Under review as a conference paper at ICLR 2025

GEOBENCH: A NEW BENCHMARK ON SYMBOLIC RE-
GRESSION WITH GEOMETRIC EXPRESSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Symbolic regression (SR) is a highly effective approach for discovering math-
ematical expressions directly from data. With the proliferation of various SR
methods, SRBench (La Cava et al) [2021) has made an important contribution
by offering a standardized evaluation framework that includes 130 SR datasets
and assesses 14 SR methods. Nevertheless, the methods incorporated in SRBench
are somewhat outdated, and the benchmark dataset does not encompass results
from more recent approaches, such as SNIP (Meidani et al., 2024). Furthermore,
the evaluation metrics employed in SRBench fail to fully capture the breadth of
symbolic regression capabilities, and the benchmark data itself exhibits scientific
inconsistencies. Although Matsubara et al. (2022) address some of these issues,
their approach remains incomplete. In response, we propose a novel benchmark
consisting of 71 expressions derived from geometric contexts, which are catego-
rized into three difficulty levels: easy, medium, and hard. We conduct an evalua-
tion of 20 SR methods on these expressions, focusing exclusively on the symbolic
regression capabilities of each model. These capabilities are measured in terms
of recovery rates across the different difficulty levels and in aggregate. Our study
provides a comprehensive methodology for reproducing the experiments and in-
cludes results for newly developed SR methods using this updated benchmark.
The findings reveal significant variability in the symbolic regression performance
across the evaluated models.

1 INSTRUCTION

In many aspects of life, various phenomena can be described by mathematical equations, such as
Newton’s Second Law and the law of gravity. Symbolic regression (SR) is a powerful tool for uncov-
ering these underlying relationships. Specifically, SR seeks to discover a mathematical expression
that links input and output data. Unlike traditional machine learning techniques, such as neural net-
works, SR offers greater interpretability and superior generalization, avoiding the complexity often
associated with opaque models. Due to these advantages, symbolic regression has been applied
across diverse fields, including physics (Sun et all 2021} [Udrescu & Tegmarkl 2020; [Schmidt &
Lipson, 2009), network control (Sharan et al., 2022), finance (La Malfa et al.,|2021), and material
science (Wang et al.,[2019).

However, symbolic regression (SR) poses significant challenges due to its expansive search space.
The inclusion of constants further complicates the task, as they increase the complexity of potential
solutions. In fact, SR has been formally proven to be an NP-complete problem (Virgolin & Pissis}
2022;Song et al., 2024).

Historically, SR originated with polynomial fitting, where early approaches focused on extracting
equations through linear regression. To improve accuracy, researchers incorporated more complex
input features, such as Fourier bases. However, this method compromised the interpretability of the
results and increased the risk of overfitting.

Subsequently, expression trees became a popular approach for tackling SR tasks. An expression tree
consists of internal nodes representing mathematical operators (e.g., +, —, X, =+, log, exp, sin, cos)
and leaf nodes that represent constants (e.g., 1, 2) or variables (e.g.,). By recursively evaluating
sub-trees, the expression tree generates a corresponding mathematical expression. The construction
of an expression tree typically follows a recursive method, where operators are added in pre-order

Under review as a conference paper at ICLR 2025

traversal until no further additions are possible. This transforms SR into a sequence generation
problem, akin to tasks in natural language processing (NLP).

Symbolic regression involving constants presents a particularly challenging task. Traditional meth-
ods often treat constants within equations as parameters in a linear regression framework, allowing
them to be estimated by solving the associated function. In subsequent stages, models typically sam-
ple random values to substitute for constants in the generated expressions. If an expression yields
a high loss value, the corresponding random constant is discarded, while constants producing lower
losses are retained. In more recent approaches, constants are preserved by introducing a constant
token. This allows the model to solve for the constant value during the error calculation phase. At
this stage, the constants are treated as input variables, and the error is treated as the target value.
Optimization algorithms, such as BFGS (Roger Fletcher & Sons| [2013)), are commonly employed to
fine-tune the constants and minimize error.

With the development of SR methods came the emergence of benchmarks. Nyugen (Uy et al.,
2011) introduced one of the early symbolic regression benchmarks, comprising 12 short expressions
designed to evaluate SR techniques across a range of simple to moderately complex equations.
Similarly, Jin (Jin et al., 2019), Neat, and Keijzer (Keijzer, 2003) created their own datasets to
test the symbolic regression abilities of their models. However, the data in these benchmarks have

limitations, as they often involve non-prime functions, such as the expression > 7' 1, rather than

=1 3’
more fundamental mathematical expressions. Consequently, these datasets are sometimes more
suited to assessing curve-fitting abilities rather than the capacity to discover underlying symbolic

functions.

As well, some benchmarks have been developed to assess specific aspects of symbolic regres-
sion capabilities. For example, Nyugen® primarily evaluates SR models’ ability to handle con-
stants, as all its equations include constant parameters. The R rationals and R* benchmarks
(McDermott et al., 2012) are designed to test models’ abilities to solve complex fractional equa-
tions, while the Livermore benchmark (Mundhenk et al., 2021b)) focuses on equations containing
cos, sin, log, exp, and power functions. However, these benchmarks often lack real-world applica-
bility, as expressions like log(z1 + 1) + log(x? + 1) + log(z1) are primarily suited for testing,
not use in real world . As well, these benchmarks has no uniform metric since some models tests for
R? and the other uses it for symbolic recovery rate.

The introduction of the AlFeynman dataset (Udrescu & Tegmark, 2020) marked a significant step
forward in SR benchmarking. This dataset comprises 120 equations derived from the Feynman
Lectures on Physics (Feynman et al., [2015) and serves as a robust benchmark for SR tasks. Re-
cently, the SRBench team (La Cava et al.,2021)) has combined 118 equations from this dataset with
the Strogatz dataset (Strogatzl |2018)), which includes 14 equations modeling nonlinear and chaotic
dynamical processes, providing a more comprehensive evaluation of SR methods. Additionally, SR-
Bench includes different noise levels ranging from 0.0, 0.1, 0.01, 0.001, to assess the models’ ability
to handle noisy data. This benchmark evaluates 14 SR methods as baselines, resolving issues seen
in earlier datasets, such as a focus on equations primarily suited for testing and not for real-world
scientific experiments. It also provides a framework to reproduce results and test new models. How-
ever, SRBench has some limitations, as more than half of the evaluated methods are based on genetic
programming (GP) approaches, and many are from before 2022. Furthermore, the benchmark in-
cludes some scientifically unrealistic assumptions, such as treating the gravitational constant as a
variable, and has been criticized for its oversimplified sampling process and inappropriate formulas
(Matsubara et al.| 2022).

Subsequently, [Matsubara et al.| (2022) attempted to address some of the existing issues; however,
their evaluation was restricted to only six methods. This limited selection of baselines may result in
an insufficient comparison, particularly when assessing the performance of new models introduced
into the field.

To address these issues, we propose our geometric dataset. It consists of 2D and 3D geometric
problems, such as calculating the area of a triangle given the lengths of its three sides. These
problems are meaningful in real-world applications and complement existing physical symbolic
regression datasets. We categorize these datasets into three difficulty levels: easy, medium, and
hard. We evaluate our 71 datasets using 20 SR baselines from 8 different approaches. The metrics of
our benchmark are twofold: (1) the symbolic recovery rate across each difficulty level and overall,

Under review as a conference paper at ICLR 2025

and (2) the number of expressions that can be discovered when models are allowed to run for an
extended period.

2 DIFFERENT APPROACH OF SYMBOLIC REGRESSION

Linear Methods: The SINDy method (Kaiser et al.,[2018) applies the L1 Loss to reduce the number
of active basis functions in a linear regression framework, thereby distilling a simple equation as a
linear combination of candidate terms from a predefined library. Although SINDy is known for
its interpretability and speed, its performance heavily depends on the selection of the predefined
library. If the true solution is not a combination of terms in the library, SINDy is unable to identify
it. Recently, the KAN model (Liu et al., 2024)) has emerged using spline methods as an alternative
to improve upon these limitations.

Genetic Programming: The genetic programming method (Schmidt & Lipson, 2009; |/Augusto &
Barbosa, [2000; Gustafson et al.,[2005) represents expressions as trees, which serve as the populations
in the algorithm. Mutation and crossover operations modify the trees by changing sub-trees or
exchanging parts of the tree. The advantage of genetic algorithms in symbolic learning is their
ability to iteratively modify the expression tree via genetic recombination, enabling the model to
explore a wide range of expressions. However, a significant disadvantage is the tendency of genetic
algorithms to overfit; once the algorithm veers toward an incorrect solution, it is often difficult to
recover a correct path to the truth.

Deep Learning Methods: There are two main approaches to using deep learning in symbolic re-
gression. One approach leverages neural networks to identify relationships between variables and
merge them to reduce the search space (Udrescu & Tegmarkl 2020j [Udrescu et al.l [2020). While
this method simplifies the search, it requires large amounts of data and does not always succeed
in fitting the correct equations. The other approach replaces traditional network components (e.g.,
linear layers or activation functions) with symbolic functions and applies L1 loss to reduce active
modules, thus simplifying the output (Martius & Lampert, 2016} Sahoo et al., [2018)). This approach
achieves lower MSE, but optimizing the sparse network to precisely recover the correct equation is
extremely challenging.

Deep Reinforcement Learning Methods: The deep reinforcement learning approach (Petersen
et al., 2019) frames symbolic regression as a sequential decision-making problem, where models
take actions at each step (e.g., adding or modifying terms) based on the current state, which is
evaluated using a recurrent neural network (or LSTM). After each generation, the models learn from
the best-generated expressions, guided by a reward function. This method effectively narrows the
search space but can suffer from overfitting and lack of exploration.

Traditional Machine Learning Methods: This approach (Sun et al., [2022; [Xu et al., 2024) is
similar to deep reinforcement learning but uses Monte Carlo Tree Search (MCTS) instead of neural
networks to guide the search process. By avoiding the need for neural network training, this method
is faster for smaller problems but struggles with more complex equations.

Transformer-Based Pretrain Methods: Inspired by the GPT models (Radford et al., |2018),
transformer-based symbolic regression models (Kamienny et al., |2022) pretrain on large sets of
artificial expressions and use this pretraining to generate expressions from input data. Subsequently,
genetic programming or reinforcement learning (Holt et al., 2022} [Landajuela et al.| [2022) is em-
ployed to refine the output of the transformer models. While transformers provide excellent initial
solutions, they may struggle with out-of-distribution data, leading to overfitting or poor performance
on unseen tasks.

Bayesian Methods: Bayesian symbolic regression (Jin et al.l |2019; |Guimera et al., 2020) leverages
prior knowledge (e.g., preferences for basis functions, operators, or original features) and produces
symbolic expressions as a linear combination of concise terms, controlled by a prior distribution.
The symbolic regression problem is solved by sampling expression trees from the posterior distri-
bution using a Markov Chain Monte Carlo (MCMC) algorithm. Although this method conserves
memory, it can be computationally expensive and may struggle to produce accurate results due to
the limitations of MCMC sampling.

Under review as a conference paper at ICLR 2025

NN NN N

F Fy o
D C

a a a b

c a a

h (0%
b b b
] «
a
(0% o

b

Figure 1: the 2D geometric objects in our dataset including triangles, circles, trapezoids, elliptic,
squares, rectangles, lines and point.

Brute-Force Search Methods: Given that symbolic regression seeks simple expressions to describe
phenomena, the true expression trees often have limited depth (e.g., maximum 6 layers). This obser-
vation motivates brute-force methods, which enumerate possible expressions layer by layer (Ruan
et al., 2024)), as the n + 1-th layer can be constructed by combining elements from the n-th layer.
GPU-based implementations can accelerate this search process, making brute-force methods effec-
tive for finding simple expressions with few variables, although they struggle with larger and more
complex problems because of GPU’s memory.

3 GEOMETRIC DATASET

3.1 DATASETS

Diving into the details of our geometry dataset, it’s divided into two main sections: 2-D and 3-D
geometry. The first section is a thorough compilation of 2-D geometrical shapes such as triangles,
rectangles, squares, and circles, complete with their corresponding equations. In the second section,
the dataset expands into the realm of 3-D geometry, presenting a wide array of shapes including
vectors, spheres, various solids, and pyramids, each paired with their relevant equations.

2-D part: The dataset begins with various types of triangles. We assess the ability to determine the
perimeter and area of triangles given different sets of known values: three sides (SSS), two sides with
the included angle (SAS), and two angles with the included side (AAS) or the opposite sides (ASA).
These four methods constitute the foundational techniques for establishing triangle congruence and
equality.

For right-angled triangles, the dataset facilitates the calculation of the perimeter and area using the
lengths of the right sides and the hypotenuse, or by employing the length of one right side and the
angle opposite to it.

Incorporated into this dataset are three pivotal laws of trigonometry: the Cosine Theorem (Law of
Cosines), the Pythagorean Theorem, and the Sine Theorem (Law of Sines). Utilization of these the-
orems allows for the resolution of the perimeter and area for a variety of straightforward geometrical
constructs.

Moreover, the dataset tackles more challenging computations such as determining the circumcircle
and incircle radix of a triangle based solely on its three side lengths.

Under review as a conference paper at ICLR 2025

Figure 2: the 3D geometric objects in our dataset including three-dimensional vectors, cylinder,
cones, frustums, sphere, cuboids, cubes, pyramids and tetrahedrons.

Expanding beyond simple measurements, we also delve into coordinate geometry. The dataset in-
cludes the calculation of the horizontal coordinates for four significant points within a triangle: the
centroid (center of mass), the incenter (intersection of angle bisectors), the circumcenter (intersec-
tion of perpendicular bisectors), and the orthocenter (intersection of altitudes). These calculations
are vital for a deeper understanding of a triangle’s geometric properties and their applications.

Venturing beyond triangular shapes, our collection encompasses trapezoids, specifically focusing on
isosceles trapezoids. By utilizing the dimensions of the upper and lower bases, height, sides, or the
angles adjacent to the base, one can deduce both the perimeter and area of these quadrilaterals.

The dataset also embraces the circular and elliptical geometries. It allows for the calculation of a
circle’s perimeter (or circumference) using its radius, as well as the perimeter and area of a sector by
its central angle and radius. For ellipses, the major and minor axes serve as the basis for determining
the area and locating the focal points.

Additionally, the dataset includes rectangles and squares. Given the lengths of their edges, we can
easily determine their perimeter and area.

Lastly, the dataset serves as a resource for analytical geometry concerning lines and points. It enables
the determination of the horizontal and vertical coordinates where two lines intersect, based on their
slopes and intercepts. It further aids in calculating the slope and intercept of a line passing through
two points, given their horizontal and vertical coordinates. Additionally, it provides the tools to find
the directed distance from a point to a line, integrating the line’s slope and intercept with the point’s
coordinates.

3-D part: For three-dimensional vectors, the dataset includes methods for calculating their magni-
tude, the cosine of the angle between two vectors, their dot product, and the horizontal coordinate of
their cross product. In conjunction with point coordinates, it facilitates the calculation of the directed
distance from a point to a plane, essential for spatial analysis.

In terms of solids, the dataset aids in finding the surface area and volume of cylinders using their
base radius and height. The same parameters are used for cones, with additional calculations for
their surface area and volume. For frustums, the dataset provides a method to determine the surface
area and volume from the radii of the upper and lower bases and the height.

Spherical geometry is also covered, with the dataset enabling the calculation of a sphere’s surface
area from its radius. In the study of cuboids, the dataset allows for the determination of the sum of
edge lengths, surface area, and volume from the lengths of the three edges. Similarly, for cubes, the
side length can be used to find the sum of edge lengths, surface area, and volume.

Under review as a conference paper at ICLR 2025

The dataset also includes calculations for pyramids, using the base area and height to find the vol-
ume. For regular tetrahedrons, the base edge and height, or the base edge and side, provide the
necessary measurements to calculate surface area and volume. In addition, the hardest ones show
that the volume of an arbitrary tetrahedron can be calculated using two equations.

The complete set of symbolic equations can be found in Table[2] Appendix Section|[A]

To delve deeper into this dataset, we observe that many equations are derived using Helen’s law
or other complex expressions. However, a significant portion can be simplified to the determinant
of a square matrix, exemplified by the equation for the horizontal coordinate of the circumcenter
below. This simplification is noteworthy as determinants are not commonly employed in symbolic
regression methods.

4y o 1
w3 4+y; y2 1
34+y5 ys 1

c =
I Y1 1
2lzy y2 1
z3 ys 1

Furthermore, the result from the determinant calculation may lead to misconceptions regarding the
polynomial order within the models. A third-order determinant consists of three positive and three
negative polynomials. The interplay between these positive and negative elements often misleads
the model’s search direction. Therefore, searching ability against bad equations are useful in this
benchmark.

We categorized all datasets into three difficulty levels:

» Easy: This category contains the simplest equations, such as the perimeter of a triangle
given the lengths of its three edges (P = a + b + ¢) and the volume of a pyramid given the
base area and height (V' = %S h). In summary, this level comprises combinations of basic
polynomial equations, making them relatively easy to solve. Each equation in this category
can typically be solved within one hour.

* Medium: This category includes equations involving non-linear terms. Examples include
the Pythagorean theorem (¢ = v/a2? + b?) and finding the vertical coordinate of the in-
tersection of two lines given their slopes and intercepts (y = %). While these
equations introduce non-linear components, they remain closely related to basic polyno-
mial structures. Solving each equation in this category typically requires approximately
five hours.

e Hard: This category features the most complex equations, such as the vol-
ume of an arbitrary tetrahedron and Heron’s formula for the area of a triangle

based on the lengths of its three sides (S = (“+b+c)(a+b_ciéa+c_b)(b+c_a)

V2a2b? + 2a2c? + 2b2c2 — a* — b* — ¢*/4). These equations are characterized by longer
and deeper mathematical structures, making them significantly more challenging to solve.
Each equation in this category typically requires up to one day to solve. And, there are
hard equations in our dataset is the cosine value of angle between two vectors cos =

7 2ilrt22++y21)yz(-s-§f22+ 5 which is composed by 6 varibles.
T TYT+27) X (X2 TY3+25

And our dataset contains two different sizes: 500 for normal model and 100000 for machine learning
models that need to fit the curve.

3.2 METRICS

We use the symbolic recovery rate as the primary metric for evaluating performance, calculated as

follows:
count of successful discoveries
recovery rate = (D)
count of total roll-outs

Under review as a conference paper at ICLR 2025

Algorithm 1 Algorithm for Discriminating the Correct Expression

Input: dataset Syu1q = (X, y), ground truth expression JF, input expression J;, simplify function.
Output: Boolean value representing whether the input expression is correct.

Fi(X)—=79 > Evaluate the input expression F; on X to obtain g
[ly — g|| — err > Compute error between predicted and actual values
if err > 107° then

return false > Return false if error exceeds threshold
end if
simplify(F;) = F; > Simplify the input expression
Fi —F — G > Compute the difference functions between input and ground truth expressions
simplify(G) — G > remove redundant sub-expressions

replace constants below 107° in G with 0
if G is empty then

return true > Return true if the expressions are equivalent
end if
G(X)—z > Evaluate G on X to obtain 2
[IZ|]| — err > Compute error for the difference expression
if err > 10720 then

return human_justify(G) > If error is still significant, defer to human justification
end if
return true > Return true if the difference is negligible

The method for distinguishing a successful discovery is outlined in Algorithm [I] We choose sympy

(Meurer et al., 2017) to simplify the expression and human justify. We conduct 100 independent
runs with different random seeds, and the time limits for the easy, medium, and hard problems are
set to 1 hour, 5 hours, and 24 hours, respectively. Additionally, the hardware constraints include 10
CPU cores and one A100 GPU.

The metrics used for evaluating our benchmark are as follows:

* Overall Recovery Rate: The average recovery rate across all 71 datasets. This metric is
designed to test the symbolic regression ability among all models.

» Categorized Recovery Rate: This metric allows for performance evaluation within spe-
cific difficulty levels (easy, medium, hard). By focusing on one category at a time, models
can demonstrate their stability on easy problems and their capacity for exploration on hard
problems.

* Result-Oriented Recovery Rate: Additional sub-categories can be created based on dif-
ferent dimensions, such as 2D versus 3D problems, the type of object studied (e.g., triangle,
circle, sphere), and the type of result (e.g., perimeter, area, volume). This allows models to
be compared within specific domains and contexts to highlight their performance in partic-
ular scenarios.

* Number of Discovered Equations: Since multiple runs can be performed for each algo-
rithm, we also calculate the number of distinct expressions successfully discovered, where
the recovery rate is greater than 0%. A higher number of discovered expressions reflects
the model’s ability to search effectively across different problem spaces.

3.3 SYMBOLIC REGRESSION METHODS

We use 20 different symbolic method based on 8 different approach. The correspondence is shown

in the table below Table [T]and all parameter setting is at Table[5]in Appendix Section B}

* Bayesian Machine Scientist (Guimera et al., 2020): This model determines the posterior
probability of each expression from a corpus of mathematical expressions compiled from
Wikipedia. The MCMC algorithm is then used to sample from the posterior distribution of
expressions, generating new expressions based on these probabilities.

* PSRN (Ruan et al.| [2024): A symbolic regression model that utilizes parallelized tree
search (PTS) to discover mathematical expressions from data. PSRN employs GPU-

Under review as a conference paper at ICLR 2025

Table 1: Correspondence between symbolic regression methods and approaches. BF stands for
Brute Force Searching, DL denotes Deep Learning methods, DRL stands for Deep Reinforcement
Learning methods, GP refers to Genetic Programming, Pretrain refers to methods using transformer
modules for pretraining, Dimension refers to special methods targeting dimensional constraints and
MCTS refers to machine learning models using the Monte Carlo Tree Search algorithm.

Symbolic Regression Method \ Category
Bayesian Machine Scientist Bayesian
PSRN BF
EQL DL
AlFeynman DL
NGGP DRL, GP
uDSR DRL, GP, Pretrain
PhySO DRL, GP, Dimension
gplearn GP
DEAP GP
pysr GP, Dimension
Sindy Linear
SymINDy Linear, GP
KAN Linear
SPL MCTS
RSRM MCTS, GP
NeSymReS Pretrain
E2E Pretrain
DGSR Pretrain, GP
TPSR Pretrain, MCTS
SNIP Pretrain

accelerated parallel evaluation of symbolic expressions and implements efficient subtree
reuse and caching. The model features a unique approach of selecting expressions based
on minimum loss, followed by recursive symbolic backward derivation. Its core parallel
symbolic regression module can integrate with various token generation methods.

* EQL (Coulom, 2006} Kim et al.,2020): This model uses multiplication units and nonlinear
activation functions (e.g., sine and cosine) in its neural network. Each layer contains linear
mappings and nonlinear transformations, and the network is trained using a Lasso-like
objective function, combining L2 loss and L1 regularization.

* AlFeynman (Udrescu & Tegmarkl [2020; Udrescu et al.,[2020): This model employs a neu-
ral network to fit the data, then uses the network to identify relationships between variables,
such as symmetry. After this, AiFeynman runs a brute-force search based on the extracted
knowledge.

* NGGP (Mundhenk et al., [2021a): An upgraded version of DSR (Petersen et al., [2019),
NGGP uses an RNN-based model through deep reinforcement learning to learn the dis-
tribution of expressions. It then fine-tunes these expressions using GP methods, focusing
only on those that have been improved through fine-tuning.

* uDSR (Landajuela et al.,[2022): An upgraded version of NGGP (Mundhenk et al., 2021a),
this model incorporates the AiFeynman module to reduce the number of variables. It also
introduces a linear token for generating polynomials and utilizes large-scale pretraining.

* PhySO (Tenachi et al., 2023): This model applies dimensional constraints to the NGGP
(Mundhenk et al.l 2021a) module. If a generated token violates dimensional constraints
(e.g., summing variables with different dimensions), the generation probability is set to
zero.

* pysr (Cranmer, 2023)): Considered one of the best GP models, pysr optimizes hyperparam-
eters algorithmically and supports dimensional constraints. When an expression violates
dimensional constraints, its fitness is significantly penalized.

* gplearn (Stephens| 2016): This model retains the familiar scikit-learn fit/predict API, al-
lowing it to work seamlessly with existing scikit-learn pipelines and grid search modules.

Under review as a conference paper at ICLR 2025

* DEAP (d’Ascoli et al.,[2022): A novel evolutionary computation framework designed for
rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data struc-
tures transparent. Many models using GP (Mundhenk et al.| 2021a; |[Holt et al., |2022; | Xu
et al.| 2024)) rely on DEAP as their foundation.

* Sindy (Kaheman et al., |2020): The original SINDy model uses sparse regression tech-
niques, such as LASSO, to obtain expressions from linear combinations of functions in a
predefined library of candidate functions.

* SymINDy (Kitaitsev & Manzi, [2022): This model uses GP to generate libraries of candi-
date functions and integrates them with the SINDy method. The fitness value is positively
correlated with the error produced by SINDy.

* KAN (Liu et al., 2024): In KAN, traditional weight parameters at the network’s edges
are replaced by univariate function parameters. Each node aggregates the outputs of these
functions without any nonlinear transformations, relying on spline methods to replace tra-
ditional weight parameters.

* SPL (Sun et al.} [2022): This model contains many predefined simple expressions as mod-
ules and uses the MCTS method to combine these modules into full expressions. After
each roll-out, the best result is used as one of the modules for future iterations.

* RSRM (Xu et al., [2024): This model combines MCTS and GP to generate functions. It
employs double Q-learning to initialize probabilities in the MCTS module, enabling the
model to learn from previous roll-outs. The model also uses spline fitting to determine
whether functions are odd or even and includes an MSDB block to extract useful modules
from the best expressions for use in subsequent roll-outs.

* NeSymReS (Biggio et al., [2021): This model uses a pre-trained Transformer during the
pre-training phase, trained on hundreds of millions of equations specifically generated for
each batch. In the test step, an encoder encodes input expressions into latent vectors, from
which the decoder iteratively samples candidate skeletons for the symbolic equation. For
each candidate, numerical constants are fitted by treating them as independent parameters.

e E2E (Kamienny et al.l [2022): This model trains a Transformer on a synthetic dataset
to perform end-to-end (E2E) symbolic regression, directly predicting solutions without
relying on skeletons. The predicted constants are refined using the BFGS algorithm
(Roger Fletcher & Sons, 2013) as an informed starting point. Additionally, generative
and inference techniques are introduced to allow the model to scale to larger problems.

* DGSR (Holt et al., [2022): This model trains a Transformer on a synthetic dataset, out-
putting expressions end-to-end, which are then refined using a GP module. The framework
can perform symbolic regression on a large number of input variables while reducing com-
putational cost during inference, as it encodes the data itself rather than the entire symbolic
expression tree. This is achieved by learning representations of equations that capture in-
variant structures across different equations.

* TPSR (Shojaee et all 2023): TPSR utilizes a forward planning algorithm that incorpo-
rates Monte Carlo Tree Search (MCTS) as a decoding strategy on top of a pre-trained
Transformer-based SR model. This guides the generation of equation sequences. TPSR re-
duces overall inference time by incorporating feedback during the generation process and
using an efficient caching mechanism.

e SNIP (Meidani et al., 2024): SNIP (Symbolic-Numeric Integrated Pre-training) bridges
symbolic mathematical expressions and their corresponding numeric representations. The
model employs dual Transformer encoders: one dedicated to learning symbolic represen-
tations and the other for numeric representations. Task-independent comparison targets
enhance the similarity between the two representations. The multimodal pretraining of
SNIP enables cross-modal understanding and generation of content.

4 RESULTS

We present two primary results derived from the measured datasets in Figure 3] Further details and
additional results can be found in Appendix Section [C|Figure

Under review as a conference paper at ICLR 2025

RSRM —O0— RSRM)
PSRN | ——0— NGGP ®
NGGP S —O0— PSRN °)
PySR —_— PySR Q
BMS —— uDSR (6]
uDSR 3 3 BMS
AIF DEAP
DGSR : DGSR
P E2E : P AIF
2 SymINDy 2 E2E
©® PhySO ‘© SymINDy
= TPSR : 2 Pphyso
SPL : gplearn
DEAP : TPSR
SINDy f SPL
NSRS 1 SINDy
gplearn : NSRS
SNIP § SNIP
KAN | KAN
EQL ‘ EQL
0% 20% 40% 60% 80% 10 20 30 40 50
Recovery Rate Non-zero Count

Figure 3: Results on the geometric dataset: the left panel illustrates the average recovery rate across
all 71 equations, while the right panel displays the number of equations successfully discovered
by the models. BMS, AIF and NGNS refer to the Bayesian Machine Scientist, AIFeynman and
NeSymReS, respectively.

In the left panel, it is observed that the top five models in terms of recovery rate are RSRM (Xu
et al., 2024), PSRN (Ruan et al.| [2024), NGGP (Mundhenk et al.l [2021a), PySR (Cranmer} [2023),
and Bayesian Machine Scientist (Guimera et al., [2020). Notably, methods based on deep learning
and transformer-based pretraining tend to perform below these models.

A comparison within the same methodological class reveals consistent improvements in perfor-
mance over time. However, in the case of transformer-based pretraining methods, newer models
such as SNIP (Meidani et al., 2024) demonstrate weaker performance compared to earlier models
like End2End Transformers (Kamienny et al.,[2022). This discrepancy could be attributed to a focus
on optimizing the R? score, potentially at the expense of true symbolic regression capabilities.

In the genetic programming domain, PySR (Cranmer, 2023) significantly outperforms other models
such as DEAP (Fortin et al.}|2012) and gplearn (Stephens, 2016). While hyperparameter tuning may
contribute to this performance difference, dimensional analysis also plays a crucial role. Specifically,
PySR applies penalties to expressions that violate dimensional consistency, which improves the
model’s robustness. In contrast, PhySO (Tenachi et al., 2023) performs less effectively, ranking
lower than both NGGP (Mundhenk et al.,[2021a)) and uDSR (Landajuela et al.|[2022)). PhySQO’s strict
adherence to dimensional consistency dramatically reduces its search space, potentially leading to
overfitting early in the training process.

The right panel of Figure [3|mirrors the trends observed in the left panel. While some models exhibit
low recovery rates, they still manage to discover a significant number of equations, as exemplified
by gplearn (Stephens), [2016).

5 CONCLUSION

In conclusion, we introduce a novel symbolic regression dataset, comprising a refined version of
the SRBench dataset. We evaluate the performance of 20 different models across 8 methodological
categories. Our analysis indicates that Monte Carlo Tree Search (MCTS) methods are particularly
well-suited to this task, due to their broad search capabilities. Parallel search algorithms and deep
reinforcement learning methods also demonstrate strong performance.

Furthermore, we highlight that an exclusive focus on optimizing the R? score can result in dimin-
ished symbolic recovery rates. As future work, we aim to identify additional symbolic equations for
benchmarking and investigate optimal approaches for selecting equations under noisy conditions.

10

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

Our studies does not involve human subjects, practices to data set releases, potentially harmful
insights, methodologies and applications, pontential conflicts of interest and sponsorship, discrim-
ination/bias/fairness concerns, privacy and security issues, legal compliance, and research integrity
issues.

REPRODUCIBILITY STATEMENT

Codes and models of Geometric Benchmark will be available at github upon the paper’s publication.
Details about experiments mentioned is at appendix section [A]

REFERENCES

Douglas Adriano Augusto and Helio JC Barbosa. Symbolic regression via genetic programming. In
Proceedings. Vol. 1. Sixth Brazilian Symposium on Neural Networks, pp. 173—178. IEEE, 2000.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascan-
dolo. Neural symbolic regression that scales. In International Conference on Machine Learning,
pp- 936-945. Pmlr, 2021.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
Conference on Computers and Games, 2006.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and Francois Charton. Deep
symbolic regression for recurrence prediction. In International Conference on Machine Learning,
pp- 4520-4536. PMLR, 2022.

Richard P Feynman, Robert B Leighton, and Matthew Sands. The Feynman lectures on physics, Vol.
I: The new millennium edition: mainly mechanics, radiation, and heat, volume 1. Basic books,
2015.

Félix-Antoine Fortin, Francois-Michel De Rainville, Marc-André Gardner Gardner, Marc Parizeau,
and Christian Gagné. Deap: Evolutionary algorithms made easy. The Journal of Machine Learn-
ing Research, 13(1):2171-2175, 2012.

Roger Guimera, Ignasi Reichardt, Antoni Aguilar-Mogas, Francesco A Massucci, Manuel Miranda,
Jordi Pallareés, and Marta Sales-Pardo. A bayesian machine scientist to aid in the solution of
challenging scientific problems. Science advances, 6(5):eaav6971, 2020.

Steven Gustafson, Edmund K Burke, and Natalio Krasnogor. On improving genetic programming
for symbolic regression. In 2005 IEEE Congress on Evolutionary Computation, volume 1, pp.
912-919. IEEE, 2005.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression. In
International Conference on Learning Representations, 2022.

Ying Jin, Weilin Fu, Jian Kang, Jiadong Guo, and Jian Guo. Bayesian symbolic regression. arXiv
preprint arXiv:1910.08892, 2019.

Kadierdan Kaheman, J Nathan Kutz, and Steven L Brunton. Sindy-pi: a robust algorithm for parallel
implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A, 476
(2242):20200279, 2020.

Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Sparse identification of nonlinear dynamics

for model predictive control in the low-data limit. Proceedings of the Royal Society A, 474(2219):
20180335, 2018.

11

Under review as a conference paper at ICLR 2025

Pierre-Alexandre Kamienny, Stéphane d’ Ascoli, Guillaume Lample, and Frangois Charton. End-to-
end symbolic regression with transformers. arXiv preprint arXiv:2204.10532, 2022.

Maarten Keijzer. Improving symbolic regression with interval arithmetic and linear scaling. In
Genetic Programming: 6th European Conference, EuroGP 2003 Essex, UK, April 14-16, 2003
Proceedings, pp. 70-82. Springer, 2003.

Samuel Kim, Peter Y Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir Ceperié, and Marin
Soljaci¢. Integration of neural network-based symbolic regression in deep learning for scientific
discovery. IEEE transactions on neural networks and learning systems, 32(9):4166-4177, 2020.

Andrei Kitaitsev and Matteo Manzi. Symindy: Symbolic identification of nonlinear dynamics state-
ment of need. 08 2022. doi: 10.13140/RG.2.2.22197.55528.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio de Franca, Marco Virgolin, Ying
Jin, Michael Kommenda, and Jason Moore. Contemporary symbolic regression methods and their
relative performance. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks, volume 1. Curran, 2021. URL https:
//datasets—-benchmarks—-proceedings.neurips.cc/paper_files/paper/
2021/file/cO0c7c76d30bd3dcaefc96f40275bdc0a—Paper—roundl.pdf.

Gabriele La Malfa, Emanuele La Malfa, Roman Belavkin, Panos M Pardalos, and Giuseppe Nicosia.
Distilling financial models by symbolic regression. In International Conference on Machine
Learning, Optimization, and Data Science, pp. 502-517. Springer, 2021.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago, Ignacio Ar-
avena, Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen. A unified framework for
deep symbolic regression. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 33985-33998,
2022.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacié,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

Yoshitomo Matsubara, Naoya Chiba, Ryo Igarashi, Tatsunori Taniai, and Yoshitaka Ushiku.
Rethinking symbolic regression datasets and benchmarks for scientific discovery. CoRR,
abs/2206.10540, 2022. URL https://doi.org/10.48550/arXiv.2206.10540.

James McDermott, David R White, Sean Luke, Luca Manzoni, Mauro Castelli, Leonardo Van-
neschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper, Kenneth De Jong, et al. Genetic
programming needs better benchmarks. In Proceedings of the 14th annual conference on Genetic
and evolutionary computation, pp. 791-798, 2012.

Kazem Meidani, Parshin Shojaee, Chandan K Reddy, and Amir Barati Farimani. SNIP: Bridging
mathematical symbolic and numeric realms with unified pre-training. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
1d=KZSEgJGPxul

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondfej Certik, Sergey B Kirpichev, Matthew
Rocklin, AMIiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:¢103, 2017.

T Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Faissol, and
Brenden K Petersen. Symbolic regression via neural-guided genetic programming population
seeding. arXiv preprint arXiv:2111.00053,2021a.

Terrell Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Brenden K Petersen, et al.
Symbolic regression via deep reinforcement learning enhanced genetic programming seeding.
Advances in Neural Information Processing Systems, 34:24912-24923, 2021b.

12

https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf
https://doi.org/10.48550/arXiv.2206.10540
https://openreview.net/forum?id=KZSEgJGPxu
https://openreview.net/forum?id=KZSEgJGPxu

Under review as a conference paper at ICLR 2025

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

John Wiley Roger Fletcher and Sons. Practical methods of optimization. 2013.

Kai Ruan, Ze-Feng Gao, Yike Guo, Hao Sun, Ji-Rong Wen, and Yang Liu. Discovering symbolic
expressions with parallelized tree search. arXiv preprint arXiv:2407.04405, 2024.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442—4450. PMLR, 2018.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science,
324(5923):81-85, 2009.

S P Sharan, Wenqing Zheng, Kuo-Feng Hsu, Jiarong Xing, Ang Chen, and Zhangyang Wang.
Symbolic distillation for learned TCP congestion control. In Thirty-Sixth Conference on Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
rDT-n9xysO.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan K. Reddy. Transformer-
based planning for symbolic regression. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=0rVXQEeFEL.

Jinglu Song, Qiang Lu, Bozhou Tian, Jingwen Zhang, Jake Luo, and Zhiguang Wang. Prove sym-
bolic regression is np-hard by symbol graph. arXiv preprint arXiv:2404.13820, 2024.

Trevor Stephens. Genetic programming in python, with a scikit-learn inspired api: gplearn. 2016.

Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering. CRC press, 2018.

Fangzheng Sun, Yang Liu, and Hao Sun. Physics-informed spline learning for nonlinear dynamics
discovery. arXiv preprint arXiv:2105.02368, 2021.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discovering
governing equations via monte carlo tree search. arXiv preprint arXiv:2205.13134, 2022.

Wassim Tenachi, Rodrigo Ibata, Thibaut L. Francois, and Foivos I. Diakogiannis. Class Symbolic
Regression: Gotta Fit ’Em All. arXiv e-prints, art. arXiv:2312.01816, December 2023. doi:
10.48550/arXiv.2312.01816.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark.
Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in
Neural Information Processing Systems, 33:4860—4871, 2020.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and Edgar Galvan-
Lépez. Semantically-based crossover in genetic programming: application to real-valued sym-
bolic regression. Genetic Programming and Evolvable Machines, 12:91-119, 2011.

Marco Virgolin and Solon P Pissis. Symbolic regression is np-hard. arXiv preprint
arXiv:2207.01018, 2022.

Yiqun Wang, Nicholas Wagner, and James M Rondinelli. Symbolic regression in materials science.
MRS Communications, 9(3):793-805, 2019.

Yilong Xu, Yang Liu, and Hao Sun. Reinforcement symbolic regression machine. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=PJVUWpPNZCl

13

https://openreview.net/forum?id=rDT-n9xysO
https://openreview.net/forum?id=rDT-n9xysO
https://openreview.net/forum?id=0rVXQEeFEL
https://openreview.net/forum?id=PJVUWpPnZC
https://openreview.net/forum?id=PJVUWpPnZC

Under review as a conference paper at ICLR 2025

A DATASET DETAILS

This section provides a detailed description of the geometric dataset. The complete dataset is pre-
sented in Tables[2} 3] and[d] The dataset comprises 8 parts: Dataset name, Equation, Category, Input
data label, Input dimension, Output data label, Output dimension and Limitations. And our dataset
contains two different sizes: 500 for normal model and 100000 for machine learning models that
need to fit the curve.

» Dataset Name: This part specifies the name or identifier of the dataset, providing a clear
reference for the specific set of geometric data being described according to the type of
geometric shapes or phenomena it covers.

» Category: This section categorizes the dataset’s difficulties. Easy polynomial expressions
are classified to easy and complex polynomial with few non-linear tokens are classified to
medium and other hard equations are classified to hard.

* Equation: This section lists the mathematical equations associated with the geometric
shapes or phenomena covered in the dataset. These equations are used to compute vari-
ous properties, such as volume, area, or perimeter, based on the input data.

* Input Data Label: This part describes the labels or names of the input variables. These
labels indicate what each input represents, such as the length of an edge, the height, or the
angles between edges in geometric shapes.

* Input Dimension: This section provides the dimensionality of the input data. It specifies the
number of input variables or parameters required for the equations. For instance, a triangle
might require two side lengths with m dim and an angle between them with rad dim.

* Qutput Data Label: This part describes the labels or names of the output variables. These
labels indicate the properties being calculated, such as area, volume, or perimeter.

* Output Dimension: This section provides the dimensionality of the output data. It specifies
the results generated by the equations. For instance, calculating the area of a rectangle
results in output dimensions of m?.

» Limitations: This part outlines any constraints or limitations associated with the dataset or
the equations. These might include restrictions on the values of input parameters or specific
conditions under which the equations are valid like the sum of two edges can not be larger
than the other one in triangles.

The generation process follows this logic: values are randomly generated, with angles sampled
uniformly from the interval [0, 7], and other values sampled uniformly from the range [1,5]. The
generated values are then evaluated against predefined constraints (Limitation from dataset). If any
of these constraints are violated, new values are generated, and this process continues until the
dataset size reaches either 500 or 100,000, depending on the specified target.

14

Under review as a conference paper at ICLR 2025

Table 2: 1 part/3 part of geometric dataset.

Dataset name category ‘ Equation
triangle-1 easy x] + x2 + x3
triangle-2 hard \/71% + 21%@% + 21%1% — 1‘21 + 2z§z§ — z§/4
triangle-3 hard 1 + T2 + \/z% — 2z1x9 cos(z3) + z%
triangle-4 medium (z1x9 sin(xz3))/2
triangle-5 hard 1 sin(xo)/sin(xg + x3) + x1 sin(x3)/ sin(z2 + x3) + =1
triangle-6 hard 9:% sin(z2) sin(z3)/(2sin(z2 + 3))
triangle-7 medium z1 + =1 sin(z3)/sin(xzg2) + z1 sin(zz + z3)/ sin(z2)
triangle-8 medium a7 sin(xgz) sin(xz2 4 x3)/(2sin(za))
triangle-9 medium x1 + o + ﬂ — z% + zg)
triangle-10 medium \/ 732411 + x%x%/Z
triangle-11 medium z1 + x1 tan(zz) + x1/ cos(x2)
triangle-12 medium :c% tan(zo)/2
triangle-13 medium z1 sin(z3)/ sin(za)
triangle-14 hard \/z% — 2z1x2 cos(z3) + z%
triangle-15 medium ,/z% + z%
triangle-16 hard (z1 (1:21'3)/\/713% + 21%13 + 21%1% - w% + 21%3% — z%
triangle-17 hard \/71% + 2m%z% + 21%1% - z% + Zzgmg — zg/(Zzl + 2zo + 2x3)
triangle-18 easy (1 + 23 +x5)/2
triangle-19 hard (Jcl«/acg-kaci-kacg\/(xl —563)2+($2—x4)2)/(1/$%+$%+1/$§+$i+ (x1 — 23)2 + (2 — 24)2)
triangle-20 hard (1%14 + 1314 — zgzg — zzmi)/(2(1114 — zox3))
triangle-21 hard (—xywgx3 + x1w304 — x504 + ®xaxy)/(T124 — T223)
circle-1 easy 27x
circle-2 easy Trzrf
circle-3 easy TL1TY
circle-4 medium 1/9:% — 1%
circle-5 easy (z2 + 2)z1
circle-6 easy zzzf /2
trapezoid-1 hard x1 + xo + \/a:% — 2x1x9 + x% + 490%
trapezoid-2 easy z123/2 + To223/2
trapezoid-3 easy x1 + x2 4+ 23
trapezoid-4 hard (z1 + zg)\/fz% +2z120 — z% + 4:5%/4
trapezoid-5 medium x1 — 2xy/ cos(xz3) + xg + 2x2/ cos(x3)
trapezoid-6 medium —ac% tan(zg)/4 + x% tan(xg)/4
rectangle-1 easy 2x1 + 2o
rectangle-2 easy 1T
rectangle-3 easy 4z
rectangle-4 easy oy
rectangle-5 easy 2z + 2x2
rectangle-6 medium zjzo sin(zs)
line-1 medium (xg —x4)/(x3 — 1)
line-2 medium (x3ze — z124) /(23 — 1)
line-3 medium (z1 —x3)/(1 — z123)
line-4 medium (z3 —x1)/(xa — z2)
line-5 medium (a1 — z223) /(21 — 3)
line-6 hard (w2 — m3@y — x4) /4 /33 + 1
vector3d-1 medium \/x% + x% —+ x%
vector3d-2 hard (z129 + T34 + xsxg)/\/(a:% + :cg + x%)(m% + mz + mg)
vector3d-3 medium 122 + x324 + THTH
vector3d-4 easy T3TE — T4T5
vector3d-5 hard (x124 + 225 + 326)/ ri + a:g + a:%
sphere-1 easy ﬁz% + 2wz a0
sphere-2 easy TT]T2
sphere-3 hard 7\'1% + 27z \/z% + zg
sphere-4 easy 17/31% zo
sphere-5 hard 7?(7)% + x% + \/xg + (z2 — 21)2)(z1 + 22)
sphere-6 medium ﬂ(z% + z120 + z%)zg
sphere-7 easy 4#/37:‘;'
sphere-8 easy 47rz%
cuboid-1 easy 4x1 + 4dao + 4x3
cuboid-2 easy 2x1xo + 2123 + 22223
cuboid-3 easy T1T2T3
cuboid-4 easy 122,
cuboid-5 easy 61?
cuboid-6 easy x%
regular-tetrahedron-1 medium T \/413 + z% + zf
regular-tetrahedron-2 medium 1/31? :L‘g - %z%
regular-tetrahedron-3 easy 1/ 31?12
tetrahedron-1 hard 1/12x4 \/—r‘ll + 27‘%7‘% + 23‘%7% — 7‘% + 27%3‘% — rg
tetrahedron-2 easy zix2/3
tetrahedron-3 hard 1/6x1xox3/sin(xg)2 + sin(zs)2 + sin(zg)2 + 2 cos(z4) cos(zs) cos(zg) — 2
tetrahedron-4 hard 1/3\/(795%/2 +x3/2+23/2)(x2/2 — 23/2 + x3/2) (22 /2 + 23/2 — 23/2)

15

Under review as a conference paper at ICLR 2025

Table 3: 2 part/3 part of geometric dataset.

Dataset name

Input data label

| Input dimensions

triangle-1 Triangle three sides mmm
triangle-2 Triangle three sides mmm
triangle-3 Triangle two sides and the included angle mmr
triangle-4 Triangle two sides and the included angle mmr
triangle-5 Triangle two angles and the included side mrr
triangle-6 Triangle two angles and the included side mrr
triangle-7 Triangle two angles and the opposite sides mrr
triangle-8 Triangle two angles and the opposite sides mrr
triangle-9 Right-angled triangle right sides and hypotenuse mm
triangle-10 Right-angled triangle right sides and hypotenuse mm
triangle-11 Right-angled triangle right side and opposite angle mr
triangle-12 Right-angled triangle right side and opposite angle mr
triangle-13 Triangle two angles and the opposite sides mrr
triangle-14 Triangle two sides and the included angle mmr
triangle-15 Right-angled triangle two right sides mm
triangle-16 Triangle three sides mmm
triangle-17 Triangle three sides mmm
triangle-18 Triangle three points’ coordinates mmmmmm
triangle-19 Triangle two points’ coordinates mmmm
triangle-20 Triangle two points’ coordinates mmmm
triangle-21 Triangle two points’ coordinates mmmm
circle-1 Circle radius m
circle-2 Circle radius m
circle-3 Ellipse major and minor axis mm
circle-4 Ellipse major and minor axis mm
circle-5 Sector radius and angle mr
circle-6 Sector radius and angle mr
trapezoid-1 Isosceles trapezoid upper base lower base and height mmm
trapezoid-2 Isosceles trapezoid upper base lower base and height mmm
trapezoid-3 Isosceles trapezoid upper base lower base and side mmm
trapezoid-4 Isosceles trapezoid upper base lower base and side mmm
trapezoid-5 Isosceles trapezoid upper base lower base and side angle mmr
trapezoid-6 Isosceles trapezoid upper base lower base and side angle mmr
rectangle-1 Rectangle two sides mm
rectangle-2 Rectangle two sides mm
rectangle-3 Square side length m
rectangle-4 Square side length m
rectangle-5 Parallelogram two sides and included angle mmr
rectangle-6 Parallelogram two sides and included angle mmr
line-1 Two lines slope and intercept Imlm
line-2 Two lines slope and intercept Imlm
line-3 Two lines slope and intercept Imlm
line-4 Two points horizontal and vertical coordinates mmmm
line-5 Two points horizontal and vertical coordinates mmmm
line-6 Point horizontal and vertical coordinate and Line slope and intercept mmlm
vector3d-1 Three-dimensional vector mmm
vector3d-2 Two three-dimensional vectors mmmmmm
vector3d-3 Two three-dimensional vectors mmmmmm
vector3d-4 Two three-dimensional vectors mmmmmm
vector3d-5 Three-dimensional vector and point coordinates mmmlll
sphere-1 Cylinder base radius and height mm
sphere-2 Cylinder base radius and height m m
sphere-3 Cone base radius and height mm
sphere-4 Cone base radius and height mm
sphere-5 Frustum upper and lower base radius and height mmm
sphere-6 Frustum upper and lower base radius and height mmm
sphere-7 Sphere radius m
sphere-8 Sphere radius m
cuboid-1 Cuboid three edge lengths mmm
cuboid-2 Cuboid three edge lengths mmm
cuboid-3 Cuboid three edge lengths mmm
cuboid-4 Cube side length m
cuboid-5 Cube side length m
cuboid-6 Cube side length m
regular tetrahedron-1 Regular tetrahedron base edge and height mm
regular tetrahedron-2 Regular tetrahedron base edge and side mm
regular tetrahedron-3 Regular tetrahedron base edge and height mm
tetrahedron-1 tetrahedron three edges and height mmmm
tetrahedron-2 tetrahedron base area and height m“ m
tetrahedron-3 tetrahedron three edges and three angles from one point mmmrrr
tetrahedron-4 isohedral tetrahedron 3 edges mmm

16

Under review as a conference paper at ICLR 2025

Table 4: 3 part/3 part of geometric dataset.

Dataset name

Output data label

| Output dimension |

Limitations

triangle-1 Perimeter m x1 + 2 > 3,1 + 23 > T2,T2 +x3 > X1
triangle-2 Area m? 1 + T2 > 3,1 + T3 > T2, T2 + T3 > T
triangle-3 Perimeter m
triangle-4 Area m?
triangle-5 Perimeter m xry +x3 < T
triangle-6 Area m? xzo +x3 < T
triangle-7 Perimeter m zo +x3 < T
triangle-8 Area m? o +x3 < T
triangle-9 Perimeter m x] < X2
triangle-10 Area m? z1 < x2
triangle-11 Perimeter m zo < w/2
triangle-12 Area m? xg < /2
triangle-13 Another side m xo a3 < T
triangle-14 Another side m
triangle-15 Hypotenuse m
triangle-16 Circumcircle radius m 1 + 2 > 3,1 + T3 > T2, T2 + T3 > x1
triangle-17 Incircle radius m x1 + x2 > x3,x1] + 3 > T2, T3 + T3 > X1
triangle-18 Centroid horizontal coordinate m
triangle-19 incenter horizontal coordinate m
triangle-20 circumcenter horizontal coordinate m
triangle-21 orthocenter horizontal coordinate m
circle-1 Perimeter m
circle-2 Area m?
circle-3 Area m?2 xT1 > T2
circle-4 Focal point m 1 > X2
circle-5 Perimeter m
circle-6 Area m
trapezoid-1 Perimeter m
trapezoid-2 Area m?
trapezoid-3 Perimeter m z3 > (1 —x2)/2,x3 > (v2 —®1)/2
trapezoid-4 Area m? z3 > (1 —x2)/2, 23 > (g —x1)/2
trapezoid-5 Perimeter m z)] < xg,x3 < /2
trapezoid-6 Area m? z] < zo,x3 < W/2
rectangle-1 Perimeter m
rectangle-2 Area m?
rectangle-3 Perimeter m
rectangle-4 Area m?
rectangle-5 Perimeter m
rectangle-6 Area m?
line-1 Intersection horizontal coordinate m
line-2 Intersection vertical coordinate m
line-3 Angle tangent value 1
line-4 Slope of the line through two points 1
line-5 Intercept of the line through two points m
line-6 Point to line distance (directed) m
vector3d-1 Magnitude m
vector3d-2 Cosine value of the angle m
vector3d-3 Dot product m
vector3d-4 Cross product horizontal coordinate m
vector3d-5 Point to plane distance (directed) m
sphere-1 Surface Area m?
sphere-2 Volume m>
sphere-3 Surface Area m>
sphere-4 Volume m?
sphere-5 Surface Area m?
sphere-6 Volume m3
sphere-7 Surface Area m°>
sphere-8 Surface Area m?
cuboid-1 Sum of edge lengths m
cuboid-2 Surface Area m?
cuboid-3 Volume m3
cuboid-4 Sum of edge lengths m
cuboid-5 Surface Area m?
cuboid-6 Volume m?
regular tetrahedron-1 Surface Area m?
regular tetrahedron-2 Volume m3 z% > %zf
regular tetrahedron-3 Volume m?
tetrahedron-1 Volume m> x1 +x2 > x3,T1 +x3 > T2, T2 + T3 > T
tetrahedron-2 Volume m?
tetrahedron-3 Volume m3 T4 x5 +T6 < T
tetrahedron-4 Volume m3 x1 + 2 > 3,1 + 23 > T2,T2 +x3 > X1

17

Under review as a conference paper at ICLR 2025

B MODEL DETAILS

In this section, we give hyper-parameters of all 20 models at Table [5] The other parameters not
mentioned in table is set as default value. In most models, the token setis +, —, X, =~ and cos, sin, /2
and X, const.

Table 5: Hyper-parameter setting of all 20 models.

Model ‘ Hyper-parameters

{ Drtarget: 60, nsample: 1000, anneal: 20,
burnin: 5000, annealf: 6 }
{ trying_const_num: 2,trying_const_range: [0,4],
PSRN trying_const_n_try:3 }
EQL { lp_reg: 0.0001, iterations: 10 }
{ BFE_try_time: 60, BF_ops_file_type: " 14ops”,
polyfit_deg: 3, NN_epochs: 1000 }
{ gp-population_size: 500, generations: 20, p_crossover: 0.5,
NGGP p-mutate: 0.5, tournament_size: 5, train_n: 50,
mutate_tree_max: 3, n_samples: 200000, batch_size: 500 }
{ function_set: [add, sub, mul, div, sin, cos, sqrt, const, poly],
poly_degree: 3, gp_population_size: 500, generations: 20,
uDSR p-crossover: 0.5, p_mutate: 0.5, tournament_size: 5,
train_n: 50, mutate_tree_max: 3, n_samples: 200000,
batch_size: 500 }

{ fixed_consts: [1, pi], fixed_consts_units: [[0], [0]],
free_consts_names: [], free_consts_units : [],
op-names: [mul, add, sub, div, inv, n2, sqrt, neg, sin, cos],
run_config: config2.config2 }

{ population_size: 1000, generations: 20,
gplearn p-crossover: 0.7 ;,max_samples: 0.9,
parsimony_coefficient: 0.01 }

{ const_range: (0,4), generations: 400,

Bayesian Machine Scientist

AlFeynman

PhySO

DEAP p-crossover: 0.3, p_mutate: 300}
{ niterations: 200, weight_optimize: 0.001,
pyst adaptive_parsimony_scaling: 1000, parsimony: 0.0 }
Sindy { library: GeneralizedLibrary([PolynomialLibrary, FourierLibrary])
degree: [2,3,4,5]}
SymINDy { sparsity_coef: 0.01, library_name: “generalized”,
ngen: 20 }
KAN { width: [num_of_inputs,2,1], grid: 3, k: 3 }
SPL { transplant_step: 10000 }
{ tournsize: 10, max_height: 10, max_const: 6, cxpb: 0.1,
RSRM mutpb: 0.5, pops: 500, times: 30, hof_size: 20, token_discount: 0.99,
max_expr_num: 20, expr_ratio: 0.1, token_ratio”: 0.5,
form_type: [Add] }
NeSymReS { config_file: ”100M/eq_setting.json” }
{ beam_size: 10, n_trees_to_refine: 10
E2E max_input_points: 200, eval_input_length_modulo 50,

prediction_sigmas: 1,2,4,8,16 }
{ training_equations: 200000, training_epochs: 20,
DGSR batch_outer_datasets: 24, batch_inner_equations: 100,
other_setting_file: “config.yaml” }
{lam: 0.1, horizon: 200 width: 5
TPSR num_beams: 2, rollout: 5
max_input_points :200, max_number_bags :10 }
{ max_input_points: 200, Iso_optimizer: gwo, Iso_pop_size: 50,
Iso-max_iteration: 10, Iso_stop_r2: 0.999, beam_size: 2 }

SNIP

18

Under review as a conference paper at ICLR 2025

C EXTRA RESULT

In this section, we present additional results from the geometric dataset. As shown in Figure[d] the
performance of many models across the three difficulty levels—easy, medium, and hard—appears
consistent. The strong symbolic regression capabilities demonstrated by models such as RSRM
and PSRN can be attributed to their proficiency in handling medium and hard-level expressions.
RSRM utilizes MSDB, a mechanism for storing previously encountered failure cases, while PSRN
systematically explores a vast array of potential equations. This figure illustrates that both strategies
are effective in improving symbolic regression performance.

Additionally, Bayesian models, such as the Bayesian Machine Scientist, achieve a 100% success

rate in the easy category, highlighting their stability and reliability in simpler tasks.

BMS
NGGP
PySR
RSRM
uDSR
PSRN
AIF
E2E
DGSR
SymINDy
PhySO
TPSR
SINDy
SPL
DEAP
NSRS
gplearn
SNIP
KAN
EQL

Methods

—0—
D—

0%

20

% 40% 60%
Recovery Rate

RSRM

PSRN

q NGGP

q PySR

G DGSR

BMS

AlF

uDSR

%) DEAP

3 SPL

© SymINDy

= physo

TPSR

gplearn

SINDy

E2E

NSRS

KAN

EQL

SNIP

0% 20% 40% 60% 80% 100%
Recovery Rate
RSRM
PSRN
NGGP
SPL
PySR -——
uDSR
DGSR
KAN
% BMS
g PhySO
‘© SymINDy
= gplearn
DEAP
EQL
SINDy
E2E
TPSR
AIF
SNIP
NSRS
0% 5% 10% 15%

Recovery Rate

20%

Figure 4: extra result within three different category.

19

80% 100%

Under review as a conference paper at ICLR 2025

D FULL RECOVERY SCORE OF EACH MODEL

In this section, we provide the recovery rate within each method and each model in Table [6]

Table 6: The recovery rate within each method and each model. BMS, AIF and NGNS refer to the
Bayesian Machine Scientist, AIFeynman and NeSymReS, respectively.

Dataset name ‘PSRN pyst NGGP uDSR RSRM KAN BMS phySO SymINDy gplearn DEAP EQL Sindy SPL E2E TPSR AIF SNIP DGSR NSRS

triangle-1 1 1 1 1 1 1 1 1 1 1 095 05 1 1 1 1 1 1 1 1
triangle-2 0
triangle-3 0 0 0 0 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-4 1 1 1 0.2 1 0 0.95 0 1 0.1 0.21 0 0 0.43 0 0 1 0 0.93 0
triangle-5 0.12 0 0 0 0.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0
triangle-6 1 0 0.07 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-7 007 078 021 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.65 0
triangle-8 1 0.12 018 0 1 0 0 0 0 0 0.02 0 0 0 0 0 0 0 0.03 0
triangle-9 0.67 0.27 1 0.04 0.71 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-10 1 1 1 0.22 1 0 0.56 0 0 0 0 0 0 0 0 0 0.73 0 0 0
triangle-11 1 093 099 0.01 0.66 0 0.71 0 0 0.01 0 0 0 0 0 0 0 0 1 0
triangle-12 1 012 095 0 1 0 1 0 0 0.01 0.02 0 0 0 0 0 0 0 1 0
triangle-13 1 078 097 0.02 1 0 0.75 0.06 0.1 0.2 0.29 0 0 0 0 0 0 0 1 0
triangle-14 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
triangle-15 1 0.83 1 1 1 0 0.95 0.71 0 0.07 0 0 0 1 0 0 1 0 0 0
triangle-16 0
triangle-17 0
triangle-18 0.69 098 1 1 1 1 1 0 0.45 0 0 0.05 1 0 0.21 0 0 0 0.03 0
triangle-19 0
triangle-20 0
triangle-21 0
circle-1 1 1 1 1 1 0 1 0.93 0 0 0.15 0 0 1 0.77 1 1 1 0 1
circle-2 1 1 1 1 1 0 1 1 0 0 0.06 0 0 1 095 073 1 1 0 0.34
circle-3 1 1 1 1 1 0 1 1 0 0 0.02 0 0 1 1 0.87 1 0 0 0.12
circle-4 1 1 1 1 0.76 0 0.71 0.15 0 0.13 0.07 0 0 0.9 0 0 1 0 0 0
circle-5 1 1 1 1 1 0 1 0.92 1 089 0.85 0 1 0.1 099 053 1 0 1 0
circle-6 1 1 1 0.94 1 0 1 0.17 1 0.02 057 0 0 0 0.17 0.53 1 0 1 0
trapezoid-1 0 0 026 0.03 0.79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
trapezoid-2 1 1 1 1 1 0 1 0 1 0 0.13 0 1 0 1 0.27 1 0 0.73 0
trapezoid-3 1 1 1 1 1 0 1 1 1 096 0.87 0 1 1 0.82 0.67 1 0.17 1 0
trapezoid-4 0
trapezoid-5 1 0 0.31 0 1 0 0 0 0 0 0.09 0 0 0 0 0 0 0 0.45 0
trapezoid-6 1 0 0.24 0 1 0 0.22 0 0 0 0 0 0 0 0 0 0 0 0 0
rectangle-1 1 1 1 1 1 1 1 0.9 1 095 094 0.12 1 1 0.61 0.4 1 0.17 1 1
rectangle-2 1 1 1 1 1 0 1 1 1 098 0.96 0 1 1 099 0.87 1 0 1 1
rectangle-3 1 1 1 1 1 0 1 0.8 1 0.76 098 0 1 1 0.86 0.8 1 0.75 1 1
rectangle-4 1 1 1 1 1 0 1 1 1 0.98 1 0 1 1 0.71 1 1 0.4 1 1
rectangle-5 1 1 1 1 1 0 1 1 1 093 0.96 0 1 1 0.12 0 1 0.5 1 0.74
rectangle-6 1 1 1 0.26 1 0 1 0.9 1 082 0.72 0 0 0 0 0 1 0 1 0.65
line-1 1 098 0.76 0 1 0 0.15 0 0 0.02 0.09 0 0 0 0 0 0 0 1 0
line-2 1 1 0.56 0 1 0 0.15 0 0 0 0.24 0 0 0 0 0 0 0 1 0
line-3 1 0.95 1 0.01 1 0 033 0 0 0 0.2 0 0 0 0 0 0 0 0.95 0
line-4 1 1 093 0.01 1 0 0 0 0 0.03 0.19 0 0 0 0 0 0 0 1 0
line-5 1 097 044 0.02 1 0 0 0 0 0 0.08 0 0 0 0 0 0 0 1 0
line-6 1 039 051 0.04 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vector3d-1 026 0.03 032 1 0.93 0 0.2 0 0 0 0 0 0 0 0 0 1 0 0 0
vector3d-2 0
vector3d-3 1 0.12 042 1 1 0 1 0 0.08 0.08 0.21 0 1 0 072 0.92 1 0 1 0
vector3d-4 1 0.98 1 1 1 0 1 0 023 0.15 0.36 0 1 0 0.01 0 0 0 1 0
vector3d-5 0
sphere-1 1 1 1 1 1 0 1 0.29 0.75 0 0 0 0 0 0.9 0.6 1 0 0 0
sphere-2 1 1 1 0.95 1 0 1 1 0.43 0 0.04 0 0 0.2 0.68 1 1 0 0 0
sphere-3 0 0 0.35 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sphere-4 1 1 1 0.99 1 0 1 0 0 0 0 0 0 0 0.59 0.6 1 0 0 0
sphere-5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
sphere-6 1 0.97 1 0.79 1 0 1 0 0 0 0 0 0 0 0 0.67 0.7 0 0 0
sphere-7 1 1 1 1 1 0 1 0 045 0 0 0 0 0 096 0.07 1 0 0 1
sphere-8 1 1 1 0.99 1 0 1 1 0.23 0 0.02 0 0 1 0.98 0 1 1 0 0
cuboid-1 1 1 1 1 1 0 1 0.13 1 0 0.38 0 1 0 072 0.13 1 0.4 1 0
cuboid-2 1 091 099 1 1 0 1 0 1 0.06 0.13 0 1 0.1 0 0 0.79 0 1 0
cuboid-3 1 1 1 0.92 1 0 1 1 1 0.98 1 0 0 0 1 1 1 0 1 1
cuboid-4 1 1 1 1 1 0.12 1 0.13 1 0 0.87 0 1 0.1 0.88 0.93 1 1 1 1
cuboid-5 1 1 1 1 1 0 1 0.13 1 0.13 096 0 1 0.2 099 0.73 1 1 1 0
cuboid-6 1 1 1 1 1 0 1 1 1 093 0.83 0 0 1 0.93 0 1 0 1 1
regular-1 0 0 1 0.04 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
regular-2 0 0 0.58 0.01 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
regular-3 1 1 1 096 0.87 0 1 0 0 0 0.17 0 0 1 033 0.73 1 0 0.85 0
tetrahedron-1 0
tetrahedron-2 1 1 1 1 1 0 1 0.13 0 0.5 0.45 0 0 0 0.98 1 0 0 1 1
tetrahedron-3 0
tetrahedron-4 0
zero count 19 23 15 25 14 67 26 46 45 46 34 68 55 49 43 47 48 59 36 56
average 68.75% 59.31% 64.86% 47.11% 72.92% 4.39% 54.55% 24.44% 29.18% 16.46% 22.65% 0.94% 22.54% 23.99% 29.39% 24.01% 25.13% 11.82% 43.17% 18.10%
average-easy |98.89% 99.54% 99.96% 99.11% 99.54% 11.14% 100.00% 55.46% 66.21% 36.50% 48.75% 2.39% 53.57% 48.93% 71.96% 55.21% 44.07% 29.96% 66.46% 43.57%
average-medium|82.61% 60.22% 73.30% 24.48% 94.61% 0.00% 46.65% 7.91% 9.48% 6.39% 10.57% 0.00% 4.35% 10.13% 3.13% 6.91% 23.91% 0.00% 52.22% 2.83%
average-hard |10.60% 1.95% 6.00% 0.35% 10.70% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 5.00% 0.00% 0.00% 0.00% 0.00% 0.15% 0.00%

20

	Instruction
	Different Approach of Symbolic Regression
	Geometric Dataset
	Datasets
	Metrics
	Symbolic Regression Methods

	Results
	Conclusion
	Dataset Details
	Model Details
	Extra Result
	full recovery score of each model

