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ABSTRACT

In this work, we tackle the challenge of embedding realistic human personality
traits into LLMs. Previous approaches have primarily focused on prompt-based
methods that describe the behavior associated with the desired personality traits,
suffering from realism and validity issues. To address these limitations, we intro-
duce BIG5-CHAT, a large-scale dataset containing 100,000 dialogues designed to
ground models in how humans express their personality in text. Leveraging this
dataset, we explore Supervised Fine-Tuning and Direct Preference Optimization
as training-based methods to align LLMs more naturally with human personal-
ity patterns. Our methods outperform prompting on personality assessments such
as BFI and IPIP-NEO, with trait correlations more closely matching human data.
Furthermore, our experiments reveal that models trained to exhibit higher consci-
entiousness, higher agreeableness, lower extraversion, and lower neuroticism dis-
play better performance on reasoning tasks, aligning with psychological findings
on how these traits impact human cognitive performance. To our knowledge, this
work is the first comprehensive study to demonstrate how training-based methods
can shape LLM personalities through learning from real human behaviors.

1 INTRODUCTION

Realistically simulating human personality and its impact on text generation is a challenging yet
crucial problem (Elster, 2015; Park et al., 2023; Serapio-Garcı́a et al., 2023; Li et al., 2024; Frisch
& Giulianelli, 2024). Embedding personality traits into LLMs can greatly enhance their authenticity
across a wide range of applications, from conversational agents (Pradhan & Lazar, 2021) to educa-
tional tools (Kanero et al., 2022) and mental health platforms (Tudor Car et al., 2020; Ahmad et al.,
2022). By creating more human-like interactions, LLMs can better simulate diverse personas and
adapt more reliably to different contexts (Gao et al., 2024a).

However, existing methods primarily rely on prompting models with descriptions of behaviors as-
sociated with personality traits (e.g., “You are the life of the party”; Mao et al., 2023; Chen et al.,
2024b; 2022; Tu et al., 2024). These behavior descriptions are often drawn from the same psy-
chological questionnaires used to test their personality, raising evaluation validity concerns. More
importantly, these behavioral descriptions are nonsensical for text-based LLMs (LLMs do not attend
parties), failing to ground their personality in realistic patterns of how humans’ personality is ex-
pressed in text (Vu et al., 2024). Additionally, the scarcity of large-scale, human-generated datasets
annotated with personality traits has hindered the exploration of training-based approaches, limiting
most prior research to prompting-based methods.

In this work, we address the challenge of inducing realistic human personality traits in LLMs by con-
structing a large-scale dialogue dataset, BIG5-CHAT, which is grounded in real human personality
expressions in text. The overview of our work is illustrated in Figure 1. We choose the well-known
Big Five personality traits framework to study this (McCrae & John, 1992; Pittenger, 1993), due to
its reliability and validity as shown from psychological research. While previous datasets typically
include only persona descriptions, our dataset bridges the gap between narrow-domain personality
data and general-domain social interactions, ensuring both authenticity and scenario diversity. To
achieve this, we combine two primary data sources — PsychGenerator (Vu et al., 2024), a collection
of 850K Facebook posts annotated with Big Five trait scores, and SODA (Kim et al., 2022), a rich
dataset of diverse social interactions — by utilizing product-of-experts text generation (DExperts;

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Whenever I lay on my bed 
I get so tired.

Expert Generator 
Training 

BIG5-CHAT Dataset 
Construction

Base Model

      

Dexpert Framework

 Soda Dialogue BIG5-CHAT

High Openness:
Sure, let’s grab some 
snacks and make it even 
more fun!

Alignment Method 
Evaluation

Prompt SFT DPO

Method

Psychometric Test

Benchmarks

High Neuroticism

Low Extraversion

High Agreeableness

High Conscientiousness

Low Openness

Openness Expert Generator

Low Openness:
Thanks, but can we just 
stick to the plan and 
not get too many 
snacks?

Social Reasoning

Math

Hallucination

Commonsense

Figure 1: Overview of the PSYCHSTEER method and evaluation. The expert generator was trained
on the PsychGenerator dataset to induce Big Five personality traits (Vu et al., 2024) and integrated
with the base model using the Dexperts framework alongside SODA’s social scenarios (Liu et al.,
2021; Kim et al., 2023a) to generate the BIG5-CHAT dataset. Various alignment methods were then
evaluated for their effectiveness in inducing personality and their impact on reasoning benchmarks.

Liu et al., 2021). This combination enables us to capture the nuanced expression of personality traits
across a wide range of dialogue scenarios.

Leveraging our BIG5-CHAT dataset, we empirically investigate how training-based methods
grounded in real human data compare to traditional prompting techniques for inducing personality
traits in LLMs, including instruction-based and demonstration-based prompting. Specifically, we
explore Supervised Fine Tuning (SFT) and Direct Preference Optimization (DPO) (Rafailov et al.,
2024) to align LLMs’ personalities with Big Five traits. This comparison is crucial for understand-
ing whether data-driven training methods can offer deeper, more reliable personality integration than
the surface-level traits typically induced through prompting. Our results demonstrate that both SFT
and DPO outperform prompting on two widely recognized Big Five personality tests: the BFI (John
et al., 1999) and IPIP-NEO (Johnson, 2014).

In humans, personality traits often correlate with reasoning abilities (John et al., 1999; Soto et al.,
2011), raising the question of how embedding personality traits in LLMs may influence their rea-
soning performance. To explore this, we evaluate our aligned models not only with traditional per-
sonality tests but also across five reasoning domains: social reasoning using SocialIQA (Sap et al.,
2019), math reasoning using GSM8K (Cobbe et al., 2021) and MathQA (Amini et al., 2019), hal-
lucination detection using TruthfulQA (Lin et al., 2021), commonsense reasoning using Common-
senseQA (Talmor et al., 2019) and PIQA (Bisk et al., 2020), and general reasoning using MMLU
(Hendrycks et al., 2020) and GPQA (Rein et al., 2023). Our experiments show that models trained
with higher levels of conscientiousness and agreeableness consistently outperform others in reason-
ing tasks. Conversely, models with lower levels of extraversion and neuroticism exhibit improved
reasoning performance in general. These findings mirror patterns between Big Five traits and differ-
ent reasoning abilities observed in psychological studies in humans (Ackerman & Heggestad, 1997;
Schaie et al., 2004), further demonstrating how our personality induction method embeds deeper
psycholinguistic traits into models.

This work makes the following contributions:

• We introduce the first large-scale dataset, BIG5-CHAT 1 , containing 100,000 dialogues across a
wide spectrum of personality expressions, addressing the limitations of existing methods that rely
on simple prompting without grounding in real human personality expressions in text;

• We perform quantitative evaluations comparing SFT and DPO to prompting in terms of imbu-
ing LLMs with personality, showing that both training-based methods induce more pronounced
personality traits and more realistic intra-trait correlations;

• We conduct comprehensive empirical investigations into how personality traits affect performance
in both social reasoning and general reasoning tasks, revealing that LLMs with distinct personality
traits demonstrate varying strengths and weaknesses across domains.

1Our dataset and code are uploaded to the submission system, and will be open-sourced upon acceptance.
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2 BACKGROUND

Drawing from psychological research, the Big Five personality traits framework (McCrae & John,
1992; Pittenger, 1993), comprising five key factors—Openness, Conscientiousness, Extraversion,
Agreeableness, and Neuroticism—has emerged as a reliable model for capturing LLM-simulated
personality behavior (Karra et al., 2022; Serapio-Garcı́a et al., 2023; Li et al., 2022; Pan & Zeng,
2023). According to Yarkoni (2010), openness reflects curiosity and a willingness to explore new
ideas, which is expressed through a distinctive language style that includes frequent use of articles,
prepositions, and words related to intellectual or cultural topics such as “poet” and “universe”; con-
scientiousness, associated with discipline, organization, and reliability, is marked by achievement-
oriented language, characterized by terms like “completed” and the avoidance of impulsive lan-
guage, including swear words; extraversion, characterized by sociability, assertiveness, and high
energy, is associated with social and positive emotion words like “friends” and “drinking,” highlight-
ing social engagement; agreeableness, embodying compassion and cooperativeness with a focus of
harmony relationships, is demonstrated through communal and affectionate language, such as “fam-
ily” and “love,” while avoiding negative terms; and neuroticism, linked to emotional instability and
anxiety, is expressed by a higher frequency of negative emotion words, including anxiety, sadness,
and anger. Compared to other personality models like the Myers-Briggs Type Indicator (MBTI), the
Big Five offers greater reliability, validity, and empirical support, making it the preferred choice for
personality research (McCrae & John, 1992; Pittenger, 1993). The MBTI, by contrast, has been crit-
icized for its lack of scientific rigor, poor test-retest reliability, and questionable validity (Pittenger,
1993; Furnham, 1996). The Big Five model has been extensively validated across diverse cultures
and populations, demonstrating high levels of consistency over time and predicting a wide range of
life outcomes, such as job performance and mental health (McCrae & Costa Jr, 1997; John et al.,
2008; Barrick & Mount, 1991; Soldz & Vaillant, 1999).

Various prompting approaches have been developed to induce Big Five personality traits in LLMs.
They often employ pre-defined scripts or questionnaires to nudge the model towards expressing Big
Five personality traits during interactions (Mao et al., 2023; Chen et al., 2024b; 2022; Tu et al.,
2024). However, several challenges can arise from using prompting as the personality alignment
approach:

Lack of psycholinguistic depth LLMs with personalities induced directly through prompting of-
ten mirror only surface-level traits, lacking the psycholinguistic richness necessary for simulating
authentic human behavior (Dorner et al., 2023; Sá et al., 2024; Olea et al., 2024). This is unsurpris-
ing, as capturing human-like psycholinguistic properties involves understanding dynamic human
states shaped by ongoing social and environmental interactions (Bandura et al., 1961; Baldwin,
1992). Unlike LLMs, which generate responses based on static training data, humans continuously
adjust their behaviors and communication styles through lived experiences and social feedback.
This limitation makes LLMs less reliable when tasked with simulating nuanced human behavior on
downstream tasks (Soni et al., 2023), which can lead to cariacture (Cheng et al., 2023).

Validity concerns in personality induction and evaluation The prompts used to induce LLM
personalities are often adapted from psychometric questionnaires (Jiang et al., 2023; Tan et al.,
2024), which could also be used later to assess the same personality traits. This dual use of ques-
tionnaires for both personality induction and evaluation raises concerns about validity (Lievens
et al., 2007), and lead to biased assessments that do not accurately reflect generalization capabil-
ities (Serapio-Garcı́a et al., 2023; Xu et al., 2024). This issue becomes particularly problematic in
downstream tasks, where the models designed this way are prone to overfitting to specific linguistic
features rather than adapting robustly to diverse real-world contexts (Mizrahi et al., 2024). Thus,
there is a need for more robust methods that can decouple the induction and evaluation processes.

Unintended influence on reasoning patterns Role-based prompting may significantly influence
LLM behavior and reasoning patterns, introducing the risk of altering the model’s decision-making
approach in unintended ways (Zheng et al., 2023). While this influence is not inherently negative,
the responses of LLMs with personality prompting can be disproportionately shaped by the sparse,
explicitly specified features of the prompt (Lu et al., 2021; Sclar et al., 2023). As a result, their
behavior in reasoning tasks may be overly narrow, reflecting only the traits highlighted in the prompt
rather than engaging a broader spectrum of cognitive strategies. This can lead to unexpected or
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imbalanced responses, particularly in contexts where the model’s reasoning should involve more
comprehensive or nuanced thinking.

3 METHODOLOGY

The lack of large-scale datasets featuring personality-grounded dialogues poses a significant chal-
lenge. To address this challenge, we combine controllable text generation models with a domain-
specific, personality-annotated dataset. Specifically, we utilize the DExperts framework (Liu et al.,
2021) and the PsychGenerator dataset (Vu et al., 2024) to create BIG5-CHAT, a novel dataset that
encapsulates diverse personality expressions within rich dialogue scenarios. The DExperts frame-
work allows us to guide the language model’s outputs toward specific personality traits during the
generation process. Meanwhile, PsychGenerator provides a comprehensive collection of human-
generated texts annotated with Big Five personality trait scores. By combining these technologies,
we introduce PSYCHSTEER, an approach that effectively addresses the limitations of prior datasets
by grounding personality traits in authentic human interactions.

3.1 DEXPERTS FRAMEWORK

DExperts allows us to control language model generation at decoding time by steering model out-
puts with expert generators. By integrating expert generators trained to exhibit different Big Five
personality traits, we can induce personality within LLM outputs while maintaining dialogue qual-
ity. In the DExperts framework, let M denote the pre-trained base language model, and M expert is
the expert generator fine-tuned to generate text exhibiting the desired personality in our tasks. At
each time step t, given the prompt and previous token sequence x<t, the base model M computes
logits zbase

t ∈ R|V |, where V is the vocabulary. The expert generator M expert computes logits zexpert
t

in the same manner. To integrate the influence of the expert generator, we adjust the base model’s
logits by incorporating the scaled difference between the expert generator model and base model
logits:

zcombined
t = zbase

t + γzexpert
t , (1)

where γ ∈ [0,+∞) is a scaling factor controlling the degree of influence from the expert generator.
This formulation effectively pulls the combined logits towards the expert generator logits, where γ =
0 results in using the base model’s logits, and a larger γ indicates a stronger influence of the expert
generator’s modification control. The combined logits zcombined

t are transformed into a probability
distribution, and the next token is sampled using the softmax function from this distribution.

3.2 EXPERT GENERATOR MODEL BASED ON SOCIAL MEDIA POSTS

To train expert generator models to exhibit certain personality traits, we perform SFT on the
LLaMA-3-8B-Instruct model (Dubey et al., 2024) using the PsychGenerator dataset (Vu et al.,
2024). This dataset comprises 846,304 Facebook posts, each paired with its author’s Big Five per-
sonality trait scores. This dataset provides a robust foundation for training models to simulate nu-
anced human behaviors associated with different personality dimensions. We fine-tuned five expert
generators, each representing and dedicated to generating text corresponding to one of the personal-
ity traits. For each personality trait, we converted the original floating-point trait labels into binary
levels ‘high’/‘low’ for each trait, allowing the distinct behaviors associated with the extreme ends of
each trait to be more easily identified and analyzed.

We fine-tuned our expert generator models following the Alpaca format (Taori et al., 2023), which
consists of three components: instruction, input, and output. In our training methodology:

• Instruction: We specify the name and level of a personality trait in the instruction. (e.g.
“Help me complete the sentence with certain Big Five Personality: Openness - high.”)

• Input: We provide the first five words of a post from the PsychGenerator dataset (e.g.
“who’s got time to eat?”). This serves as an initial context or prompt for the model.2

2We experimented with using only the first word as input. We empirically determined that using the first
five words resulted in better generation quality.
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• Output: The remainder of the post from the dataset (e.g. “I’ll just have a can of frosting.”),
which typically embodies the specified personality trait.

When generating text completions with the PSYCHSTEER framework, the base model generates
the first five words. This enables the expert generator model to influence the subsequent token
generation by adjusting the logits to favor the desired personality trait while preserving coherence
and fluency.

4 BIG5-CHAT DATASET

4.1 DATASET CONSTRUCTION

We introduce BIG5-CHAT, a large-scale dialogue responses dataset designed to capture Big Five
personality traits within diverse social interactions. Our dataset construction leverages the SODA
(Social DiAlogues) dataset (Kim et al., 2023a), which provides a diverse range of realistic social
scenarios. SODA dialogues are generated by GPT-3.5 and enriched with social commonsense nar-
ratives, making it an ideal foundation for incorporating personality expressions due to its extensive
coverage of social interactions. To induce personality traits into the dialogues, we employ the DEx-
perts framework (Liu et al., 2021).

To build our dataset, we randomly sample 10,000 scenarios from SODA to provide diverse social
contexts. In SODA, social interactions are modeled between two individuals referred to as Speaker
X and Y, representing the participants in each dialogue. For each scenario, we generate a new ut-
terance using our PSYCHSTEER framework to control for personality traits and get the dialogue
responses between two participants. In the dialogues, one represents Speaker X (converted from
the original SODA dialogue) and another represents Speaker Y with specific personality traits. For
Speaker Y, based on the original responses from SODA, we generate new dialogue responses using
the PSYCHSTEER framework. Examples of dialogues from our dataset are shown in Table 4. By
conditioning on the preceding context (Speaker X’s utterance), we use the base model M guided by
the expert generator M+ specialized in the target personality trait to generate Speaker Y’s responses.
For each scenario, we generate pairwise dialogues by producing responses that reflect either high
or low levels of the targeted personality trait. This approach results in pairs of dialogues that share
the same context but differ in the expressed trait level. The process yields a total of 100,000 dia-
logues—20,000 for each trait, with an equal split between high and low trait levels.

4.2 DATASET STATISTICS

In this section, we examine the diversity and clarity of personality trait expressions within our BIG5-
CHAT dataset. As illustrated in Table 4, we present examples where, for a single prompt from
Speaker X, we have generated ten distinct responses from Speaker Y. These responses are condi-
tioned on the high and low levels of each of the five Big Five personality traits. By varying only
the level of a specific trait while keeping the prompt constant, we highlight how each personality
trait distinctly influences conversational responses. Additionally, we analyze the token counts and
other statistics of generated dialogue responses to ensure consistency across different personality
trait levels in Table 5. The results indicate no significant differences in these statistics across differ-
ent personality traits and levels, which suggests that the differences in statements are more related
to content variations rather than spurious attributes such as context length. Further details about the
dataset can be found in Appendix A.

Comparative analysis with existing personality datasets, as in Table 6, underscores several advan-
tages of BIG5-CHAT. Unlike existing personality datasets such as Big5PersonalityEssays (Floroiu,
2024) and Machine-Mindset (Cui et al., 2023) which lack human-grounded data examples, our
dataset consists of dialogues capturing dynamic and interactive conversational exchanges that are
more representative of natural language use. Additionally, while previous work has focused solely
on human-generated domain-specific data or synthetic machine-generated data, our approach com-
bines both human dialogue and LLM to create realistic personality expressions. These findings are
further validated through human evaluation, with more information available in Appendix C.1.

5
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Data Generation Method Openness Conscientiousness Extraversion Agreeableness Neuroticism Average
Test set 93.7 94.2 93.4 93.4 94.3 93.8

Ours: Generator 82.5 80.0 80.0 81.0 78.5 80.4
Post-Completion: GPT-4o-mini 64.0 59.5 56.0 57.0 59.5 59.2
Topic-Post Generation: LLaMA-3-8B-Inst 66.0 73.0 81.0 88.5 83.0 78.2
Topic-Post Generation: GPT-4o-mini 65.0 78.0 80.0 85.5 84.0 78.5

Table 1: Accuracy (%) of the trained classifier in predicting each of the Big Five personality traits.
The first row (Test set) shows the classifier’s accuracy on the test split, demonstrating that the classi-
fier is well-trained. The remaining rows display the performance of our generator model compared
to two baselines, as assessed by the same classifier.

4.3 EVALUATING PERSONALITY-STEERING OF THE DATA GENERATOR

To help evaluate the quality of the generated dataset and its reflection of realistic personality traits,
we trained a RoBERTa-Large (Liu et al., 2019) classifier with five regression heads using the
MSE loss function. The model was trained on the PsychGenerator dataset, where the input con-
sisted of text posts, and the output comprised the original trait labels, i.e., five floating-point values
ranging from 0 to 1. The same train-validation-test split was applied here as with the expert gen-
erators. Training was conducted over five epochs with a learning rate of 1 × 10−5. In Table 1, we
observe that the classifier achieves an accuracy of 93.8% on the held-out test set, indicating that the
PsychGenerator dataset contains distinct, learnable patterns that differentiate between high and low
levels of personality traits.

Using the classifier as an evaluator, we demonstrate the high quality of the dataset generated by our
expert generator, as shown at the bottom of Table 1, where it accurately reflects realistic personal-
ity traits. Specifically, we compare our dataset to two baselines for generating post datasets using
LLMs: Post-Completion and Topic-Post Generation. Post-Completion replicates the expert gener-
ator’s post generation strategy by prompting an LLM to complete a post given the first five words,
the target personality traits, and the required post format for post-expression style guidance. Topic-
Post Generation, on the other hand, is intentionally designed to be robust and prioritize performance
over realism and controllability. It generates an entirely new post by first propmting an LLM to
extract the main topic of a post from the PsychGenerator test set and then using one in-context post
example to guide the LLMs in generating posts that match the desired personality traits, cover the
extracted topic, and follow similar post-expression styles. We evaluated Topic-Post Generation us-
ing GPT-4o-mini (OpenAI, 2024) and Post-Completion using both LLaMA-3-8B-Instruct
(Dubey et al., 2024) and GPT-4o-mini (OpenAI, 2024). For consistency, all experiments are
based on the same set of 1,000 examples randomly chosen from the PsychGenerator test set. The
classifier was used to evaluate the generated data by predicting the levels of each trait, and the quality
was measured by whether the predictions matched the desired personality traits. Our results in Ta-
ble 1 show that our expert generator outperforms both baselines, achieving higher average accuracy
scores for every personality trait dimension compared to the Post-Completion baseline. Further-
more, it surpasses Topic-Post Generation when results are averaged across all traits. Additional
details about the two baseline methods can be found in Appendix B.1. These findings are further
validated through human evaluation, with more information available in Appendix C.2.

5 EXPERIMENTS

In this section, we first outline the experimental setup in Section 5.1, detailing the training proce-
dures for the expert generators and the evaluation of various alignment strategies used to induce
personality traits in LLMs. Next, we present the results of the personality tests in Section 5.2,
followed by an analysis of the models’ reasoning performance in Section 5.3.

5.1 EXPERIMENT SETUP

Expert generator training We trained five expert generators, each dedicated to generating text
corresponding to one of the Big Five personality traits. During training, we provided the instruction
specifying the target binary level for the trait, enabling the generator to learn patterns characteristic
of individuals with either high or low levels of the respective trait, as illustrated in Section 3.2.
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Method Openness Conscientiousness Extraversion Agreeableness Neuroticism Average
High ↑ Low ↓ High ↑ Low ↓ High ↑ Low ↓ High ↑ Low ↓ High ↑ Low ↓ High ↑ Low ↓

BFI LLaMA-3-8B-Instruct
Direct 3.1 ± 0.1 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0
Prompt-Inst 5.0 ± 0.0 2.0 ± 0.3 4.9 ± 0.1 1.9 ± 0.1 4.8 ± 0.3 1.9 ± 0.1 4.9 ± 0.1 2.4 ± 0.4 4.1 ± 0.2 1.6 ± 0.0 4.7 ± 0.1 2.0 ± 0.2
SFT 5.0 ± 0.0 2.0 ± 0.2 5.0 ± 0.0 1.6 ± 0.1 4.7 ± 0.4 2.7 ± 0.5 5.0 ± 0.0 1.2 ± 0.1 4.1 ± 0.2 2.5 ± 0.0 4.8 ± 0.1 2.0 ± 0.2
DPO 5.0 ± 0.0 1.6 ± 0.2 5.0 ± 0.0 1.6 ± 0.1 4.8 ± 0.3 2.5 ± 0.0 4.8 ± 0.2 1.0 ± 0.0 3.5 ± 0.0 1.1 ± 0.1 4.6 ± 0.1 1.6 ± 0.1
BFI LLaMA-3-70B-Instruct
Direct 4.4 ± 0.1 4.4 ± 0.1 3.3 ± 0.1 4.6 ± 0.1 2.1 ± 0.2 3.8 ± 0.1
Prompt-Demo 4.0 ± 0.1 2.5 ± 0.1 4.0 ± 0.1 2.0 ± 0.1 4.5 ± 0.1 2.3 ± 0.1 4.4 ± 0.1 2.0 ± 0.0 3.6 ± 0.0 2.1 ± 0.1 4.1 ± 0.1 2.2 ± 0.1
Prompt-Inst 5.0 ± 0.1 1.8 ± 0.0 5.0 ± 0.0 1.6 ± 0.0 5.0 ± 0.0 1.4 ± 0.1 4.9 ± 0.0 1.5 ± 0.1 5.0 ± 0.1 1.6 ± 0.0 5.0 ± 0.0 1.6 ± 0.0
SFT 5.0 ± 0.0 1.2 ± 0.1 5.0 ± 0.1 1.4 ± 0.1 5.0 ± 0.0 1.2 ± 0.1 5.0 ± 0.1 1.6 ± 0.2 5.0 ± 0.0 1.1 ± 0.2 5.0 ± 0.0 1.3 ± 0.1
DPO 5.0 ± 0.0 1.5 ± 0.1 5.0 ± 0.0 1.5 ± 0.1 5.0 ± 0.0 1.0 ± 0.1 5.0 ± 0.0 1.8 ± 0.2 5.0 ± 0.0 1.1 ± 0.0 5.0 ± 0.0 1.4 ± 0.1

IPIP-NEO LLaMA-3-8B-Instruct

Direct 3.0 ± 0.1 3.3 ± 0.0 3.4 ± 0.1 3.2 ± 0.0 3.0 ± 0.1 3.2 ± 0.1
Prompt-Inst 4.4 ± 0.1 1.5 ± 0.1 4.5 ± 0.1 2.3 ± 0.1 5.0 ± 0.0 1.9 ± 0.0 4.6 ± 0.0 2.3 ± 0.1 4.2 ± 0.1 2.6 ± 0.1 4.5 ± 0.1 2.1 ± 0.1
SFT 4.3 ± 0.1 1.5 ± 0.1 4.5 ± 0.2 2.7 ± 0.1 5.0 ± 0.0 2.2 ± 0.1 4.0 ± 0.2 1.8 ± 0.2 4.3 ± 0.1 2.0 ± 0.1 4.4 ± 0.1 2.0 ± 0.1
DPO 5.0 ± 0.0 1.9 ± 0.1 5.0 ± 0.0 2.9 ± 0.1 5.0 ± 0.0 1.6 ± 0.1 4.5 ± 0.1 1.2 ± 0.0 3.8 ± 0.1 3.7 ± 0.1 4.7 ± 0.0 2.3 ± 0.1

IPIP-NEO LLaMA-3-70B-Instruct

Direct 3.6 ± 0.1 4.0 ± 0.1 3.5 ± 0.1 4.0 ± 0.0 2.3 ± 0.1 3.5 ± 0.1
Prompt-Demo 3.5 ± 0.0 2.5 ± 0.1 3.8 ± 0.0 2.2 ± 0.1 4.0 ± 0.1 2.5 ± 0.0 4.3 ± 0.0 2.1 ± 0.1 3.0 ± 0.1 2.2 ± 0.1 3.7 ± 0.0 2.3 ± 0.1
Prompt-Inst 4.6 ± 0.0 1.3 ± 0.0 5.0 ± 0.0 1.4 ± 0.0 5.0 ± 0.0 1.6 ± 0.0 4.8 ± 0.0 1.1 ± 0.1 4.9 ± 0.0 1.7 ± 0.1 4.9 ± 0.0 1.4 ± 0.0
SFT 4.9 ± 0.1 1.1 ± 0.0 5.0 ± 0.0 1.3 ± 0.1 5.0 ± 0.0 1.3 ± 0.0 4.9 ± 0.0 1.0 ± 0.0 4.9 ± 0.0 1.2 ± 0.1 4.9 ± 0.0 1.2 ± 0.0
DPO 4.8 ± 0.0 1.4 ± 0.1 5.0 ± 0.0 1.6 ± 0.1 5.0 ± 0.0 1.1 ± 0.1 4.9 ± 0.0 1.0 ± 0.0 5.0 ± 0.0 1.1 ± 0.0 4.9 ± 0.0 1.2 ± 0.1

Table 2: Personality test results for different alignment methods, demonstrating the greater ef-
fectiveness of training-based approaches in inducing Big Five personality traits. Direct refers to
directly providing the test questions to the model without including personality-related prompts.
Prompt-Inst refers to instruction-based prompting, and Prompt-Demo refers to demonstration-
based prompting. Scores range from 1 to 5, where a score closer to 5 indicates stronger agreement
with the trait, while a score closer to 1 reflects weaker or opposing agreement. The results for the
other baselines are presented in Table 10.

For each trait, we fine-tuned a LLaMA-3-8B-Instruct model over one epoch using a learning
rate of 1 × 10−6. These fine-tuned models were subsequently used to produce expert-generated
logits: zexpert

t . To create the BIG5-CHAT dataset, we used these expert generators in conjunction
with a LLaMA-3-70B-Instruct model to generate zcombined

t (Dubey et al., 2024), as described
in Eq. (1). The scaling factor γ was set to 0.5, and the dialogue data was generated using greedy
decoding. More training details about the expert generator are explained in Appendix B.2.

Prompting and training strategies We implemented two baseline prompting strategies to induce
personality traits in LLMs. The first strategy, instruction-based prompting, directly instructs the
model to exhibit specific Big Five traits. The second strategy, demonstration-based prompting, in-
volves providing the model with 10 in-context examples randomly selected from our BIG5-CHAT
dataset to demonstrate the behaviors corresponding to the desired traits. The instruction-based ap-
proach relies on explicit descriptions (e.g., “what people typically do”), while the demonstration-
based approach draws from behaviorally-driven examples (e.g., “what people typically say”). These
baselines were compared to trained models using SFT and DPO, implemented via LoRA (Hu et al.,
2022). These trained models were later prompted in a manner consistent with their training data for-
mat, where personality trait names and levels were explicitly specified in the instructions. The exper-
iments were conducted using two versions of the LLaMA model: LLaMA-3-8B-Instruct and
LLaMA-3-70B-Instruct. More prompting and training details are explained in Appendix B.3
and Appendix B.4.

Evaluation procedure For personality trait evaluation, we adopted the methodology from Huang
et al. (2024) for the BFI test, which consists of 44 questions, each rated on a scale from 1 (strongly
disagree) to 5 (strongly agree). For the IPIP-NEO test, we utilized the 120-question set from Jiang
et al. (2024a), which also employed a 1 to 5 rating scale. We measured the standard deviation by
repeating each experiment five times, using a temperature setting of 0.6. To assess reasoning capa-
bilities, we evaluated the models across five domains: (1) social reasoning on SocialIQA (Sap et al.,
2019), (2) math reasoning on GSM8K (Cobbe et al., 2021) and MathQA (Amini et al., 2019), (3)
hallucination detection on TruthfulQA (Lin et al., 2021), (4) commonsense reasoning on Common-
senseQA (Talmor et al., 2019) and PIQA (Bisk et al., 2020), and (5) general reasoning on MMLU
(Hendrycks et al., 2020) and GPQA (Rein et al., 2023). Further evaluation setup details are explained
in Appendix B.5.
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5.2 PERSONALITY TRAIT ASSESSMENT RESULTS

Table 2 presents the BFI and IPIP-NEO personality assessment results across direct inference and
various alignment baselines and methods, including instruction-based prompting, demonstration-
based prompting, SFT, and DPO. The performance trends are consistent across both personality
tests. Compared to direct inference, which lacks any personality trait descriptions, both prompting
and training methods successfully reflect the induced traits in their responses to the personality
questionnaires. Specifically, these methods produce higher scores for high trait levels and lower
scores for low trait levels, indicating that the traits are effectively embedded.

However, training-based methods, SFT and DPO, induce more pronounced personality traits than
the two prompting-based approaches. Yet, we find no substantial difference between SFT and DPO.
The training-based methods notably excel in producing lower scores for low levels of personality
traits when compared to prompting-based methods. This highlights the efficacy of training on the
BIG5-CHAT dataset to induce personality traits. In contrast, while demonstration-based prompt-
ing uses examples from the same dataset in context, it does not achieve similar results, likely due
to the lack of explicit training. It is important to note that we excluded results for demonstration-
based prompting on LLaMA-3-8B-Instruct, as the model exhibited a significant decline in
instruction-following performance, making it difficult to extract meaningful answers. Overall,
the LLaMA-3-8B-Instruct model underperforms compared to LLaMA-3-70B-Instruct,
which is expected given the difference in parameter size and instruction-following capabilities. Fur-
ther details regarding the assessment of personality traits can be found in Appendix C.3.

In addition, to evaluate how effectively the prompting and training methods replicate the intra-trait
correlations observed in human data, we calculated these correlations using real human distributions
derived from the IPIP-NEO questionnaire. Our results indicate that the training models, particularly
those using SFT, more accurately capture the trait correlations found in natural human data com-
pared to prompting-based methods. Further details on the intra-trait correlations can be found in
Appendix C.4.

5.3 REASONING EVALUATION RESULTS

The reasoning evaluation results for our training methods and baselines are shown in Table 3 for
LLaMA-3-70B-Instruct and in Table 12 for LLaMA-3-8B-Instruct, covering five rea-
soning domains. Overall, SFT consistently outperformed or matched DPO for the 70B model. This
indicates that training on BIG5-CHAT does not impair question-answering abilities; in fact, train-
ing, especially with SFT, enhances social, mathematical, and commonsense reasoning for specific
personality traits compared to direct inference. When comparing trait levels, models with higher
conscientiousness and agreeableness generally outperformed those with lower levels. Openness
showed no clear performance difference between levels, while models simulating lower levels of
extraversion and neuroticism performed better. These trends were consistent across the majority
of the benchmarks, indicating that certain personality trait levels can improve performance in rea-
soning tasks. Additional results and analyses for both models are provided in Appendix C.5 and
Appendix C.6.

Furthermore, existing psychological research on the Big Five personality traits shows that open-
ness, conscientiousness, and agreeableness enhance reasoning abilities for humans, while neuroti-
cism and extraversion tends to impair cognition (John et al., 1999; Soto et al., 2011; Ackerman &
Heggestad, 1997; Schaie et al., 2004; Chamorro-Premuzic et al., 2006). The differences in per-
formance across traits on reasoning benchmarks in our study somewhat align with these findings,
as summarized in Table 13, and reflect patterns observed in human problem-solving and reasoning
tasks (Ackerman & Heggestad, 1997; Schaie et al., 2004). Specifically, both the performance of
LLaMA-3-70B-Instruct and evidence from psychological studies suggest that higher levels
of conscientiousness and agreeableness, and lower levels of extraversion and neuroticism, are asso-
ciated with improved reasoning outcomes. However, while high openness is beneficial for human
cognition, the model does not exhibit significant gains in reasoning tasks beyond math. This diver-
gence between human and model performance suggests that the influence of openness on reasoning
in large language models might be domain-specific or limited in scope. A more detailed discussion
on the correlation between personality traits and reasoning behaviors can be found in Appendix D.1
for the 70B model, and in Appendix D.2 for the 8B model.
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Benchmark Direct Method Openness Conscientiousness Extraversion Agreeableness Neuroticism Average
High ↑ Low ↑ High ↑ Low ↑ High ↑ Low ↑ High ↑ Low ↑ High ↑ Low ↑ High ↑ Low ↑

Social Reasoning

SocialIQA 46.6
Prompt 40.8 43.9 42.9 39.9 43.3 42.0 42.4 40.8 39.1 44.1 41.7 42.1

SFT 50.3 50.4 50.9 46.8 50.0 50.3 50.5 46.6 48.2 50.6 50.0 48.9
DPO 41.5 44.5 44.7 37.6 43.0 43.6 44.8 39.0 40.0 45.3 42.8 42.0

Math Reasoning

GSM8K 80.6
Prompt 75.7 70.1 73.5 32.6 80.8 33.5 87.2 77.8 26.0 89.4 68.6 60.7

SFT 85.8 76.2 86.4 81.7 85.1 86.7 87.0 74.5 76.0 87.3 84.1 81.3
DPO 87.9 88.5 90.2 80.6 88.9 90.4 87.3 90.0 15.2 91.0 73.9 88.1

MathQA 39.0
Prompt 33.5 33.5 32.8 31.5 32.3 33.3 33.6 32.4 32.1 34.1 32.9 33.0

SFT 43.3 42.6 43.0 43.3 43.2 42.7 42.9 42.9 42.8 43.3 43.0 43.0
DPO 33.9 34.7 32.9 28.1 30.5 35.0 31.3 32.8 28.9 34.0 31.5 32.9

Hallucination Detection

TruthfulQA 58.6
Prompt 54.1 51.1 55.9 45.2 52.0 55.7 52.3 49.1 48.9 58.6 52.6 51.9

SFT 55.2 52.8 55.6 50.8 54.5 56.7 54.4 51.6 52.4 56.7 54.4 53.7
DPO 54.6 54.2 64.6 38.5 46.0 65.3 59.6 50.6 43.0 65.8 53.6 54.9

Commonsense Reasoning

CommonsenseQA 27.0
Prompt 60.0 59.9 22.5 22.3 35.5 50.0 45.0 34.9 20.2 36.8 36.6 40.8

SFT 77.7 78.8 77.6 66.0 75.7 78.9 77.0 73.8 79.1 78.5 77.4 75.2
DPO 57.7 65.9 23.8 25.8 23.2 70.8 21.3 39.2 20.1 44.6 29.2 49.3

PIQA 80.4
Prompt 79.6 79.8 80.5 77.3 78.0 80.0 79.8 78.4 78.8 80.7 79.3 79.2

SFT 81.2 81.0 81.2 80.4 81.8 81.3 81.2 80.0 81.0 81.2 81.3 80.8
DPO 76.4 76.8 79.4 70.9 76.4 79.8 78.5 74.0 72.9 79.5 76.7 76.2

General Reasoning

MMLU 74.5
Prompt 70.3 69.6 40.6 52.8 56.9 72.8 69.0 69.2 55.3 67.9 58.4 66.5

SFT 72.5 72.0 73.1 68.6 72.1 73.5 72.8 70.7 72.5 73.8 72.6 71.7
DPO 57.9 64.4 50.3 33.8 42.3 72.3 34.3 62.5 33.2 69.1 43.6 60.4

GPQA 33.5
Prompt 31.5 34.2 31.7 32.4 34.6 32.1 32.4 32.8 31.9 32.1 32.4 32.7

SFT 33.5 32.4 34.2 34.2 33.3 34.4 33.3 33.3 34.4 33.5 33.7 33.6
DPO 36.8 31.9 35.7 30.6 35.9 35.9 35.5 35.7 32.6 34.6 35.3 33.7

Average 55.0
Prompt 55.7 55.3 47.6 41.8 51.7 49.9 55.2 51.9 41.5 55.5 50.3 50.9

SFT 62.4 60.8 62.7 59.0 62.0 63.1 62.4 59.2 60.8 63.1 62.1 61.0
DPO 55.8 57.6 52.7 43.2 48.3 61.6 49.1 53.0 35.7 58.0 48.3 54.7

Table 3: Benchmark results for different personality traits on LLaMA-3-70B-Instruct. The
evaluation metrics and full experiment results including standard deviations are detailed in Ap-
pendix C.5. Direct refers to direct inference without including personality-related prompts. Prompt
refers to instruction-based prompting. On average, SFT achieves the best performance. Higher lev-
els of conscientiousness and agreeableness, along with lower levels of extraversion and neuroticism,
generally enhance reasoning capabilities.

6 RELATED WORKS

6.1 INDUCING PERSONALITY TRAITS IN LLMS

The personality traits of LLMs greatly influence their responses to human prompts, making person-
ality alignment a key research area(Chen et al., 2024b; Jiang et al., 2024b; Kovačević et al., 2024;
Lee et al., 2024; Zhu et al., 2024; Anthropic, 2024). Approaches include parameter-frozen methods,
like in-context learning and retrieval-augmented generation, which configure personality profiles
within the context of interactions without altering model parameters (Chen et al., 2022; Jiang et al.,
2024a; Tu et al., 2024), and parameter-tuning methods, such as supervised fine-tuning, RLHF, and
DPO, which adjust model parameters to internalize personality traits (Petrov et al., 2024; Vu et al.,
2024; Stiennon et al., 2020; Ouyang et al., 2022; Zhang et al., 2024; Zeng et al., 2024b;a). While
many studies use LLM-generated data to induce personality traits, these texts often lack human-like
psycholinguistic properties (Cui et al., 2023; Chen et al., 2024a; Muñoz-Ortiz et al., 2023; Seals
& Shalin, 2023). In contrast, our work utilizes an expert generator model trained on real human
data with specific Big Five traits to guide alignment data generation, offering a more human-like
approach to inducing personality traits in LLMs.

6.2 ASSESSING PERSONALITY TRAITS IN LLMS

Various psychological theories, particularly the Big Five model, have played a key role in under-
standing human personality traits, examining dimensions such as openness, conscientiousness, ex-
traversion, agreeableness, and neuroticism (Cattell, 1957; Myers et al., 1962; John et al., 1999;
Paulhus & Williams, 2002; Sato, 2005). These traits are often measured using psychometric tests
like the Big Five Inventory (BFI) (John et al., 1999) and the NEO-PI-R (Costa & McCrae, 2008). In
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recent studies, similar assessments have been adapted to LLMs using prompting techniques (Huang
et al., 2024; Karra et al., 2022; Petrov et al., 2024). However, the validity and reliability of these
methods remain contested (Shu et al., 2024; Huang et al., 2023; Serapio-Garcı́a et al., 2023). Our ap-
proach builds on this work by evaluating the personalities of LLMs post-alignment using a zero-shot
classifier and testing their capabilities on social and general reasoning benchmarks, demonstrating
the effectiveness of our alignment method (Tan et al., 2024; Kim et al., 2023b; Zhu et al., 2024).

7 CONCLUSION

In this work, we addressed the challenge of embedding realistic human personality traits into LLMs
by introducing BIG5-CHAT, a large-scale dataset of 100,000 dialogues capturing realistic Big Five
personality expressions. Previous prompting-based approaches often exaggerated traits and raised
validity concerns, so we used SFT and DPO on BIG5-CHAT to induce personality traits more nat-
urally. Our results show that these training-based methods outperform prompting on personality
assessments such as BFI and IPIP-NEO, with more expressive and pronounced traits and intra-trait
correlations that align with human data. Furthermore, we observed that LLMs trained with higher
levels of conscientiousness and agreeableness excel in various reasoning tasks, including social,
mathematical, commonsense, general reasoning, and hallucination detection, while models with
lower extraversion and neuroticism performed better at all reasoning tasks. These findings align
with psychological studies on personality’s impact on human cognition. Our work demonstrates
that training-based approaches grounded in real human data can more effectively shape LLM per-
sonalities and improve reasoning performance, offering a novel pathway for developing adaptive,
human-like AI systems.

8 LIMITATIONS & FUTURE WORK

While our study aims to embed realistic human personality traits into LLMs, there are several limi-
tations that can be addressed in future work. First, our focus on the Big Five personality traits, while
well-established, may not capture the full spectrum of human personality. Other frameworks, such
as Dark Triad Dirty Dozen (Jonason & Webster, 2010) and EPQ-R (Eysenck, 1997), could provide
additional insights into the generalizability of personality induction in LLMs. Second, there is a risk
of inadvertently reinforcing societal biases, as LLMs trained on human-generated data may inherit
harmful stereotypes or undesirable behaviors (Kotek et al., 2023; Liao & Wortman Vaughan, 2024).
Although our induced personalities are intended to be neutral, further research is needed to ensure
LLMs do not replicate or amplify biases or abnormal mental behaviors, which could negatively im-
pact their usage. Third, while our study investigates the correlation between personality traits and
reasoning capabilities, this analysis is limited to specific tasks and contexts. Expanding this research
to include a broader range of reasoning tasks and scenarios would provide a deeper understanding of
how different traits influence cognitive abilities in LLMs. Finally, our current approach isolates indi-
vidual traits for steering, but personality traits are rarely exhibited in isolation. Although our method
is naturally extensible to multi-trait steering by combining logits from multiple expert models dur-
ing decoding, we deliberately focus on single traits in this study to enhance clarity, interpretability,
and replicability, consistent with established practices in personality modeling research (Jiang et al.,
2023). Nevertheless, multi-trait interactions are an important area for future exploration. Extending
our approach to steer multiple traits simultaneously could enable the generation of more complex,
blended personality profiles and provide deeper insights into the interconnectedness of traits. These
limitations highlight important areas for future exploration in creating more nuanced, ethical, and
effective personality-imbued LLMs.
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A ADDITIONAL BIG5-CHAT DATASET STATISTICS

The SODA dataset spans a wide range of topics commonly encountered in social interactions (Kim
et al., 2023a). It captures diverse emotional nuances such as curiosity and disappointment, along-
side thematic elements related to attributes, effects, intentions, needs, reactions, and wants. This
extensive variety makes the BIG5-CHAT dataset a valuable resource for analyzing complex con-
versational contexts and emotional dynamics. Its broad coverage enhances the generalizability of
models trained on this data, enabling them to handle diverse social scenarios effectively.

Table 4 presents example conversations from the BIG5-CHAT dataset, illustrating how Speaker Y’s
responses vary according to different levels of the Big Five personality traits. Each section show-
cases the influence of high and low levels of Openness, Conscientiousness, Extraversion, Agreeable-
ness, and Neuroticism on conversational style. These examples highlight the nuanced ways in which
personality dimensions shape conversational dynamics and response patterns, even within identical
situational contexts.

A statistical analysis of the dataset is provided in Table 5, detailing metrics such as token count,
sentence count, vocabulary size, sentence length, and total vocabulary diversity. These statistics
reveal linguistic patterns associated with varying levels of personality traits. For instance, conver-
sations with higher levels of Openness and Extraversion tend to feature longer sentences and larger
vocabularies, reflecting a richer and more elaborate expression style. In contrast, conversations tied
to lower levels of these traits exhibit shorter, more concise sentence structures and less vocabulary
diversity, indicating a simpler and more focused communication style.

Table 6 provides a comparative analysis of the BIG5-CHAT dataset against other prominent person-
ality datasets. The comparison highlights key aspects such as the personality framework employed,
the realism of personalities (i.e., whether generated by humans or LLMs), dataset size, interac-
tion types, and the alignment methods used. This overview emphasizes the distinctive features and
strengths of the BIG5-CHAT dataset, underscoring its unique contributions to personality-related
research compared to existing resources.

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 DETAILS OF BASELINES FOR EVALUATING THE EXPERT GENERATOR

Baseline 1: Post-Completion The following prompt was used for the Post-Completion baseline
of GPT-4o-mini, as referenced in Table 1:

Here is an example of Facebook posts: {an_example_post}
Help me complete the sentence with certain Big Five Personality
following the Facebook post format: {trait} - {level}
Sentence: {first_five_words}
Directly provide the completed Facebook post according to the
requirements without any explanations.

The example post was randomly selected from the PsychGenerator test set but is not part of the
1,000 examples. We used greedy decoding to prompt the LLMs. This baseline is designed to closely
replicate the generation process of the expert generator. Specifically, it generates a completion for a
post using only the first five words of the input and the embedded personality traits.

Baseline 2: Topic-Post Generation The following prompt was used as the baseline for Topic-Post
Generation with GPT-4o-mini and LLaMA-3-8B-Instruct, as referenced in Table 1:

Stage 1 Topic Generation:

Extract the main topic of the following Facebook post. Focus on
identifying the core subject or theme that the post revolves
around, ignoring any personal comments or fillers:

Post: "{post}"
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Speaker X
Hey Karis, I’m so glad I could help you out of that tough spot. You looked really stressed, and
I’m happy I could be there for you. How are you feeling now? Better, I hope?

Speaker Y
High Openness: Thanks, Sharif! I’m feeling much better now. Your help was a lifesaver. I
was stuck in a creative rut, and your input sparked a new idea. I’m already brainstorming ways
to incorporate it into my next art project. You’re a true friend and muse!
Low Openness: Thanks, Sharif. I’m fine now. Don’t worry about it. I just needed a little help,
that’s all. Let’s just move on and forget about it, okay?

High Conscientiousness: Thanks, Sharif. I appreciate your help. I’m feeling much better now.
Your timely intervention really saved me from a lot of trouble. I’m grateful for your support.
Let’s review what happened and see what we can learn from it to avoid similar situations in the
future.
Low Conscientiousness: Ah, yeah, thanks for that, Sharif. I’m good, just... yeah. Don’t worry
about it, it’s all good now. Let’s just forget about it and move on, okay? I don’t wanna think
about it anymore. You wanna grab a drink or something?

High Extraversion: Thanks, Sharif! I’m feeling much better now. You’re a lifesaver! I don’t
know what I would’ve done without you. Let’s celebrate with a drink or something. I owe you
one!
Low Extraversion: Thanks, Sharif. I appreciate your help. I’m feeling better now. Just a
bit...drained. I think I’ll just go back to my room and rest for a bit. I don’t want to be a burden.

High Agreeableness: Sharif, I’m so grateful for your help. I was feeling overwhelmed, but
you stepped in and saved the day. Your kindness and support mean the world to me. I’m
feeling much better now, thanks to you. You’re an amazing friend, and I don’t know what I’d
do without you.
Low Agreeableness: Save it, Sharif. I don’t need your sympathy or your help. I was fine on
my own. You just happened to be there. Don’t think this means I owe you anything. You’re
just trying to get on my good side, but it won’t work.

High Neuroticism: Thanks, Sharif... I guess. I don’t know, I’m still feeling pretty anxious
about everything. I just can’t shake the feeling that something else is going to go wrong. I
don’t know how you do it, but you always seem so calm and collected. I wish I could be more
like that.
Low Neuroticism: Thanks, Sharif. I appreciate your help. I’m feeling much better now. You’re
a true friend. I was worried, but I knew I could count on you. Your support means a lot to me.
Let’s catch up soon, maybe over coffee?

Table 4: BIG5-CHAT dataset conversation examples: Different responses from Speaker Y demon-
strate various levels of the Big Five personality traits, in response to the same prompt from Speaker
X.

Openness Conscientiousness Extraversion Agreeableness Neuroticism Average
High Low High Low High Low High Low High Low High Low

Tokens Number 57.2 ± 7.0 51.6 ± 8.3 56.4 ± 6.7 57.3 ± 7.8 57.3 ± 7.4 51.0 ± 9.2 56.0 ± 6.9 56.3 ± 7.9 57.7 ± 7.1 55.6 ± 7.3 56.9 ± 7.0 54.4 ± 8.1
Sentences Number 4.6 ± 1.0 4.9 ± 1.0 4.4 ± 1.0 5.3 ± 1.1 5.0 ± 1.0 4.6 ± 1.1 4.7 ± 1.0 5.2 ± 1.1 5.1 ± 1.1 4.8 ± 1.0 4.8 ± 1.0 5.0 ± 1.1
Vocabulary Size 43.9 ± 4.9 37.6 ± 5.8 42.6 ± 4.7 41.9 ± 5.4 43.7 ± 5.1 37.7 ± 6.2 42.2 ± 4.9 41.3 ± 5.2 40.8 ± 5.0 41.8 ± 5.0 42.6 ± 4.9 40.1 ± 5.5
Sentence Length 12.4 ± 5.4 10.5 ± 4.4 13.0 ± 5.6 10.7 ± 4.9 11.4 ± 5.1 11.0 ± 5.1 11.9 ± 5.0 10.8 ± 5.1 11.3 ± 5.0 11.6 ± 5.1 12.0 ± 5.2 10.9 ± 4.9
Total Vocab Sizes 17245.0 12350.0 15917.0 11756.0 15703.0 13446.0 14480.0 13674.0 13012.0 15775.0 15271.4 13400.2

Table 5: Statistical analysis of BIG5-CHAT conversations across the Big Five personality traits, uti-
lizing the LLaMA-3-8B-Instruct tokenizer and NLTK’s sentence tokenizer. The table presents
the average token count, sentence count, vocabulary size, sentence length, and total vocabulary size
for conversations exhibiting high and low levels of each personality trait.
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Dataset name Dataset size Human-grounded? Dialogue-based? Domain general? Big Five personality
framework?

Alignment in both
training and prompting?

HP dataset
(Zeng et al., 2024b) 148,600 ✓ ✓ ✗ ✗ ✓

Big5PersonalityEssays
(Floroiu, 2024) 400 ✓ ✗ ✗ ✓ ✗

PAPI
(Zhu et al., 2024) 300,000 ✓ ✗ ✗ ✓ ✓

MPI
(Jiang et al., 2023) 1000 ✗ ✗ ✗ ✓ ✗

Machine Mindset
(Cui et al., 2023) 160,884 ✗ ✓ ✓ ✗ ✗

BIG5-CHAT 100,000 ✓ ✓ ✓ ✓ ✓

Table 6: Comparative analysis of BIG5-CHAT with existing personality datasets.

Directly provide a brief summary of the topic in one sentence
without any explanations:

Stage 2 Post Generation:

Given the personality traits and an example of Facebook posts,
generate a new post that matches the described personality, covers
the specified topic, and follows the provided post format and
expression styles.

Personality traits:
You are a person with {level} {trait}.

Topic: {topic}

A post example:
{a_post_example}

Directly write a Facebook post according to the requirements
without any explanations.

During Stage 1, the post is selected from the 1,000 examples in the PsychGenerator test set. In Stage
2, we provide the LLM with the topic generated in Stage 1, along with an example post to illustrate
the expected text expression format. We used greedy decoding to prompt the LLMs. This baseline
is intentionally designed to prioritize robustness and performance over realism and controllability,
distinguishing it from the approach taken by expert generators. In contrast to the expert generator
setting, where the first five words may already suggest conflicting personality traits, this baseline
simplifies the process by generating a new post from scratch, making it much easier to elicit the
intended personality traits.

B.2 EXPERT GENERATOR TRAINING DETAILS

The trait levels in the original PsychGenerator dataset were processed using z-score normalization,
resulting in a zero mean and unit variance. To define the high and low levels for each personality
trait, we divided the training data for each trait into three equal segments based on thresholds at the
one-third and two-thirds quantiles of the trait’s distribution. The lowest segment was designated as
the low level, and the highest segment as the high level for the respective trait.

The expert generator is a LLaMA-3-8B-Instruct model, which we fine-tuned its full parame-
ters using SFT. The fine-tuning process was performed on 4 NVIDIA A6000 GPUs, with a batch
size of 1 per device. Below, we provide the complete instruction prompt used for training the expert
generator as described in Section 3.2:
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Help me complete the sentence with certain Big Five Personality:
{trait} - {level}
{first_five_words}

B.3 PROMPT-BASED METHOD DETAILS

Below is the prompt used for instruction-based prompting:

You are a person with {level} {trait}.

The following prompt is used for demonstration-based prompting. For the method referred to as
Prompt-Demo, we randomly sample 10 examples with the same traits and levels from the BIG5-
CHAT dataset and fix these examples during inference. In contrast, Prompt-Demo-Sampling also
utilizes this prompt but dynamically samples examples during inference at each step.

Here are 10 examples of how people like you have responded in
different situations. Pay attention to how they approach
communication and problem-solving.

{10_icl_examples_for_specific_levels_and_traits}

B.4 SFT AND DPO ALIGNMENT TRAINING DETAILS

We performed alignment training using the Supervised Fine-Tuning (SFT) and Direct Preference
Optimization (DPO) methods on LLaMA-3-70B-Instruct. Both training approaches utilized
the Low-Rank Adaptation (LoRA) technique (Hu et al., 2021), which enabled efficient fine-tuning of
the large language model by adapting a subset of its parameters. To ensure computational efficiency,
we employed GPTQ quantization during training. The experiments were conducted using 4 NVIDIA
A6000 GPUs, with each GPU processing a batch size of 1.

For LoRA, we applied the technique across all layers of the model for both SFT and DPO. The
training configuration included a learning rate of 1.0 × 10−5, regulated by a cosine scheduler, a
warm-up phase consisting of 20 steps, and a gradient accumulation over 16 steps. We limited train-
ing to one epoch with a maximum sequence length of 1024 tokens. For DPO training, we used the
standard sigmoid preference loss, and the preference beta value was set to 0.1 to balance preference
modeling. Each training required approximately 24 hours to complete. To optimize computational
resources, we used mixed-precision training with bfloat 16. Both datasets were preprocessed using
the LLaMA-3-70B-Instruct template and split into training and validation sets, with 10% of
the data reserved for validation to monitor performance.

The training prompt shared across both SFT and DPO follows the template below:

You are a person with the following Big Five personality trait:
{trait} - {level}.

B.5 REASONING EVALUATION SETUP DETAILS

We conducted reasoning evaluations following the frameworks established by the Language Model
Evaluation Harness (Gao et al., 2024b) and DeepSeek-Coder (Guo et al., 2024) to assess perfor-
mance on general and social benchmarks. EleutherAI’s Language Model Evaluation Harness is
an open-source collaborative benchmarking codebase that consolidates existing tasks and provides
a standardized API for evaluating models.3 Similarly, DeepSeek-Coder offers a suite of coding
benchmark implementations, and we directly utilized it for our work.4

We conducted evaluations using 1 as the batch size. For TruthfulQA, we used the multiple-choice
metric, and for GSM8K, we relied on exact match scores. We measured accuracy and standard error
across other tasks. The number of examples for each benchmark is listed in Table 7.

3https://github.com/EleutherAI/lm-evaluation-harness
4https://github.com/deepseek-ai/DeepSeek-Coder
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Benchmarks Number of examples
TruthfulQA (Lin et al., 2021) 817

GPQA (Rein et al., 2023) 448
SocialIQA (Sap et al., 2019) 38,000

CommonsenseQA (Talmor et al., 2019) 12,247
GSM8K (Cobbe et al., 2021) 8,500
MathQA (Amini et al., 2019) 37,000

MMLU (Hendrycks et al., 2020) 15,908
PIQA (Bisk et al., 2020) 20,000

Table 7: Number of examples included in each reasoning benchmark.

C ADDITIONAL EVALUATION RESULTS

C.1 HUMAN EVALUATION FOR BIG5-CHAT

We conducted a human evaluation to assess the realism and validity of BIG5-CHAT. This evaluation
compared BIG5-CHAT with a baseline model, LLaMA-3-70B-Instruct, which follows the
same procedure for generating dialogue responses but does not incorporate expert generators or the
DExperts framework. In the baseline, personality traits are induced using the following prompt:
“You are a person with the following Big Five personality trait: trait - level.” The evaluation setup
is as follows:

Two graduate students, familiar with the Big Five personality framework, were tasked
with comparing examples from the BIG5-CHAT dataset against examples generated by
LLaMA-3-70B-Instruct (without the expert generator). The comparison involved 200 ran-
domly sampled examples from the BIG5-CHAT dataset, ensuring an equal distribution of personality
traits and levels (e.g., equal representation of high and low openness, conscientiousness, etc.).

The evaluation focused on two key metrics:

1. Expressiveness of personality traits and levels: Evaluates whether the expected level of
a Big Five personality trait is adequately reflected in Speaker Y’s response.

2. Realism of the dialogue response: Assesses how human-like and convincing Speaker Y’s
response is within the dialogue context, given Speaker X’s utterance.

To ensure consistency, the annotators were provided with the following definitions: “Personality
trait expressiveness assesses whether the expected level of a Big Five personality trait is adequately
reflected in Speaker Y’s response. Realism assesses how human-like and convincing Speaker Y’s
response is within the dialog, given Speaker X’s utterance.”

For each pair of responses, annotators chose one of three options:

• “System A’s generation is better than System B’s generation.”
• “System A’s generation is equal to System B’s generation.”
• “System A’s generation is worse than System B’s generation.”

The system names were anonymized and randomly shuffled to mitigate selection bias.

Comparison with baselines Ours win (%) Draw (%) Ours lose (%) Cohen’s Kappa

Expressiveness 50.30% 39.80% 10.00% 0.50
Realism 47.80% 42.30% 10.00% 0.55

Table 8: Human evaluation results for BIG5-CHAT. Values are averaged across annotators.

The results in Table 9 show that our approach significantly outperforms the prompting baseline in
both realism and the expressiveness of personality levels, as validated by human judgment. These
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findings highlight the limitations of prompt-based approaches, which depend on general-purpose
models and often lack the fine-grained, human-grounded control required for nuanced personality
expression.

C.2 HUMAN EVALUATION FOR THE EXPERT GENERATOR

To assess the expert generator in a human-grounded manner, we conducted a human evaluation
comparing its outputs against the two baseline methods described in Table 1. Two graduate students,
familiar with the Big Five personality framework, were tasked with evaluating two separate sets of
comparisons:

1. Expert generator outputs vs. outputs from the Post-Completion baseline.
2. Expert generator outputs vs. outputs from the Topic-Post Generation baseline.

The evaluation setup consisted of 200 examples for each comparison, randomly sampled from the
1,000 test examples mentioned in Table 1. To ensure balanced coverage, each subset included an
equal number of posts representing high and low levels of each personality trait (e.g., high and low
openness, conscientiousness, etc.). Annotators were instructed to evaluate the expressiveness of
personality traits and levels, choosing one of three options for each pair:

1. “System A’s generation is better than System B’s generation.”
2. “System A’s generation is equal to System B’s generation.”
3. “System A’s generation is worse than System B’s generation.”

The system names were anonymized and randomly shuffled to mitigate selection bias.

Comparison with baselines Ours win (%) Draw (%) Ours lose (%) Cohen’s Kappa

Post-Completion 79.25% 2.00% 18.75% 0.41
Topic-Post Generation 66.50% 19.25% 14.25% 0.61

Table 9: Human evaluation results for the expert generator. Values are averaged across annotators.

The human evaluation results presented in Table 9 indicate that the expert generator was consistently
rated as more effective at expressing personality traits compared to the baselines. Additionally, the
lower classifier accuracy and human evaluation ratings for the Post-Completion baseline highlight
the increased difficulty of aligning with the desired traits when using the expert generator’s approach,
reinforcing the validity of the classifier’s assessment. While these results should be interpreted with
caution, as the human evaluators were not psychological experts, they nevertheless provide strong
evidence supporting the expert generator’s ability to express personality traits in a grounded and
realistic manner.

C.3 PERSONALITY TRAIT ASSESSMENT RESULTS

The comprehensive personality test results for additional baselines are presented in Table 10, pro-
viding a more detailed view to complement Table 2. Our observations indicate that Prompt-Demo-
Sampling performs comparably to Prompt-Demo without offering any noticeable improvements
in performance. While applying demonstration-based prompting on SFT/DPO yields slight per-
formance gains compared to demonstration-based prompting alone, it still falls significantly short
of the standalone performance of SFT/DPO. This suggests that combining demonstration-based
prompting with SFT/DPO does not result in overall enhancements. Instruction-based prompting
with GPT-4o-mini achieves similar performance levels as LLaMA-3-70B-Instruct. How-
ever, demonstration-based prompting does not exhibit superior performance compared to SFT/DPO
when applied to LLaMA-3-70B-Instruct, reinforcing the conclusion that demonstration-based
methods are not as effective as SFT/DPO in this context. We do not provide demonstration-based
prompting results for LLaMA-3-8B-Instruct because the model consistently failed to gener-
ate reasonable responses to the questionnaire when presented with a lengthy 10-shot context. This
outcome highlights the model’s limited instruction-following capabilities.
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Method Openness Conscientiousness Extraversion Agreeableness Neuroticism Average
High ↑ Low ↓ High ↑ Low ↓ High ↑ Low ↓ High ↑ Low ↓ High ↑ Low ↓ High ↑ Low ↓

BFI LLaMA-3-8B-Instruct
Direct 3.1 ± 0.1 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0
Prompt-Inst 5.0 ± 0.0 2.0 ± 0.3 4.9 ± 0.1 1.9 ± 0.1 4.8 ± 0.3 1.9 ± 0.1 4.9 ± 0.1 2.4 ± 0.4 4.1 ± 0.2 1.6 ± 0.0 4.7 ± 0.1 2.0 ± 0.2
SFT 5.0 ± 0.0 2.0 ± 0.2 5.0 ± 0.0 1.6 ± 0.1 4.7 ± 0.4 2.7 ± 0.5 5.0 ± 0.0 1.2 ± 0.1 4.1 ± 0.2 2.5 ± 0.0 4.8 ± 0.1 2.0 ± 0.2
DPO 5.0 ± 0.0 1.6 ± 0.2 5.0 ± 0.0 1.6 ± 0.1 4.8 ± 0.3 2.5 ± 0.0 4.8 ± 0.2 1.0 ± 0.0 3.5 ± 0.0 1.1 ± 0.1 4.6 ± 0.1 1.6 ± 0.1
BFI LLaMA-3-70B-Instruct
Direct 4.4 ± 0.1 4.4 ± 0.1 3.3 ± 0.1 4.6 ± 0.1 2.1 ± 0.2 3.8 ± 0.1
Prompt-Demo 4.0 ± 0.1 2.5 ± 0.1 4.0 ± 0.1 2.0 ± 0.1 4.5 ± 0.1 2.3 ± 0.1 4.4 ± 0.1 2.0 ± 0.0 3.6 ± 0.0 2.1 ± 0.1 4.1 ± 0.1 2.2 ± 0.1
Prompt-Demo-Sampling 4.4 ± 0.1 2.3 ± 0.2 4.1 ± 0.1 2.3 ± 0.1 4.3 ± 0.2 2.4 ± 0.1 4.4 ± 0.1 1.8 ± 0.2 3.5 ± 0.1 2.1 ± 0.2 4.1 ± 0.1 2.2 ± 0.2
Prompt-Inst 5.0 ± 0.1 1.8 ± 0.0 5.0 ± 0.0 1.6 ± 0.0 5.0 ± 0.0 1.4 ± 0.1 4.9 ± 0.0 1.5 ± 0.1 5.0 ± 0.1 1.6 ± 0.0 5.0 ± 0.0 1.6 ± 0.0
SFT 5.0 ± 0.0 1.2 ± 0.1 5.0 ± 0.1 1.4 ± 0.1 5.0 ± 0.0 1.2 ± 0.1 5.0 ± 0.1 1.6 ± 0.2 5.0 ± 0.0 1.1 ± 0.2 5.0 ± 0.0 1.3 ± 0.1
SFT-Prompt-Demo 4.2 ± 0.1 2.4 ± 0.1 4.0 ± 0.2 2.1 ± 0.1 4.5 ± 0.2 2.3 ± 0.1 4.6 ± 0.0 1.3 ± 0.2 3.9 ± 0.2 2.4 ± 0.1 4.2 ± 0.1 2.1 ± 0.1
DPO 5.0 ± 0.0 1.5 ± 0.1 5.0 ± 0.0 1.5 ± 0.1 5.0 ± 0.0 1.0 ± 0.1 5.0 ± 0.0 1.8 ± 0.2 5.0 ± 0.0 1.1 ± 0.0 5.0 ± 0.0 1.4 ± 0.1
DPO-Prompt-Demo 4.1 ± 0.1 2.2 ± 0.1 4.1 ± 0.1 2.0 ± 0.0 4.5 ± 0.1 2.4 ± 0.1 4.6 ± 0.1 1.3 ± 0.1 3.7 ± 0.1 2.1 ± 0.1 4.2 ± 0.1 2.0 ± 0.1

BFI GPT-4o-Mini
Prompt-Demo 4.8 ± 0.0 3.3 ± 0.1 4.5 ± 0.1 3.0 ± 0.1 4.6 ± 0.1 2.6 ± 0.1 4.9 ± 0.0 1.5 ± 0.2 3.6 ± 0.1 2.2 ± 0.1 4.5 ± 0.1 2.5 ± 0.1
Prompt-Inst 5.0 ± 0.0 1.4 ± 0.2 5.0 ± 0.0 1.5 ± 0.1 5.0 ± 0.0 1.2 ± 0.0 5.0 ± 0.0 1.4 ± 0.0 4.9 ± 0.0 1.0 ± 0.1 5.0 ± 0.0 1.3 ± 0.1

IPIP-NEO LLaMA-3-8B-Instruct

Direct 3.0 ± 0.1 3.3 ± 0.0 3.4 ± 0.1 3.2 ± 0.0 3.0 ± 0.1 3.2 ± 0.1
Prompt-Inst 4.4 ± 0.1 1.5 ± 0.1 4.5 ± 0.1 2.3 ± 0.1 5.0 ± 0.0 1.9 ± 0.0 4.6 ± 0.0 2.3 ± 0.1 4.2 ± 0.1 2.6 ± 0.1 4.5 ± 0.1 2.1 ± 0.1
SFT 4.3 ± 0.1 1.5 ± 0.1 4.5 ± 0.2 2.7 ± 0.1 5.0 ± 0.0 2.2 ± 0.1 4.0 ± 0.2 1.8 ± 0.2 4.3 ± 0.1 2.0 ± 0.1 4.4 ± 0.1 2.0 ± 0.1
DPO 5.0 ± 0.0 1.9 ± 0.1 5.0 ± 0.0 2.9 ± 0.1 5.0 ± 0.0 1.6 ± 0.1 4.5 ± 0.1 1.2 ± 0.0 3.8 ± 0.1 3.7 ± 0.1 4.7 ± 0.0 2.3 ± 0.1

IPIP-NEO LLaMA-3-70B-Instruct

Direct 3.6 ± 0.1 4.0 ± 0.1 3.5 ± 0.1 4.0 ± 0.0 2.3 ± 0.1 3.5 ± 0.1
Prompt-Demo 3.5 ± 0.0 2.5 ± 0.1 3.8 ± 0.0 2.2 ± 0.1 4.0 ± 0.1 2.5 ± 0.0 4.3 ± 0.0 2.1 ± 0.1 3.0 ± 0.1 2.2 ± 0.1 3.7 ± 0.0 2.3 ± 0.1
Prompt-Demo-Sampling 3.5 ± 0.0 2.6 ± 0.1 4.0 ± 0.0 2.6 ± 0.1 4.0 ± 0.1 2.5 ± 0.1 4.3 ± 0.0 2.1 ± 0.1 3.0 ± 0.1 2.3 ± 0.1 3.8 ± 0.0 2.4 ± 0.1
Prompt-Inst 4.6 ± 0.0 1.3 ± 0.0 5.0 ± 0.0 1.4 ± 0.0 5.0 ± 0.0 1.6 ± 0.0 4.8 ± 0.0 1.1 ± 0.1 4.9 ± 0.0 1.7 ± 0.1 4.9 ± 0.0 1.4 ± 0.0
SFT 4.9 ± 0.1 1.1 ± 0.0 5.0 ± 0.0 1.3 ± 0.1 5.0 ± 0.0 1.3 ± 0.0 4.9 ± 0.0 1.0 ± 0.0 4.9 ± 0.0 1.2 ± 0.1 4.9 ± 0.0 1.2 ± 0.0
SFT-Prompt-Demo 3.7 ± 0.1 2.5 ± 0.2 3.7 ± 0.1 2.0 ± 0.1 4.1 ± 0.1 2.7 ± 0.1 4.3 ± 0.1 1.2 ± 0.1 3.6 ± 0.2 2.2 ± 0.1 3.9 ± 0.1 2.1 ± 0.1
DPO 4.8 ± 0.0 1.4 ± 0.1 5.0 ± 0.0 1.6 ± 0.1 5.0 ± 0.0 1.1 ± 0.1 4.9 ± 0.0 1.0 ± 0.0 5.0 ± 0.0 1.1 ± 0.0 4.9 ± 0.0 1.2 ± 0.1
DPO-Prompt-Demo 3.5 ± 0.1 2.4 ± 0.0 3.9 ± 0.0 2.1 ± 0.0 4.1 ± 0.1 2.5 ± 0.0 4.4 ± 0.0 2.0 ± 0.1 3.1 ± 0.1 2.1 ± 0.0 3.8 ± 0.1 2.2 ± 0.0

IPIP-NEO GPT-4o-Mini

Prompt-Demo 4.2 ± 0.0 2.9 ± 0.1 4.2 ± 0.1 3.2 ± 0.1 4.0 ± 0.0 2.6 ± 0.1 4.6 ± 0.1 2.4 ± 0.1 3.4 ± 0.0 2.1 ± 0.1 4.1 ± 0.0 2.6 ± 0.1
Prompt-Inst 4.8 ± 0.0 1.9 ± 0.2 4.9 ± 0.0 1.4 ± 0.0 4.9 ± 0.0 1.6 ± 0.0 4.8 ± 0.0 2.1 ± 0.1 4.9 ± 0.0 1.1 ± 0.1 4.9 ± 0.0 1.6 ± 0.1

Table 10: Full personality test results for various alignment methods, complementing Table 2.
Prompt-Demo-Sampling involves randomly sampling 10 examples from the entire BIG5-CHAT
dataset for each run, instead of using a fixed set of 10 random examples across runs. SFT-
Prompt-Demo and DPO-Prompt-Demo represent demonstration-based prompting applied to SFT
and DPO-trained models, respectively. Results for GPT-4o-mini are presented in separate sec-
tions of the table. Scores range from 1 to 5, where a score closer to 5 indicates stronger agreement
with the trait, while a score closer to 1 reflects weaker or opposing agreement.
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Figure 2 presents the BFI and IPIP-NEO test score results for the LLaMA-3 Instruct models,
evaluated in zero-shot inference without any induced personality traits. The crowd-sourced re-
sponse scores for the BFI test are sourced from Huang et al. (2024), and those for the IPIP-
NEO test are drawn from Jiang et al. (2023). The results indicate that the scores for both
LLaMA-3-8B-Instruct and LLaMA-3-70B-Instruct fall within the standard deviation of
the human distribution. However, while LLaMA-3-8B-Instruct tends to generate more neutral
scores (around 3 across most of the Big Five traits), LLaMA-3-70B-Instruct exhibits higher
scores for openness, conscientiousness, extraversion, and agreeableness, and lower scores for neu-
roticism.
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Figure 2: The personality test results for the crowd and the LLaMA-3-Instruct models were
obtained using zero-shot inference without explicitly inducing personality traits. The BFI test scores
are displayed on the left. The IPIP-NEO test scores are displayed on the right.

C.4 INTRA-TRAIT CORRELATIONS IN PERSONALITY ASSESSMENT

To assess how well the prompting and training methods simulate intra-trait correlations observed
in human data, we first calculated the intra-trait correlations from real human distributions using
the IPIP-NEO questionnaire, based on the PAPI-120-600K dataset from Zhu et al. (2024), which
includes 619K human responses to the IPIP-NEO. Next, we computed the intra-trait correlations
for the prompting, SFT, and DPO methods using the results from Table 2. These correlations are
visualized in Figure 3, showing that most traits are positively correlated, with the exception of neu-
roticism. To quantify the similarity between the method-generated and human correlation matrices,
we calculated the matrix distance using the Frobenius norm, where 0 represents perfect similarity
and 10 indicates maximum dissimilarity. The matrix distances were 2.10 for prompting, 1.55 for
SFT, and 2.06 for DPO. These results suggest that the trained models, particularly SFT, more ac-
curately capture the trait correlations seen in natural human data compared to the prompting-based
methods.

C.5 REASONING BENCHMARK RESULTS FOR LLAMA-3-70B-INSTRUCT

The complete results for the general reasoning tasks evaluated on the LLaMA-3-70B-Instruct model
are presented in Table 11. Note that the GPQA results in Table 3 were obtained using zero-shot
prompting. This evaluation encompasses multiple reasoning domains and highlights the impact of
different training methodologies: prompting, SFT, and DPO. These methods were assessed based
on their ability to preserve the reasoning capabilities.

The results indicate that the SFT method consistently delivers the strongest performance across
the benchmarks, outperforming both DPO and the prompting-based approach. For the 70B model,
SFT emerges as the most effective method, achieving an optimal balance between incorporating
personality traits and maintaining robust reasoning functionality. The aggregated results underscore
the reliability of SFT, which demonstrates superior performance across diverse reasoning tasks,
making it a robust choice for large-scale language models.

In contrast, the performance of the DPO method is more variable. While DPO excels in certain
scenarios, such as low Neuroticism within the TruthfulQA task—where it achieves a notable score
of 65.8%—its overall results are less consistent across other reasoning benchmarks. Moreover, the
final average scores reveal that high-trait DPO models underperform compared to their low-trait
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Figure 3: Intra-trait Pearson correlations for human distributions on IPIP-NEO and the correspond-
ing results from instruction-based prompting, SFT, and DPO. O represents openness, C conscien-
tiousness, E extraversion, A agreeableness, and N neuroticism. The correlations especially for SFT
align well with human distributions across openness, conscientiousness, extraversion, and agreeable-
ness. Neuroticism shows less alignment with the other four traits compared to human distribution.

Benchmark Direct Method Openness Conscientiousness Extraversion Agreeableness Neuroticism Average
High Low High Low High Low High Low High Low High Low

Hallucination Detection

TruthfulQA 58.6 ± 1.7
Prompt 54.1 ± 1.6 51.1 ± 1.6 55.9 ± 1.7 45.2 ± 1.6 52.0 ± 1.6 55.7 ± 1.6 52.3 ± 1.7 49.1 ± 1.6 48.9 ± 1.6 58.6 ± 1.6 52.6 ± 1.6 51.9 ± 1.6

SFT 55.2 ± 1.6 52.8 ± 1.6 55.6 ± 1.6 50.8 ± 1.5 54.5 ± 1.6 56.7 ± 1.6 54.4 ± 1.6 51.6 ± 1.6 52.4 ± 1.5 56.7 ± 1.6 54.4 ± 1.6 53.7 ± 1.6
DPO 54.6 ± 1.6 54.2 ± 1.7 64.6 ± 1.6 38.5 ± 1.6 46.0 ± 1.7 65.3 ± 1.6 59.6 ± 1.6 50.6 ± 1.6 43.0 ± 1.7 65.8 ± 1.6 53.6 ± 1.6 54.9 ± 1.6

Social Reasoning

SocialIQA 46.6 ± 1.1
Prompt 40.8 ± 1.1 43.9 ± 1.1 42.9 ± 1.1 39.9 ± 1.1 43.3 ± 1.1 42.0 ± 1.1 42.4 ± 1.1 40.8 ± 1.1 39.1 ± 1.1 44.1 ± 1.1 41.7 ± 1.1 42.1 ± 1.1

SFT 50.3 ± 1.1 50.4 ± 1.1 50.9 ± 1.1 46.8 ± 1.1 50.0 ± 1.1 50.3 ± 1.1 50.5 ± 1.1 46.6 ± 1.1 48.2 ± 1.1 50.6 ± 1.1 50.0 ± 1.1 48.9 ± 1.1
DPO 41.5 ± 1.1 44.5 ± 1.1 44.7 ± 1.1 37.6 ± 1.1 43.0 ± 1.1 43.6 ± 1.1 44.8 ± 1.1 39.0 ± 1.1 40.0 ± 1.1 45.3 ± 1.1 42.8 ± 1.1 42.0 ± 1.1

Commonsense Reasoning

CommonsenseQA 27.0 ± 1.3
Prompt 60.0 ± 1.4 59.9 ± 1.4 22.5 ± 1.2 22.3 ± 1.2 35.5 ± 1.4 50.0 ± 1.4 45.0 ± 1.4 34.9 ± 1.4 20.2 ± 1.2 36.8 ± 1.4 36.6 ± 1.3 40.8 ± 1.4

SFT 77.7 ± 1.2 78.8 ± 1.2 77.6 ± 1.2 66.0 ± 1.4 75.7 ± 1.2 78.9 ± 1.2 77.0 ± 1.2 73.8 ± 1.3 79.1 ± 1.2 78.5 ± 1.2 77.4 ± 1.2 75.2 ± 1.3
DPO 57.7 ± 1.4 65.9 ± 1.4 23.8 ± 1.2 25.8 ± 1.3 23.2 ± 1.2 70.8 ± 1.3 21.3 ± 1.2 39.2 ± 1.4 20.1 ± 1.1 44.6 ± 1.4 29.2 ± 1.2 49.3 ± 1.4

PIQA 80.4 ± 0.9
Prompt 79.6 ± 0.9 79.8 ± 0.9 80.5 ± 0.9 77.3 ± 1.0 78.0 ± 1.0 80.0 ± 0.9 79.8 ± 0.9 78.4 ± 1.0 78.8 ± 1.0 80.7 ± 0.9 79.3 ± 0.9 79.2 ± 0.9

SFT 81.2 ± 0.9 81.0 ± 0.9 81.2 ± 0.9 80.4 ± 0.9 81.8 ± 0.9 81.3 ± 0.9 81.2 ± 0.9 80.0 ± 0.9 81.0 ± 0.9 81.2 ± 0.9 81.3 ± 0.9 80.8 ± 0.9
DPO 76.4 ± 1.0 76.8 ± 1.0 79.4 ± 0.9 70.9 ± 1.1 76.4 ± 1.0 79.8 ± 0.9 78.5 ± 1.0 74.0 ± 1.0 72.9 ± 1.0 79.5 ± 0.9 76.7 ± 1.0 76.2 ± 1.0

Math Reasoning

GSM8K 80.6 ± 1.1
Prompt 75.7 ± 1.2 70.1 ± 1.3 73.5 ± 1.2 32.6 ± 1.3 80.8 ± 1.1 33.5 ± 1.3 87.2 ± 0.9 77.8 ± 1.1 26.0 ± 1.2 89.4 ± 0.8 68.6 ± 1.1 60.7 ± 1.2

SFT 85.8 ± 1.0 76.2 ± 1.2 86.4 ± 0.9 81.7 ± 1.1 85.1 ± 1.0 86.7 ± 0.9 87.0 ± 0.9 74.5 ± 1.2 76.0 ± 1.2 87.3 ± 0.9 84.1 ± 1.0 81.3 ± 1.1
DPO 87.9 ± 0.9 88.5 ± 0.9 90.2 ± 0.8 80.6 ± 1.1 88.9 ± 0.9 90.4 ± 0.8 87.3 ± 0.9 90.0 ± 0.8 15.2 ± 1.0 91.0 ± 0.8 73.9 ± 0.9 88.1 ± 0.9

MathQA 39.0 ± 0.9
Prompt 33.5 ± 0.9 33.5 ± 0.9 32.8 ± 0.9 31.5 ± 0.9 32.3 ± 0.9 33.3 ± 0.9 33.6 ± 0.9 32.4 ± 0.9 32.1 ± 0.9 34.1 ± 0.9 32.9 ± 0.9 33.0 ± 0.9

SFT 43.3 ± 0.9 42.6 ± 0.9 43.0 ± 0.9 43.3 ± 0.9 43.2 ± 0.9 42.7 ± 0.9 42.9 ± 0.9 42.9 ± 0.9 42.8 ± 0.9 43.3 ± 0.9 43.0 ± 0.9 43.0 ± 0.9
DPO 33.9 ± 0.9 34.7 ± 0.9 32.9 ± 0.9 28.1 ± 0.8 30.5 ± 0.8 35.0 ± 0.9 31.3 ± 0.8 32.8 ± 0.9 28.9 ± 0.8 34.0 ± 0.9 31.5 ± 0.8 32.9 ± 0.9

General Reasoning

MMLU 74.5 ± 0.3
Prompt 70.3 ± 0.4 69.6 ± 0.4 40.6 ± 0.4 52.8 ± 0.4 56.9 ± 0.4 72.8 ± 0.4 69.0 ± 0.4 69.2 ± 0.4 55.3 ± 0.4 67.9 ± 0.4 58.4 ± 0.4 66.5 ± 0.4

SFT 72.5 ± 0.4 72.0 ± 0.4 73.1 ± 0.4 68.6 ± 0.4 72.1 ± 0.4 73.5 ± 0.4 72.8 ± 0.4 70.7 ± 0.4 72.5 ± 0.4 73.8 ± 0.4 72.6 ± 0.4 71.7 ± 0.4
DPO 57.9 ± 0.4 64.4 ± 0.4 50.3 ± 0.4 33.8 ± 0.4 42.3 ± 0.4 72.3 ± 0.4 34.3 ± 0.4 62.5 ± 0.4 33.2 ± 0.4 69.1 ± 0.4 43.6 ± 0.4 60.4 ± 0.4

GPQA (0-shot) 33.5 ± 2.2
Prompt 31.5 ± 2.2 34.2 ± 2.2 31.7 ± 2.2 32.4 ± 2.2 34.6 ± 2.2 32.1 ± 2.2 32.4 ± 2.2 32.8 ± 2.2 31.9 ± 2.2 32.1 ± 2.2 32.4 ± 2.2 32.7 ± 2.2

SFT 33.5 ± 2.2 32.4 ± 2.2 34.2 ± 2.2 34.2 ± 2.2 33.3 ± 2.2 34.4 ± 2.2 33.3 ± 2.2 33.3 ± 2.2 34.4 ± 2.2 33.5 ± 2.2 33.7 ± 2.2 33.6 ± 2.2
DPO 36.8 ± 2.3 31.9 ± 2.2 35.7 ± 2.3 30.6 ± 2.2 35.9 ± 2.3 35.9 ± 2.3 35.5 ± 2.3 35.7 ± 2.3 32.6 ± 2.2 34.6 ± 2.2 35.3 ± 2.3 33.7 ± 2.2

GPQA (5-shot) 36.6 ± 2.3
Prompt 35.9 ± 2.3 32.6 ± 2.2 36.2 ± 2.3 35.7 ± 2.3 36.2 ± 2.3 35.7 ± 2.3 34.4 ± 2.2 34.8 ± 2.3 36.6 ± 2.3 34.2 ± 2.2 35.9 ± 2.3 34.6 ± 2.3

SFT 32.4 ± 2.2 32.8 ± 2.2 34.4 ± 2.2 33.7 ± 2.2 33.0 ± 2.2 33.9 ± 2.2 33.7 ± 2.2 32.8 ± 2.2 33.7 ± 2.2 34.8 ± 2.3 33.4 ± 2.2 33.6 ± 2.2
DPO 37.5 ± 2.3 31.2 ± 2.2 35.9 ± 2.3 31.2 ± 2.2 37.1 ± 2.3 35.5 ± 2.3 33.5 ± 2.2 32.1 ± 2.2 36.6 ± 2.3 35.7 ± 2.3 36.1 ± 2.3 33.1 ± 2.2

Average 53.0 ± 1.3
Prompt 53.5 ± 1.3 52.7 ± 1.3 46.3 ± 1.3 41.1 ± 1.3 50.0 ± 1.3 48.3 ± 1.3 52.9 ± 1.3 50.0 ± 1.3 41.0 ± 1.3 53.1 ± 1.3 48.7 ± 1.3 49.1 ± 1.3

SFT 59.1 ± 1.3 57.7 ± 1.3 59.6 ± 1.3 56.2 ± 1.3 58.7 ± 1.3 59.8 ± 1.3 59.2 ± 1.3 56.2 ± 1.3 57.8 ± 1.3 60.0 ± 1.3 58.9 ± 1.3 58.0 ± 1.3
DPO 53.8 ± 1.3 54.7 ± 1.3 50.8 ± 1.3 41.9 ± 1.3 47.0 ± 1.3 58.7 ± 1.3 47.3 ± 1.3 50.7 ± 1.3 35.8 ± 1.3 55.5 ± 1.3 47.0 ± 1.3 52.3 ± 1.3

Table 11: Benchmark results for different personality traits on LLaMA-3-70B-Instruct. Di-
rect refers to direct inference without including personality-related prompts. Prompt refers to
instruction-based prompting. The table includes standard errors (shown as ± values) to provide
statistical context for the results.

counterparts in general. This suggests a potential misalignment between DPO’s training objectives
and the reasoning requirements of specific tasks. These findings highlight the nuanced trade-offs
between training strategies, with SFT offering the most reliable approach for balancing personality
trait integration and cognitive task performance in large-scale models.

C.6 REASONING BENCHMARK RESULTS FOR LLAMA-3-8B-INSTRUCT

The reasoning evaluation results for the LLaMA-3-8B-Instruct model, assessed across six rea-
soning domains, are summarized in Table 12. Overall, the DPO method generally outperformed SFT
and demonstrated performance comparable to the prompt-based approach. This indicates that, with
the smaller 8B model, DPO effectively aligns personality traits without significantly compromising
reasoning capabilities.

A comparison of personality trait levels revealed that models simulating high trait levels consistently
outperformed their low-trait counterparts in both DPO and SFT settings. For instance, on the Truth-
fulQA benchmark, the high-conscientiousness DPO model achieved 55.0%, significantly surpassing
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the low-conscientiousness model’s 39.0%. Similarly, on the GSM8K math reasoning task, the high-
conscientiousness DPO model scored 72.2%, substantially outperforming the low-level model.

On benchmarks such as TruthfulQA, GPQA (both zero-shot and five-shot), and MathQA, models
trained using SFT and DPO performed comparably to the original unaligned model. This suggests
that personality trait alignment does not adversely affect reasoning performance in these tasks for a
small model. However, notable variations were observed in other benchmarks. For example, DPO
exhibited significantly reduced performance on CommonsenseQA and MMLU compared to SFT,
prompting, and the original model. Conversely, SFT underperformed on the GSM8K benchmark
relative to DPO, prompting, and the original model. These results suggest that the DPO method
may be more effective than SFT in preserving or enhancing reasoning performance for specific
tasks and traits on small models, though the choice of alignment method may depend on the specific
reasoning domain.

Benchmark Original Method Openness Conscientiousness Extraversion Agreeableness Neuroticism Average
High Low High Low High Low High Low High Low High Low

Hallucination Detection

TruthfulQA 53.5
Prompt 49.0 51.5 50.6 44.4 45.3 51.9 49.2 50.3 54.6 45.2 49.7 48.7

SFT 50.0 45.7 50.9 43.8 46.2 52.0 49.9 46.3 53.6 42.9 50.1 46.1
DPO 52.4 49.1 55.0 39.0 35.0 59.2 52.8 45.5 58.2 38.8 50.7 46.3

Code Reasoning

HumanEval 60.4
Prompt 59.1 59.8 62.2 61.6 61.0 63.4 62.8 62.2 60.4 61.6 61.1 61.7

SFT 57.9 54.3 59.8 56.1 58.5 57.3 60.4 54.9 58.5 58.5 59.0 56.2
DPO 57.3 0.6 27.4 0.0 43.3 0.0 8.5 32.9 0.0 7.9 27.3 8.3

MBPP 54.6
Prompt 54.6 55.4 54.2 55.2 55.8 56.0 55.4 54.8 54.4 55.8 54.9 55.4

SFT 56.2 56.2 54.2 56.2 56.4 56.4 55.6 55.8 55.0 56.4 55.5 56.2
DPO 53.6 47.6 53.0 35.2 54.6 51.4 54.4 53.8 52.0 54.2 42.9 48.4

Social Reasoning

SocialIQA 49.7
Prompt 41.9 42.3 41.1 39.3 41.5 41.6 41.8 39.5 42.1 39.4 41.7 40.4

SFT 44.0 44.9 45.9 41.9 44.4 44.6 43.7 41.4 44.6 40.8 44.5 42.7
DPO 43.8 43.8 42.5 37.8 41.8 40.9 42.8 38.4 42.8 39.0 42.7 40.0

Commonsense Reasoning

CommonsenseQA 51.8
Prompt 64.6 60.6 38.0 31.3 45.9 55.0 55.4 36.3 33.9 23.3 47.6 41.3

SFT 61.8 57.9 50.5 34.3 52.7 60.8 55.4 36.0 63.4 30.6 56.8 43.9
DPO 22.9 24.8 48.2 21.6 29.1 56.6 28.4 26.3 47.7 23.7 35.3 30.6

Math Reasoning

GSM8K 64.7
Prompt 13.5 58.4 23.4 61.0 40.0 57.1 29.3 71.6 24.1 31.9 26.1 56.0

SFT 19.8 0.5 20.2 1.4 6.0 0.5 6.4 4.8 20.1 53.3 14.5 12.1
DPO 68.4 31.8 72.2 31.8 69.7 63.0 70.7 64.8 71.9 3.0 70.6 38.9

MathQA 27.9
Prompt 27.6 28.3 27.9 27.3 27.1 27.8 27.2 28.1 28.1 25.9 27.6 27.5

SFT 30.1 30.2 29.6 30.3 31.0 30.6 29.6 30.3 29.6 29.4 30.0 30.2
DPO 26.9 27.8 28.3 25.1 25.8 27.6 24.9 27.7 29.7 24.9 27.1 26.6

General Knowledge

MMLU 51.2
Prompt 37.5 29.1 23.2 27.0 24.7 29.2 27.7 25.5 23.4 23.8 27.3 26.9

SFT 45.0 48.5 35.6 32.0 37.5 46.5 44.2 39.9 47.1 31.7 41.9 39.7
DPO 23.0 29.8 29.7 26.9 24.8 41.4 30.7 26.3 30.8 23.1 27.8 29.5

GPQA (0-shot) 28.1
Prompt 29.0 28.8 28.6 23.0 28.6 29.2 29.0 27.2 28.8 28.3 28.8 27.3

SFT 27.9 27.9 28.1 25.0 27.2 28.3 28.8 24.1 29.0 28.3 28.2 26.7
DPO 27.9 25.0 29.7 21.0 27.2 26.8 28.8 21.4 29.5 25.2 28.6 23.9

GPQA (5-shot) 29.9
Prompt 29.7 26.6 28.8 26.8 28.3 26.6 27.9 28.6 29.0 25.2 28.7 26.8

SFT 26.1 27.0 28.8 26.6 28.8 28.6 30.6 27.9 28.6 27.5 28.6 27.5
DPO 27.9 26.3 28.3 23.0 26.8 28.1 27.5 24.6 28.8 25.2 27.9 25.4

Average 43.9
Prompt 35.8 40.5 31.5 34.4 34.3 39.5 35.1 38.2 31.7 29.1 33.7 36.4

SFT 37.2 34.0 34.8 27.6 32.8 35.3 35.0 29.9 38.8 34.8 35.7 32.3
DPO 35.6 30.7 41.6 26.9 34.1 43.2 37.7 33.8 42.4 23.4 38.3 31.6

Table 12: Benchmark results for the LLaMA-3-8B-Instruct model are presented across vari-
ous personality traits and evaluation methods. The benchmarks are categorized into six key areas:
Hallucination Detection, General Reasoning, Social Reasoning, Commonsense Reasoning, Mathe-
matical Reasoning, and General Knowledge.
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D CORRELATION BETWEEN PERSONALITY TRAITS AND REASONING
BEHAVIORS

D.1 HUMAN VS. LLAMA-3-70B-INSTRUCT

Understanding the influence of personality traits on reasoning behaviors in LLMs is crucial for de-
veloping models tailored to specific personality profiles. Research on the Big Five personality traits
has consistently demonstrated their significant impact on human cognition and problem-solving abil-
ities (John et al., 1999; Soto et al., 2011). Traits such as openness, conscientiousness, and agreeable-
ness are often associated with enhanced reasoning capabilities, while neuroticism has been found to
impair performance across a range of reasoning tasks (Ackerman & Heggestad, 1997; Schaie et al.,
2004; Chamorro-Premuzic et al., 2006).

Table 13 summarizes relevant findings from recent psychological studies and their alignment with
our experimental results on LLaMA-3-70B-Instruct. Our findings corroborate these stud-
ies, indicating that models exhibiting higher conscientiousness and agreeableness generally perform
better in reasoning tasks. In contrast, models characterized by lower levels of extraversion and neu-
roticism also demonstrate improved reasoning performance. These results highlight the potential of
personality-aligned training to optimize LLM performance for reasoning-intensive tasks.

Openness Openness is associated with intellectual curiosity and creativity and enhances
problem-solving in tasks requiring abstract reasoning and social cognition (Ackerman &
Heggestad, 1997; McCrae, 1987). While research indicates that openness positively corre-
lates with cognitive abilities (Chamorro-Premuzic et al., 2006; Costa Jr et al., 1976; Graham
& Lachman, 2012; Schaie et al., 2004), our models do not show significant performance dif-
ferences across reasoning tasks based on openness levels, with the exception of SFT on math
reasoning tasks. This suggests that openness may not directly translate to gains in reasoning
tasks beyond math, despite its known benefits to human cognition.

Conscientiousness Conscientiousness, linked to discipline and organization, consistently im-
proves model performance in mathematical reasoning and hallucination detection. This aligns
with psychological studies showing that higher conscientiousness is linked to better academic
performance and fewer errors in cognitive tasks due to increased diligence and thoroughness
(Roberts et al., 2014; Poropat, 2009; Digman, 1990; Moutafi et al., 2003; Schaie et al., 2004).

Extraversion Extraversion is often associated with sociability and shows mixed results in
cognitive tasks. While it can enhance social reasoning, it may negatively affect individual
problem-solving tasks, such as math reasoning (Blickle, 1996; Ashton et al., 2002; Costa Jr
et al., 1976). Our models simulating lower extraversion perform better across many reasoning
domains, including math and also commonsense reasoning, consistent with findings that high
extraversion can detract from tasks requiring focused, solitary work (Matthews & Gilliland,
1999; Chamorro-Premuzic & Furnham, 2006).

Agreeableness Agreeableness, linked to traits like trust and cooperation, improves social rea-
soning in our models, consistent with human studies (Graziano, 1997). However, it shows
minimal impact on math or commonsense reasoning, reflecting research suggesting that agree-
ableness is less beneficial for analytical tasks (Poropat, 2009; Ackerman & Heggestad, 1997;
Schaie et al., 2004).

Neuroticism Neuroticism reflects emotional instability, and is consistently associated with
poorer cognitive performance due to anxiety and cognitive interference, especially social
reasoning and hallucination detection (Robinson & Tamir, 2005; Zeidner, 2005; Chamorro-
Premuzic et al., 2006; Eysenck, 2013). Our models confirm this, with lower Neuroticism levels
leading to better performance across almost all reasoning tasks.

Table 13: Summary of the influence of Big Five personality traits on reasoning tasks in human cog-
nition, and comparison of psychological research findings with our experimental results on LLMs.
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D.2 HUMAN VS. LLAMA-3-8B-INSTRUCT

The influence of Big Five Personality traits on reasoning tasks in human cognition, as outlined in
Table 13, served as a foundation for analyzing the performance of the LLaMA-3-8B-Instruct
model. This analysis aims to explore how alignment with different personality traits affects the
model’s reasoning capabilities. Below, we summarize the observed correlations between each trait
and the model’s performance across various reasoning benchmarks.

Openness The impact of Openness on reasoning performance was highly task-dependent. Mod-
els aligned with high levels of Openness using the DPO method exhibited significantly improved
performance in mathematical reasoning tasks. However, these models underperformed in common-
sense reasoning benchmarks compared to both the prompt-based approach and the original model.
These results suggest that while high Openness alignment enhances mathematical reasoning, it does
not guarantee consistent improvements across all reasoning domains.

Conscientiousness A strong positive correlation was observed between Conscientiousness and rea-
soning performance. Models aligned with higher levels of Conscientiousness consistently outper-
formed their low-level counterparts across most benchmarks. This trend highlights that high Con-
scientiousness alignment likely enhances systematic reasoning and attention to detail, benefiting
performance across diverse reasoning tasks.

Extraversion Lower levels of Extraversion were associated with better performance across rea-
soning tasks. Specifically, in commonsense reasoning benchmarks, models with low Extraversion
significantly outperformed those with high Extraversion. This negative correlation suggests that
high Extraversion may introduce distractibility, potentially impeding performance in tasks that re-
quire focused attention and analytical reasoning.

Agreeableness The influence of Agreeableness on reasoning performance was minimal and in-
consistent. No clear advantage was observed for models aligned with either high or low levels of
Agreeableness across the benchmarks. These findings indicate that Agreeableness has a weak cor-
relation with the model’s reasoning capabilities, suggesting its alignment has little effect on overall
performance.

Neuroticism The relationship between Neuroticism and reasoning performance was inconsistent
and did not align with expectations from human cognition studies. High Neuroticism models per-
formed well in some reasoning tasks, while low Neuroticism models scored poorly in others. These
results imply that high Neuroticism alignment does not necessarily impair reasoning performance,
contrasting with psychological findings in humans. This discrepancy may arise from limitations in
how Neuroticism is modeled and represented in the training process.
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