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ABSTRACT

Symbolic regression (SR) is a highly effective approach for discovering math-
ematical expressions directly from data. With the proliferation of various SR
methods, SRBench (La Cava et al., 2021) has made an important contribution
by offering a standardized evaluation framework that includes 130 SR datasets
and assesses 14 SR methods. Nevertheless, the methods incorporated in SRBench
are somewhat outdated, and the benchmark dataset does not encompass results
from more recent approaches, such as SNIP (Meidani et al., 2024). Furthermore,
the evaluation metrics employed in SRBench fail to fully capture the breadth of
symbolic regression capabilities, and the benchmark data itself exhibits scientific
inconsistencies. Although Matsubara et al. (2022) address some of these issues,
their approach remains incomplete. In response, we propose a novel benchmark
consisting of 71 expressions derived from geometric contexts, which are catego-
rized into three difficulty levels: easy, medium, and hard. We conduct an evalua-
tion of 20 SR methods on these expressions, focusing exclusively on the symbolic
regression capabilities of each model. These capabilities are measured in terms
of recovery rates across the different difficulty levels and in aggregate. Our study
provides a comprehensive methodology for reproducing the experiments and in-
cludes results for newly developed SR methods using this updated benchmark.
The findings reveal significant variability in the symbolic regression performance
across the evaluated models.

1 INSTRUCTION

In many aspects of life, various phenomena can be described by mathematical equations, such as
Newton’s Second Law and the law of gravity. Symbolic regression (SR) is a powerful tool for uncov-
ering these underlying relationships. Specifically, SR seeks to discover a mathematical expression
that links input and output data. Unlike traditional machine learning techniques, such as neural net-
works, SR might offers greater interpretability and superior generalization, avoiding the complexity
often associated with opaque models. For instance, the movement function of a pendulum is simpler
and more effective than the matrix values of an MLP. Due to these advantages, symbolic regression
has been applied across diverse fields, including physics (Sun et al., 2021; Udrescu & Tegmark,
2020; Schmidt & Lipson, 2009), network control (Sharan et al., 2022), finance (La Malfa et al.,
2021), and material science (Wang et al., 2019).

However, symbolic regression (SR) poses significant challenges due to its expansive search space.
The inclusion of constants further complicates the task, as they increase the complexity of potential
solutions. In fact, SR has been formally proven to be an NP-complete problem (Virgolin & Pissis,
2022; Song et al., 2024).

As background for some symbolic regression methods, expression trees became a popular approach
for tackling SR tasks. An expression tree consists of internal nodes representing mathematical op-
erators (e.g., +,−,×,÷, log, exp, sin, cos) and leaf nodes that represent constants (e.g., 1, 2) or
variables (e.g., x). By recursively evaluating sub-trees, the expression tree generates a correspond-
ing mathematical expression. The construction of an expression tree typically follows a recursive
method, where operators are added in pre-order traversal until no further additions are possible.
This transforms SR into a sequence generation problem, akin to tasks in natural language process-
ing (NLP).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Symbolic regression involving constants presents a particularly challenging task. Linear methods
often treat constants within equations as parameters in a linear regression framework, allowing them
to be estimated by solving the associated function. For evolution models, models typically sample
random values to substitute for constants in the generated expressions. If an expression yields a
high loss value, the corresponding random constant is discarded, while constants producing lower
losses are retained. In expression tree models, constants are preserved by introducing a constant
token. This allows the model to solve for the constant value during the error calculation phase. At
this stage, the constants are treated as input variables, and the error is treated as the target value.
Optimization algorithms, such as BFGS (Roger Fletcher & Sons, 2013), are commonly employed to
fine-tune the constants and minimize error.

With the development of SR methods came the emergence of benchmarks. Nyugen (Uy et al.,
2011) introduced one of the early symbolic regression benchmarks, comprising 12 short expressions
designed to evaluate SR techniques across a range of simple to moderately complex equations. Sim-
ilarly, Jin (Jin et al., 2019), Neat, and Keijzer (Keijzer, 2003) created their own datasets to test the
symbolic regression abilities of their models. However, the data in these benchmarks have limita-
tions, as they often involve non-elementary functions, such as the expression

∑x1

i=1
1
i . Consequently,

these datasets are sometimes more suited to assessing curve-fitting abilities rather than the capacity
to discover underlying symbolic functions.

As well, some benchmarks have been developed to assess specific aspects of symbolic regres-
sion capabilities. For example, Nyugenc primarily evaluates SR models’ ability to handle con-
stants, as all its equations include constant parameters. The R rationals and R* benchmarks
(McDermott et al., 2012) are designed to test models’ abilities to solve complex fractional equa-
tions, while the Livermore benchmark (Mundhenk et al., 2021b) focuses on equations containing
cos, sin, log, exp, and power functions. However, these benchmarks often lack real-world applica-
bility, as expressions like log(x1 +1)+ log(x2

1 + x1) + log(x1) are primarily suited for testing, not
use in real world . As well, these benchmarks has no uniform metric since some models tests for R2

and the other uses it for symbolic recovery rate.

The introduction of the AIFeynman dataset (Udrescu & Tegmark, 2020) marked a significant step
forward in SR benchmarking. This dataset comprises 100 equations derived from the Feynman
Lectures on Physics (Feynman et al., 2015) with 20 complement as bonus equations and serves as
a robust benchmark for SR tasks. Recently, the SRBench team (La Cava et al., 2021) has com-
bined 118 equations from this dataset with the Strogatz dataset (Strogatz, 2018), which includes
14 equations modeling nonlinear and chaotic dynamical processes, providing a more comprehen-
sive evaluation of SR methods. Additionally, SRBench includes different noise levels ranging from
0.0, 0.1, 0.01, 0.001, to assess the models’ ability to handle noisy data. They also utilize real-world
datasets to assess the machine learning capabilities of symbolic models, which falls outside the scope
of this paper. This benchmark evaluates 14 SR methods as baselines, resolving issues seen in earlier
datasets, such as a focus on equations primarily suited for testing and not for real-world scientific
experiments. It also provides a framework to reproduce results and test new models. However,
SRBench has some limitations, as more than half of the evaluated methods are based on genetic pro-
gramming (GP) approaches, and many are from before 2022. Furthermore, the benchmark includes
some scientifically unrealistic assumptions, and has been criticized for its oversimplified sampling
process and inappropriate formulas (Matsubara et al., 2022).

Subsequently, Matsubara et al. (2022) attempted to address some of the existing issues; however,
their evaluation was restricted to only six methods. This limited selection of baselines may result in
an insufficient comparison, particularly when assessing the performance of new models introduced
into the field.

To address these issues, we propose our geometric dataset. It consists of 2D and 3D geometric
problems, such as calculating the area of a triangle given the lengths of its three sides. These
problems are meaningful in real-world applications and complement existing physical symbolic
regression datasets. We categorize these datasets into three difficulty levels: easy, medium, and
hard. We evaluate our 71 datasets using 20 SR baselines from 8 different approaches. The metrics
of our benchmark are twofold: (1) the symbolic recovery rate across each difficulty level and overall,
and (2) the number of expressions that can be discovered when models are allowed to run for 100
parallels.
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2 DIFFERENT APPROACH OF SYMBOLIC REGRESSION

Linear Methods: The SINDy method (Kaiser et al., 2018) applies the L1 Loss to reduce the number
of active basis functions in a linear regression framework, thereby distilling a simple equation as a
linear combination of candidate terms from a predefined library. Although SINDy is known for
its interpretability and speed, its performance heavily depends on the selection of the predefined
library. If the true solution is not a combination of terms in the library, SINDy is unable to identify
it. Recently, the KAN model (Liu et al., 2024) has emerged using spline methods as an alternative
to improve upon these limitations.

Genetic Programming: The genetic programming method (Schmidt & Lipson, 2009; Augusto &
Barbosa, 2000; Gustafson et al., 2005) represents expressions as trees, which serve as the populations
in the algorithm. Mutation and crossover operations modify the trees by changing sub-trees or
exchanging parts of the tree. The advantage of genetic algorithms in symbolic learning is their
ability to iteratively modify the expression tree via genetic recombination, enabling the model to
explore a wide range of expressions. However, a significant disadvantage is the tendency of genetic
algorithms to overfit; once the algorithm veers toward an incorrect solution, it is often difficult to
recover a correct path to the truth.

Deep Learning Methods: There are two main approaches to using deep learning in symbolic re-
gression. One approach leverages neural networks to identify relationships between variables and
merge them to reduce the search space (Udrescu & Tegmark, 2020; Udrescu et al., 2020). While
this method simplifies the search, it requires large amounts of data and does not always succeed
in fitting the correct equations. The other approach replaces traditional network components (e.g.,
linear layers or activation functions) with symbolic functions and applies L1 loss to reduce active
modules, thus simplifying the output (Martius & Lampert, 2016; Sahoo et al., 2018). This approach
achieves lower MSE, but optimizing the sparse network to precisely recover the correct equation is
extremely challenging.

Deep Reinforcement Learning Methods: The deep reinforcement learning approach (Petersen
et al., 2019) frames symbolic regression as a sequential decision-making problem, where models
take actions at each step (e.g., adding or modifying terms) based on the current state, which is
evaluated using a recurrent neural network (or LSTM). After each generation, the models learn from
the best-generated expressions, guided by a reward function. This method effectively narrows the
search space but can suffer from overfitting and lack of exploration.

Traditional Machine Learning Methods: This approach (Sun et al., 2022; Xu et al., 2024) is
similar to deep reinforcement learning but uses Monte Carlo Tree Search (MCTS) instead of neural
networks to guide the search process. By avoiding the need for neural network training, this method
is faster for smaller problems but struggles with more complex equations.

Transformer-Based Pretrain Methods: Inspired by the GPT models (Radford et al., 2018),
transformer-based symbolic regression models (Kamienny et al., 2022) pretrain on large sets of
artificial expressions and use this pretraining to generate expressions from input data. Subsequently,
genetic programming or reinforcement learning (Holt et al., 2022; Landajuela et al., 2022) is em-
ployed to refine the output of the transformer models. While transformers provide excellent initial
solutions, they may struggle with out-of-distribution data, leading to overfitting or poor performance
on unseen tasks.

Bayesian Methods: Bayesian symbolic regression (Jin et al., 2019; Guimerà et al., 2020) leverages
prior knowledge (e.g., preferences for basis functions, operators, or original features) and produces
symbolic expressions as a linear combination of concise terms, controlled by a prior distribution.
The symbolic regression problem is solved by sampling expression trees from the posterior distri-
bution using a Markov Chain Monte Carlo (MCMC) algorithm. Although this method conserves
memory, it can be computationally expensive and may struggle to produce accurate results due to
the limitations of MCMC sampling.

Brute-Force Search Methods: Given that symbolic regression seeks simple expressions to describe
phenomena, the true expression trees often have limited depth (e.g., maximum 6 layers). This obser-
vation motivates brute-force methods, which enumerate possible expressions layer by layer (Ruan
et al., 2024), as the n + 1-th layer can be constructed by combining elements from the n-th layer.
GPU-based implementations can accelerate this search process, making brute-force methods effec-
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Figure 1: the 2D geometric objects in our dataset including triangles, circles, trapezoids, elliptic,
squares, rectangles, lines and point.

tive for finding simple expressions with few variables, although they struggle with larger and more
complex problems because of GPU’s memory.

3 GEOMETRIC DATASET

3.1 DATASETS

Diving into the details of our geometry dataset, it’s divided into two main sections: 2-D and 3-D
geometry. The first section is a thorough compilation of 2-D geometrical shapes such as triangles,
rectangles, squares, and circles, complete with their corresponding equations. In the second section,
the dataset expands into the realm of 3-D geometry, presenting a wide array of shapes including
vectors, spheres, various solids, and pyramids, each paired with their relevant equations.

2-D part: The dataset begins with various types of triangles. We assess the ability to determine the
perimeter and area of triangles given different sets of known values: three sides (SSS), two sides with
the included angle (SAS), and two angles with the included side (AAS) or the opposite sides (ASA).
These four methods constitute the foundational techniques for establishing triangle congruence and
equality.

For right-angled triangles, the dataset facilitates the calculation of the perimeter and area using the
lengths of the right sides and the hypotenuse, or by employing the length of one right side and the
angle opposite to it.

Incorporated into this dataset are three pivotal laws of trigonometry: the Cosine Theorem (Law of
Cosines), the Pythagorean Theorem, and the Sine Theorem (Law of Sines). Utilization of these the-
orems allows for the resolution of the perimeter and area for a variety of straightforward geometrical
constructs.

Moreover, the dataset tackles more challenging computations such as determining the circumcircle
and incircle radix of a triangle based solely on its three side lengths.

Expanding beyond simple measurements, we also delve into coordinate geometry. The dataset in-
cludes the calculation of the horizontal coordinates for four significant points within a triangle: the
centroid (center of mass), the incenter (intersection of angle bisectors), the circumcenter (intersec-
tion of perpendicular bisectors), and the orthocenter (intersection of altitudes). These calculations
are vital for a deeper understanding of a triangle’s geometric properties and their applications.
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Figure 2: the 3D geometric objects in our dataset including three-dimensional vectors, cylinder,
cones, frustums, sphere, cuboids, cubes, pyramids and tetrahedrons.

Venturing beyond triangular shapes, our collection encompasses trapezoids, specifically focusing on
isosceles trapezoids. By utilizing the dimensions of the upper and lower bases, height, sides, or the
angles adjacent to the base, one can deduce both the perimeter and area of these quadrilaterals.

The dataset also embraces the circular and elliptical geometries. It allows for the calculation of a
circle’s perimeter (or circumference) using its radius, as well as the perimeter and area of a sector by
its central angle and radius. For ellipses, the major and minor axes serve as the basis for determining
the area and locating the focal points.

Additionally, the dataset includes rectangles and squares. Given the lengths of their edges, we can
easily determine their perimeter and area.

Lastly, the dataset serves as a resource for analytical geometry concerning lines and points. It enables
the determination of the horizontal and vertical coordinates where two lines intersect, based on their
slopes and intercepts. It further aids in calculating the slope and intercept of a line passing through
two points, given their horizontal and vertical coordinates. Additionally, it provides the tools to find
the directed distance from a point to a line, integrating the line’s slope and intercept with the point’s
coordinates.

3-D part: For three-dimensional vectors, the dataset includes methods for calculating their magni-
tude, the cosine of the angle between two vectors, their dot product, and the horizontal coordinate of
their cross product. In conjunction with point coordinates, it facilitates the calculation of the directed
distance from a point to a plane, essential for spatial analysis.

In terms of solids, the dataset aids in finding the surface area and volume of cylinders using their
base radius and height. The same parameters are used for cones, with additional calculations for
their surface area and volume. For frustums, the dataset provides a method to determine the surface
area and volume from the radii of the upper and lower bases and the height.

Spherical geometry is also covered, with the dataset enabling the calculation of a sphere’s surface
area from its radius. In the study of cuboids, the dataset allows for the determination of the sum of
edge lengths, surface area, and volume from the lengths of the three edges. Similarly, for cubes, the
side length can be used to find the sum of edge lengths, surface area, and volume.

The dataset also includes calculations for pyramids, using the base area and height to find the vol-
ume. For regular tetrahedrons, the base edge and height, or the base edge and side, provide the
necessary measurements to calculate surface area and volume. In addition, the hardest ones show
that the volume of an arbitrary tetrahedron can be calculated using two equations.

The complete set of symbolic equations can be found in Table 2, Appendix Section A.
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Furthermore, the result from the determinant calculation may lead to misconceptions regarding the
polynomial order within the models. A third-order determinant consists of three positive and three
negative polynomials. The interplay between these positive and negative elements often misleads
the model’s search direction. Therefore, searching ability against bad equations are useful in this
benchmark.

In section 3.3, we mentioned the growing difficulties of geometric equations, this comes the diffi-
culty levels. And difficulty levels are based on baseline results, categorizing equations from simple
polynomials to complex non-linear functions.

• Easy: This category contains the simplest equations, such as the perimeter of a triangle
given the lengths of its three edges (P = a+ b+ c) and the volume of a pyramid given the
base area and height (V = 1

3Sh). In summary, this level comprises combinations of basic
polynomial equations, making them relatively easy to solve. Each equation in this category
can typically be solved within one hour.

• Medium: This category includes equations involving non-linear terms. Examples include
the Pythagorean theorem (c =

√
a2 + b2) and finding the vertical coordinate of the in-

tersection of two lines given their slopes and intercepts (y = k2b1−k1b2
k2−k1

). While these
equations introduce non-linear components, they remain closely related to basic polyno-
mial structures. Solving each equation in this category typically requires approximately
five hours.

• Hard: This category features the most complex equations, such as the vol-
ume of an arbitrary tetrahedron and Heron’s formula for the area of a triangle

based on the lengths of its three sides (S =
√

(a+b+c)(a+b−c)(a+c−b)(b+c−a)
16 =

√
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4/4). These equations are characterized by longer

and deeper mathematical structures, making them significantly more challenging to solve.
Each equation in this category typically requires up to one day to solve.

And our dataset contains two different sizes: 100000 for machine learning models that need to fit
the curve and 500 for others.

3.2 METRICS

We use the symbolic recovery rate as the primary metric for evaluating performance, calculated as
follows:

recovery rate =
count of successful discoveries

count of total roll-outs
(1)

Running detail of this dataset is at section B. The metrics used for evaluating our benchmark are as
follows:

• Overall Recovery Rate: The average recovery rate across all 71 datasets. This metric is
designed to test the symbolic regression ability among all models.

• Categorized Recovery Rate: This metric allows for performance evaluation within spe-
cific difficulty levels (easy, medium, hard). By focusing on one category at a time, models
can demonstrate their stability on easy problems and their capacity for exploration on hard
problems.

• Result-Oriented Recovery Rate: Additional sub-categories can be created based on dif-
ferent dimensions, such as 2D versus 3D problems, the type of object studied (e.g., triangle,
circle, sphere), and the type of result (e.g., perimeter, area, volume). This allows models to
be compared within specific domains and contexts to highlight their performance in partic-
ular scenarios.

• Number of Discovered Equations: Since multiple runs can be performed for each algo-
rithm, we also calculate the number of distinct expressions successfully discovered, where
the recovery rate is greater than 0%. A higher number of discovered expressions reflects
the model’s ability to search effectively across different problem spaces.
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3.3 MAJOR DIFFERENCE BETWEEN OUR DATASET AND SRBENCH

We think we have 5 major different from the SRbench:

• Purpose of the Dataset: Our dataset is designed to identify symbolic equations that are both
simple and explainable to effectively solve problems. We have intentionally composed
this dataset of ground truth equations rather than real-world scenarios that lack verifiable
explanations for their functions. Consequently, traditional metrics like R-squared or other
error measures are not applicable to our goals since they do not align with our focus on
explainability.

• Patterns in Geometric: Unlike the Feynman dataset, which encompasses equations from
diverse regions and subjects, our dataset is specifically focused on geometric data within
a defined area. We concentrate on discovering patterns in geometric properties such as
volume, area, and length. The primary motivation for selecting geometric equations is their
inherent potential to unveil these patterns.

• Structured Learning Progression: The Feynman dataset includes a few sequences that
progress from easy to difficult, such as the series from I.6.20 a to I.6.20 b. Our dataset,
however, clearly illustrates many such progressions: for instance, from Helen’s law to the
calculation of circumcircle or incircle radii, which utilize Helen’s law, or from Pythagoras’
theorem to the cosine law, with the former being a special case of the latter. These process
facilitates a deeper and more sequential learning experience.

• Realistic Constraints in Equations: Our dataset includes equations with generational con-
straints, such as the triangle constraint where the sum of two edges must exceed the third,
and their difference must be less. These constraints make our data more realistic compared
to data from SRbench, which is typically generated from uniform distributions. This ap-
proach ensures that our dataset not only supports the discovery of geometric relationships
but also adheres more closely to real-world scenarios.

• Complex Equations with Few Inputs: Geometry excels at establishing intricate relation-
ships between variables using a minimal number of tokens, as exemplified by Helen’s law.
In symbolic regression, inputs are often chosen or crafted through feature engineering to
reduce their number, but this does not necessarily simplify the underlying relationships
between them. Therefore, having complex equations with few inputs is crucial because it
challenges the models to uncover deep relationships without relying on a large number of
variables.

The results from our benchmark also differ from those of SRBench. Many baselines in SRBench
focus primarily on the R2 score, which may suggest they are better at fitting curves. However,
their capability to accurately recover true symbolic equations is lacking. Moreover, thanks to the
Structured Learning Progression, we are able to categorize these symbolic equations and assess
model performance across different levels of difficulty. Additionally, the patterns in geometry enable
us to evaluate each model’s performance within specific patterns. This understanding allows us to
select better baselines for future problem-solving involving these patterns.

3.4 SYMBOLIC REGRESSION METHODS

We use 20 different symbolic method based on 8 different approach. The correspondence is shown
in the table below Table 1 and all parameter setting is at Table 5 in Appendix Section C:

• Bayesian Machine Scientist (Guimerà et al., 2020): This model determines the posterior
probability of each expression from a corpus of mathematical expressions compiled from
Wikipedia. The MCMC algorithm is then used to sample from the posterior distribution of
expressions, generating new expressions based on these probabilities.

• PSRN (Ruan et al., 2024): A symbolic regression model that utilizes parallelized tree
search (PTS) to discover mathematical expressions from data. PSRN employs GPU-
accelerated parallel evaluation of symbolic expressions and implements efficient subtree
reuse and caching. The model features a unique approach of selecting expressions based
on minimum loss, followed by recursive symbolic backward derivation. Its core parallel
symbolic regression module can integrate with various token generation methods.
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Table 1: Correspondence between symbolic regression methods and approaches. BF stands for
Brute Force Searching, DL denotes Deep Learning methods, DRL stands for Deep Reinforcement
Learning methods, GP refers to Genetic Programming, Pretrain refers to methods using transformer
modules for pretraining, Dimension refers to special methods targeting dimensional constraints and
MCTS refers to machine learning models using the Monte Carlo Tree Search algorithm.

Symbolic Regression Method Category

Bayesian Machine Scientist Bayesian
PSRN BF
EQL DL

AIFeynman DL
NGGP DRL, GP
uDSR DRL, GP, Pretrain
PhySO DRL, GP, Dimension
gplearn GP
DEAP GP
PySR GP, Dimension

SINDy Linear
SymINDy Linear, GP

KAN Linear
SPL MCTS

RSRM MCTS, GP
NeSymReS Pretrain

E2E Pretrain
DGSR Pretrain, GP
TPSR Pretrain, MCTS
SNIP Pretrain

• EQL (Martius & Lampert, 2016; Sahoo et al., 2018): This model uses multiplication units
and nonlinear activation functions (e.g., sine and cosine) in its neural network. Each layer
contains linear mappings and nonlinear transformations, and the network is trained using a
Lasso-like objective function, combining L2 loss and L1 regularization.

• AIFeynman (Udrescu & Tegmark, 2020; Udrescu et al., 2020): This model employs a neu-
ral network to fit the data, then uses the network to identify relationships between variables,
such as symmetry. After this, AiFeynman runs a brute-force search based on the extracted
knowledge.

• NGGP (Mundhenk et al., 2021a): An upgraded version of DSR (Petersen et al., 2019),
NGGP uses an RNN-based model through deep reinforcement learning to learn the dis-
tribution of expressions. It then fine-tunes these expressions using GP methods, focusing
only on those that have been improved through fine-tuning.

• uDSR (Landajuela et al., 2022): An upgraded version of NGGP (Mundhenk et al., 2021a),
this model incorporates the AiFeynman module to reduce the number of variables. It also
introduces a linear token for generating polynomials and utilizes large-scale pretraining.

• PhySO (Tenachi et al., 2023): This model applies dimensional constraints to the NGGP
(Mundhenk et al., 2021a) module. If a generated token violates dimensional constraints
(e.g., summing variables with different dimensions), the generation probability is set to
zero.

• PySR (Cranmer, 2023): Considered one of the best GP models, PySR optimizes hyperpa-
rameters algorithmically and supports dimensional constraints. When an expression vio-
lates dimensional constraints, its fitness is significantly penalized.

• gplearn (Stephens, 2016): This model retains the familiar scikit-learn fit/predict API, al-
lowing it to work seamlessly with existing scikit-learn pipelines and grid search modules.

• DEAP (Fortin et al., 2012): A novel evolutionary computation framework designed for
rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data struc-
tures transparent. Many models using GP (Mundhenk et al., 2021a; Holt et al., 2022; Xu
et al., 2024) rely on DEAP as their foundation.
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• SINDy (Kaheman et al., 2020): The original SINDy model uses sparse regression tech-
niques, such as LASSO, to obtain expressions from linear combinations of functions in a
predefined library of candidate functions.

• SymINDy (Kitaitsev & Manzi, 2022): This model uses GP to generate libraries of candi-
date functions and integrates them with the SINDy method. The fitness value is positively
correlated with the error produced by SINDy.

• KAN (Liu et al., 2024): In KAN, traditional weight parameters at the network’s edges
are replaced by univariate function parameters. Each node aggregates the outputs of these
functions without any nonlinear transformations, relying on spline methods to replace tra-
ditional weight parameters.

• SPL (Sun et al., 2022): This model contains many predefined simple expressions as mod-
ules and uses the MCTS method to combine these modules into full expressions. After
each roll-out, the best result is used as one of the modules for future iterations.

• RSRM (Xu et al., 2024): This model combines MCTS and GP to generate functions. It
employs double Q-learning to initialize probabilities in the MCTS module, enabling the
model to learn from previous roll-outs. The model also uses spline fitting to determine
whether functions are odd or even and includes an MSDB block to extract useful modules
from the best expressions for use in subsequent roll-outs.

• NeSymReS (Biggio et al., 2021): This model uses a pre-trained Transformer during the
pre-training phase, trained on hundreds of millions of equations specifically generated for
each batch. In the test step, an encoder encodes input expressions into latent vectors, from
which the decoder iteratively samples candidate skeletons for the symbolic equation. For
each candidate, numerical constants are fitted by treating them as independent parameters.

• E2E (Kamienny et al., 2022): This model trains a Transformer on a synthetic dataset
to perform end-to-end (E2E) symbolic regression, directly predicting solutions without
relying on skeletons. The predicted constants are refined using the BFGS algorithm
(Roger Fletcher & Sons, 2013) as an informed starting point. Additionally, generative
and inference techniques are introduced to allow the model to scale to larger problems.

• DGSR (Holt et al., 2022): This model trains a Transformer on a synthetic dataset, out-
putting expressions end-to-end, which are then refined using a GP module. The framework
can perform symbolic regression on a large number of input variables while reducing com-
putational cost during inference, as it encodes the data itself rather than the entire symbolic
expression tree. This is achieved by learning representations of equations that capture in-
variant structures across different equations.

• TPSR (Shojaee et al., 2023): TPSR utilizes a forward planning algorithm that incorpo-
rates Monte Carlo Tree Search (MCTS) as a decoding strategy on top of a pre-trained
Transformer-based SR model. This guides the generation of equation sequences. TPSR re-
duces overall inference time by incorporating feedback during the generation process and
using an efficient caching mechanism.

• SNIP (Meidani et al., 2024): SNIP (Symbolic-Numeric Integrated Pre-training) bridges
symbolic mathematical expressions and their corresponding numeric representations. The
model employs dual Transformer encoders: one dedicated to learning symbolic represen-
tations and the other for numeric representations. Task-independent comparison targets
enhance the similarity between the two representations. The multimodal pretraining of
SNIP enables cross-modal understanding and generation of content.

4 RESULTS

We present two primary results derived from the measured datasets in Figure 3. Further details and
additional results can be found in Appendix Section D Figure 4.

In the left panel, it is observed that the top five models in terms of recovery rate are RSRM (Xu
et al., 2024), PSRN (Ruan et al., 2024), NGGP (Mundhenk et al., 2021a), PySR (Cranmer, 2023),
and Bayesian Machine Scientist (Guimerà et al., 2020). Notably, methods based on deep learning
and transformer-based pretraining tend to perform below these models.
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Figure 3: Results on the geometric dataset: the left panel illustrates the average recovery rate across
all 71 equations, while the right panel displays the number of equations successfully discovered
by the models. BMS, AIF and NGNS refer to the Bayesian Machine Scientist, AIFeynman and
NeSymReS, respectively.

A comparison within the same methodological class reveals consistent improvements in perfor-
mance over time. However, in the case of transformer-based pretraining methods, newer models
such as SNIP (Meidani et al., 2024) demonstrate weaker performance compared to earlier models
like End2End Transformers (Kamienny et al., 2022). This discrepancy could be attributed to a focus
on optimizing the R2 score, potentially at the expense of true symbolic regression capabilities.

In the genetic programming domain, PySR (Cranmer, 2023) significantly outperforms other models
such as DEAP (Fortin et al., 2012) and gplearn (Stephens, 2016). While hyperparameter tuning may
contribute to this performance difference, dimensional analysis also plays a crucial role. Specifically,
PySR applies penalties to expressions that violate dimensional consistency, which improves the
model’s robustness. In contrast, PhySO (Tenachi et al., 2023) performs less effectively, ranking
lower than both NGGP (Mundhenk et al., 2021a) and uDSR (Landajuela et al., 2022). PhySO’s strict
adherence to dimensional consistency dramatically reduces its search space, potentially leading to
overfitting early in the training process.

The right panel of Figure 3 mirrors the trends observed in the left panel. While some models exhibit
low recovery rates, they still manage to discover a significant number of equations, as exemplified
by gplearn (Stephens, 2016).

5 CONCLUSION

In conclusion, we introduce a novel symbolic regression dataset, comprising a refined version of
the SRBench dataset. We evaluate the performance of 20 different models across 8 methodological
categories. Our analysis indicates that Monte Carlo Tree Search (MCTS) methods are particularly
well-suited to this task, due to their broad search capabilities. Parallel search algorithms and deep
reinforcement learning methods also demonstrate strong performance.

Furthermore, we highlight that an exclusive focus on optimizing the R2 score can result in dimin-
ished symbolic recovery rates. As future work, we aim to identify additional symbolic equations for
benchmarking and investigate optimal approaches for selecting equations under noisy conditions.
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A DATASET DETAILS

This section provides a detailed description of the geometric dataset. The complete dataset is pre-
sented in Tables 2, 3, and 4. The dataset comprises 8 parts: Dataset name, Equation, Category, Input
data label, Input dimension, Output data label, Output dimension and Limitations. And our dataset
contains two different sizes: 500 for normal model and 100000 for machine learning models that
need to fit the curve.

• Dataset Name: This part specifies the name or identifier of the dataset, providing a clear
reference for the specific set of geometric data being described according to the type of
geometric shapes or phenomena it covers.

• Category: This section categorizes the dataset’s difficulties. Easy polynomial expressions
are classified to easy and complex polynomial with few non-linear tokens are classified to
medium and other hard equations are classified to hard.

• Equation: This section lists the mathematical equations associated with the geometric
shapes or phenomena covered in the dataset. These equations are used to compute vari-
ous properties, such as volume, area, or perimeter, based on the input data.

• Input Data Label: This part describes the labels or names of the input variables. These
labels indicate what each input represents, such as the length of an edge, the height, or the
angles between edges in geometric shapes.

• Input Dimension: This section provides the dimensionality of the input data. It specifies the
number of input variables or parameters required for the equations. For instance, a triangle
might require two side lengths with m dim and an angle between them with rad dim.

• Output Data Label: This part describes the labels or names of the output variables. These
labels indicate the properties being calculated, such as area, volume, or perimeter.

• Output Dimension: This section provides the dimensionality of the output data. It specifies
the results generated by the equations. For instance, calculating the area of a rectangle
results in output dimensions of m2.

• Limitations: This part outlines any constraints or limitations associated with the dataset or
the equations. These might include restrictions on the values of input parameters or specific
conditions under which the equations are valid like the sum of two edges can not be larger
than the other one in triangles.

The generation process follows this logic: values are randomly generated, with angles sampled
uniformly from the interval [0, π], and other values sampled uniformly from the range [1, 5]. The
generated values are then evaluated against predefined constraints (Limitation from dataset). If any
of these constraints are violated, new values are generated, and this process continues until the
dataset size reaches either 500 or 100,000, depending on the specified target.
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Table 2: 1 part/3 part of geometric dataset.

Dataset name category Equation

triangle-1 easy x1 + x2 + x3

triangle-2 hard
√

−x4
1 + 2x2

1x
2
2 + 2x2

1x
2
3 − x4

2 + 2x2
2x

2
3 − x4

3/4

triangle-3 hard x1 + x2 +
√

x2
1 − 2x1x2 cos(x3) + x2

2
triangle-4 medium (x1x2 sin(x3))/2
triangle-5 hard x1 sin(x2)/ sin(x2 + x3) + x1 sin(x3)/ sin(x2 + x3) + x1

triangle-6 hard x2
1 sin(x2) sin(x3)/(2 sin(x2 + x3))

triangle-7 medium x1 + x1 sin(x3)/ sin(x2) + x1 sin(x2 + x3)/ sin(x2)

triangle-8 medium x2
1 sin(x3) sin(x2 + x3)/(2 sin(x2))

triangle-9 medium x1 + x2 +
√

( − x2
1 + x2

2)

triangle-10 medium
√

−x4
1 + x2

1x
2
2/2

triangle-11 medium x1 + x1 tan(x2) + x1/ cos(x2)

triangle-12 medium x2
1 tan(x2)/2

triangle-13 medium x1 sin(x3)/ sin(x2)

triangle-14 hard
√

x2
1 − 2x1x2 cos(x3) + x2

2

triangle-15 medium
√

x2
1 + x2

2

triangle-16 hard (x1x2x3)/
√

−x4
1 + 2x2

1x
2
2 + 2x2

1x
2
3 − x4

2 + 2x2
2x

2
3 − x4

3

triangle-17 hard
√

−x4
1 + 2x2

1x
2
2 + 2x2

1x
2
3 − x4

2 + 2x2
2x

2
3 − x4

3/(2x1 + 2x2 + 2x3)

triangle-18 easy (x1 + x3 + x5)/2

triangle-19 hard (x1

√
x2
3 + x2

4 + x3

√
(x1 − x3)2 + (x2 − x4)2)/(

√
x2
1 + x2

2 +
√

x2
3 + x2

4 +
√

(x1 − x3)2 + (x2 − x4)2)

triangle-20 hard (x2
1x4 + x2

2x4 − x2x
2
3 − x2x

2
4)/(2(x1x4 − x2x3))

triangle-21 hard (−x1x2x3 + x1x3x4 − x2
2x4 + x2x

2
4)/(x1x4 − x2x3)

circle-1 easy 2πx1

circle-2 easy πx2
1

circle-3 easy πx1x2

circle-4 medium
√

x2
1 − x2

2

circle-5 easy (x2 + 2)x1

circle-6 easy x2x
2
1/2

trapezoid-1 hard x1 + x2 +
√

x2
1 − 2x1x2 + x2

2 + 4x2
3

trapezoid-2 easy x1x3/2 + x2x3/2
trapezoid-3 easy x1 + x2 + 2x3

trapezoid-4 hard (x1 + x2)
√

−x2
1 + 2x1x2 − x2

2 + 4x2
3/4

trapezoid-5 medium x1 − 2x1/ cos(x3) + x2 + 2x2/ cos(x3)

trapezoid-6 medium −x2
1 tan(x3)/4 + x2

2 tan(x3)/4
rectangle-1 easy 2x1 + 2x2
rectangle-2 easy x1x2
rectangle-3 easy 4x1

rectangle-4 easy x2
1

rectangle-5 easy 2x1 + 2x2
rectangle-6 medium x1x2 sin(x3)

line-1 medium (x2 − x4)/(x3 − x1)
line-2 medium (x3x2 − x1x4)/(x3 − x1)
line-3 medium (x1 − x3)/(1 − x1x3)
line-4 medium (x3 − x1)/(x4 − x2)
line-5 medium (x4x1 − x2x3)/(x1 − x3)

line-6 hard (x2 − x3x1 − x4)/
√

x2
3 + 1

vector3d-1 medium
√

x2
1 + x2

2 + x2
3

vector3d-2 hard (x1x2 + x3x4 + x5x6)/
√

(x2
1 + x2

3 + x2
5)(x

2
2 + x2

4 + x2
6)

vector3d-3 medium x1x2 + x3x4 + x5x6
vector3d-4 easy x3x6 − x4x5

vector3d-5 hard (x1x4 + x2x5 + x3x6)/
√

x2
4 + x2

5 + x2
6

sphere-1 easy πx2
1 + 2πx1x2

sphere-2 easy πx2
1x2

sphere-3 hard πx2
1 + 2πx1

√
x2
1 + x2

2

sphere-4 easy π/3x2
1x2

sphere-5 hard π(x2
1 + x2

2 +
√

x2
3 + (x2 − x1)2)(x1 + x2)

sphere-6 medium π(x2
1 + x1x2 + x2

1)x3

sphere-7 easy 4π/3x3
1

sphere-8 easy 4πx2
1

cuboid-1 easy 4x1 + 4x2 + 4x3
cuboid-2 easy 2x1x2 + 2x1x3 + 2x2x3
cuboid-3 easy x1x2x3
cuboid-4 easy 12x1

cuboid-5 easy 6x2
1

cuboid-6 easy x3
1

regular-tetrahedron-1 medium x1

√
4x2

2 + x2
1 + x2

1

regular-tetrahedron-2 medium 1/3x2
1

√
x2
2 − 1

2
x2
1

regular-tetrahedron-3 easy 1/3x2
1x2

tetrahedron-1 hard 1/12x4

√
−x4

1 + 2x2
1x

2
2 + 2x2

1x
2
3 − x4

2 + 2x2
2x

2
3 − x4

3
tetrahedron-2 easy x1x2/3

tetrahedron-3 hard 1/6x1x2x3

√
sin(x4)2 + sin(x5)2 + sin(x6)2 + 2 cos(x4) cos(x5) cos(x6) − 2

tetrahedron-4 hard 1/3
√

(−x2
1/2 + x2

2/2 + x2
3/2)(x

2
1/2 − x2

2/2 + x2
3/2)(x

2
1/2 + x2

2/2 − x2
3/2)
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Table 3: 2 part/3 part of geometric dataset.

Dataset name Input data label Input dimensions

triangle-1 Triangle three sides m m m
triangle-2 Triangle three sides m m m
triangle-3 Triangle two sides and the included angle m m r
triangle-4 Triangle two sides and the included angle m m r
triangle-5 Triangle two angles and the included side m r r
triangle-6 Triangle two angles and the included side m r r
triangle-7 Triangle two angles and the opposite sides m r r
triangle-8 Triangle two angles and the opposite sides m r r
triangle-9 Right-angled triangle right sides and hypotenuse m m

triangle-10 Right-angled triangle right sides and hypotenuse m m
triangle-11 Right-angled triangle right side and opposite angle m r
triangle-12 Right-angled triangle right side and opposite angle m r
triangle-13 Triangle two angles and the opposite sides m r r
triangle-14 Triangle two sides and the included angle m m r
triangle-15 Right-angled triangle two right sides m m
triangle-16 Triangle three sides m m m
triangle-17 Triangle three sides m m m
triangle-18 Triangle three points’ coordinates m m m m m m
triangle-19 Triangle two points’ coordinates m m m m
triangle-20 Triangle two points’ coordinates m m m m
triangle-21 Triangle two points’ coordinates m m m m

circle-1 Circle radius m
circle-2 Circle radius m
circle-3 Ellipse major and minor axis m m
circle-4 Ellipse major and minor axis m m
circle-5 Sector radius and angle m r
circle-6 Sector radius and angle m r

trapezoid-1 Isosceles trapezoid upper base lower base and height m m m
trapezoid-2 Isosceles trapezoid upper base lower base and height m m m
trapezoid-3 Isosceles trapezoid upper base lower base and side m m m
trapezoid-4 Isosceles trapezoid upper base lower base and side m m m
trapezoid-5 Isosceles trapezoid upper base lower base and side angle m m r
trapezoid-6 Isosceles trapezoid upper base lower base and side angle m m r
rectangle-1 Rectangle two sides m m
rectangle-2 Rectangle two sides m m
rectangle-3 Square side length m
rectangle-4 Square side length m
rectangle-5 Parallelogram two sides and included angle m m r
rectangle-6 Parallelogram two sides and included angle m m r

line-1 Two lines slope and intercept 1 m 1 m
line-2 Two lines slope and intercept 1 m 1 m
line-3 Two lines slope and intercept 1 m 1 m
line-4 Two points horizontal and vertical coordinates m m m m
line-5 Two points horizontal and vertical coordinates m m m m
line-6 Point horizontal and vertical coordinate and Line slope and intercept m m 1 m

vector3d-1 Three-dimensional vector m m m
vector3d-2 Two three-dimensional vectors m m m m m m
vector3d-3 Two three-dimensional vectors m m m m m m
vector3d-4 Two three-dimensional vectors m m m m m m
vector3d-5 Three-dimensional vector and point coordinates m m m 1 1 1
sphere-1 Cylinder base radius and height m m
sphere-2 Cylinder base radius and height m m
sphere-3 Cone base radius and height m m
sphere-4 Cone base radius and height m m
sphere-5 Frustum upper and lower base radius and height m m m
sphere-6 Frustum upper and lower base radius and height m m m
sphere-7 Sphere radius m
sphere-8 Sphere radius m
cuboid-1 Cuboid three edge lengths m m m
cuboid-2 Cuboid three edge lengths m m m
cuboid-3 Cuboid three edge lengths m m m
cuboid-4 Cube side length m
cuboid-5 Cube side length m
cuboid-6 Cube side length m

regular tetrahedron-1 Regular tetrahedron base edge and height m m
regular tetrahedron-2 Regular tetrahedron base edge and side m m
regular tetrahedron-3 Regular tetrahedron base edge and height m m

tetrahedron-1 tetrahedron three edges and height m m m m
tetrahedron-2 tetrahedron base area and height m2 m
tetrahedron-3 tetrahedron three edges and three angles from one point m m m r r r
tetrahedron-4 isohedral tetrahedron 3 edges m m m
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Table 4: 3 part/3 part of geometric dataset.

Dataset name Output data label Output dimension Limitations

triangle-1 Perimeter m x1 + x2 > x3, x1 + x3 > x2, x2 + x3 > x1

triangle-2 Area m2 x1 + x2 > x3, x1 + x3 > x2, x2 + x3 > x1
triangle-3 Perimeter m
triangle-4 Area m2

triangle-5 Perimeter m x2 + x3 < π

triangle-6 Area m2 x2 + x3 < π
triangle-7 Perimeter m x2 + x3 < π

triangle-8 Area m2 x2 + x3 < π
triangle-9 Perimeter m x1 < x2

triangle-10 Area m2 x1 < x2
triangle-11 Perimeter m x2 < π/2

triangle-12 Area m2 x2 < π/2
triangle-13 Another side m x2 + x3 < π
triangle-14 Another side m
triangle-15 Hypotenuse m
triangle-16 Circumcircle radius m x1 + x2 > x3, x1 + x3 > x2, x2 + x3 > x1
triangle-17 Incircle radius m x1 + x2 > x3, x1 + x3 > x2, x2 + x3 > x1
triangle-18 Centroid horizontal coordinate m
triangle-19 incenter horizontal coordinate m
triangle-20 circumcenter horizontal coordinate m
triangle-21 orthocenter horizontal coordinate m

circle-1 Perimeter m
circle-2 Area m2

circle-3 Area m2 x1 > x2
circle-4 Focal point m x1 > x2
circle-5 Perimeter m
circle-6 Area m

trapezoid-1 Perimeter m
trapezoid-2 Area m2

trapezoid-3 Perimeter m x3 > (x1 − x2)/2, x3 > (x2 − x1)/2

trapezoid-4 Area m2 x3 > (x1 − x2)/2, x3 > (x2 − x1)/2
trapezoid-5 Perimeter m x1 < x2, x3 < π/2

trapezoid-6 Area m2 x1 < x2, x3 < π/2
rectangle-1 Perimeter m
rectangle-2 Area m2

rectangle-3 Perimeter m
rectangle-4 Area m2

rectangle-5 Perimeter m
rectangle-6 Area m2

line-1 Intersection horizontal coordinate m
line-2 Intersection vertical coordinate m
line-3 Angle tangent value 1
line-4 Slope of the line through two points 1
line-5 Intercept of the line through two points m
line-6 Point to line distance (directed) m

vector3d-1 Magnitude m
vector3d-2 Cosine value of the angle m
vector3d-3 Dot product m
vector3d-4 Cross product horizontal coordinate m
vector3d-5 Point to plane distance (directed) m
sphere-1 Surface Area m2

sphere-2 Volume m3

sphere-3 Surface Area m2

sphere-4 Volume m3

sphere-5 Surface Area m2

sphere-6 Volume m3

sphere-7 Surface Area m3

sphere-8 Surface Area m2

cuboid-1 Sum of edge lengths m
cuboid-2 Surface Area m2

cuboid-3 Volume m3

cuboid-4 Sum of edge lengths m
cuboid-5 Surface Area m2

cuboid-6 Volume m3

regular tetrahedron-1 Surface Area m2

regular tetrahedron-2 Volume m3 x2
2 > 1

2
x2
1

regular tetrahedron-3 Volume m3

tetrahedron-1 Volume m3 x1 + x2 > x3, x1 + x3 > x2, x2 + x3 > x1

tetrahedron-2 Volume m3

tetrahedron-3 Volume m3 x4 + x5 + x6 < π

tetrahedron-4 Volume m3 x1 + x2 > x3, x1 + x3 > x2, x2 + x3 > x1
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B SYMBOLIC EQUIVALENT ALGORITHMS

The method for distinguishing a successful discovery is outlined in Algorithm 1. We choose sympy
(Meurer et al., 2017) to simplify the expression and human justify. We conduct 100 independent
runs with different random seeds, and the time limits for the easy, medium, and hard problems are
set to 1 hour, 5 hours, and 24 hours, respectively. Additionally, the hardware constraints include 10
CPU cores and one A100 GPU.

We create a new algorithm to fix the wrong judgment of symbolic equations in SRbench (La Cava
et al., 2021), since they consider m0 ∗ v/sqrt(1 − v ∗ ∗2/c ∗ ∗2) and m0 ∗ ∗1.5 ∗ v/(m0 ∗ (−v ∗
∗2/c∗∗2+1.0))∗∗0.5 are different equations and they might ignore equations symbolic error more
than 10−3.

Algorithm 1 Algorithm for Discriminating the Correct Expression
Input: dataset Sdata = (X, y), ground truth expression F , input expression Fi, simplify function.
Output: Boolean value representing whether the input expression is correct.
Fi(X) → ŷ ▷ Evaluate the input expression Fi on X to obtain ŷ
||y − ŷ|| → err ▷ Compute error between predicted and actual values
if err ≥ 10−5 then

return false ▷ Return false if error exceeds threshold
end if
simplify(Fi) → Fi ▷ Simplify the input expression
Fi −F → G ▷ Compute the difference functions between input and ground truth expressions
simplify(G) → G ▷ remove redundant sub-expressions
replace constants below 10−5 in G with 0
if G is empty then

return true ▷ Return true if the expressions are equivalent
end if
G(X) → ẑ ▷ Evaluate G on X to obtain ẑ
||ẑ|| → err ▷ Compute error for the difference expression
if err ≥ 10−20 then

return human justify(G) ▷ If error is still significant, defer to human justification
end if
return true ▷ Return true if the difference is negligible
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C MODEL DETAILS

In this section, we give hyper-parameters of all 20 models at Table 5. The other parameters not
mentioned in table is set as default value. In most models (transformer models might be better with
their pre-training stage tokens.), the token set is +,−,×,÷ and cos, sin,

√
. and X, const.

Table 5: Hyper-parameter setting of all 20 models.

Model Hyper-parameters

Bayesian Machine Scientist { Drtarget: 60, nsample: 1000, anneal: 20,
burnin: 5000, annealf: 6 }

PSRN { trying const num: 2,trying const range: [0,4],
trying const n try:3 }

EQL { l0 reg: 0.0001, iterations: 10 }

AIFeynman { BF try time: 60, BF ops file type: ”14ops”,
polyfit deg: 3, NN epochs: 1000 }

NGGP
{ gp population size: 500, generations: 20, p crossover: 0.5,

p mutate: 0.5, tournament size: 5, train n: 50,
mutate tree max: 3, n samples: 200000, batch size: 500 }

uDSR

{ function set: [add, sub, mul, div, sin, cos, sqrt, const, poly],
poly degree: 3, gp population size: 500, generations: 20,

p crossover: 0.5, p mutate: 0.5, tournament size: 5,
train n: 50, mutate tree max: 3, n samples: 200000,

batch size: 500 }

PhySO

{ fixed consts: [1, pi], fixed consts units: [[0], [0]],
free consts names: [], free consts units : [],

op names: [mul, add, sub, div, inv, n2, sqrt, neg, sin, cos],
run config: config2.config2 }

gplearn
{ population size: 1000, generations: 20,

p crossover: 0.7 ,max samples: 0.9,
parsimony coefficient: 0.01 }

DEAP { const range: (0,4), generations: 400,
p crossover: 0.3, p mutate: 300}

PySR { niterations: 200, weight optimize: 0.001,
adaptive parsimony scaling: 1000, parsimony: 0.0 }

SINDy { library: GeneralizedLibrary([PolynomialLibrary, FourierLibrary])
degree: [2,3,4,5]}

SymINDy { sparsity coef: 0.01, library name: ”generalized”,
ngen: 20 }

KAN { width: [num of inputs,2,1], grid: 3, k: 3 }
SPL { transplant step: 10000 }

RSRM

{ tournsize: 10, max height: 10, max const: 6, cxpb: 0.1,
mutpb: 0.5, pops: 500, times: 30, hof size: 20, token discount: 0.99,

max expr num: 20, expr ratio: 0.1, token ratio”: 0.5,
form type: [Add] }

NeSymReS { config file: ”100M/eq setting.json” }

E2E
{ beam size: 10, n trees to refine: 10

max input points: 200, eval input length modulo 50,
prediction sigmas: 1,2,4,8,16 }

DGSR
{ training equations: 200000, training epochs: 20,

batch outer datasets: 24, batch inner equations: 100,
other setting file: ”config.yaml” }

TPSR
{ lam: 0.1, horizon: 200 width: 5

num beams: 2, rollout: 5
max input points :200, max number bags :10 }

SNIP { max input points: 200, lso optimizer: gwo, lso pop size: 50,
lso max iteration: 10, lso stop r2: 0.999, beam size: 2 }
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Figure 4: extra result within three different category.

D EXTRA RESULT

In this section, we present additional results from the geometric dataset. As shown in Figure 4, the
performance of many models across the three difficulty levels—easy, medium, and hard—appears
consistent. The strong symbolic regression capabilities demonstrated by models such as RSRM
and PSRN can be attributed to their proficiency in handling medium and hard-level expressions.
RSRM utilizes MSDB, a mechanism for storing previously encountered failure cases, while PSRN
systematically explores a vast array of potential equations. This figure illustrates that both strategies
are effective in improving symbolic regression performance.

Additionally, Bayesian models, such as the Bayesian Machine Scientist, achieve a 100% success
rate in the easy category, highlighting their stability and reliability in simpler tasks.

E FULL RECOVERY SCORE OF EACH MODEL

In this section, we provide the recovery rate within each method and each model in Table 6.
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Table 6: The recovery rate within each method and each model. BMS, AIF and NGNS refer to the
Bayesian Machine Scientist, AIFeynman and NeSymReS, respectively.

Dataset name PSRN PySR NGGP uDSR RSRM KAN BMS phySO SymINDy gplearn DEAP EQL SINDy SPL E2E TPSR AIF SNIP DGSR NSRS

triangle-1 1 1 1 1 1 1 1 1 1 1 0.95 0.5 1 1 1 1 1 1 1 1
triangle-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-3 0 0 0 0 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-4 1 1 1 0.2 1 0 0.95 0 1 0.1 0.21 0 0 0.43 0 0 1 0 0.93 0
triangle-5 0.12 0 0 0 0.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0
triangle-6 1 0 0.07 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-7 0.07 0.78 0.21 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.65 0
triangle-8 1 0.12 0.18 0 1 0 0 0 0 0 0.02 0 0 0 0 0 0 0 0.03 0
triangle-9 0.67 0.27 1 0.04 0.71 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0

triangle-10 1 1 1 0.22 1 0 0.56 0 0 0 0 0 0 0 0 0 0.73 0 0 0
triangle-11 1 0.93 0.99 0.01 0.66 0 0.71 0 0 0.01 0 0 0 0 0 0 0 0 1 0
triangle-12 1 0.12 0.95 0 1 0 1 0 0 0.01 0.02 0 0 0 0 0 0 0 1 0
triangle-13 1 0.78 0.97 0.02 1 0 0.75 0.06 0.1 0.2 0.29 0 0 0 0 0 0 0 1 0
triangle-14 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-15 1 0.83 1 1 1 0 0.95 0.71 0 0.07 0 0 0 1 0 0 1 0 0 0
triangle-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-18 0.69 0.98 1 1 1 1 1 0 0.45 0 0 0.05 1 0 0.21 0 0 0 0.03 0
triangle-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

circle-1 1 1 1 1 1 0 1 0.93 0 0 0.15 0 0 1 0.77 1 1 1 0 1
circle-2 1 1 1 1 1 0 1 1 0 0 0.06 0 0 1 0.95 0.73 1 1 0 0.34
circle-3 1 1 1 1 1 0 1 1 0 0 0.02 0 0 1 1 0.87 1 0 0 0.12
circle-4 1 1 1 1 0.76 0 0.71 0.15 0 0.13 0.07 0 0 0.9 0 0 1 0 0 0
circle-5 1 1 1 1 1 0 1 0.92 1 0.89 0.85 0 1 0.1 0.99 0.53 1 0 1 0
circle-6 1 1 1 0.94 1 0 1 0.17 1 0.02 0.57 0 0 0 0.17 0.53 1 0 1 0

trapezoid-1 0 0 0.26 0.03 0.79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
trapezoid-2 1 1 1 1 1 0 1 0 1 0 0.13 0 1 0 1 0.27 1 0 0.73 0
trapezoid-3 1 1 1 1 1 0 1 1 1 0.96 0.87 0 1 1 0.82 0.67 1 0.17 1 0
trapezoid-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
trapezoid-5 1 0 0.31 0 1 0 0 0 0 0 0.09 0 0 0 0 0 0 0 0.45 0
trapezoid-6 1 0 0.24 0 1 0 0.22 0 0 0 0 0 0 0 0 0 0 0 0 0
rectangle-1 1 1 1 1 1 1 1 0.9 1 0.95 0.94 0.12 1 1 0.61 0.4 1 0.17 1 1
rectangle-2 1 1 1 1 1 0 1 1 1 0.98 0.96 0 1 1 0.99 0.87 1 0 1 1
rectangle-3 1 1 1 1 1 0 1 0.8 1 0.76 0.98 0 1 1 0.86 0.8 1 0.75 1 1
rectangle-4 1 1 1 1 1 0 1 1 1 0.98 1 0 1 1 0.71 1 1 0.4 1 1
rectangle-5 1 1 1 1 1 0 1 1 1 0.93 0.96 0 1 1 0.12 0 1 0.5 1 0.74
rectangle-6 1 1 1 0.26 1 0 1 0.9 1 0.82 0.72 0 0 0 0 0 1 0 1 0.65

line-1 1 0.98 0.76 0 1 0 0.15 0 0 0.02 0.09 0 0 0 0 0 0 0 1 0
line-2 1 1 0.56 0 1 0 0.15 0 0 0 0.24 0 0 0 0 0 0 0 1 0
line-3 1 0.95 1 0.01 1 0 0.33 0 0 0 0.2 0 0 0 0 0 0 0 0.95 0
line-4 1 1 0.93 0.01 1 0 0 0 0 0.03 0.19 0 0 0 0 0 0 0 1 0
line-5 1 0.97 0.44 0.02 1 0 0 0 0 0 0.08 0 0 0 0 0 0 0 1 0
line-6 1 0.39 0.51 0.04 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

vector3d-1 0.26 0.03 0.32 1 0.93 0 0.2 0 0 0 0 0 0 0 0 0 1 0 0 0
vector3d-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vector3d-3 1 0.12 0.42 1 1 0 1 0 0.08 0.08 0.21 0 1 0 0.72 0.92 1 0 1 0
vector3d-4 1 0.98 1 1 1 0 1 0 0.23 0.15 0.36 0 1 0 0.01 0 0 0 1 0
vector3d-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sphere-1 1 1 1 1 1 0 1 0.29 0.75 0 0 0 0 0 0.9 0.6 1 0 0 0
sphere-2 1 1 1 0.95 1 0 1 1 0.43 0 0.04 0 0 0.2 0.68 1 1 0 0 0
sphere-3 0 0 0.35 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sphere-4 1 1 1 0.99 1 0 1 0 0 0 0 0 0 0 0.59 0.6 1 0 0 0
sphere-5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
sphere-6 1 0.97 1 0.79 1 0 1 0 0 0 0 0 0 0 0 0.67 0.7 0 0 0
sphere-7 1 1 1 1 1 0 1 0 0.45 0 0 0 0 0 0.96 0.07 1 0 0 1
sphere-8 1 1 1 0.99 1 0 1 1 0.23 0 0.02 0 0 1 0.98 0 1 1 0 0
cuboid-1 1 1 1 1 1 0 1 0.13 1 0 0.38 0 1 0 0.72 0.13 1 0.4 1 0
cuboid-2 1 0.91 0.99 1 1 0 1 0 1 0.06 0.13 0 1 0.1 0 0 0.79 0 1 0
cuboid-3 1 1 1 0.92 1 0 1 1 1 0.98 1 0 0 0 1 1 1 0 1 1
cuboid-4 1 1 1 1 1 0.12 1 0.13 1 0 0.87 0 1 0.1 0.88 0.93 1 1 1 1
cuboid-5 1 1 1 1 1 0 1 0.13 1 0.13 0.96 0 1 0.2 0.99 0.73 1 1 1 0
cuboid-6 1 1 1 1 1 0 1 1 1 0.93 0.83 0 0 1 0.93 0 1 0 1 1
regular-1 0 0 1 0.04 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
regular-2 0 0 0.58 0.01 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
regular-3 1 1 1 0.96 0.87 0 1 0 0 0 0.17 0 0 1 0.33 0.73 1 0 0.85 0

tetrahedron-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tetrahedron-2 1 1 1 1 1 0 1 0.13 0 0.5 0.45 0 0 0 0.98 1 0 0 1 1
tetrahedron-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tetrahedron-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

zero count 19 23 15 25 14 67 26 46 45 46 34 68 55 49 43 47 48 59 36 56
average 68.75% 59.31% 64.86% 47.11% 72.92% 4.39% 54.55% 24.44% 29.18% 16.46% 22.65% 0.94% 22.54% 23.99% 29.39% 24.01% 25.13% 11.82% 43.17% 18.10%

average-easy 98.89% 99.54% 99.96% 99.11% 99.54% 11.14% 100.00% 55.46% 66.21% 36.50% 48.75% 2.39% 53.57% 48.93% 71.96% 55.21% 44.07% 29.96% 66.46% 43.57%
average-medium 82.61% 60.22% 73.30% 24.48% 94.61% 0.00% 46.65% 7.91% 9.48% 6.39% 10.57% 0.00% 4.35% 10.13% 3.13% 6.91% 23.91% 0.00% 52.22% 2.83%

average-hard 10.60% 1.95% 6.00% 0.35% 10.70% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 5.00% 0.00% 0.00% 0.00% 0.00% 0.15% 0.00%
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Table 7: result of data with constant, the discount means the recovery rate discount between no
constant and with constant.

baselines 0-count 0-recovery 0.00001-count 0.00001-recovery 0.001-count 0.001-recovery discount

PSRN 52 68.75% 47 59.65% 40 48.32% 70.29%
Pysr 48 59.31% 44 53.51% 44 49.31% 83.13%

NGGP 56 64.86% 50 52.37% 48 50.84% 78.39%
UDSR 46 47.11% 43 37.56% 43 35.56% 75.47%
RSRM 57 72.92% 52 61.15% 48 51.89% 71.17%
KAN 4 4.39% 4 3.78% 4 3.11% 70.68%
BMS 45 54.55% 39 44.74% 37 38.74% 71.01%

PhySO 25 24.44% 25 22.90% 23 21.81% 89.23%
symindy 26 29.18% 20 25.37% 18 21.34% 73.11%
gplearn 25 16.46% 23 13.19% 21 11.99% 72.83%

deap 37 22.65% 30 17.85% 27 17.54% 77.43%
EQL 3 0.94% 2 0.83% 2 0.67% 70.94%
Sindy 16 22.54% 15 19.35% 13 17.14% 76.05%
SPL 22 23.99% 20 21.55% 18 20.16% 84.03%
E2E 28 29.39% 23 25.64% 20 21.06% 71.64%

TPSR 24 24.01% 14 19.06% 10 14.85% 61.84%
AIF 23 25.13% 18 21.87% 17 15.60% 62.10%

SNIP 12 11.82% 10 10.23% 6 6.31% 53.36%
DGSR 35 43.17% 29 34.60% 28 30.41% 70.44%
NSRS 15 18.10% 9 15.70% 5 10.42% 57.59%

F EXTRA EXPERIMENTS

We have expanded our dataset to include four additional experiments concerning noise, speed, more
baselines, and the introduction of constants.

Noise: We incorporated datasets with two levels of noise—1e-5 and 0.0001—to evaluate how well
the models perform under noisy conditions. Unlike typical setups where only the target variable
is affected by noise, we introduced noise equally to both the input variables and the target. This
simulates a more realistic scenario where the measurement of both features and targets may be
impacted by noise.

Speed: To assess the computational efficiency of each baseline, we measured the speed by averaging
the results of 100 parallel runs for each category. Understanding the speed of each model is crucial
as it allows us to create a Pareto front that balances the recovery rate against the computational time
cost, providing a comprehensive view of model performance.

More Baselines: Recognizing the importance of robust comparison, we included additional base-
lines from the era of genetic programming. Specifically, we added Operon to our benchmarking
table to evaluate its performance against other established methods.

Adding Constants: Since our dataset primarily comprises geometric equations where the only con-
stant is π, we tested the ability of the symbolic regression models to handle constants by multiplying
each dataset by a uniform constant ranging from 0 to 5. This test aims to assess each baseline’s ca-
pability in accurately recovering symbolic expressions that incorporate constants.

The outcomes of these experiments are detailed below, illustrating how each model fares across these
varied conditions and providing insights into their overall robustness and effectiveness in symbolic
regression tasks.

from the result, all baselines suffer a lot from noise. And baselines with transformer pre-train module
like SNIP, NSRS suffers most. And AIF RSRM also does not perform well due to their searching
algorithm is not able to displace these noise.

As well, PhySO and pysr still have low discount due to their symbolic ability on physical dimen-
sions. With the dimension , they can cut a lot of useless equation. Also, dimension is not affected
through noise.
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Table 8: the average time cost within each baselines within 71 datasets and 100 parallel runs.
baselines time cost(s)

PSRN 270
Pysr 374

NGGP 2341
UDSR 3512
RSRM 2794
KAN 130
BMS 2371
physo 2098

symindy 478
gplearn 523

deap 476
EQL 1209
Sindy 0
SPL 1438
E2E 1

TPSR 3602
AIF 3475

SNIP 2975
DGSR 1097
NSRS 746

Next comes the speed test. In this test, we test each model’s running speed through all 71 datasets.
SIndy model, KAN model runs fast due to they are linear model. Also, end2end transformer model
also runs fast for it only runs once and optimize its constant.

Then is the new baselines. Operon can reach 50.1% with 45 reachable, which is sightly below PySR
within 127s average, but much more better than gplearn or deap.

Final is the constant learning:

We can conclude that PSRN can not good at handle with constant while the others can fit as well as
before since the constant is only multiplies outside the equation.
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Table 9: result of data with constant, the discount means the recovery rate discount between no
constant and with constant.

baselines nonconstant-recovery constant-recovery discount

PSRN 68.75% 51.21% 74.49%
Pysr 59.31% 56.48% 95.23%

NGGP 64.86% 59.78% 92.17%
UDSR 47.11% 42.96% 91.19%
RSRM 72.92% 63.98% 87.74%
KAN 4.39% 3.97% 90.49%
BMS 54.55% 47.24% 86.60%

PhySO 24.44% 23.58% 96.49%
symindy 29.18% 27.16% 93.07%
gplearn 16.46% 15.82% 96.09%

deap 22.65% 20.23% 89.32%
EQL 0.94% 0.97% 103.00%
Sindy 22.54% 22.00% 97.60%
SPL 23.99% 22.45% 93.56%
E2E 29.39% 26.13% 88.91%

TPSR 24.01% 22.12% 92.11%
AIF 25.13% 21.86% 86.98%

SNIP 11.82% 10.85% 91.81%
DGSR 43.17% 39.79% 92.17%
NSRS 18.10% 16.84% 93.05%
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