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Abstract
Preference-based reinforcement learning (RL) has
gained attention as a promising approach to align
learning algorithms with human interests in var-
ious domains. Instead of relying on numerical
rewards, preference-based RL uses feedback from
human labelers in the form of pairwise or K-
wise comparisons between actions. In this pa-
per, we focus on reward learning in preference-
based RL and address the issue of estimating un-
known parameters while protecting privacy. We
propose two estimators based on the Randomized
Response strategy that ensure label differential
privacy. The first estimator utilizes maximum like-
lihood estimation (MLE), while the second esti-
mator employs stochastic gradient descent (SGD).
We demonstrate that both estimators achieve an
estimation error of Õ(1/

√
n) with n number of

samples. The additional cost of ensuring privacy
for human labelers is proportional to eε+1

eε−1 in the
best case, where ε > 0 is the privacy budget.

1. Introduction
In an increasing range of applications in modern machine
earning, it is of interest to elicit judgments / ratings / feed-
backs from humans (Green et al., 1981). For example, in
marketing applications, it is common practice to elicit the
preferences of consumers about different products. The
most used method of preference elicitation is through pair-
wise comparisons (Shah et al., 2015). For instance, if a
consumer chooses one product over another, then it consti-
tutes a pairwise comparison between these two products.
Gathering of this comparison data has greatly been facili-
tated by crowdsourcing platforms like Amazon Mechanical
Turk (Khatib et al., 2011). Human workers in crowdsourc-
ing setups like this are often asked to compare pairs of items
such as rating the performance of two players in a competi-
tive game (Herbrich et al., 2006), identifying the better of
two possible results of an online search engine (Kazai, 2011)
etc. The pairwise comparisons can be thought as means of
estimating the underlying weights of the items being com-
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pared such as skill of players, relevance of search results
etc. However, these comparisons are subject to getting cor-
rupted by some noise. For example, noise can arise from the
differing levels of expertise of crowd workers. Hence, an
important questions is to estimate the latent weights based
on noisy data in the form of pairwise comparisons (Shah
et al., 2015).

Recently, the AI alignment problem has garnered a lot of in-
terest, where the goal is to steer learning algorithms towards
the interest of humans (Glaese et al., 2022). One of the most
promising approaches to achieve this is via preference-based
reinforcement learning (Christiano et al., 2017), which has
gained considerable attention across multiple application
domains, including game playing (MacGlashan et al., 2017),
large language models (Ouyang et al., 2022) and robot learn-
ing (Shin et al., 2023). In the standard RL setting, the agent
learns to maximize a numerical reward, which she observes
from the environment. However, observing appropriate
numerical rewards can often be challenging in the above ap-
plications, which could significantly affect the performance
of RL algorithms. Preference-based RL with human feed-
back are able to tackle this effectively (Zhu et al., 2023;
Zhan et al., 2023; Pacchiano et al., 2021; Chen et al., 2022).

In preference-based RL, the agent does not receive a numer-
ical reward, instead at every state she receives a feedback
from a human labeler in the form of pairwise or K-wise
comparisons between actions at a given state. Notably, the
language model application InstructGPT (Christiano et al.,
2017; Ouyang et al., 2022) is based on this reward model —
the comparisons depend purely on the current prompt, which
corresponds to the state in a contextual bandit environment
(a degenerate RL environment). These comparisons are
deployed to learn a reward function based on a pre-trained
model, which is then used for downstream policy training
(i.e., finetuning the existing pre-trained model). Our focus,
in this work, is on reward learning. First, the prompts are
first sampled from a pre-collected dataset, and then, for each
prompt, a pair of (or K) responses are sampled by executing
the pre-trained model. A human labeler then ranks all the
responses according to her own preference and based on
the current prompt. Finally, the reward model is trained by
maximum likelihood estimation, or, equivalently, by cross-
entropy minimization.
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One important aspect which is ignored in prior literature
is protecting private information of crowd workers, which
might get revealed from pairwise comparisons provided by
them. In fact, after the emergence of ChatGPT several in-
stances of privacy breach including that of human labelers
have been reported (Li et al., 2023) and henceforth, efforts
have been made to privately fine-tune large language mod-
els (Yu et al., 2021; Behnia et al., 2022). In view of this,
Differential privacy (DP) (Dwork, 2008) is the most adopted
notion to protect the sensitive (private) information of indi-
viduals whose data is used during the model training. In the
setting of reward training in language models, the output
of comparison between a pair of actions or, equivalently,
the label is considered sensitive since it can reveal private
information (preference) of the human labeler. However,
the prompts or the states are not considered sensitive infor-
mation since they are sampled from a pre-collected dataset.
This can be captured by the notion of label differential pri-
vacy (Label-DP), which has been studied in the PAC setting
(Chaudhuri & Hsu, 2011; Beimel et al., 2013) and in the
context of deep learning (Ghazi et al., 2021). Apart from
the above example of language models, label-DP captures
several other practical scenarios. For example, in recommen-
dations systems the items are known to the service provider
but the user ratings or clicks reveal user interest. In compu-
tational advertising, the impressions are non-sensitive, but
the conversions are considered sensitive information.

Our contributions. In this work, we are interested in the
sample complexity for learning a reward model from pair-
wise comparison data under the constraint of label differen-
tial privacy. We assume that the reward is linearly param-
eterized by a weight vector, which is unknown and needs
to be learned. We design two estimators based on the Ran-
domized Response strategy (Warner, 1965), which ensures
label DP for both the estimators. Our first estimator is based
on maximum likelihood estimation (MLE) principle, while
the second estimator employs stochastic gradient descend
(SGD) strategy. We prove that the estimation error for both
the estimators goes down as Õ(1/

√
n) with the number of

samples n, while the cost of ensuring privacy of human
labelers is of a multiplicative factor eε+1

eε−1 in the best case,
where ε > 0 is the privacy budget.

2. Preliminaries
We consider the problem of parameter estimation
from preference-based feedback under privacy con-
straints. Specifically, the preference-based dataset D =
(si, a

0
i , a

1
i , yi)

n
i=1 consists of n samples, each has one con-

text/state si ∈ S (e.g., prompt given to a language model),
two actions a0i , a

1
i ∈ A (e.g., two responses from the lan-

guage model) and label/preference feedback yi ∈ {0, 1}
indicating which action is preferred by humans or domain

experts. As in Zhu et al. (2023), we assume that the state si
is first sampled from some fixed distribution ρ. The pair of
actions (a0i , a

1
i ) are then sampled from some joint distribu-

tion (i.e. a behavior policy) µ conditioned on si. Finally, the
label yi is sampled from a Bernoulli distribution conditioned
on (si, a

0
i , a

1
i ), i.e., for l ∈ {0, 1},

P
[
yi= l|si, a0i , a1i

]
=

exp(rθ∗(si, a
l
i))

exp(rθ∗(si, a0i ))+exp(rθ∗(si, a1i ))
.

Here rθ∗(·, ·) is the reward model parameterized by an un-
known parameter θ∗, which we would want to estimate
using D. This model is often called Bradley-Terry-Luce
(BTL) model (Bradley & Terry, 1952; Luce, 2012).

In this paper, we consider a linear reward model rθ∗(s, a) =
ϕ(s, a)⊤θ∗, where ϕ(s, a) : S × A → Rd is some known
and fixed feature map. For instance, such a ϕ can be con-
structed by removing the last layer of a pre-trained language
model, and in that case, θ∗ correspond to the weights of the
last layer. With this model, one can equivalently write the
probability of sampling yi = 1 given (si, a

0
i , a

1
i ) as

P
[
yi = 1|si, a0i , a1i

]
= σ

((
ϕ(si, a

1
i )−ϕ(si, a

0
i )
)⊤

θ∗
)
,

where σ(z) = 1
1+e−z denotes the sigmoid function. For no-

tation simplicity, we let xi := ϕ(si, a
1
i )− ϕ(si, a

0
i ) denote

the differential feature corresponding to actions a1i and a0i .
With this notation, we have

P [yi=1|xi]=
1

1+e−x⊤
i θ∗ , P [yi=0|xi]=

e−x⊤
i θ∗

1+e−x⊤
i θ∗ . (1)

Throughout the paper, we make the following assumption.

Assumption 2.1 (Boundedness). We assume that θ∗ lies in
the set ΘB = {θ ∈ Rd|⟨1, θ⟩ = 0, ∥θ∥ ≤ B}. Furthermore,
the features are bounded, i.e., ∥ϕ(s, a)∥ ≤ L ∀(s, a).

These assumptions are standard in the literature (Shah et al.,
2015; Zhu et al., 2023). We need the condition ⟨1, θ⟩ = 0
to ensure identifiability of θ∗.

Differential Privacy. First, we recall the definition of dif-
ferential privacy (DP), which is applicable to any notion of
dataset (Dwork, 2008).

Definition 2.2 (DP). Let ε ≥ 0, δ ∈ (0, 1]. A mechanism
M is said to be (ε, δ)-differentially private (DP) if for any
two datasets D,D′ that differ in one single example and for
any subset E of the outputs of M, it holds that

P [M(D) ∈ E] ≤ eε · P [M(D′) ∈ E] + δ .

If δ = 0, M is said to be ε-DP.

In this paper, we adopt the notion of label DP (Ghazi et al.,
2021) to protect sensitive information that lies in preference-
based feedback yi. This is motivated by the fact that in most
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applications, the data (si, a
0
i , a

1
i ) presented to the human

annotator is public (or pre-collected) while the feedback
yi ∈ {0, 1} indicates her personal preference, which needs
to be protected. In our context, label DP roughly means that
any single change of feedback label will not change the final
estimator too much, which is what we formalize below.

Definition 2.3 (Label DP). Let ε ≥ 0, δ ∈ (0, 1]. A ran-
domized algorithm A is said to be (ε, δ)-label differentially
private if for any two datasets D and D′ that differ in the
label of a single sample and for any subset S of the outputs
of A, it holds that

P [A(D) ∈ S] ≤ eε · P [A(D′) ∈ S] + δ.

If δ = 0, A is said to be ε-label DP.

Performance measure. In this work, we aim to come up
with a candidate estimator θ̂ of the unknown parameter
θ∗, which satisfies label DP. The error of this estimator is
typically measured by computing its Euclidean distance
from θ∗, i.e. the estimation error is given by

∥∥∥θ̂ − θ∗
∥∥∥
2
. In

some applications, however, it also makes sense to compute
an weighted Euclidean distance or semi-norm

∥∥∥θ̂ − θ∗
∥∥∥
ΣD

,

where ΣD is some suitable p.s.d. matrix constructed using
feature vectors ϕ(s, a) from the dataset D.

3. Private Estimation in Semi-Norm
In this section, we introduce a private maximum likelihood
estimator (MLE) of the unknown parameter θ∗ and bound
its estimation error w.r.t. the semi-norm. We first discuss
the Randomized Response (RR) mechanism (Warner, 1965),
which we use to guarantee label differential privacy. Let
ε ≥ 0 be the privacy budget and y ∈ {0, 1} be the true label.
When queried the value of y, the RR mechanism outputs ỹ,
which is randomly sampled from the probability distribution

P [ỹ = y] =
eε

1 + eε
and P [ỹ ̸= y] =

1

1 + eε
. (2)

It is easy to show that RR is ε-DP (Dwork, 2008).

(1) and (2) together imply that each randomized label ỹi is
distributed according to the conditional probabilities

P [ỹi = 1|xi] =
1 + e−εe−x⊤

i θ∗

(1 + e−x⊤
i θ∗

)(1 + e−ε)
, (3)

P [ỹi = 0|xi] =
e−ε + e−x⊤

i θ∗

(1 + e−x⊤
i θ∗

)(1 + e−ε)
. (4)

With n such pairs of features and randomized labels
(xi, ỹi)

n
i=1, we compute the MLE, defined θ̂MLE-RR, which

aims to minimize the negative (conditional) log-likelihood,

i.e., θ̂MLE-RR ∈ argminθ∈ΘB
lD,ε(θ), where

lD,ε(θ) = − 1

n

n∑
i=1

[
1(ỹi = 1) log

1 + e−εe−θ⊤xi

(1 + e−θ⊤xi)(1 + e−ε)

+1(ỹi = 0) log
e−ε + e−θ⊤xi

(1 + e−θ⊤xi)(1 + e−ε)

]
.

The privacy guarantee of this estimator follows immediately
from that of RR due to post-processing property of DP
(Dwork, 2008).

Lemma 3.1 (Privacy of MLE with RR). For any ε ≥ 0,
θ̂MLE-RR is ε-label DP.

We now bound the estimation error of this MLE conditioned
on the observed contexts (si)ni=1 and queried action pairs
(a0i , a

1
i )

n
i=1. We define the sample covariance matrix of

differential features as ΣD= 1
n

∑n
i=1 xix

⊤
i and bound the

weighted distance ∥θ̂MLE-RR−θ∗∥ΣD+λI for a given λ > 0.

Theorem 3.2 (Error of estimation in semi-norm). Fix δ ∈
(0, 1), ε > 2LB, λ > 0. Then, under Assumption 2.1, with
probability at least 1− δ, we have

∥θ̂MLE-RR−θ∗∥ΣD+λI ≤ C
eε+LB+1

eε−2LB−1

√
d+log(1/δ)

n
+
√
λB,

where C is some absolute constant.

Proof of this result is deferred to Appendix A. Some obser-
vations are in order with this result.

Cost of Privacy. First, we compare the error of our private
estimator θ̂MLE-RR with the error of the non-private estimator
θ̂MLE of Zhu et al. (2023). θ̂MLE minimizes the loss function

lD(θ) = − 1

n

n∑
i=1

[
1(yi = 1) log

1

1 + e−θ⊤xi

+1(yi = 0) log
e−θ⊤xi

1 + e−θ⊤xi

]
, (5)

an achieves an error of estimation of the order O
(√

d/n
)

in the semi-norm. Comparing this with the estimation error
of θ̂MLE-RR, we observe that the cost of ensuring label DP is
a multiplicative factor of the order O

(
eε+LB+1
eε−2LB−1

)
.

Furthermore, the above bound on the estimation error of
θ̂MLE-RR holds only when the privacy budget is higher than
a certain threshold (which depends on the norm of θ∗ and
features ϕ), i.e., when ε > 2LB, thus limiting its applica-
bility only to lower privacy regimes (since a high value of
ε implies a low level of privacy). This is due to the fact
that θ̂MLE-RR minimizes a privacy modulated loss function
lD,ε(θ), which is strongly convex in the semi-norm ∥·∥ΣD
only if ε > 2LB, which is a crucial step in bounding the
estimation error.
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Note that Theorem 3.2 immediately implies a bound on the
estimation error in ℓ2-norm.
Corollary 3.3. Under the same hypothesis of Theorem 3.2,
we have, with probability at least 1− δ,

∥θ̂MLE-RR−θ∗∥2 ≤ C√
λ

eε+LB+1

eε−2LB−1

√
d+log(1/δ)

n
+B .

As mentioned above, this guarantee only holds for lower pri-
vacy regimes, i.e., when ε > 2LB. In the next section, we
show that under a coverage assumption on the state-action
feature space, one can design a private estimator, whose
error guarantee holds for any ε > 0 and which achieves
a lesser estimation error than MLE in the ℓ2-norm. How-
ever, in applications such as offline linear contextual bandits
(Zhu et al., 2023; Li et al., 2022), where coverage on the
entire state-action space is rarely feasible, it makes sense to
bound the estimation error in the semi-norm ∥·∥ΣD

. This
bound can then be used to learn a downstream pessimistic
policy(i.e. an action selection strategy). The pessimistic
learning rule selects a policy as

π̂Θ = argmax
π∈Π

inf
θ∈Θ

Es∼ρ

[
ϕ(s, π(s))⊤θ

]
. (6)

Here Π is the set of all action selection policies π : S → A
and Θ is a high-probability confidence set for θ∗, i.e.,

Θ =
{
θ∈ΘB :∥θ̂MLE-RR−θ∥ΣD+λI ≤f(ε, δ, d, n, λ)

}
,

where f(·) denotes the estimation error of θ̂MLE-RR as given
in Theorem 3.2. Similar to Li et al. (2022), one can show
that this pessimistic policy achieves a sub-optimality gap of
the order O(L · f(ε, δ, d, n, λ)

∥∥(ΣD + λI)−1/2
∥∥), while

guaranteeing label DP.

4. Private Estimation in ℓ2 Norm
Our main algorithm for reward estimation under ℓ2-norm is
given by Algorithm 1, which can be viewed as one particular
instantiation (i.e., with log loss) of Algorithm 5 proposed
in Ghazi et al. (2021). The key difference is that Ghazi et al.
(2021) focus on establishing the population risk bound for
general stochastic convex optimization under the label DP,
while we aim to establish a high probability concentration
bound for the parameter estimate.

Algorithm 1 runs one-pass SGD over the entire data set D
with private labels only. In particular, at each iteration t, the
algorithm first uses Randomized Response (RR) to privatize
the label (line 5). Then, it computes the noisy gradient
based on noisy label ỹt and performs shifting and scaling to
obtain ĝt, which can be shown to be an unbiased estimate
of the true gradient. Finally, it performs a standard SGD
update. We denote the estimator returned by Algorithm, 1
as θ̂SGD-RR.

Algorithm 1 SGD with Randomized Response

1: Parameters: privacy budget ε; i.i.d dataset D =
(xi, yi)

n
i=1; parameter space ΘB ; log loss ℓ

2: Initialize: θ1 = 0
3: for t=1, . . . , n do
4: Take data point (xt, yt) from the dataset D
5: Let ỹt be the output of RR mechanism on yt, i.e.,

P [ỹt = yt] =
eε

1 + eε
and P [ỹt ̸= yt] =

1

1 + eε

6: Compute the gradient g̃t = ∇θℓ(θt, (xt, ỹt)) and let

ĝt =
eε + 1

eε − 1
·

(
g̃t −

∑1
l=0 ∇θℓ(θt, (xt, l))

eε + 1

)

7: Update the estimate θt+1 = ΠΘB
(θt − ηtĝt)

8: end for
9: Output θ̂SGD-RR = θn+1

The privacy guarantee of Algorithm 1 follows directly from
Randomized Response (Warner, 1965).

Lemma 4.1 (Privacy of SGD with RR). For any ε ≥ 0,
θ̂SGD-RR is ε-label DP.

Remark 4.2 (Central vs. Local Label DP). Our current defi-
nition of label DP follows from the standard one in Ghazi
et al. (2021), which implicitly considers a central trust
model. That is, the learning agent has access to non-private
raw data of human labelers. It is worth noting that our Algo-
rithm 1 also works under the stronger local model where the
learning agent only has access to private labels. To achieve
this, one can simply replace lines 4-5 in Algorithm 1 by
requiring each labeler t to privatize her label yt using RR
before sending it to the learning agent.

In the following, we will establish that the final output of
Algorithm 1 (i.e., θ̂SGD-RR) is close to the true parameter
θ∗ in ℓ2 norm with high probability. In fact, our concentra-
tion result holds for all t, i.e., for all intermediate parameter
estimates. To establish our result, we need the following cov-
erage assumption on the state-action feature space, which
is standard for offline bandits and RL, see Yin et al. (2022).
To begin with, we define the population covariance matrix
of differential state-action features

Σ = Es∼ρ(·),a0,a1∼µ(·|s)
[
ϕ(s, a1)− ϕ(s, a0)

]
.

Assumption 4.3 (Coverage of state-action space). There
exists a κ > 0, such that the data distributions ρ, µ satisfy
the minimum eigenvalue condition λmin(Σ) ≥ κ.

Note that the coverage parameter κ implicitly depends on
the parameter dimension d, and hence, it is a problem-
dependent quantity (Wang et al., 2020).
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The following theorem gives our main result – estimation
error in ℓ2 norm under label DP.

Theorem 4.4 (Private Estimation in ℓ2-norm). Fix δ ∈
(0, 1/e) and ε ≥ 0. The, under Assumptions 2.1 and 4.3,
running Algorithm 1 with ηt =

1
γκ , we have, with probabil-

ity at least 1− δ, for all t ≤ n, the following:

∥θt − θ∗∥ ≤ C · L

γκ
· e

ε + 1

eε − 1

√
log log(n) + log(1/δ)

t
,

where γ = 1
2+e−2LB+e2LB and C is some absolute constant.

Proof of this theorem is deferred to Appendix B. The
above result implies an estimation error of g(ε, δ, L, n, κ) =

Õ

(
L
γκ

eε+1
eε−1

√
log(1/δ)

n

)
for θ̂SGD-RR. Several remarks are

in order with this observation.

Cost of privacy. The privacy cost of our estimator θ̂SGD-RR
is a multiplicative factor of eε+1

eε−1 . This cost of privacy
is standard for RR mechanism (Duchi et al., 2018; Chan
et al., 2012) and improves over the privacy cost suffered
by our MLE based estimator θ̂MLE-RR. Not only that, the
error bound of θ̂SGD-RR holds for all privacy budgets ε >

0 rather than that of θ̂MLE-RR, which holds only when ε
is higher than a certain threshold. Hence, Theorem 4.4
significantly boosts the applicability of our method in all
practical privacy regimes, which comes with an expense of
a coverage assumption on the state-action feature space.

Comparison with Zhu et al. (2023). The non-private esti-
mator θ̂MLE of Zhu et al. (2023) minimizes the loss function

(5) and achives an estimation error O
(
1
γ

√
d
n

)
in the semi-

norm. We have the same 1/γ dependency in the estimation
error as in Zhu et al. (2023). The main difference compared
to Zhu et al. (2023) is that we bound estimation error under
l2 norm and hence get hit by the coverage parameter κ – our
error increases as κ decreases. Another apparent difference
is dependence (or the lack of it) on the feature dimension d
in the estimation. However, it is often the case that feature
norm bound L is of the order O(

√
d) yielding a similar de-

pendence on d as Zhu et al. (2023). Finally, armed with the
coverage assumption, instead of employing a pessimistic
policy as in (6) for a downstream offline contextual bandit
task, we can design a greedy (plug-in) policy

π̂Greedy(s) = argmax
a∈A

ϕ(s, a)⊤θ̂SGD-RR,

which achieves a sub-optimality gap of the order O(L ·
g(ε, δ, L, n, κ), while ensuring label-DP.

Comparison with Cai et al. (2023). One closest work
to ours is Cai et al. (2023), which studied the BTL model
under the constraint of label DP. They leverage the objective
perturbation technique of Kifer et al. (2012) to design a

private estimator, which only suffers an additive privacy
cost rather than a multiplicative one which we get. This is
mainly because their algorithm (via objective perturbation)
only works under the central model of DP, i.e., when the
agent is trusted and she has access to all the raw data. In
contrast, as discussed in Remark 4.2, our Algorithm 1 also
works under the stronger local model (i.e., when each labeler
does not trust the central agent and only sends randomized
label ỹ to her), and achieves the same error guarantee as in
Theorem 4.4. The multiplicative cost of privacy is what we
pay for designing an algorithm which works simultaneously
under both central and local model of label DP. Another
important difference is that their result holds only in the
tabular setting, i.e., when S,A are finite and each ϕ(s, a)
corresponds to a standard basis vector. One important future
work is to employ objective perturbation to achive central
DP with additive privacy cost under the linear BTL model
as considered in this work.

Extension to K-wise comparison data. One possible ex-
tension of our results is to privately learn the reward function
rθ∗ from K-wise comparisons between actions, which is
captured by the Placket-Luce (PL) model (Plackett, 1975;
Luce, 2012). Let s be a state and a1, . . . , aK be K actions
to be compared at that state. Let the label/preference feed-
back y ∈ {1, 2, . . . ,K} indicates which action is preferred
by human labeler. Under the Placket-Luce model, the label
y is sampled according to the probability distribution, for
each l ∈ {1, . . . ,K},

P [y= l|s, a1, . . . , aK ]=
exp(rθ∗(s, al))∑K
j=1 exp(rθ∗(s, aj))

.

When K = 2, this reduces to the pairwise comparison con-
sidered in this work, i.e., the BTL model. One approach
to extend our results to the PL model is by splitting the K-
wise comparison data to pairwise comparisons and running
MLE (or SGD) for total K(K − 1)/2 number of pairwise
comparisons. In this case, privacy can be ensured by em-
ploying the K-Randomized Response (K-RR) mechanism.
When queried the value of y, the K-RR mechanism out-
puts ỹ, which is randomly sampled from the probability
distribution:

P [ỹ = y] =
eε

eε +K − 1
and P [ỹ ̸= y] =

1

eε +K − 1
.

Again K-RR reduces to RR when K = 2. This approach
would achieve an estimation error roughly of the same or-
der as in Theorem 3.2 for the private MLE estimator under
the semi-norm defined by the sample covariance matrix
ΣD= 2

K(K−1)n

∑n
i=1

∑K
j=1

∑K
k=j+1 xi,(jk)x

⊤
i,(jk), where

xi,(jk) = ϕ(si, ai,j) − ϕ(si, ai,k) denotes the feature dif-
ference between j-th and k-th action for the i-th data point.
Another approach is to directly run MLE or SGD on the K-
wise comparison data. For example, for the SGD-based
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approach, one can replace the binary logistic loss with
the cross-entropy loss for multi-class classification. Then,
armed with K-RR and a new gradient estimate ĝt, one can
establish a similar bound as in Theorem 4.4 with a new
multiplicative factor of the order eε+K−1

eε−1 .

5. Conclusion
We presented the first results on private reward estimation
from preference-based feedback. In particular, we showed
that for both semi-norm and ℓ2 norm, there exist estimators
of sample efficiency Õ(1/

√
n) while guaranteeing label DP.

Our algorithms for both cases even offer privacy protection
in the local trust model where each human labeler does not
trust the agent. We believe that our private estimators will be
useful in many emerging preference-based learning scenar-
ios, such as preference-based RL and learning from human
feedback in general. Several interesting future research di-
rections are in order. First, it is instructive to establish a
tight lower bound for label DP under both central and local
models. For the central model, it would be interesting to
study how to adapt the lower bound technique in Cai et al.
(2023) from the tabular case to our linear case. On the other
hand, for the local model, one promising approach is to
leverage the techniques in Shah et al. (2015) and Duchi
et al. (2018). It would also be interesting to study how to
apply our private estimators to trajectory-based comparison
in offline RL and establish the private counterpart of the
results in Zhu et al. (2023).
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A. Derivation of estimation error bound in semi-norm
We are given a query-observation dataset D = (si, a

0
i , a

1
i , yi)

n
i=1. We define xi = ϕ(si, a

1
i )−ϕ(si, a

0
i ). We privatize human

feedback using randomized response mechanism. We define ỹi to be the output of RR given input yi. In this case, we have

P [ỹi = 1|xi] =
1

1 + exp(−⟨θ, xi⟩)
· exp(ε)

1 + exp(ε)
+

exp(−⟨θ, xi⟩)
1 + exp(−⟨θ, xi⟩)

· 1

1 + exp(ε)
,

=
1 + e−εe−θ⊤xi

(1 + e−θ⊤xi)(1 + e−ε)

P [ỹi = 0|xi] =
exp(−⟨θ, xi⟩)

1 + exp(−⟨θ, xi⟩)
· exp(ε)

1 + exp(ε)
+

1

1 + exp(−⟨θ, xi⟩)
· 1

1 + exp(ε)

=
e−ε + e−θ⊤xi

(1 + e−θ⊤xi)(1 + e−ε)
.

Based on this, we define negative log-likelihood

lD,ε(θ) = − 1

n

n∑
i=1

[
1(ỹi = 1) log

1 + e−εe−θ⊤xi

(1 + e−θ⊤xi)(1 + e−ε)
+ 1(ỹi = 0) log

e−ε + e−θ⊤xi

(1 + e−θ⊤xi)(1 + e−ε)

]
.

Now we compute its gradient ∇lD,ε(θ) = − 1
n

∑n
i=1 Vixi = − 1

nX
⊤V , where

Vi = 1(ỹi = 1)

(
e−θ⊤xi

1 + e−θ⊤xi
− e−εe−θ⊤xi

1 + e−εe−θ⊤xi

)
+ 1(ỹi = 0)

(
e−θ⊤xi

1 + e−θ⊤xi
− e−θ⊤xi

e−ε + e−θ⊤xi

)
Then, we have

E [Vi|xi] =
e−θ⊤xi

1 + e−θ⊤xi
−

(
e−εe−θ⊤xi

1 + e−εe−θ⊤xi
· 1 + e−εe−θ⊤xi

(1 + e−θ⊤xi)(1 + e−ε)
+

e−θ⊤xi

e−ε + e−θ⊤xi
· e−ε + e−θ⊤xi

(1 + e−θ⊤xi)(1 + e−ε)

)

=
e−θ⊤xi

1 + e−θ⊤xi
− e−θ⊤xi

1 + e−θ⊤xi
= 0

Now Hessian of log-likelihood is ∇2lD,ε(θ) =
1
n

∑n
i=1 [1(ỹi = 1)α1,i + 1(ỹi = 0)α0,i]xix

⊤
i , where

α1,i =
e−θ⊤xi

(1 + e−θ⊤xi)2
− e−εe−θ⊤xi

(1 + e−εe−θ⊤xi)2
=

e−θ⊤xi

(1 + eθ⊤xi)2
· (e

ε − 1)(eεe2θ
⊤xi − 1)

(1 + eεe−θ⊤xi)2

α0,i =
e−θ⊤xi

(1 + e−θ⊤xi)2
− e−θ⊤xi

(e−ε + e−θ⊤xi)2
=

e−θ⊤xi

(1 + e−θ⊤xi)2
· (e

ε − 1)(eεe−2θ⊤xi − 1)

(1 + eεe−θ⊤xi)2

Assume that −c ⩽ θ⊤xi ⩽ c. (Note that c = LB in our setting.) Then both α1,i, α0,i ⩾ γ, where

γ =
(eε − 1)(eεe−2c − 1)

ec(1 + ec)2(eεec + 1)2
> 0

if ε > 2c. This implies that lD,ε is strongly convex around θ with parameter γ and with respect to the semi-norm ∥·∥ΣD
.

Then, if we introduce the error vector ∆ = θ̂n − θ, we conclude that

γ ∥∆∥2ΣD
⩽ ∥∇lD,ε(θ)∥(ΣD+λI)−1 ∥∆∥(ΣD+λI)

Now note that

Vi|(ỹi = 1) =
e−θ⊤xi(eε − 1)

(1 + e−θ⊤xi)(eε + e−θ⊤xi)
⩽

ec(eε − 1)

(1 + e−c)(eε + e−c)
=

e3c(eε − 1)

(1 + ec)(eεec + 1)

Vi|(ỹi = 0) =
e−θ⊤xi(eε − 1)

(1 + e−θ⊤xi)(1 + eεe−θ⊤xi)

=
eθ

⊤xi(eε − 1)

(1 + eθ⊤xi)(eε + eθ⊤xi)
⩽

ec(eε − 1)

(1 + e−c)(eε + e−c)
=

e3c(eε − 1)

(1 + ec)(eεec + 1)
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Therefore each Vi is σ = e3c(eε−1)
(1+ec)(eεec+1) -sub-Gaussian.

Introducing M = 1
n2X(ΣD + λI)−1X⊤, we have ∥∇lD,ε(θ)∥2(ΣD+λI)−1 = V ⊤MV . Then, the Bernstein’s inequality for

sub-Gaussian random variables in quadratic form (see e.g. Hsu et al. (2012, Theorem 2.1)) implies that with probability at
least 1− δ,

∥∇lD,ε(θ)∥2(ΣD+λI)−1 = V ⊤MV ⩽ σ2

(
tr(M) + 2

√
tr(M⊤M) log(1/δ) + 2 ∥M∥ log(1/δ)

)
⩽ C1 · σ2 · d+ log(1/δ)

n

This gives us

γ ∥∆∥2ΣD+λI ⩽ ∥∇lD,ε(θ)∥(ΣD+λI)−1 ∥∆∥(ΣD+λI) + 4λγB2

⩽

√
C1 · σ2 · d+ log(1/δ)

n
∥∆∥(ΣD+λI) + 4λγB2

Solving for the above inequality, we get

∥∆∥(ΣD+λI) ⩽ C2 ·

√
σ2

γ2
· d+ log(1/δ)

n
+ λB2

Now note that σ
γ = e4c(1+ec)(eεec+1)

(eεe−2C−1)
. Hence we get

∥∆∥(ΣD+λI) ⩽ C · (eεec + 1)

(eεe−2c − 1)

√
d+ log(1/δ)

n
+ C ′ ·

√
λB,

which holds for any ε > 2c, where
∣∣θ⊤xi

∣∣ ⩽ c for all i ∈ [n]. This proves Theorem 3.2.

B. Derivation of estimation error bound in ℓ2-norm
Proof. We divide the proof of Theorem 4.4 into the following steps.

Step 1: We aim to show that there exists some constants λ, G and random variable ẑt such that

∥θt+1 − θ∗∥2 ≤ (1− 2/t) ∥θt − θ∗∥2 + 2

λt
⟨ẑt, θt − θ∗⟩+

(
G

λt

)2

. (7)

To this end, we first define ẑt := E[ĝt|Ft−1]− ĝt, where Ft−1 is the filtration up to the end of t− 1. Note that this condition
is necessary since θt also depends on previous randomness in gradient computation. Then, we have

∥θt+1 − θ∗∥2 = ∥ΠΘ(θt − ηtĝt)− θ∗∥2

≤ ∥θt − ηtĝt − θ∗∥2

= ∥θt − θ∗∥2 − 2ηt⟨ĝt, θt − θ∗⟩+ η2t ∥ĝt∥
2

(a)
= ∥θt − θ∗∥2 − 2ηt⟨E[ĝt|Ft−1], θt − θ∗⟩+ 2ηt⟨ẑt, θt − θ∗⟩+ η2t ∥ĝt∥

2 (8)

where (a) holds by definition of ẑt, i.e., ĝt = E[ĝt|Ft−1]− ẑt.
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To bound the above, we need to study the term ⟨E[ĝt|Ft−1], θt − θ∗⟩, which can be bounded as follows.

⟨E[ĝt|Ft−1], θt − θ∗⟩
(a)
= E[⟨gt, θt − θ∗⟩|Ft−1]

(b)
= E[⟨(σ(x⊤

t θt)− yt)xt, θt − θ∗⟩|Ft−1]

(c)
= E[⟨(σ(x⊤

t θt)− σ((x⊤
t θ

∗))xt, θt − θ∗⟩|Ft−1]

(d)

≥ γE[(x⊤
t (θt − θ∗))2|Ft−1]

= γ(θt − θ∗)⊤E[xtx
⊤
t |Ft−1](θt − θ∗)

(e)

≥ γκ ∥θt − θ∗∥2 (9)

where (a) holds by the fact that ĝt is an unbiased estimate of true gradient gt := ∇ℓ(θt, (xt, yt)), where ℓ is the log-loss. To
see this, by the definitions of g̃t and ĝt, and for any given (xt, yt), we have

E[ĝt|Ft−1]

=Eỹt [ĝt|Ft−1]

=
eε + 1

eε − 1
·

(
eε

1 + eε
∇ℓ(θt, (xt, yt)) +

1

1 + eε
∇ℓ(θt, (xt, 1− yt))−

1∑
y=0

1

1 + eε
· ∇ℓ(θt, (xt, y))

)
=∇ℓ(θt, (xt, yt)) = gt

(b) holds by definition of gt and σ(z) = 1
1+e−z is the sigmoid function; (c) holds by definition of yt; (d) holds by mean-value

theorem and note that σ′(z) = σ(z)(1 − σ(z)) and hence infz∈[−2LB,2LB] σ
′(z) ≥ γ := 1

2+exp(−2LB)+exp(2LB) , where
we utilize Assumption 2.1; (e) holds by Assumption 4.3 and xt is independent of Ft−1.

Thus, plugging (9) into (8), yields

∥θt+1 − θ∗∥2 ≤ ∥θt − θ∗∥2 (1− 2ηtγκ) + 2ηt⟨zt, θt − θ∗⟩+ η2t ∥ĝt∥
2

(a)

≤ ∥θt − θ∗∥2 (1− 2ηtγκ) + 2ηt⟨zt, θt − θ∗⟩+ η2tG
2

(b)
=(1− 2/t) ∥θt − θ∗∥2 + 2

λt
⟨ẑt, θt − θ∗⟩+

(
G

λt

)2

where (a) holds by ∥ĝt∥2 ≤ G2 := 36L2
(

eε+1
eε−1

)2
, which again utilizes Assumption 2.1; (b) holds by letting ηt :=

1
λt and

λ := γκ. Hence, we have established (7).

Step 2: We aim to show that for all t ≥ 2

∥θt+1 − θ∗∥2 ≤ 2

λ(t− 1)t

t∑
i=2

(i− 1)⟨ẑi, θi − θ∗⟩+ G2

λ2t2
. (10)

To this end, we basically expand the recursion in (7) till t = 2 and simple algebra leads to the result. This step also directly
follows from (Rakhlin et al., 2011).

Step 3: We will apply one particular version of Freedman’s inequality to control the concentration of
∑t

i=2(i−1)⟨ẑi, θi−θ∗⟩
in (10). In particular, we will apply Lemma 3 in (Rakhlin et al., 2011) to bound this sum of martingale differences for all
t ≤ n. This needs to hold for all t since we will rely on induction later.

To start with, we let Zi = ⟨ẑi, θi − θ∗⟩. Then, we have the conditional expectation of Zi given Fi−1 is E[Zi|Fi−1] = 0

and conditional variance Var[Zi|Fi−1] ≤ 4G2 ∥θi − θ∗∥2, which holds by ∥ẑi∥ ≤ 2G. Now consider the sum
∑t

i=2(i−
1)⟨ẑi, θi − θ∗⟩ in (10). We need to check two conditions: (i) The sum of conditional variance satisfies

t∑
i=2

Var[(i− 1)Zi|Fi−1] ≤ 4G2
t∑

i=2

(i− 1)2 ∥θi − θ∗∥2 .

10



(ii) Uniform upper bound on each term

|(i− 1)Zi| ≤ 2G(t− 1) ∥θi − θ∗∥
(a)

≤ 2G2(t− 1)

λ
,

where (a) comes from (9) and recall that λ = γκ. To see it, by Cauchy-Schwartz inequality, we have γκ ∥θt − θ∗∥2 ≤
G ∥θt − θ∗∥, and hence ∥θt − θ∗∥ ≤ G/λ for all t. We can then apply Lemma 3 in (Rakhlin et al., 2011) to obtain that for
n ≥ 4 and δ ∈ (0, 1/e), then with probability at least 1− δ, for all t ≤ n

t∑
i=2

(i− 1)Zi ≤ 8Gmax


√√√√ t∑

i=2

(i− 1)2 ∥θi − θ∗∥2, G(t− 1)

λ

√
log(log n/δ)

√log(log n/δ). (11)

Step 4: Once we obtain (11), the remaining step is all about induction and algebra, which follows the same procedures as
in (Rakhlin et al., 2011). After all, we will obtain that for all t ≤ n,

∥θt − θ∗∥2 ≤ (624 log(log n/δ) + 1)G2

λ2t

= CL2

(
eε + 1

eε − 1

)2

· log(log(n/δ)) + 1

γ2κ2t
,

for some absolute constant C. Hence, we have completed the proof.
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