
Published as a conference paper at ICLR 2024

PLUG-AND-PLAY: AN EFFICIENT POST-TRAINING
PRUNING METHOD FOR LARGE LANGUAGE MODELS

Yingtao Zhang1,2∗, Haoli Bai4, Haokun Lin5, Jialin Zhao1,2, Lu Hou4,
Carlo Vittorio Cannistraci1,2,3
1Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence
2Department of Computer Science, Tsinghua University
3Department of Biomedical Engineering, Tsinghua University
4Huawei Noah’s Ark Lab, 5Institute of Automation, Chinese Academy of Sciences
Corresponding to {zhangyingtao1024,kalokagathos.agon}@gmail.com

ABSTRACT

With the rapid growth of large language models (LLMs), there is increasing de-
mand for memory and computation in LLMs. Recent efforts on post-training prun-
ing of LLMs aim to reduce the model size and computation requirements, yet the
performance is still sub-optimal. In this paper, we present a plug-and-play solu-
tion for post-training pruning of LLMs. The proposed solution has two innovative
components: 1) Relative Importance and Activations (RIA), a new pruning met-
ric that jointly considers the weight and activations efficiently on LLMs; and 2)
Channel Permutation, a new approach to maximally preserve important weights
under N:M sparsity. The two proposed components can be readily combined to
further enhance the N:M semi-structured pruning of LLMs. Our empirical exper-
iments show that RIA alone can already surpass all existing post-training prun-
ing methods on prevalent LLMs, e.g., LLaMA ranging from 7B to 65B. Further-
more, N:M semi-structured pruning with channel permutation can even outper-
form the original LLaMA2-70B on zero-shot tasks, together with practical speed-
up on specific hardware. Our code is available at: https://github.com/biomedical-
cybernetics/Relative-importance-and-activation-pruning

1 INTRODUCTION

Recent research on large language models (LLMs) has attracted significant interest. These LLMs,
characterized by their vast number of parameters, have exhibited remarkable proficiency across a
wide range of tasks. However, deploying such models poses challenges due to their substantial
size, computational demands, and execution time. To address this, several methods for network
compression have been explored, such as model quantization (Bai et al., 2020; Frantar et al., 2022;
Xiao et al., 2023; Lin et al., 2023) and network pruning (LeCun et al., 1989; Hassibi et al., 1993;
Mocanu et al., 2018; Sun et al., 2023; Frantar & Alistarh, 2023).

Unlike quantization techniques, which adjust the precision of weights or activations to compress the
network, network sparsity primarily targets the elimination of redundant or useless weights within
models. Despite its potential, the exploration of sparsity in LLMs remains limited. Generally,
neural networks can achieve sparsity through three primary methods: 1) sparse training (Lee et al.,
2018; Mocanu et al., 2018; Evci et al., 2020; Sanh et al., 2020; Yuan et al., 2021; Hoang et al.,
2022; Zhang et al., 2023); 2) pruning-aware training (Han et al., 2015; Liu et al., 2021); and 3)
post-training pruning (PTP) (Hassibi et al., 1993; Li & Louri, 2021; Frantar & Alistarh, 2023; Sun
et al., 2023). However, both sparse training and during-training pruning require multiple rounds
of iterative training, which is computationally costly and time-consuming, especially for LLMs.
Therefore, PTP on a well-pre-trained model represents a more reasonable approach for LLMs.

The primary challenge associated with post-training pruning lies in the substantial performance
degradation compared to dense models. Current methods, like SparseGPT (Frantar & Alistarh,

∗This work is partially done during the internship at Huawei Noah’s Ark Lab.

1

https://github.com/biomedical-cybernetics/Relative-importance-and-activation-pruning
https://github.com/biomedical-cybernetics/Relative-importance-and-activation-pruning

Published as a conference paper at ICLR 2024

2023) and Wanda (Sun et al., 2023), exhibit promising results in unstructured pruning. Nonetheless,
to achieve practical speed-up, it is favored to conduct N:M semi-structured pruning, which can be
supported by specific hardware with sparse matrix multiplications (Mishra et al., 2021). These prior
methods (Sun et al., 2023; Frantar & Alistarh, 2023) under the N:M sparsity suffer from significant
performance drops, thereby restricting their applications in practice. Recently, (Pool & Yu, 2021)
has introduced an input channel permutation method using the greedy search, which can boost the
performance under the N:M sparsity. However, the greedy search is time-consuming on LLMs and
thus is not feasible.

In this paper, we introduce a plug-and-play post-training pruning method for LLMs. Specifically,
the method comprises two key components. First, we introduce Relative Importance and Activa-
tion (RIA), a new pruning metric for LLM pruning. We show that prior pruning metrics (Frantar
& Alistarh, 2023; Sun et al., 2023) tend to prune away entire channels of network weights, which
is undesirable for both unstructured and N:M semi-structured pruning. Instead, RIA jointly consid-
ers the input and output channels of weight and the activation information, effectively mitigating
such issues. Second, we also consider a better way to convert LLM weight matrices to adhere to
N:M sparsity patterns. Unlike existing methods that directly convert the weight matrix to N:M spar-
sity, we propose channel permutation to properly permute the weight channels so as to maximally
preserve the important weights under N:M structures. Finally, the proposed RIA and channel permu-
tation can be readily combined, leading to an efficient and plug-and-play approach for the real-world
acceleration of sparse LLMs inference. We name the proposed method “plug-and-play” since 1) it
does not need additional fine-tuning or retraining; 2) it can be adopted by any models that have linear
layers; 3) it has negligible performance drop when applying channel permutation in the zero-shot
experiments.

Extensive evaluation of open-sourced LLMs (e.g., LLaMA (Touvron et al., 2023a), LLaMA-2 (Tou-
vron et al., 2023b), and OPT (Zhang et al., 2022a)) demonstrates that RIA outperforms SOTA one-
shot PTP methods in both unstructured sparsity and N:M sparsity scenario. Additionally, channel
permutation can be efficiently scaled to LLMs with over 70B parameters within 2 hours, yet recover
a lot of the performance drop caused by N:M constraint and surpass the performance of dense mod-
els in 3 out of 5 evaluated zero-shot datasets. By employing RIA and channel permutation, LLMs
can undergo a smooth transition into N:M constraints. This ensures hardware compatibility while
maintaining the intact performance of the pruned model.

2 RELATED WORK

Post-Training Pruning. Post-training pruning (PTP) methods trace their roots to OBD (LeCun
et al., 1989), which employs the hessian matrix for weight pruning. OBS (Hassibi et al., 1993) fur-
ther refines the approach by adjusting remaining weights to minimize loss changes during pruning.
The advent of Large Language Models (LLMs) has sparked interest in leveraging the Hessian Matrix
for pruning, exemplified by works like AdaPrune (Li & Louri, 2021) and Iterative Adaprune (Fran-
tar & Alistarh, 2022) targeting BERT (Devlin et al., 2018). However, weight reconstruction via
Hessian Matrix inverse incurs substantial computational complexity at O(N4). SparseGPT (Fran-
tar & Alistarh, 2023) reduces this complexity to O(N3), while Wanda (Sun et al., 2023) leverages
input activations for efficient one-shot PTP with reduced pruning time and comparable performance
to SparseGPT. Our proposed method, Relative Importance and Activations (RIA) inherits the time-
saving advantages of Wanda while simultaneously enhancing the performance of the pruned LLMs.
Note that the method proposed in this article is designed for model compression without retrain-
ing and finetuning, which differentiates it from Dejavu (Liu et al., 2023), which requires additional
training steps. Such post-training methods are also preferred for model quantization as well (Bai
et al., 2022; Xiao et al., 2023; Lin et al., 2023; Liu et al., 2024).

N:M Sparsity. Recently, NVIDIA has introduced the N:M constraint sparsity (Mishra et al., 2021)
as a method to compress neural network models while preserving hardware efficiency. This N:M
sparsity constraint stipulates that at least N out of every contiguous M element must be set to zero,
thereby accelerating matrix-multiply-accumulate instructions. For instance, a 2:4 constraint ratio
results in 50% sparsity, effectively doubling the model’s inference speed when utilizing the NVIDIA
Ampere GPU architecture. However, directly applying SOTA unstructured pruning methods to meet
the N:M sparsity often leads to a noticeable decline in performance, as demonstrated in Table 6.
Some approaches (Hubara et al., 2021; Zhou et al., 2021; Zhang et al., 2022b) suggest fine-tuning

2

Published as a conference paper at ICLR 2024

10

-2.5

23

0.6

2.5

-1.8

18

-0.4

-0.3

-0.6

9

0

2.2

2.7

0.7

-13

0.94

0.40

1.00

0.37

0.28

0.32

1.08

0.25

0.05

0.14

1.05

0.00

0.26

0.5

0.45

0.91

Dense Connections Relative ImportanceOriginal Score Matrix

𝑅𝐼!! =
𝑊!!
∑ 𝑊!∗

+
𝑊!!
∑ 𝑊∗!

= 0.45Will be pruned if 50% sparsity Will be retained if 50% sparsity

10

-2.5

23

0.6

2.5

-1.8

18

-0.4

-0.3

-0.6

9

0

2.2

2.7

0.7

-13

Relative Importance

Figure 1: An example of Relative Importance. The connection at position 44 will be removed based
on global network magnitude. However, it is retained when evaluated for its significance within
relative connections.

pruned models to recover capacity, but this is prohibitively expensive for Large Language Models
(LLMs).

Matrix Permutation. N:M sparsity primarily targets the application of sparsity in the input chan-
nel dimension. (Pool & Yu, 2021) presents a permutation method to identify the optimal permutation
of input channels through an exhaustive greedy search and an escape phase to navigate local minima.
However, this greedy approach becomes impractically time-consuming when applied to LLMs due
to their extensive linear layers. In this study, we leverage the specific characteristics of LLMs and
propose a Channel Permutation strategy to reduce the computational overhead efficiently.

3 LLM PRUNING WITH RELATIVE IMPORTANCE AND ACTIVATIONS

3.1 POST-TRAINING PRUNING: PRELIMINARIES

Post-training pruning (PTP) typically starts from the pre-trained network, removes redundant pa-
rameters, and does not need end-to-end fine-tuning. Unlike training-based pruning methods (Mo-
canu et al., 2018; Sanh et al., 2020; Zhang et al., 2023; Tao et al., 2023; Lin et al., 2024), PTP is
fast, resource-saving, and therefore preferred for compressing LLMs (Frantar & Alistarh, 2023; Sun
et al., 2023). PTP is currently prevalent in unstructured pruning and N:M semi-structured pruning,
which is also the main focus of this paper. It is less applied in structured pruning (Ma et al., 2023)
due to a larger performance drop.

A common approach to achieve PTP is layer-wise pruning, e.g., minimizing the discrepancy square
error between the dense and pruned model layer-by-layer recursively. Specifically, we denote the
input of the l-th linear layer as Xl, and weight Wl ∈ Rr×c, where r and c represent the number of
output and input channels respectively. Our primary goal is to find the pruning mask Ml ∈ {0, 1}r×c

that minimizes the ℓ2 distance error between the original and pruned layer.

Therefore, the objective can be formally expressed as follows:

argmin
Ml

||WlXl − (Ml ⊙ Wl) · Xl||22, s.t.. ||Ml||0 ≤ k, (1)

where k represents the number of remaining weights determined by the pruning ratio, and ∥ · ∥0 is
the ℓ0-norm (e.g., the number of non-zero elements). To solve Ml in Equation 1, there are various
pruning metrics, e.g., magnitude-based pruning, that mask the weight below a certain threshold.
Nonetheless, we show that these prior pruning metrics have intrinsic drawbacks, as discussed in the
following section. Optionally, the weight Wl in Equation 1 can also be reconstructed via closed-
form updates (Frantar & Alistarh, 2023); see Appendix D for more discussions.

3.2 RELATIVE IMPORTANCE: A NEW PRUNING METRIC

We present the relative importance (dubbed as RI), a new metric for LLM pruning. We find that
prevalent PTP methods tend to suffer from channel corruption, i,e., the entire input or output channel
is pruned away. This is akin to node removal in network science terms, and it significantly diminishes
the performance of Large Language Models (LLMs), in a manner similar to structured pruning. To

3

Published as a conference paper at ICLR 2024

Attn_Q K V Attn_Out MLP_Up Gate MLP_Down

Sp
_c

or
r

Layers

Figure 2: Spearman’s Rank correlation of LLaMA2-13B activations from Wikitext2, C4, and PTB,
each with 128 samples. Note that the Q, K, and V layers all share the same input activations.
Similarly, the Up and Gate layers also receive identical input activations.

illustrate this, Figure 1 shows a linear layer with W ∈ R4×4. Magnitude-based pruning with 50%
unstructured sparsity will corrupt W4∗, i,e, the 4-th output channel. In practice, we find similar
issues also exist in other prevalent pruning metrics, e.g., Wanda (Sun et al., 2023) prunes around 500
channels out of 5120 channels in some layers, with more than 10% channels corrupted. Given that
well-trained LLMs contain unique information in the input and output channels, it is critical to avoid
channel corruption in post-training pruning. We explain the phenomenon of channel corruption in
detail in Appendix E.

To mitigate such issues, the proposed relative importance (RI) aims to re-evaluate the importance of
each weight element Wij based on all connections that originate from the input neuron i or lead to
the output neuron j. Specifically, the relative importance for Wij can be calculated as:

RIij =
|Wij |∑
|W∗j |

+
|Wij |∑
|Wi∗|

, (2)

where
∑

|W∗j | sums over the absolute values of the weights in input channel j, and similarly∑
|Wi∗| for the sum of the weights in output channels i. The resulting score RIij offers insight into

the relative importance of weight Wij in the context of its connections to neurons i and j.

3.3 INCORPORATING ACTIVATIONS INTO RELATIVE IMPORTANCE

The proposed relative importance can be further combined with activations to assess better the
weight significance, dubbed as relative importance and activation (RIA). Recent findings (Xiao
et al., 2023) show that the occurrence of activation outliers has become a well-known issue in quan-
tizing LLMs. Our visualizations on LLaMA and OPT also confirm these outliers; see Figure 7 and
Figure 8 for details.

Moreover, we find that activation outliers persist regardless of the dataset or parts of the model. To
see this, we calculate the Spearman’s Rank Correlation Coefficient of activations between different
datasets. From Figure 2, it can be observed that pairwise correlations of activations exhibit positive
values and similar trends across different layers and Transformer modules. We offer evidence that
the Spearman Rank correlation between pairs of the activations of different datasets is positive. This
positivity is a necessary condition to incorporate the activation into our RIA formula. And indeed it
is always satisfying.

Built upon Equation 2, for each element Wij , RIA further combines ℓ2-norm of activations ||Xi||2
as follows:

RIAij = RIij × (||Xi||2)a = (
|Wij |∑
|W∗j |

+
|Wij |∑
|Wi∗|

)× (||Xi||2)a, (3)

where a power factor a is introduced to control the strength of activations. Our empirical results in
Figure 9 show that a = 0.5 works generally well for different LLMs.

4 TURNING INTO N:M SPARSITY

This section studies how to turn LLMs into N:M sparsity with the pruning metric. N:M sparsity is
usually favored by post-training pruning given its practical speed-up on specific hardware. Unlike

4

Published as a conference paper at ICLR 2024

1.3 1.9 0.2 1.2 4.2 3.5 5.2 0.6

0.4 1.1 1.5 6.9 0.8 6.7 5.4 8.8

0.2 1.3 8.0 0.8 4.2 1.3 7.6 9.7

1.5 0.6 1.3 0.5 8.8 4.2 8.9 8.9

3.4 4.9 11.0 9.4 18.0 15.7 27.1 28.0

8 7 5 6 3 4 2 1

Total sum of score: 83.7

1 3 5 7 2 4 6 8

Total sum of score: 96.1

2 4 5 7 1 3 6 8

Total sum of score: 102.3

Channel Score

Sorted Index

Score Matrix 𝑺

4.2 1.9 5.2 3.5

8.8 1.5 6.7 6.9

9.7 8.0 7.6 1.3

8.9 8.8 8.9 4.2

5.2 3.5 4.2 1.3

5.4 6.7 8.8 6.9

7.6 8.0 9.7 4.2

8.9 4.2 8.9 8.8

Direct 2:4 Sparsity

Linear Sum
Assignment

Heuristic Channel
Allocation

1.3 1.9 4.2 5.2

1.5 6.9 6.7 8.8

1.3 8.0 7.6 9.7

1.5 1.3 8.9 8.9

Figure 3: Illustration of Channel Permutation. Given a score matrix S assigned by various criteria,
directly processing it with 2:4 sparse results in a total sum of the retained score being 83.7. However,
by using channel permutation, we could get a final total sum of score 102.3.

existing solutions that directly convert to the N:M format, we propose channel permutation, a new
approach that better leverages the pruning metrics by efficiently permuting the weight channels.
Channel permutation can work seamlessly with the RIA metric in Section 3 and other prevalent
methods such as (Frantar & Alistarh, 2023; Sun et al., 2023).

4.1 N:M SEMI-STRUCTURED PRUNING: FORMULATION

We begin by revisiting unstructured PTP in Equation 1. Without loss of generality, we denote the
weight importance score as S ∈ Rr×c, which can be either RIA or other pruning metrics. It is an
NP-hard problem (Frantar & Alistarh, 2023) to find the optimal M ∈ {0, 1}r×c in Equation 1. A
common surrogate is to maximize the sum of retained weight importance scores as follows:

argmax
M

∑
M ⊙ S, s.t. ||M||0 ≤ k. (4)

Similarly, for N:M sparsity, every N out of M contiguous elements is zero along each output channel,
and the objective is re-formulated as:

argmax
M

r∑
i=0

c
m∑

k=0

∑
(M ⊙ S)i,km:(k+1)m, s.t. ||Mi,km:(k+1)m||0 ≤ m− n. (5)

A simple solution to Equation 5 in existing works (Frantar & Alistarh, 2023; Sun et al., 2023)
is directly setting the mask Mi,km:(k+1)m of top N elements in Si,km:(k+1)m to 1, and 0 other-
wise. Nonetheless, this usually leads to sub-optimal solutions. As illustrated in Figure 3, some
input channels with similar scores, either large or small, might get stuck in the same weight block
Wkm:(k+1)m,∗. Consequently, some large weights might be pruned by mistake, while small ones
might be preserved.

4.2 CHANNEL PERMUTATION FOR IMPROVED N:M SPARSITY

To address the aforementioned challenge, we present a new channel permutation (CP) approach that
yields better N:M structures. Note that permuting the input channels of weight can lead to different
importance scores S. We thus introduce an additional column permutation matrix P for S, such that
the sum of retained weight importance can be further maximized:

5

Published as a conference paper at ICLR 2024

argmax
M,P

r∑
i=0

c
m∑

k=0

∑
(M ⊙ (S P))i,km:(k+1)m, s.t. ||Mi,km:(k+1)m||0 ≤ m− n. (6)

For ease of presentation in what follows, we denote the block of the weight matrix as
W∗,km:(k+1)m ∈ Rr×m, where k ∈ {1, ...,K} and K is the number of blocks. N:M pruning
thus occurs row-wise within each block, e.g., only n values are preserved out of m elements for
Wi,km:(k+1)m. Based on the notation, the proposed channel permutation mainly includes the fol-
lowing two steps.

Step 1: Heuristic Channel Allocation. We first calculate the sum of weight importance for each
input channel. These channels are then sorted and allocated into K blocks. To maximally retain the
important channels in each block with N:M sparsity, we use a heuristic allocation strategy. Given
K blocks, we alternately allocate every top-K input channel into each block, and this process is
repeated for m times until all channels are allocated. An example is illustrated in Figure 3. Given
8 input channels and 4 output channels, there are 2 blocks under 2:4 sparsity. The top-1 and top-
2 channels are allocated to block 1 and block 2, respectively, and similarly to the remaining input
channels. Given such a heuristic channel allocation strategy, it can be found that there is a significant
enhancement in the sum of retained weight importance scores compared to direct N:M pruning.

Step 2: Linear Sum Assignment. Next, we show the heuristic allocation strategy can be further
refined. The refining process can be formulated as a linear sum assignment (LSA) problem, which
can be efficiently solved by the Hungarian algorithm (Kuhn, 1955). To see this, we can take out
one allocated channel from each block; thus, there are K channels to be reassigned to K blocks. It
is thus a traditional linear sum assignment problem to find a better one-by-one matching between
the K channels and K blocks, such that the weight importance sum in Equation 6 can be further
improved. From Figure 3, LSA further improves the score sum by 6.2, with the top-1 and top-2,
top-3 and top-4 channels swapped from the heuristic channel allocation.

Remarks. Note that the permutation of weight matrices does not affect the output of LLMs. For
dense layers, the input activations need to be simultaneously permuted, which can be achieved by
permuting the output channels of the previous layer. The exception lies in the residual connection,
which can be done with an efficient permutation operator. More details on implementing channel
permutation and the Hungarian algorithm are listed in F.

5 EXPERIMENTS

5.1 SETUP

We evaluate the proposed approach on three popular LLMs: LLaMA 7B-65B (Touvron et al.,
2023a), LLaMA2 7B-70B (Touvron et al., 2023b), and OPT 1.3B (Zhang et al., 2022a). We use the
public checkpoints of the involved models in the HuggingFace Transformers library 1. We utilize 3
NVIDIA A100 GPUs, each equipped with 80GB memory. For each model under consideration, we
apply uniform pruning to all linear layers, with the exception of embeddings and the head. Specifi-
cally, each self-attention module has four linear layers, while each MLP module contains three linear
layers for LLaMA model families and two for OPT. All the evaluations are conducted with the same
code to make sure the comparison is fair. The detailed settings of tasks, metrics, baseline methods,
and calibration data can be found in Appendix B.

5.2 UNSTRUCTURED PRUNING

Main Results. As highlighted in Table 1, RIA consistently outperforms Wanda and SparseGPT
across all scenarios. Notably, our method achieves a 50% improvement in preventing a performance
drop of the dense model in comparison to SparseGPT (16% in LLaMA and LLaMA2 model family),
and a 17% improvement in preventing a performance drop in comparison to Wanda (13% in LLaMA
and LLaMA2 model family). It is essential to note that as the model size increases, the performance
gap between models pruned by RIA and the original dense models diminishes significantly.

1https://huggingface.co/meta-llama, https://huggingface.co/facebook

6

Published as a conference paper at ICLR 2024

Table 1: Perplexity results on Wikitext2. We produce the one-shot Post-Training pruning methods
with 50% unstructured sparsity on LLaMA, LLaMA2, and OPT models.

Method LLaMA
7b

LLaMA
13b

LLaMA
30b

LLaMA
65b

LLaMA2
7b

LLaMA2
13b

LLaMA2
70b

OPT
1.3b

Dense 5.68 5.09 4.77 3.56 5.47 4.88 3.32 14.62
Magnitude 17.28 20.22 7.54 5.90 16.02 6.83 5.36 1712
Wanda 7.26 6.15 5.24 4.57 6.92 5.99 4.22 18.41
SparseGPT 7.24 6.20 5.32 4.57 6.99 6.10 4.25 27.00
RIA (Ours) 7.12 6.08 5.08 4.38 6.81 5.83 4.11 18.08

Table 2: Ablation Studies of RIA on LLaMA-13B
and LLaMA-30B models.

LLaMA-13B LLaMA-30B
||X||2 9056 nan
|W| 20.22 7.55
|W|in 11.97 6.73
|W|out 7.80 5.55
RI 6.57 5.27
RIA (a = 1.0) 6.14 5.13
RIA (a = 0.5) 6.08 5.08

Ablation Studies. To thoroughly evaluate the
influence of each element within our RIA equa-
tion, we undertook an ablation test, with the
outcomes presented in Table 2. We disassem-
bled our formula into several distinct compo-
nents for closer scrutiny: ||X||2: ℓ2-norm of
activations; |W|: weight magnitude; |W|in:
weight magnitude normalized by the input
channels; |W|out: weight magnitude normal-
ized by the output channels; RI: stands for rel-
ative importance which is the combination of
|W|in and |W|out; and RIA (a = 1.0) and
RIA (a = 0.5) combines relative importance with input activations with different values of a.
The selection of a is shown in Figure 9.

nsamplesSparsity

PP
L

(a) LLaMA65B: Evaluation on Sparsity (b) LLaMA30B: Evaluation on Samples

Figure 4: Sensitivity Evaluation on Sparsity and
number of calibration samples (nsamples).

As illustrated in Table 2, normalizing the
weight magnitude through either input or out-
put channels offers a substantial performance
boost over merely considering weight magni-
tude. Interestingly, utilizing Relative Impor-
tance alone can match or, in instances like
LLaMA-30B, even outperform SparseGPT. A
distinguishing feature of Relative Importance is
its reliance solely on weight information, elimi-
nating the need for calibration data. In contrast,
both Wanda and SparseGPT necessitate calibra-
tion data to derive input activations or Hessian
matrices. The table also showcases enhance-
ments brought about by the other equation components of RIA.

Sparsity. In Figure 4(a), we examine the effects of varying sparsity levels, ranging from 0.1 to 0.6,
on the performance of the LLaMA 65b model. The PPL curves clearly demonstrate that Magnitude
pruning is particularly sensitive to increased sparsity levels, with a 60% sparsity level resulting in
significant model degradation. In contrast, the SparseGPT, Wanda, and RIA models exhibit more
robust performance across all tested sparsity levels, with RIA (green) consistently outperforming the
others at every level of sparsity.

Calibration data. SparseGPT, Wanda, and RIA all require calibration data for obtaining either
input activations or the Hessian matrix. To assess the robustness of our algorithm with respect to the
calibration data, we conduct a sensitivity test involving variations in the type of calibration datasets
and the number of calibration samples. The influence of calibration datasets is presented in Table 7.
Our aim here is to assess the impact of the number of calibration samples.

As illustrated in Figure 4(b), an example of the LLaMA30B model, SparseGPT appears to rely on a
larger number of calibration samples, while both Wanda and RIA demonstrate robust performance
across varying sample sizes. Notably, RIA consistently outperforms the other methods in all cases.

7

Published as a conference paper at ICLR 2024

Table 3: LLaMA2-70B: Zero-Shot Performance of the model with unstructured 50% sparsity com-
pared to the dense model. Bold values denote the best performance across all the post-training
pruning methods. An asterisk (“*”) signifies performance surpassing that of the dense method.

Method Hellaswag BoolQ ARC-C MNLI RTE AVG

Dense 64.77 83.70 54.44 45.81 67.87 63.32

Magnitude 60.58 71.10 49.32 32.80 60.65 54.89
Wanda 62.70 83.27 52.50 43.19 70.84∗ 62.50
SparseGPT 62.36 84.26∗ 53.07 40.29 70.76∗ 62.15
RIA 63.22 84.77∗ 52.56 42.80 71.48∗ 62.97

Table 4: Unstructured sparsity and semi-structured sparsity results on Wikitext2. We highlight the
best performance among all methods within the same sparsity pattern in bold.

Method Unstructured
50%

2:4 2:4+CP
w/o LSA

2:4+CP 4:8 4:8+CP

LLaMA2-13b
(Dense 4.88)

Magnitude 6.83 8.74 8.89 8.87 7.32 7.16
Wanda 5.99 9.00 8.74 8.45 7.00 6.83

SparseGPT 6.10 8.77 8.61 8.48 7.01 6.80
RIA (Ours) 5.83 8.41 8.03 7.77 6.74 6.53

LLaMA2-70b
(Dense 3.32)

Magnitude 5.36 6.76 6.77 6.71 5.89 5.91
Wanda 4.23 5.48 5.29 5.23 4.77 4.63

SparseGPT 4.25 5.68 5.37 5.31 4.91 4.79
RIA (Ours) 4.11 5.36 5.18 5.11 4.68 4.54

Zero-shot performance. In Table 3, we present the zero-shot performance of unstructured 50%
sparsity of the models pruned with magnitude, Wanda, SparseGPT, and RIA on LLaMA2-70b
model. In the last column, we report the average performance across these datasets. As shown
in the table, RIA achieves the best performance on 3/5 datasets and also achieves the best average
performance across the 5 datasets.

5.3 N:M SEMI-STRUCTURED PRUNING

While RIA aims to explore the upper bounds of performance achievable through one-shot PTP
methods, combining it with the N:M constraint seeks to realize the actual inference speed by aligning
with the present GPU hardware environment. In this subsection, we assess how Channel Permutation
(CP) can enhance the performance of one-shot PTP when incorporated with the N:M constraint.

Main Results. In this comparison, we assess the performance of unstructured 50% sparsity, 2:4
constraint sparsity, and 4:8 constraint sparsity for Magnitude, Wanda, SparseGPT, and RIA. Addi-
tionally, we provide the performance results when applying Channel Permutation (CP) to each of
these methods. Directly using step 1 of CP (CP w/o LSA) is also displayed in the table, serving as
an ablation test in comparison to the complete one. We present the Perplexity of each pruned model
on the Wikitext2 dataset, maintaining the same settings as in Section 5.1.

As presented in Table 4, RIA consistently delivers superior performance across all semi-structured
sparsity patterns when employing one-shot PTP. Importantly, when utilizing merely heuristic chan-
nel reallocation, every method—with the exception of Magnitude—already exhibits a significant
performance improvement. With the incorporation of LSA, the performance is further improved.
This highlights our motivation to group the input channels based on their sorted indices, ensuring
that similar scaling channels don’t end up in the same block.

Zero-shot Performance. In Table 6, we present the zero-shot performance of the N:M constraint
models pruned using RIA and Wanda. The table’s last column also provides the average performance
across these datasets. As the table indicates, while there’s a performance decline on the Hellaswag
and ARC-C datasets, the case of RIA (2:4+CP) performs even surpasses the dense model on BoolQ,

8

Published as a conference paper at ICLR 2024

Table 5: LLaMA2-13B: Inference time of different sparsity patterns. Batch size of input sequences
is 8 and the sequence length is 128.

Method Q/K/V/Out Up/Gate Down Overall

unstructured 50% 0.98× 0.98× 0.97× 0.98×
2:4 (cuTLASS) 1.21× 1.23× 1.23× 1.22×
2:4 (cuSPARSELT) 1.64× 1.65× 1.62× 1.63×

MNLI, and RTE datasets. This highlights the observation that large language models can be prone
to overfitting, resulting in an abundance of redundant, unnecessary, or potentially harmful elements.
Notably, with the incorporation of CP, there’s a remarkable improvement in performance for both
Wanda and RIA.

5.4 RUNNING TIME ANALYSIS

Pruning and permutation running time. We present the actual running time of each algorithm
on the largest model involved in this article, LLaMA2-70b. The relative complexity analysis can be
found in Appendix G.

• Pruning time. We test each algorithm with 128 calibration data. For SparseGPT, the
pruning time amounts to 5756 seconds (approximately 1.5 hours). In contrast, Wanda and
RIA demonstrate significantly reduced runtime, with times of approximately 611 seconds
(approximately 10 minutes) and 627 seconds (approximately 10 minutes, including the
execution of calibration samples).

• Channel permutation time. For a comparative analysis of execution duration, we present
the processing time of a single matrix constructed using our algorithm for the N:M spar-
sity. This is compared against the greedy method and its variants, which employ escaping
strategies to circumvent getting trapped in local minima, as discussed in (Pool & Yu, 2021).
The results for different dimensions are provided in Table 11.

Inference acceleration. We assess the inference acceleration offered by sparsity in Large Lan-
guage Models (LLMs). Like SparseGPT (Frantar & Alistarh, 2023), we present data for both the
unstructured sparsity and 2:4 sparsity acceleration on GPU relative to the dense model across var-
ious components. Theoretically, employing an N:M sparsity can yield up to a 2× speedup when
contrasted with dense models. We conduct tests on the Nvidia Tesla A100, utilizing the cuTLASS
and cuSPARSELt library for Sparse Matrix-Matrix Multiplication (SpMM) (Mishra et al., 2021)
with N:M sparse matrices. These two libraries have been incorporated into the latest release of Py-
Torch. For unstructured sparsity, we treat it as if it is a dense matrix and assess the actual inference
speed. Comprehensive acceleration metrics for each module are outlined in Table 5, showing an
acceleration of all the linear layers to be about 1.2× for cuTLASS and 1.6× for cuSPARSELT.

6 CONCLUSION

In this article, we have introduced two novel methods, RIA and Channel Permutation, that together
establish an effective plug-and-play pipeline for post-training pruning and inference acceleration of
large language models. RIA incorporates relative importance and the feature of input activations
that create a criterion for pruning the weights of LLMs. Through extensive experiments on promi-
nent LLMs like LLaMA, LLaMA2, and OPT across varying model sizes, we have demonstrated that
RIA consistently outperforms existing SOTA one-shot pruning techniques SparseGPT and Wanda,
setting a new benchmark for post-training pruning performance. Furthermore, Channel Permuta-
tion successfully reduces the performance drop when adapting the model to the N:M constraint by
reframing the input channel permutation problem as a combinatorial optimization task and solving
it efficiently with the Hungarian algorithm. RIA and Channel Permutation form a seamless “plug-
and-play” method, enabling effective one-shot post-training pruning for all current large language
models. Furthermore, this method is hardware-friendly, ensuring enhanced inference acceleration.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGE

This work is supported by the Zhou Yahui Chair professorship of Tsinghua University, the starting
funding of the Tsinghua Laboratory of Brain and Intelligence, and the National High-level Talent
Program of the Ministry of Science and Technology of China.

REFERENCES

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. Binarybert: Pushing the limit of bert quantization. arXiv preprint arXiv:2012.15701, 2020.

Haoli Bai, Lu Hou, Lifeng Shang, Xin Jiang, Irwin King, and Michael R Lyu. Towards efficient post-
training quantization of pre-trained language models. Advances in Neural Information Processing
Systems, 35:1405–1418, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

Elias Frantar and Dan Alistarh. Spdy: Accurate pruning with speedup guarantees. In International
Conference on Machine Learning, pp. 6726–6743. PMLR, 2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot lan-
guage model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.
5371628.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Duc NM Hoang, Shiwei Liu, Radu Marculescu, and Zhangyang Wang. Revisiting pruning at ini-
tialization through the lens of ramanujan graph. In The Eleventh International Conference on
Learning Representations, 2022.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accel-
erated sparse neural training: A provable and efficient method to find n: m transposable masks.
Advances in neural information processing systems, 34:21099–21111, 2021.

Harold W Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Jiajun Li and Ahmed Louri. Adaprune: An accelerator-aware pruning technique for sustainable cnn
accelerators. IEEE Transactions on Sustainable Computing, 7(1):47–60, 2021.

10

https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628

Published as a conference paper at ICLR 2024

Haokun Lin, Haoli Bai, Zhili Liu, Lu Hou, Muyi Sun, Linqi Song, Ying Wei, and Zhenan Sun.
Mope-clip: Structured pruning for efficient vision-language models with module-wise pruning
error metric. arXiv preprint arXiv:2403.07839, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Ruikang Liu, Haoli Bai, Haokun Lin, Yuening Li, Han Gao, Zhengzhuo Xu, Lu Hou, Jun Yao,
and Chun Yuan. Intactkv: Improving large language model quantization by keeping pivot tokens
intact. arXiv preprint arXiv:2403.01241, 2024.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting
pruning plasticity with neuroregeneration. Advances in Neural Information Processing Systems,
34:9908–9922, 2021.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL
https://www.aclweb.org/anthology/J93-2004.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):2383, 2018.

Jeff Pool and Chong Yu. Channel permutations for n: M sparsity. Advances in neural information
processing systems, 34:13316–13327, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
tuning. Advances in Neural Information Processing Systems, 33:20378–20389, 2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Chaofan Tao, Lu Hou, Haoli Bai, Jiansheng Wei, Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong.
Structured pruning for efficient generative pre-trained language models. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023, pp. 10880–10895, 2023.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

11

https://www.aclweb.org/anthology/J93-2004

Published as a conference paper at ICLR 2024

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
framework on the edge. Advances in Neural Information Processing Systems, 34:20838–20850,
2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022a.

Y Zhang, J Zhao, W Wu, A Muscoloni, and CV Cannistraci. Epitopological sparse ultra-deep learn-
ing: A brain-network topological theory carves communities in sparse and percolated hyperbolic
anns. 2023.

Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Ron-
grong Ji. Learning best combination for efficient n: M sparsity. Advances in Neural Information
Processing Systems, 35:941–953, 2022b.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. Learning n: m fine-grained structured sparse neural networks from scratch. arXiv
preprint arXiv:2102.04010, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

12

Published as a conference paper at ICLR 2024

Table 6: LLaMA2-70B: Zero-Shot Performance of N:M constraint model comparing to the dense
model. Bold values denote the best performance across all N:M constraint models. An asterisk (“*”)
signifies performance surpassing that of the dense method.

Method HellaswagBoolQ ARC-C MNLI RTE AVG

Dense 64.77 83.70 54.44 45.81 67.87 63.32

Wanda (2:4) 57.35 81.44 46.01 37.69 68.59∗ 58.22
Wanda (2:4+CP) 59.37 84.50∗ 48.55 43.09 66.43 60.39
Wanda (4:8+CP) 60.86 82.73 49.94 40.15 67.87 60.51

RIA (2:4) 57.13 82.78 46.76 37.39 69.31∗ 58.68
RIA (2:4+CP) 58.48 85.14∗ 49.15 49.08∗ 68.95∗ 62.16
RIA (4:8+CP) 60.44 83.58 50.43 48.69∗ 70.04∗ 62.64

A MOTIVATION OF CHANNEL PERMUTATION

Figure 5: The degree distribution for input channels after
pruning.

Based on the results presented in Sec-
tion 5, it is evident that after ap-
plying channel permutation, the per-
formance of N:M constraint mod-
els significantly improves in compar-
ison to executing N:M sparsity di-
rectly. This improvement can be
demonstrated through empirical ob-
servations made within Large Lan-
guage Models (LLMs). As shown in
Figure 5, pruning with 50% unstruc-
tured sparsity versus direct N:M con-
straint sparsity (2:4 in the figure) produces distinct variances in the distribution of input channels’
retained degree. The N:M constraint, by its nature, results in a more uniform pruning pattern. With
an example from the first row of Figure 3, when directly pruning with 2:4 constraint sparsity, if the
input channels with universally larger scores get stuck in the same block, some of the weights will
be “wrongly” pruned. Conversely, the block with universally smaller scaling scores will “wrongly”
preserve some weights. One diminishes while the other grows, resulting in a more uniform pruning,
a smaller variance of the retained degree distribution of input channels, and therefore, a lower total
sum of scores after pruning. In contrast, unstructured pruning takes on a broader perspective, prun-
ing weights within their global context. This expansive methodology inherently introduces more
variability, leading to a larger variance in the retained degree of input channels after pruning. The
channel permutation method proposed in this article tackles this challenge smoothly by distribut-
ing similar scaling input channels into different blocks, allowing weights that should be retained to
be preserved as much as possible. The post-channel-permutation distribution (2:4 + CP) of input
channels’ retained degrees can be seen in Figure 5, closely mirroring the results of unstructured
pruning.

B DETAILED EXPERIMENTAL SETTINGS

Tasks and Metrics. We mainly evaluate language modeling and zero-shot classification. Our
initial assessment of language modeling involves a comprehensive evaluation of perplexity (PPL),
where lower values indicate better performance. This evaluation is conducted on the test set of
Wikitext2 (Merity et al., 2016). For further evaluation, we also conduct experiments on zero-shot
classification to assess the ability of the sparse model to correctly classify objects or data points into
categories it has not seen during training across five common-sense datasets: Hellaswag, BoolQ,
ARC-Challenge, MNLI, and RTE, compared to the performance of the dense model. We run the ex-
periments with the public GitHub benchmark EleutherAI/lm-evaluation-harness (Gao et al., 2021).

13

Published as a conference paper at ICLR 2024

Table 7: Assessing across various calibration and evaluation datasets. (LLaMA2-13B)

Eval. dataset PTB wikitext2 c4

Calib. dataset wikitext2 c4 PTB wikitext2 c4 PTB wikitext2 c4 PTB

Magnitude 146.35 6.83 9.38
Wanda 68.49 69.70 63.58 5.85 5.97 5.89 8.43 8.30 8.25

SparseGPT 72.94 72.31 59.10 5.69 6.03 5.90 8.50 8.22 8.30
RIA 67.58 68.69 67.88 5.75 5.83 5.83 8.07 8.03 8.08

Baselines. For unstructured pruning, we compare with: 1) magnitude pruning (Zhu & Gupta,
2017), the most prevalent pruning approach; and two more recent state-of-the-art works on LLM
pruning: 2) SparseGPT (Frantar & Alistarh, 2023) and 3) Wanda (Sun et al., 2023). These methods
can be evaluated both on unstructured pruning and N:M semi-structured pruning in the following
sections.

Calibration Data. We employ 128 samples from the C4 dataset (Raffel et al., 2019) for all models,
and each sample contains 2048 tokens. This also aligns with the settings in baseline methods for a
fair comparison. Note that we also discuss the choice of calibration data across different datasets,
and more details can be found in Appendix C.

C SENSITIVITY TEST ON CALIBRATION DATASETS

Figure 2 illustrates that different datasets exhibit varying data distributions, which in turn im-
pact the input activations. Consequently, we conduct experiments employing different calibration
datasets to evaluate the robustness of the pruned model. Specifically, we utilized three different
datasets—Wikitext2, C4, and PTB (Marcus et al., 1993)—with 128 samples, each containing 2048
tokens, for calibration purposes, and evaluated the performance on Wikitext2. RIA is compared with
Wanda and SparseGPT, with the results summarized in Table 7. RIA surpasses other algorithms in
the majority of scenarios, except when using identical calibration and evaluation datasets for PTB
and wikitext2. This exception can be primarily attributed to the weight reconstruction process. A
more congruent distribution tends to yield enhanced performance through reconstruction. Therefore,
we explore integrating the reconstruction approach with Wanda and RIA in Appendix D. Further-
more, looking at the results across different calibration datasets, the results of RIA are more stable,
which indicates that RIA is more robust than the calibration data.

D WEIGHT RECONSTRUCTION

Following the approach of OBS (Hassibi et al., 1993), which replaces the fine-tuning process with
weight reconstruction using calibration data, this method has gained traction in LLMs post-pruning
as an alternative to fine-tuning and retraining. SparseGPT (Frantar & Alistarh, 2023) extends this
idea by permitting partial updates, thereby reducing computational complexity. The specific formula
for this is detailed in (Frantar & Alistarh, 2023). This weight reconstruction technique is essentially
a tool embraced by all PTP methods that revise the objective function of equation 1 to 7.

argmin
Ml,Ŵl

||Wl · Xl − (Ml ⊙ Ŵl) · Xl||22 (7)

In this formulation, Ŵl represents the weight matrix after undergoing the reconstruction process.
In this section, we evaluate Wanda and RIA based on their adoption of weight reconstruction and
juxtapose their performance with that of SparseGPT. Our findings are presented in Table 8. We omit
the results from PTB as their PPLs are excessively high, rendering them of no reference value. It’s
evident that RIA+rec outperforms other reconstruction-based algorithms. However, except when
Wikitext2 is used both for calibration and evaluation, the reconstruction does not appear to enhance
performance. Therefore, we have chosen not to employ this weight reconstruction approach in our
main text.

14

Published as a conference paper at ICLR 2024

Table 8: Assessment of Post-Training Pruning Methods Integrating Weight Reconstruction
(LLaMA13B).

wikitext2 c4

wikitext2 c4 PTB wikitext2 c4 PTB

Magnitude 6.38 9.38
Magnitude + rec 5.84 6.07 6.17 8.48 8.30 8.62

Wanda 5.85 5.97 5.89 8.43 8.30 8.25
Wanda+rec 5.70 6.00 5.91 8.57 8.29 8.35

SparseGPT 5.69 6.03 5.90 8.50 8.22 8.30

RIA 5.75 5.83 5.83 8.07 8.03 8.08
RIA+rec 5.57 5.86 5.83 8.20 8.03 8.21

E CHANNEL CORRUPTIONS AND STRUCTURED PRUNING

O
cc

u
rr

en
ce

Channel corruption

Figure 6: Comparison of Channel Cor-
ruption in Wanda and RIA. The plot
shows the remaining node degree distri-
bution post-pruning.

Evidence of Channel Corruption. In Section E, we
discussed the occurrence of channel corruption during the
application of Wanda for pruning LLMs. Figure 6 illus-
trates the distribution of connections per input channel
in the weight matrix following pruning by both Wanda
and RIA, where degree denotes the number of connec-
tions a node has. Our findings reveal that in certain layers,
Wanda results in roughly 10% of the channels experienc-
ing corruption. Conversely, RIA ensures that no channels
undergo corruption.

Detrimental Impact of Channel Corruption on Model
Performance. To assess the effects of full chan-
nel pruning on model performance, we utilize LLM-
pruner (Ma et al., 2023), a SOT) method for structured
pruning in LLMs. These experiments are designed to
demonstrate the influence of channel corruption. More-
over, we adopt a pruning strategy based on activation
||X|| as a fundamental comparative method, which serves
not only as a test of structured pruning but also as an ab-
lation study for our RIA method. We compare the structured pruning methods with Wanda and RIA
with both unstructured sparsity results and semi-structured sparsity results. In LLM-pruner (Ma
et al., 2023), they introduce a skip-layer pruning strategy that skips the pruning process for the first
several layers and the last few layers. To provide a thorough evaluation, we perform experiments on
pruning across all model layers, as elaborated in Table 10.

We have the following observations:

1) The overall performance of different sparsity patterns reveals that structured sparsity is less effec-
tive than semi-structured sparsity even at a low sparsity level of 25%, highlighting the detrimental
impact of channel corruption on model effectiveness. Across all sparsity degrees and patterns, RIA
consistently outperforms Wanda, demonstrating its superior performance.

2) The introduction of channel permutation has been found to boost performance as the model shifts
towards semi-structured sparsity. This outcome is consistent with the observations detailed in the
main text.

End-to-End Inference Latency of N:M Sparsity and Structured Sparsity. We offer the LLM
inference latency with structured sparsity and 2:4 sparsity. Our experiment is on LLaMA2-7b de-
ployed on 2 NVIDIA A100s with 80 GB memory, where the input context sequence length is 128.
We increase the batch size and record the inference latency accordingly. According to Table 9,

15

Published as a conference paper at ICLR 2024

Table 10: Comparative performance of structured and semi-structured pruning at various sparsity
levels: experiments on LLaMA2-7B with calibration on C4 with 128 samples and evaluation on
Wikitext2 using PPL metrics. The table includes experiments pruning on all layers.

1:4 (25% sparsity) 2:4 (50% sparsity) 3:4 (75% sparsity)
LLM-Pruner (structured) 28.88 nan 13570
Activation-based (structured) 39.54 10467 nan
Wanda (semi-structured) 5.94 12.15 2863.3
RIA (semi-structured) 5.90 11.27 1891.13
RIA + CP (semi-structured) 5.81 10.12 1532.72
Wanda (unstructured) 5.68 6.92 1506.13
RIA (unstructured) 5.56 6.81 267.61

structured sparsity (50%) marginally outperforms the 2:4 sparsity model as the batch size increases.
Importantly, note that with smaller batch sizes, both structured 50% sparsity and 2:4 sparsity mod-
els do not significantly boost inference speed. However, as the batch size grows, the acceleration
for 2:4 sparsity approximates 1.5x, whereas the structured 50% sparsity tends to reach about 1.7x
acceleration.

Table 9: The inference latency of 2:4 sparsity and structured 50% sparsity
with varying batch sizes on LLaMA2-7b model.

Batch Size 1 8 16 64
dense 281.13 ms 547.82 ms 1011.81ms 3742.76 ms
structured sparsity (50%) 238.92 ms 326.14 ms 616.13 ms 2181.69 ms
2:4 sparsity 225.60 ms 357.48 ms 731.81 ms 2495.41 ms

In conclusion, N:M
semi-structured spar-
sity emerges as the
optimal compromise
between performance
and latency. Although
structured pruning
offers the additional
advantage of acceler-
ation at the same sparsity level, the associated performance decrease is significant, even at very low
sparsity levels.

F IMPLEMENTATION DETAILS OF CHANNEL PERMUTATION

F.1 OUTPUT CHANNEL REORDERING

From a computational efficiency perspective, directly implementing permutation on input vectors
introduces extra runtime overhead for extracting the permuted index and applying it to the input
vectors. However, an alternative approach can be considered. Given that each input serves as the
output of the preceding layer, we can permute the output channels of the previous layers’ weights to
serve as the permuted index for the next layers’ input channels. This eliminates the need to permute
the input index separately, resulting in time savings.

However, two key considerations must be taken into account:

a) The Q, K, and V projection layers within a single module must be treated as a unified matrix, con-
catenated into a single entity that shares the same input channel indices. This ensures that the input
index permutation remains identical across these layers, avoiding the need for additional permuta-
tions. In the case of LLaMA, the MLP module presents a similar scenario, as it contains parallel
layers, namely, down proj and gate proj, which also need to be concatenated into a single matrix.

b) Another important factor to note is that this strategy cannot be applied when dealing with mod-
els featuring residual connections. This is because inputs in such modules also originate from the
previous module. As a result, permutations must be applied to the input activations at the begin-
ning of each module. However, this process does not significantly impact execution time. We’ve
modified the RMS normalization layer — which typically follows the Residual connection — using
Triton (Tillet et al., 2019). This ensures this layer’s output channel indices align with the subsequent
layers’ input indices. In our tests, the time taken for this adjustment is negligible.

16

Published as a conference paper at ICLR 2024

(a) LLaMA7B_Layer2_Attn_K_Proj (b) LLaMA7B_Layer15_Attn_O_Proj (d) LLaMA13B_Layer7_MLP_Up_Proj(c) LLaMA13B_Layer3_Attn_K_Proj

Figure 7: Outliers in LLaMA-7B and LLaMA-13B.

(a) OPT6.7B_Layer1_Attn_K_Proj (b) OPT6.7B_Layer17_MLP_FC1 (d) OPT13B_Layer0_MLP_FC1(c) OPT13B_Layer10_Attn_K_Proj

Figure 8: Outliers in OPT-6.7B and OPT-13B.

F.2 COMMUNITY-BASED PARTITIONING

In optimizing the process of Channel Permutation, we employ a method that significantly acceler-
ates execution by partitioning the input channels into several communities. This strategic division
reduces the runtime of channel permutation to 1

n2 , where n represents the number of communities.
The primary source of this reduction in execution time stems from the more efficient computation
of the sum of scores following N:M pruning, achieved when input channels are allocated into dis-
tinct blocks. The experimental results presented in the main text are grounded on these optimization
techniques.

G COMPLEXITY ANALYSIS OF RIA AND CHANNEL PERMUTATION

RIA. We provide a summary of the computational complexity of various Post-Training Pruning
(PTP) algorithms. For SparseGPT, the time complexity is approximately O(d3hidden) (Frantar &
Alistarh, 2023), whereas both RIA and Wanda exhibit similar time complexities of approximately
O(d2hidden) (Sun et al., 2023).

Channel Permutation. The process of channel reallocation to obtain the sorted input channel
indices is straightforward. Computation of the score matrix S involves determining the outcome of
placing each objection into every box and summing the results while processing the 2:4 constraint
within each block. Consequently, the time complexity for this computation is O

((
c
M

)2 × r ×M
)

,

Table 11: Permutation time (seconds) for Greedy algorithm and Channel Permutation.

4096× 4096 5120× 5120 6656× 6656 8192× 8192

Greedy 252.1 495.4 818.7 1563.6
Greedy + 100 escapes 845.3 1349.1 1896.4 3592.3
Channel Permutation 6.2 8.1 11.5 15.3

17

Published as a conference paper at ICLR 2024

Table 12: Integration of Post-Training Pruning with Quantization Methods.

Magnitude SparseGPT Wanda RIA
Unstructured (50% sparsity) 16.02 6.99 6.92 6.81

Unstructured (50% sparsity) With GPTQ 15.21 7.59 7.41 7.28
Unstructured (50% sparsity) With AWQ 17.12 7.15 7.10 6.97

where r × M represents the computational complexity for the N:M constraint within each block.
The time complexity of the Hungarian algorithm is O

((
c
M

)3)
.

The greedy method (Pool & Yu, 2021) is challenging to implement in LLMs due to its prohibitive
running time, as shown in Table 11. We conduct only a single experiment for performance compari-
son on LLaMA2-13b, which took us 3 days. We tested the greedy method with 100 escape iterations
to handle the permutation, the PPL on wikitext2 with a permuted 2:4 constraint is 7.83 which is just
comparable to our CP method (7.77). However, the CP’s execution time is just about 1 hour, making
it possible to be applied in the LLMs.

H HUNGARIAN ALGORITHM

Given a bipartite graph with N left vertices and N right vertices, depicted by matrix S, where Sij

represents the weight between the left vertex i and the right vertex j, the algorithm aims to identify
the ideal matching that minimizes the aggregate weight. This goal is captured in the subsequent
objective function:

min

N∑
i=1

N∑
j=1

Sij × Xij . (8)

In this Equation, Xij is a binary determinant that showcases whether the left vertex i is paired with
the right vertex j. In our scenario, the initial first group of input indices is treated as vertex i, with the
incomplete boxes acting as vertex j. This transition into an LSA problem is seamlessly facilitated
by the Hungarian algorithm, which subsequently derives the optimal permutation. After rearranging
the first indices of the blocks, we apply the same procedure to the subsequent groups in sequence.

I INTEGRATION OF POST-TRAINING PRUNING WITH QUANTIZATION
METHODS

Our experiments utilized the LLaMA2-7b model, focusing on two quantization methods:
GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2023). The calibration is performed using the
C4 dataset, and evaluations are done on Wikitext2. We present our results in Table 12.

Our finding suggests that this integration can reduce memory and inference acceleration with a slight
detriment to performance.

We have identified two primary strategies for merging post-training pruning with quantization: (a)
first pruning, then quantization, and (b) first quantization, then pruning. Our finding indicates a
preference for (a) pruning before quantization. This is potentially because for (b), conventional
block-wise quantization relies merely on the minimum and maximum weights within a block, and
pruning can lead to a reduction in these extremes, thereby potentially aiding quantization. In con-
trast, (a) quantization before pruning adversely affects the computation of weight importance for
pruning, resulting in diminished performance.

J THE EXPLANATION OF PREVENTING PERFORMANCE DROP FROM DENSE

The primary goal of post-training pruning methods is to minimize the performance drop compared
to the dense model. Therefore, designing metrics that offer a fair evaluation of new methods against
this baseline (dense performance) is crucial. Consider two post-training pruning methods, A and B,
with perplexities P(A) and P(B), respectively. Let P(D) represent the baseline perplexity of the dense

18

Published as a conference paper at ICLR 2024

Figure 9: We evaluate how to choose the factor ‘a’ inside the formula of RIA with LLaMA2-7B
and LLaMA-13b model. The calibration dataset is C4 with 128 samples, and the evaluation is on
wikitext2. The sparsity is fixed at 50%. From the results, there are no significant differences between
a=0.2 to a=0.5. For simplicity, we select a=0.5 in the main text to execute all the evaluations.

network. The effectiveness of method B in preventing performance degradation compared to method
A can be quantified as P (A)−P (B)

P (A)−P (D) . This formula allows for a fair assessment of the new method
relative to previous approaches, taking into account the performance of the dense model in the post-
training pruning context. Using this calculation, the RIA method demonstrates a 17% improvement
over Wanda and a 50% improvement over SparseGPT in preventing performance drops from the
dense model consistently across all tested models.

19

	Introduction
	Related work
	LLM Pruning with Relative Importance and Activations
	Post-training Pruning: Preliminaries
	Relative Importance: A New Pruning Metric
	Incorporating Activations into Relative Importance

	Turning into N:M Sparsity
	N:M Semi-Structured Pruning: Formulation
	Channel Permutation for Improved N:M Sparsity

	Experiments
	Setup
	Unstructured Pruning
	N:M Semi-Structured Pruning
	Running time analysis

	Conclusion
	Motivation of Channel Permutation
	Detailed Experimental Settings
	Sensitivity test on calibration datasets
	Weight Reconstruction
	Channel Corruptions and Structured Pruning
	Implementation Details of Channel Permutation
	Output Channel Reordering
	Community-Based Partitioning

	Complexity analysis of RIA and Channel Permutation
	Hungarian Algorithm
	Integration of Post-Training Pruning with Quantization Methods
	The explanation of preventing performance drop from dense

