, which is a functional optimization problem. Standard optimization analysis only apply to
programs with vector variables, while not functional variables. To overcome this challenge, our proof
has two major steps. First, we argue that the concave functions of the specific format as in Equation
(3) would suffice to help the buyer to achieve optimality. This effectively reduce the functional

4Notably, the format of this value function appears to have interesting connections to the well-known Leontief
production function [2] which has the format of mini{xi

ai
}. However, leontief functions are used to describe

seller’s production quantities as a function of quantities of different factors with no substitutability. It is an
expected surprise that similar type of value function turns out to be optimal for buyer’s strategic manipulation.
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optimization problem to a variable optimization problem since any function of Format (3) can be
characterized by d+ 1 variables. Second, we then analyze the variable optimization problem we get
and prove characterization of its optimal solutions. The first step is the most involved part and uses a
significant amount of convex analysis. Such complication comes from the reasoning over the tri-level
optimization problem (2). Tri-level optimization is generally highly intractable [9] — indeed, as
we will show later, computing the equilibrium (u∗,p∗,x∗) is NP-hard in general. Nevertheless, our
analysis was able to bypass the difficulty by leveraging the special structure of the pricing problem
and leads to a clean and useful characterization for the structure of the equilibrium.

A crucial intermediate step is the following characterization for a slightly simpler version of the
question. That is, fixing any bundle x ∈ X , which imitative value function u(x) will maximize the
utility of the buyer with true value function v(x), subject to that the optimal buyer purchase response
under u(x) is x? Fortunately, this question indeed admits a succinct characterization as shown below.

Lemma 1. For any bundle x ∈ X , the optimal buyer imitative value function u(x), subject to that
the resultant optimal buyer purchase response is bundle x, can without loss of generality have the
following piece-wise linear concave function format, parameterized by a real number p ∈ R:

u(x) = p ·min{x1
x1
, · · · xd

xd
, 1} (5)

where p ∈ R is the solution to the following linear program (LP):
maximize v(x)− p
subject to p− c(x) ≥ α · p− c(αx), for α ∈ [0, 1].

5 Explicit Characterizations for Convex and Concave Costs

In this section, we instantiate Theorem 1 to both convex and concave cost functions, arguably the most
widely adopted two classes of cost functions. In both cases, we give more explicit characterizations
of the equilibrium outcome, including the buyer’s optimal imitative value function as well as both
agents’ payoffs.

Convex production costs are widely adopted in many applications [7, 37]. When c(x) is convex and
differentiable, we show the following explicit characterization about the equilibrium outcome. A
graphical visualization for this theorem is depicted in the left panel of Figure 2.
Theorem 2. When c is convex and differentiable, the piece-wise linear concave value function u∗(x)
defined by Equation (3), with p∗ = x∗ · ∇c(x∗) and x∗ = arg maxx∈X [v(x)− x · ∇c(x)], is an
optimal buyer imitative value function.

Under u∗(x), the trade happens at bundle x∗ with payment p∗ = x∗ · ∇c(x∗). The seller revenue
[x∗ · ∇c(x∗)− c(x∗)] is precisely the Bregman divergence Dc(0,x

∗) between 0 and x∗. The buyer
surplus is [v(x∗)− x∗ · ∇c(x∗)].

--------------------------------------------------------------------

(a): An example for convex cost: v(x) = 64
√
x,

c(x) = x2. Theorem 2 implies x∗ = 4,
p∗ = ∇c(x∗) = 8, seller utility Dc(0, 4) = 16
and buyer utility v(x∗)− p∗ · x∗ = 96.

---------------------------------------------------------------------------

(b): An example of one-dimensional concave costs:
v(x) = 4x

1
4 , c(x) =

√
x. Theorem 3 implies

x∗ = 16, p∗ = c(x∗)
x∗ = 1/4, seller utility is 0 and

buyer utility v(x∗)− p∗ · x∗ = 4.

Figure 2: Illustration of the equilibrium characterization: v(x) is buyer’s true value function, c(x) is
the seller’s cost function, and u∗(x) is the optimal buyer imitative value function.

We now consider concave costs and prove the following characterization. A graphical visualization
for the theorem is depicted in the right panel of Figure 2.
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Theorem 3. When c(x) is concave, the piece-wise linear concave value function u∗(x) defined by
Equation (3), with p∗ = c(x∗) and x∗ = arg maxx∈X [v(x)− c(x)], is an optimal buyer imitative
value function.

Under u∗(x), the trade happens at bundle x∗ with payment p∗ = c(x∗). The seller revenue will be 0.
The buyer extracts the maximum possible surplus maxx∈X [v(x)− c(x)].

Graphical visualizations for the above two theorems are depicted in Figure 2. Note that both examples
in Figure 2 show the sub-optimality of imitating u∗(x) = c(x) for the buyer. To see this, note
u∗(x) = c(x) makes the game zero-sum. To guarantee non-negative revenue, the seller must pick a
price p such that the line p · x is always above u∗(x). A buyer imitating u∗(x) = c(x) will end up
purchasing a 0 amount in both cases, and thus are sub-optimal for him.

An important conceptual message from Theorem 3 is that when the seller production cost is concave
and known to the buyer, the buyer can always come up with an imitative value function which squeeze
the seller’s revenue to its extreme, i.e., 0.5 Under the seller’s optimal imitative value function, the
trade will happen at his most favorable bundle amount x∗ and the seller pays just the cost function
c(x∗) to the seller.

Theorem 3 is certainly bad news for the seller. However, it is a descriptive result and only shows it is
possible for the buyer to achieve maximum possible surplus. Our next result brings somewhat good
news to the seller. Specifically, we show it is NP-hard for the buyer to optimize, even approximately,
his optimal surplus. The hardness holds even when the production cost function c(x) is concave, in
which case the surplus is characterized by Theorem 3. This shows that even though in theory the
buyer can derive large surplus from strategic manipulation, even approximately figuring out such an
optimal manipulation is impossible in general, unless P = NP.

Theorem 4. [Intractability of Equilibrium] It is NP-hard to approximate the buyer equilibrium
surplus in PADD games to be within ratio 1/d1−ε for any ε > 0. This hardness result holds even when
the production cost function c(x) is concave and the buyer’s true value function v(x) is simply the
linear function

∑d
i=1 xi.

Formal proofs for both equilibrium characterizations and the hardness of approximating the buyer
equilibrium surplus can be found in Appendix D. We note that an intriguing open question is whether
optimal imitative value function can be computed for convex production cost c(x). In this case, the
optimal bundle x∗ can be explicitly expressed as x∗ = argmaxx[u(x)− x · ∇c(x)] for any value
function u, however how to derive the optimal u∗ remains challenging.

6 The Risk of Over-exploiting Buyer’s Incentives

To counteract the buyer’s strategic manipulation, one of the most natural approaches is perhaps to use
a richer or more powerful class of pricing schemes, as opposed to only using linear pricing. Such
additional power of pricing will always increase the revenue when facing an honest buyer. Unfortu-
nately, however, we show that it does not necessarily help in the presence of buyer manipulation — in
fact, the seller may suffer the risk of over-exploiting the buyer’s incentives so that it becomes easier
for the buyer to manipulate. This phenomenon is similar in spirit to the overfitting phenomenon in
machine learning. That is, using a richer hypothesis class does not necessarily reduce the testing
error, though it does reduce the training error. We believe that our findings in this section partially
explain why simple pricing schemes like linear pricing are preferred in reality.

We first prove that the strictly more general class of concave pricing schemes can never do better
for the seller than the (much) restricted class of linear pricing. In fact, surprisingly, the equilibrium
of PADD under concave pricing turns out to be exactly the same as the equilibrium under linear
pricing. This time, our proof utilizes a crucial observation that under concave pricing, the tri-level
optimization problem of PADD can be reduced to solving a bi-level optimization problem (in particular,
FOP (6)). Recall that the proof of Theorem 1 also reduces the tri-level FOP to a bi-level FOP through
a characterization about the price and optimal buyer bundle in Lemma 3. However, Lemma 3 does not
hold any more if the seller uses the richer class of concave pricing schemes. Therefore, the FOP (6)
we obtain here is different from the core FOP (11) we solve in the proof of Theorem 1. Nevertheless,

5In real practice, the buyer can slightly deviate from his value function to given a small ε amount of incentive
for the seller to strictly prefer production.
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through careful convex analysis, we are able to show that the optimal solution to FOP (6) also admits
an optimal solution of similar structure as characterized by Theorem 1.
Theorem 5. The equilibrium of PADD under concave pricing is exactly the same as the equilibrium
under linear pricing as characterized by Theorem 1.

Proof Sketch of Theorem 5. We start by examining how the use of concave pricing schemes may
simplify FOP (2). Recall that both value functions and pricing functions are monotone non-decreasing
and normalized to be 0 at 0. For any concave buyer value function u ∈ C, it is easy to see that
the optimal pricing function p simply equals u (i.e., charging buyer exactly his imitative value) and
ask the buyer to break ties in favor of the seller by picking x∗ = arg maxx∈X [u∗(x) − c(x)] to
maximize the seller’s revenue. Consequently, the use of concave pricing simplifies FOP 2 to the
following bi-level functional optimization problem:

u∗ = argmax
u∈C

[v(x∗)− p∗(x∗)], where x∗ = argmax
x∈X

[
u∗(x)− c(x)

]
We fix a particular bundle x and examine what buyer value function u ∈ C would maximize the
buyer’s utility subject to that the trade will happen at bundle x. This results in the following functional
optimization problem (FOP) for the buyer with functional variable u.

maximize v(x)− u(x)
subject to u(x)− c(x) ≥ u(x′)− c(x′), for x′ ∈ X. (6)

where the constraint means the seller’s optimal price for value function u is u(x) and thus the buyer
best response amount is indeed x. The remaining proof relies primarily on the following lemma.

Lemma 2. The following concave function is optimal to FOP (6):

u(x) = p ·min{x1
x1
, · · · xd

xd
, 1}, where p = sup

α∈[0,1)

c(x)− c(αx)

1− α
. (7)

Given this characterization, the buyer simply needs to look for the best x. This then leads to the same
characterization as in Theorem (1) since Equation (7) is the same as the value function characterized
in Equation (5). The proof of Lemma 2 is deferred to Appendix E.1.

Theorem 5 shows that more general class of pricing schemes may not help the seller to obtain more
revenue. One might then wonder whether it at least never hurts since if that is the case, at least it
would never be a worse choice. Unfortunately, our following example shows that a richer class of
pricing schemes may bring strict harm to the seller and strict benefit to the seller.
Example 1 ( The Risk of Overexploiting Buyer Incentives). There is a single type of divisible good
to sell, i.e., d = 1. Let the seller’s production cost function be the convex function c(x) = x2 and let
the buyer’s true value function v(x) be the following piece-wise linear concave function

v(x) =

{
10x 0 ≤ x ≤ 0.81

8.1 x > 0.81

Let PC denote the set of all concave pricing schemes. The following proposition completes Example
1 and its proof can be found in Appendix E.2.
Proposition 1. For the instance in Example 1, there exists pricing scheme class P with PL ⊂ P ⊂
PC such that when the seller changes from linear pricing class PL to the richer class P , the seller’s
revenue strictly decreases and the buyer’s surplus strictly increases at the equilibrium of PADD.

7 Conclusions

Motivated by optimal pricing against an unknown buyer, this paper put forwards a simple variant
of the very basic pricing model by augmenting it with an additional stage of buyer commitment at
the beginning. This motivation is driven by the seller’s ignorance of the buyer’s value function and
thus have to price in the dark. We fully characterize the equilibrium of this new game model. The
equilibrium reveals interesting insights about what the seller can learn, and how much seller revenue
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and buyer surplus it may result in. We also show that more general class of pricing schemes may
overfit the buyer’s incentive and lead to a pricing game that is even easier for the buyer to manipulate.

Our results opens the possibilities for many other interesting questions. For example, given the risk
of using a too general class of pricing schemes, what class of pricing schemes is a good compromise
between extracting revenue and robust to buyer manipulations? Is linear pricing scheme the best such
class or any other pricing scheme? Second, as the first study of our setup, we have chosen to focus on
a simple setup where the seller has completely no knowledge about the buyer’s value function. An
interesting question is, how the seller’s learning and resultant revenue may increase when the seller
has some prior knowledge about the buyer’s values. In fact, one natural modeling question is how to
model the seller’s prior knowledge about the buyer’s value function. Is the prior knowledge about
which subclass the value functions are from or about what distribution the parameters of the value
functions are from? Finally, our model assumes that the buyer has full knowledge about the seller.
An ambitious though extremely intriguing question to ask is what if the buyer also has incomplete
knowledge about the seller and how to analyze the equilibrium under the information asymmetry
from both sides.
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