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Abstract

As major progress is made in open-ended text generation, measuring how close
machine-generated text is to human language remains a critical open problem.
We introduce MAUVE, a comparison measure for open-ended text generation,
which directly compares the learnt distribution from a text generation model to
the distribution of human-written text using divergence frontiers. MAUVE scales
up to modern text generation models by computing information divergences in
a quantized embedding space. Through an extensive empirical study on three
open-ended generation tasks, we find that MAUVE identifies known properties
of generated text, scales naturally with model size, and correlates with human
judgments, with fewer restrictions than existing distributional evaluation metrics.

1 Introduction

Recent large-scale text generation models show an ability to produce human-like text of remarkable
quality and coherence in open-ended generation [45, 61, 6]. In this setting, a text generation model
forms a distribution over natural language sequences, induced by an autoregressive neural sequence
model (e.g., GPT-3 [6]) paired with a decoding algorithm (e.g., nucleus sampling [26]). Generating
text amounts to sampling from this distribution, with the goal of obtaining samples that resemble
those from the “true” distribution of human-written text.

To evaluate how close a generation model’s distribution is to that of human-written text, we must
consider two types of errors: (I) where the model assigns high probability to sequences which do
not resemble human-written text, and, (II) where the model distribution does not cover the human
distribution, i.e., it fails to yield diverse samples. However, quantifying these aspects in a principled
yet computationally tractable manner is challenging, as the text distributions are high-dimensional
and discrete, accessed only through samples or expensive model evaluations [26, 58, 62].

We develop MAUVE, a comparison measure for open-ended text generation. The proposed measure
is efficient, interpretable, and practical for evaluating modern text generation models. It captures
both types of errors (Figure 1) by building upon information divergence frontiers [49, 31, 16], so
far underexplored in natural language processing. The key idea for making the proposed measure
computationally tractable, yet effective, is to reduce its measurement to computing Kullback-Leibler
divergences in a quantized, low-dimensional space after embedding samples from each distribution
with an external language model. From an end-user’s perspective, MAUVE has a simple interface:
given neural text and human text, it yields a scalar measure of the gap between them.
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Figure 1: Left: MAUVE compares the machine text distribution Q to that of human text P by using the family of
mixtures R� = �P+(1��)Q for � 2 (0, 1). Right: Illustration of Type I errors, where Q produces degenerate,
repetitive text which is unlikely under P , and, Type II errors, where Q cannot produce plausible human text
due to truncation heuristics [26]. MAUVE measures these errors softly, by using the mixture distribution R�.
Varying � in (0, 1) gives a divergence curve and captures a spectrum of soft Type I and Type II errors. MAUVE
summarizes the entire divergence curve in a single scalar as the area under this curve.

We summarize our contributions. First, we introduce MAUVE, a comparison measure between neural
text and human text. Second, we empirically show that MAUVE is able to quantify known properties
of generated text with respect to text length, model size, and decoding more correctly and with fewer
restrictions than existing distributional evaluation metrics. Third, we find through a human evaluation
that MAUVE better correlates with human quality judgements of text. Finally, we find that MAUVE
can be highly robust to the choice of quantization, embeddings, and scaling. We open-source a
pip-installable Python package to compute MAUVE.1

2 MAUVE

We begin by discussing the basics of open-ended text generation, and then introduce MAUVE for
measuring the divergence between machine generated text and human text.

Open-ended Text Generation. A language model is an estimate P̂ (x) of the probability distribution
over sequences of text x = (x1, . . . , x|x|), consisting of tokens xt belonging to a fixed vocabulary
(e.g. characters, or words). Prevailing neural autoregressive language models estimate the joint
distribution P̂ (x) by modeling the conditional distribution P̂ (xt+1|x1:t) over the next token in a
sequence. The open-ended text generation task asks us to output text x̂t+1:|x| in continuation of
a given context x1:t. Unlike targeted generation tasks like translation or summarization, there is
no “correct” output; the main criteria for open-ended text generation are coherence, creativity, and
fluency.

Given a neural autoregressive language model P̂ , we can generate open-ended text in a serial, left-to-
right fashion, by sampling x̂t+1 ⇠ P̂ (·|x1:t), x̂t+2 ⇠ P̂ (·|x1:t, x̂t+1), etc. In practice, this simple
decoding algorithm is often modified by adjusting the conditional distribution P̂ (·|x1:t) to promote
more conservative outputs. The decoding algorithm and the language model taken together define a
distribution Q over text, which we call the model distribution. Common decoding algorithms include
temperature rescaling [1] and truncation [18, 26]. Note that truncation methods in particular create
sparsity in Q, which leads to degeneracy of some measures including test-set perplexity.

Sources of Error in Text Generation. Our goal in this work is to measure the gap between the
model distribution Q and the target distribution P of human text. As highlighted in Figure 1, this gap
arises from two sources of error:

(Type I) Q places high mass on text which is unlikely under P ,
(Type II) Q cannot generate text which is plausible under P .

The Type I errors are false positives, including the common failure case where a model generates text
with semantic repetitions [15, 26, 59] that are highly unlikely to be written by humans.2 The Type II

1Available from https://github.com/krishnap25/mauve. See Appendix B for an example of the
mauve package in action.

2Let text x with P (x) � 0 be the positive class and P (x) ⇡ 0 be the negative class. If Q(x) � 0 for some
negative x, then the model incorrectly considers it a positive, so it is a false positive.
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Figure 2: Divergence curves for different models (GPT-2 [45], Grover [61]) and decoding algorithms (greedy
decoding, ancestral and nucleus sampling). MAUVE is computed as the area of the shaded region, and larger
values of MAUVE indicate that Q is closer to P . In general, MAUVE indicates that generations from larger models
and nucleus sampling are closer to human text. Rightmost: Nucleus sampling has a slightly smaller Type I error
than ancestral sampling but a higher Type II error, indicating that ancestral sampling with Grover base produces
more degenerate text while nucleus sampling does not effectively cover the human text distribution.

errors are false negatives, which can occur, for instance, because some pieces of plausible human text
cannot be generated by truncation-based decoding algorithms such as nucleus sampling [26]. The
gap between P and Q is small only if both of these errors are small.

Quantifying the Errors. We formalize the Type I and II errors with the Kullback-Leibler (KL)
divergences KL(Q|P ) and KL(P |Q), respectively. The divergence KL(Q|P ) penalizes Q if there
exists text x such that Q(x) is large but P (x) is small, so it quantifies the Type I error. Likewise,
KL(P |Q) quantifies the Type II error.

Unfortunately, one or both of the KL divergences KL(P |Q) and KL(Q|P ) are infinite if the supports
of P and Q are not identical, which is often the case in open-ended generation. This makes the KL
divergence itself unsuitable as an evaluation metric. We overcome this issue by softly measuring the
two errors using the mixture distribution R� = �P + (1� �)Q for some � 2 (0, 1). In particular,
we define the (soft) Type I error at level � as KL(Q|R�) and the (soft) Type II error as KL(P |R�).

Summarizing the Errors with a Divergence Curve. Since the mixture weight � was arbitrary, we
consider a family of Type I and II error values by varying � between 0 and 1, in the same spirit as
information divergence frontiers [49, 16]. This yields a divergence curve,

C(P,Q) =
n�

exp(�cKL(Q|R�)), exp(�cKL(P |R�))
�
: R� = �P + (1� �)Q, � 2 (0, 1)

o
,

(1)
where c > 0 is a hyperparameter for scaling. The divergence curve formalizes and encodes informa-
tion about the trade-off between Type I and II errors.3 Figure 2 illustrates the divergence curves for
different models and decoding algorithms.

Our proposed measure, MAUVE(P,Q), is the area under the divergence curve C(P,Q). It provides a
scalar summary of the trade-off between Type I and Type II errors. MAUVE(P,Q) lies in (0, 1], with
a larger value meaning that Q is closer to P . Further, MAUVE(P,Q) = 1 if and only if Q = P . The
area under the curve is a common summary of trade-off curves in machine learning [13, 11, 12, 19].

Connections to Common Divergences. The divergence curve encodes more information than
the KL divergence KL(P |Q), which can be obtained from the second coordinate of the curve
C(P,Q) as � ! 0, and the reverse KL divergence KL(Q|P ) which can be obtained from the
first coordinate of the curve C(P,Q) as � ! 1. Further, the Jensen-Shannon (JS) divergence
JS(P,Q) =

�
KL(P |R1/2) +KL(Q|R1/2)

�
/2, can be obtained from the two coordinates of C(P,Q)

at � = 1/2. MAUVE summarizes all of the divergence curve C(P,Q).

Computing MAUVE for Open-Ended Text Generation. Each point on the divergence curve C(P,Q)
consists of a coordinate

KL(P |R�) =
X

x

P (x) log
P (x)

R�(x)
, (2)

and a similarly defined coordinate KL(Q|R�). We cannot compute the summation as written in
Eq. (2), as we do not know the ground-truth probabilities P (·) and the support of a typical model

3More generally, the divergence curve C(P,Q) encodes the Pareto frontier of
�
KL(P |R),KL(Q|R)

�
for

all distributions R, not just mixtures of the form R�. We prove this in Appendix A.
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Figure 3: Illustration of the quantization. Left: A continuous two-dimensional distribution P . Right: A
partitioning of the Euclidean plane R2 and the corresponding quantized distribution P̃ .

distribution is prohibitively large, since it is the space of all sequences of tokens. As a result of these
two issues, MAUVE cannot be tractably computed in closed form.

We employ a Monte Carlo estimator using samples xi ⇠ P and x0
i ⇠ Q to overcome the fact

that ground-truth probabilities P (·) are unknown. We circumvent the intractable support size by
computing MAUVE in a quantized embedding space that is sensitive to important features of text.

The overall estimation procedure is as follows. First, we sample human text xi ⇠ P and machine text
x0
i ⇠ Q. We then embed each text sequence using an external language model M (e.g., GPT-2 [45])

to obtain embeddings {M(xi)}Ni=1 and {M(x0
i)}N

0

i=1. Each embedding is now a vector M(x) 2 Rd.
Next, we jointly quantize the embedded samples (e.g. with k-means [36]), and count the cluster
assignments to form histograms, giving low-dimensional discrete distributions that approximate each
high-dimensional text distribution. In particular, the distribution P of human text is approximated by
the discrete distribution P̃ of support size k, which is defined as,

P̃ (j) =
1

N

NX

i=1

I
�
�(xi) = j

�
, (3)

where �(x) 2 {1, · · · , k} returns the cluster id of x. The model distribution Q is approximated
as Q̃ similarly. Here, P̃ and Q̃ can be interpreted as piecewise constant approximations of P and
Q, similar to a histogram; see Figure 3 for an illustration. Computing the divergence curve is now
tractable, as each coordinate is a KL divergence between the k-element discrete distributions.

To recap, our proposed measure MAUVE(P,Q) is the area under this divergence curve, providing
a summary of all Type I and Type II errors through an efficient approximation designed for text
generation. Next, we discuss how MAUVE compares to prior comparison measures for text (§3), then
present empirical results with MAUVE (§4).

3 Related Work

Divergence Measures for Text. Prior measures of similarity/divergence between machine text and
human text come in three broad categories: (a) reference-based, (b) statistics-based, and (c) language
modeling. Table 1 summarizes the latter two categories, and contrasts them with MAUVE.

Reference-based measures evaluate generated text with respect to a (small set of) reference text
sample(s), rather than comparing full sequence distributions. These include classical metrics for
n-gram matching [44, 32, 2], which are designed to capture similarities in the surface form of the
generated text and the human references, making them fundamentally ill-suited for open-ended
generation. Moreover, it has been recently shown in [42] show that these classical metrics only
weakly agree with human judgments.

More recent reference-based metrics are capable of comparisons in a high dimensional space [53,
63, 51, 9], thereby capturing distributional semantics beyond superficial n-gram statistics. For
instance, Moverscore [64] relies on the Word Mover’s distance [30], and is an instance of an optimal
transportation distance [57]. It computes the minimum cost of transforming the generated text to the
reference text, taking into account Euclidean distance between vector representations of n-grams,
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Type Metric Measures Approximates

Statistics
Zipf Coefficient [26] Unigram rank-frequency statistics –
Self-BLEU [65] N-gram diversity –
Generation Perplexity
[18]

Generation quality via external
model R

|EQ[logR(x)]�EP [logR(x)]|
(a single point inside C(P,Q))

Language
Modeling

Perplexity Test-set perplexity EP [logQ(x)]
"-perplexity [39] Perplexity w/ Laplace smoothing EP [Q̃(x)]
Sparsemax Score [39] LM quality (sparsemax loss [38]) EP [Q̃(x)]
Token JS-Div. [39] LM quality (JS divergence) EP [Q̃(x)]

Divergence
Curve

MAUVE (this work) Quality & diversity via
the divergence curve C(P,Q) at all �

Table 1: Summary of automatic distributional metrics for evaluating open-ended text generation. MAUVE
provides a summary of all points along the divergence curve, rather than a single point. The summary is based
on comparisons in a joint embedding space, rather than a statistic computed independently on each distribution.
Q̃ informally refers to a quantity related to Q.

as well as their document frequencies. The paradigm of reference-based measures is useful for
targeted generation tasks such as translation and summarization where matching a set of references is
paramount. It is, however, unsuitable for open-ended generation where there typically are several
plausible continuations for each context and creative generations are desirable.

Statistics-based measures compare the model distribution Q with respect to the human distribution
P on the basis of some statistic T (P ) and T (Q). Property-specific statistics such as the amount of
repetition [26, 59], verifiability [40], or termination [58] are orthogonal to MAUVE, which provides
a summary of the overall gap between P and Q rather than focusing on an individual property.
Another statistic is the generation perplexity [18, 26], which compares the perplexity of the model
text x ⇠ Q with that of human text x0 ⇠ P under an external model R. By virtue of T (·) being
a scalar, generation perplexity cannot trade-off the Type I and Type II errors like MAUVE. In fact,
we show in Appendix A that the generation perplexity can be derived from a single point enclosed
between the divergence curve and the axes.

Language modeling metrics calculate how (un)likely human text x ⇠ P is under the model distribu-
tion Q, for instance, using the probability Q(x). These metrics are related to a single point on the
divergence curve, rather than a full summary. Examples include the perplexity of the test set (which
is a sample from P ) under the model Q and its generalizations to handle sparse distributions [39].
Unlike MAUVE, these metrics never see model text samples x0 ⇠ Q, so they cannot account for how
likely the model text is under the human distribution P . Moreover, they cannot be used for decoding
algorithms such as beam search which do not define a token-level distribution.

Automatic metrics have been proposed for specific domains such as generation of dialogues [55],
stories [21], and others [43]. They capture task-specific properties; see the surveys [8, 48]. In contrast,
MAUVE compares machine and human text in a domain-agnostic manner. Other related work has
proposed metrics that rely on multiple samples for quality-diversity evaluation [7], and Bayesian
approaches to compare the distribution of statistics in machine translation [17].

Non-automatic Metrics. HUSE [24] aims to combine human judgements of Type I errors with
Type II errors measured using perplexity under Q. Due to the costs of human evaluation, we
consider HUSE, as well other metrics requiring human evaluation, such as single-pair evaluation,
as complementary to MAUVE, which is an automatic comparison measure. As a separate technical
caveat, it is unclear how to use HUSE for sparse Q that assigns zero probability to a subset of text,
which is the case with state-of-the-art decoding algorithms [26, 39].

Evaluation of Generative Models. Evaluation of generative models is an active area of research
in computer vision, where generative adversarial networks [20] are commonly used. However,
metrics such as Inception Score [50] are based on large-scale supervised classification tasks, and thus
inappropriate for text generation. The Fréchet Distance [25, 52] and its unbiased counterpart, the
Kernel Inception Distance [5] are both used for evaluating generative models, but unlike MAUVE,
do not take into account a trade-off between different kinds of errors between the learned and a
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Task Domain Model Finetuning Dataset Prompt
Length

Max. Generation
Length

Number of
Generations

Web text GPT-2 (all sizes) Pretrained Webtext 35 tokens 1024 tokens 5000
News Grover (all sizes) Pretrained RealNews varying 1024 tokens 5000
Stories GPT-2 medium Finetuned WritingPrompts 50 tokens 512 tokens 5000

Table 2: Dataset and task summary. Note that 1024 tokens correspond to ⇠ 750 words on average.

reference distribution. Sajjadi et al. [49] and Kynkäänniemi et al. [31] both proposed metrics based
on precision-recall curves. Djolonga et al. [16] proposed information divergence frontiers as a unified
framework emcompassing both these works as special cases. MAUVE extends the above line of work,
and is operationalized for open-ended text generation, applicable for data generated by large-scale
neural language models. Complementary to this work, Liu et al. [33] study the theory of information
divergence frontiers, proving non-asymptotic bounds on the estimation and quantization error.

4 Experiments

We perform three sets of experiments to validate MAUVE. Our first set of experiments (§4.1) examine
how known properties of generated text with respect to generation length, decoding algorithm, and
model size can be identified and quantified by MAUVE. Next, in §4.2 we demonstrate that MAUVE is
robust to various embedding strategies, quantization algorithms, and hyperparameter settings. Finally,
in §4.3 we find that MAUVE correlates with human judgments. The code as well as the scripts to
reproduce the experiments are available online.4

Tasks. We consider open-ended text generation using a text completion task [26, 59] in three
domains: web text, news and stories. Each domain consists of a sequence dataset split into (context,
continuation) pairs. Given a context x1:k, the task is to generate a continuation x̂k+1:T ⇠ Q(· | x1:k),
forming a completion. Each ground-truth completion x1:T is considered a sample from the true
distribution P , while the completion (x1:k, x̂k+1:T ) is considered a sample from Q. The datasets,
context and completion lengths, and number of completions used for each domain are shown in
Table 2.

Models. As the language model P̂ (·), we use GPT-2, a large-scale transformer [56] pretrained on the
web text dataset (see [45]), that is representative of state-of-the-art autoregressive language models.
As the embedding model M(·) we use GPT-2 Large, and compare others in §4.2.

Decoding Algorithms. We consider three common decoding algorithms: ancestral sampling which
samples directly from the language model’s per-step distributions, xt ⇠ P̂ (xt | x1:t), greedy
decoding which selects the most likely next token, xt = argmaxx2V P̂ (x | x1:t), as well as nucleus
sampling [26] which samples from top-p truncated per-step distributions, xt ⇠ P̂nuc,p(xt | x1:t),
which is defined as

P̂nuc,p(xt | x1:t) /
⇢
P̂nuc,p(xt | x1:t), if xt 2 Vp,

0, else.

Here, the top-p vocabulary Vp is the smallest set V such that
P

x2V P̂ (x | x1:t) � p.

We also consider an adversarial sampling procedure, designed to generate low-quality text that
nevertheless matches the perplexity of human text. Adversarial perplexity sampling proceeds in
two phases: (1) we generate the first 15% of tokens in a sequence uniformly at random from the
vocabulary, and (2) we generate the remaining tokens greedily to make the running perplexity of the
generated sequence as close as possible to the perplexity of human text.

4.1 Quantifying Properties of Generated Text

To study MAUVE’s effectiveness as a measure for comparing text distributions, we first examine
how MAUVE quantifies known properties of generated text: a good measure should meet expected
behavior that is known from existing research on each property. Specifically, we investigate how
MAUVE behaves under changes in generation length, decoding algorithm, and model size.

4
https://github.com/krishnap25/mauve-experiments.
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Figure 4: Generation quality versus maximum generation length according to MAUVE and three alternative
measures (web text, GPT-2). MAUVE is the only comparison measure which identifies that generation quality
decreases monotonically with increasing text length. The shaded area shows one standard deviation over
generations from 5 random seeds.

MAUVE quantifies quality differences due to generation length. Although large transformer-
based models can generate remarkably fluent text, it has been observed that the quality of generation
deteriorates with text length: as the generation gets longer, the model starts to wander, switching to
unrelated topics and becoming incoherent [46]. As a result, an effective measure should indicate
lower quality (e.g. lower MAUVE) as generation length increases.

Figure 4 shows MAUVE as the generation length increases, along with three alternative metrics:
generation perplexity, sparsemax score, and Fréchet distance [25, 52]. MAUVE reflects the desired
behavior, showing a decrease in quality (lower MAUVE) as generation length grows, with the trend
consistent across model sizes. The other three metrics, however, show less favorable trends. Fréchet
distance indicates improving quality as the length increases, while generation perplexity shows
non-monotonic quality trends for the small and large models. Finally, language modeling metrics
such as the sparsemax score [39] remain constant, since they do not depend on the samples generated.

MAUVE identifies quality differences between decoding algorithms. Recent work has identified
two clear trends in open-ended text generation with standard autoregressive models: (1) using greedy
decoding results in repetitive, degenerate text [26, 59, 58]; (2) nucleus sampling (and related truncated
sampling methods) yields higher quality text than ancestral sampling [18, 26].5 An effective measure
should thus indicate the quality relationship greedy � ancestral � nucleus.

Table 3 summarizes MAUVE’s quality measures of greedy decoding, ancestral sampling, and nucleus
sampling, along with alternative automated metrics and a human quality score. MAUVE correctly
identifies the expected quality relationship, assigning the lowest quality to greedy decoding (.016)
followed by ancestral sampling (.882), and the highest quality to nucleus sampling (.940). Other
commonly-used metrics fail to identify this relationship: generation perplexity rates the highly
degenerate greedy-decoded text as better than ancestral sampling (11.324 vs. 19.284), while the
language-modeling metrics (SP, JS, "-PPL) rate nucleus-decoded text as equal to or worse than
greedy decoding or ancestral sampling. Further, as we show in Appendix D, MAUVE rightly identifies
degeneracy of beam search, thus quantifying the qualitative observations of Holtzman et al. [26].
Finally, generation perplexity falls victim to the adversarial decoder (Adv.), unlike MAUVE.6

MAUVE quantifies quality differences due to model size. Scaling the model size has been a key
driver of recent advances in NLP, with larger models leading to better language modeling and higher
quality generations in open-ended settings [45, 6]. An effective metric should capture the relationship
between model size and generation quality, which we verify with human quality scores.

Table 4 shows MAUVE’s quality measures as the model size increases, along with alternatives and
human quality scores. MAUVE increases as model size increases, agreeing with the human quality
measure and the expectation that larger models should have higher quality generations. The widely-
used generation perplexity, however, incorrectly rates the large model’s text as the best. Although the
language modeling metrics (SP, JS, and "-PPL) capture the size-quality relationship, they are constant
with respect to length (Figure 4), and did not correctly quantify decoding algorithm quality (Table 3).

5In general this relationship depends on the nucleus hyperparameter p and task. Here, we follow the same
settings as Holtzman et al. [26], and additionally include a human-assessed measure of quality.

6The results are consistent across model sizes and random seeds (see Appendix D).
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Adv. Greedy Sampling Nucleus

Gen. PPL(#) 0.05 11.3 19.3 1.54

Zipf(#) 0.03 0.02 0.02 0.01

Self-BLEU(#) 0.07 0.03 0.02 0.03

SP(") – 0.50 0.69 0.69

JS(#) – 0.35 0.37 0.36

"-PPL(#) – 497 11.4 13.7

MAUVE (") 0.06 0.02 0.88 0.94

Human(") – – 9.0 15.7

Table 3: Generation quality w.r.t different decoding
algorithms (web text, GPT-2 xl) under various met-
rics, and humans. MAUVE correctly captures the re-
lationship greedy � ancestral � nucleus, and rates
the adversarial decoder’s text as low quality. Re-
sults are consistent across model sizes and random
seeds. Boldfaced/highlighted entries denote the best
decoding algorithm under each metric.

Small Medium Large XL

Gen. PPL(#) 11.2 8.5 0.9 1.5

Zipf(#) 0.06 0.00 0.02 0.01

Self-BLEU(#) 0.05 0.02 0.03 0.03

SP(") 0.65 0.67 0.68 0.69

JS(#) 0.41 0.39 0.37 0.36

"-PPL(#) 25.9 18.8 14.9 13.7

MAUVE (") 0.878 0.915 0.936 0.940

Human(") �15.9 �3.4 12.6 15.7

Table 4: Generation quality w.r.t different model
sizes (web text, nucleus sampling) under various met-
rics, as well as human evaluators. MAUVE captures
the relationship between model size and generation
quality, agreeing with human-evaluated quality. Re-
sults are consistent across random seeds and decod-
ing algorithms. Boldfaced/highlighted entries denote
the best model size under each metric.

Table 6 in Appendix D shows additional results with ancestral sampling. In this case, human
evaluators rated generations from the small model as better than those from the medium model.
Interestingly, MAUVE also identified this relationship, agreeing with the human ratings, in contrast to
the other automatic metrics we surveyed.

Summary. MAUVE identifies properties of generated text that a good measure should capture, related
to length, decoding algorithm, and model size. In contrast, commonly used language modeling
and statistical measures did not capture all of these properties. Unlike these alternatives, which
capture a single statistic or relate to a single point on the divergence curve, MAUVE’s summary
measure incorporates type I errors that quantify the degenerate text produced by greedy decoding
(recall Figure 1), while capturing distribution-level information that describes quality changes from
generation length, model size, and the nuanced distinction between ancestral and nucleus sampling.

4.2 Approximations in MAUVE

MAUVE summarizes the divergence between two text distributions with an approximation that relies
on two components: an embedding model M(x) and a quantization algorithm A (§2, Eq. (3)). We
study the effects of these two components.

MAUVE works with alternative embedding models. Figure 5 (left) shows that MAUVE with features
from RoBERTa- large [34] gives qualitatively similar trends across model size and decoding as
MAUVE with features from GPT-2 large. Quantitatively, the Spearman rank correlation between
them across all model and decoders is 0.993. We observe that RoBERTa penalizes smaller models
more than GPT-2 but rates greedy decoding higher. We leave further study of inductive biases in the
different embedding models to future work.

MAUVE is robust to quantization. We compare different three different quantization algorithms:

(a) k-Means: We cluster the hidden representations using k-means, and represent them by their
cluster membership to get a discrete distribution with size equal to the number of clusters.

(b) Deep Residual Mixture Models (DRMM): As a generalization of k-means, we train a deep
generative model known as DRMM [22]. We convert the soft clustering returned by DRMM into
a hard clustering by assigning each point to its most likely cluster, and quantize the data using the
cluster membership. We use DRMM with 3 layers and 10 components per layer for a total of 103
clusters, and train it for 20 epochs.

(c) Lattice Quantization: We learn a 4-dimensional feature representation of the vectors M(x) using
a deep network which maintains the neighborhood structure of the data while encouraging the
features to be uniformly distributed on the unit sphere [47]. We quantize the data on a uniform
lattice into 744 bins.
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Figure 5: Left: MAUVE computed using GPT-2 (default) and RoBERTa [34] embeddings, across model sizes
and decoding algorithms; see Table 12 in the Appendix for further results. The Spearman rank correlation
between the two is 0.993 across model sizes and decoding algorithms. Right: Effect of the scaling constant c on
MAUVE. Choice of c does not affect the relative order of the curves but only the numerical value. We use c = 5
to get interpretable values with both nucleus and greedy decoding.

We compare different choices of the quantization to k-means with k = 500, which is our default. The
Spearman rank correlation between MAUVE computed with k-means for k ranging from 100 to 5000
correlates nearly perfectly with that of k = 500. In particular, the Spearman correlation is exactly
0.99 or 1.00. Likewise, MAUVE computed with DRMM or lattice quantization has a near-perfect
Spearman correlation of at least 0.99 with k-means. While the actual numerical value of MAUVE
could vary with the quantization algorithm, these results show that the rankings induced by various
variants of MAUVE are nearly identical.

Practical recommendation for scaling parameter. Figure 5 (right) shows the effects of adjusting
the scaling parameter c, which does not affect the relative order of the divergence curve, but adjusts
the numerical value returned by MAUVE. As a practical recommendation, we found c = 5 to yield
interpretable values.

4.3 Correlation with Human Judgments

An effective metric should yield judgments that correlate highly with human judgments, assuming
that human evaluators represent a gold-standard.7 We evaluate how MAUVE’s quality judgments
correlate with human quality judgments. In our study, a quality judgment means choosing a particular
(model, decoder) setting based on the resultant generations.

Evaluation Protocol. To obtain human judgments, we employ a pairwise setup: at each round, an
annotator receives a context and continuations from two different (model, decoder) settings, and
selects the continuation they found more natural using a 5-point Likert scale. Our interface for
collecting annotations is shown in Figure 9 of Appendix E, which also includes further details and
additional results.

We collect these annotations for web text generation with 8 different (model, decoder) settings plus
a ninth setting for human-written continuations. Each setting is a GPT-2 model size paired with
either ancestral or nucleus sampling. This gives us a total of 36 pairs of settings. Given the known
difficulties with human evaluation of longer texts [28], we use a maximum completion length of
256 tokens. We obtain 90 preference ratings for each pair of settings, coming from a total of 214
crowd-workers from the Amazon Mechanical Turk platform. The evaluators were paid USD 0.40 per
evaluation based on an estimated wage of USD 16 per hour.

We convert these pairwise preferences to a ranking by fitting a Bradley-Terry model [37], a parametric
model used to predict the outcome of a head-to-head comparison. In particular, we obtain a score wi

for each setting i so that the log odds of humans preferring setting i to setting j in a head-to-head
comparison is given by the difference wi � wj . For a given comparison measure, we compute the
Spearman rank correlation between the comparison measure and the fitted Bradley-Terry coefficients
wi for each of the (model, decoder) settings. The end result is a correlation score in [�1, 1], with
higher values meaning that quality judgments using the comparison measure correlate with quality
judgments made by human evaluators.

7Concurrent work has shown that human evaluation might not always be consistent [10, 29]; however human
judgments continue to be the gold standard for evaluating open-ended text generation.
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Metric Task Gen. PPL Zipf Coef. REP Distinct-4 Self-BLEU MAUVE

Human-like/BT Web text 0.810 0.833 �0.167 0.738 0.595 0.952
Interesting/BT Web text 0.643 0.524 �0.143 0.524 0.405 0.810
Sensible/BT Web text 0.738 0.690 �0.071 0.595 0.524 0.857
% Disc. Acc. News 0.468 0.595 0.792 0.653 0.516 0.956
% Disc. Acc. Stories 0.643 0.643 0.250 0.750 0.857 0.893

Table 5: Correlation of various similarity measures with human judgments when available, and the
accuracy of a trained discriminator otherwise. “BT” denotes the Bradley-Terry score for a pairwise
human evaluation (§ 4.3). Boldfaced/highlighted numbers indicate highest correlation in each row. We
observe that MAUVE has the highest correlation with human evaluation and discriminator accuracy.

MAUVE correlates with human judgments. Table 5 shows the correlation between human judg-
ments and five automatic evaluation metrics obtained using our evaluation protocol on the web text
domain. MAUVE correlates highly with human judgments of how human-like (0.952), interesting
(0.810), and sensible (0.857) the machine text is. MAUVE’s correlations with human judgments are
substantially higher than those for the other automated measures; for instance, the commonly-used
generation perplexity has correlations that are 0.12 to 0.17 lower than MAUVE’s. The results suggest
that MAUVE may act as an effective, automatic surrogate for costly human judgments.

MAUVE correlates with learned discriminators. We also measure the quality of generations by
how well a trained model (a discriminator) can distinguish between real and generated text [35]. We
report the test accuracy of a binary classifier trained to discriminate between machine and human text;
a lower discrimination accuracy implies that the generation is harder to distinguish from human text.
We report the accuracy of Grover mega as the discriminator for the news generations as it produced
the highest discrimination accuracy [61] while we use GPT-2 large for the story domain. As seen in
Table 5, MAUVE correlates the highest with the discrimination accuracy (0.96 for news and 0.89 for
stories) among all comparison measures. Computing the discrimination accuracy for each (model,
decoder) pair requires fine-tuning a separate model, which is particularly expensive for large models
such as Grover-mega. MAUVE, on the other hand, does not require any training.

5 Conclusion

We presented MAUVE, an automatic measure of the gap between neural text and human text for
open-ended text generation. MAUVE measures the area under a divergence curve, formalizing and
summarizing a spectrum of errors that capture phenomena present in machine and human-generated
text. MAUVE correlated with human judgments and identified quality differences due to generation
length, decoding algorithm, and model size, which prior metrics struggle to capture. Automated
metrics have driven advances in computer vision and many other machine learning domains. MAUVE’s
principled foundation and strong empirical performance offers a similar path forward for open-ended
text generation systems. Extensions of MAUVE to closed-ended tasks, such as summarization and
translation, where generations must be compared to a fixed set of gold-standard references, are
promising directions for future work.

Broader Impacts Statement MAUVE rewards model text which resembles human-authored text.
However, we acknowledge the risks of rewarding systems that try to mimic humans [4], which is
the ultimate goal of open-ended text generation. While our research is important for developing
better language generators, we also encourage the community to pay attention to the development of
technology that can reliably distinguish between human and machine text. We leave the extension of
our method towards building such systems to future work.
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