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Abstract

In this paper, we introduce CangjieToxi, a novel001
benchmark dataset designed to address the chal-002
lenges of detecting covert offensive language003
in Chinese social media. Existing detection004
systems are often ineffective against evasion005
techniques that manipulate character structure006
to bypass censorship. We focus on two key007
perturbation methods: character splitting and008
character substitution. Character splitting in-009
volves breaking down offensive words into vi-010
sually similar but contextually distinct com-011
ponents, while character substitution replaces012
offensive characters with visually similar but013
non-offensive ones, thus concealing the origi-014
nal intent. Our dataset incorporates these tech-015
niques to create more complex forms of toxicity016
that are difficult for traditional models to detect.017
We conduct extensive experiments with state-018
of-the-art models, revealing their limitations in019
handling these perturbations and demonstrating020
the need for more robust systems. This work021
advances the field by providing a resource to022
improve the detection of cloaked offensive lan-023
guage and contributing to the development of024
censorship-resistant detection methods. Details025
can be found on GitHub repository 1.026

Disclaimer: This paper describes violent and027

discriminatory content that may be disturbing to028

some readers.029

1 Introduction030

In China, while social media censorship is perva-031

sive, it is somewhat less restrictive when it comes032

to gender and LGBTQ+ topics compared to other033

politically sensitive issues. Although certain bound-034

aries remain, these discussions still manage to sur-035

face, particularly in "safe zones" such as interna-036

tional events, public health concerns (e.g., AIDS),037

and the arts, where censorship is more lenient. (Yu,038

1https://anonymous.4open.science/r/CangjieTox
i-6D02

2024) This relatively relaxed approach has fostered 039

a space where gender and LGBTQ+ topics can con- 040

tinue to be discussed, often in subtle ways, such as 041

through the use of emojis or references to foreign 042

contexts. (Gu and Heemsbergen, 2023) Despite 043

these allowances, the digital space remains a bat- 044

tleground for gendered and LGBTQ+ hate speech, 045

as harmful content targeting marginalized groups, 046

like women and sexual minorities, thrives in covert 047

forms. While censorship does not completely stifle 048

feminist or LGBTQ+ discourse, it shapes the way 049

these conversations unfold, contributing to both the 050

visibility and the persistence of offensive language. 051

Researchers have developed machine learning 052

and Natural Language Processing (NLP) systems, 053

particularly large language models (LLMs), to de- 054

tect offensive content across various languages. 055

While these models show promise, they struggle 056

against covert offensive language, which is de- 057

signed to evade detection. Evasion tactics include 058

homophonic substitutions, emoji replacements, and 059

character splitting, techniques that obscure the 060

harmful content from automated systems while re- 061

maining understandable to human readers. (Jiang 062

et al., 2022) For example, the offensive phrase “操 063

逼” (a vulgar insult) can be split using Chinese 064

radicals into “扌辶,” (Chen, 2012) effectively dis- 065

guising the original intent. Similarly, “操你妈逼” 066

can be camouflaged as “澡称冯福” through radical 067

substitution, making it difficult for automated mod- 068

els to flag as offensive while being easily compre- 069

hended by users familiar with the context.(Husain 070

and Uzuner, 2021) 071

The Chinese language, in particular, is vulner- 072

able to these evasion techniques due to lexicon- 073

based censorship, which encourages users to cre- 074

atively bypass detection. These covert methods 075

often involve replacing offensive terms with homo- 076

phones or emojis, techniques that can fool auto- 077

mated systems but are easily understood by human 078

readers. As a result, offensive language continues 079
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to spread unchecked across social media platforms.080

Current moderation systems are ill-equipped to081

detect these cloaked forms of offensive language,082

leaving harmful content to proliferate. This grow-083

ing gap in detection capabilities highlights the ur-084

gent need for more robust and adaptable models085

that can recognize and interpret these subtle forms086

of toxicity.087

To address this challenge, we introduce the088

dataset, which aims to push the boundaries of exist-089

ing detection systems by incorporating innovative090

perturbations like radical-based character decom-091

position and radical substitution. These techniques092

create more complex forms of offensive language,093

challenging models to detect harmful content in094

ways that go beyond traditional methods.095

This study offers several key contributions:096

The introduction of the dataset, which serves as097

a benchmark for assessing the robustness of offen-098

sive language detection models. A comprehensive099

evaluation of state-of-the-art LLMs, demonstrating100

their limitations in detecting cloaked content.101

An in-depth analysis of context-dependent tox-102

icity in single-character tokens, revealing that ex-103

isting automated methods struggle to accurately104

distinguish between toxic and non-toxic usage. A105

critical assessment of lexicon-based filtering, high-106

lighting its high false positive rate due to the mis-107

classification of socially critical but non-toxic com-108

ments.109

Recommendations for improving toxicity detec-110

tion through context-aware modeling and hybrid111

approaches that integrate lexicon-based methods112

with machine learning.113

2 Related Work114

2.1 Chinese Offensive Content Dataset115

Several datasets have been developed for detect-116

ing offensive content in Chinese, each addressing117

specific types of offensive language. The Chinese118

Offensive Language Dataset (COLD) categorizes119

content into attacks on individuals, groups, and120

anti-bias categories, although it is limited in diver-121

sity and lacks representation of the full spectrum122

of offensive language (Deng et al., 2022). The123

TOCP (Yang and Lin, 2020) and TOCAB (Chung124

and Lin, 2021) datasets , originating from Taiwan’s125

PTT platform, focus on detecting profanity and abu-126

sive language, while Sina Weibo Sexism Review127

(SWSR) specifically targets sexism within Chinese128

social media, offering a lexicon for abusive and129

gender-related terms (Jiang et al., 2022). The Tox- 130

iCN dataset (Lu et al., 2023), which incorporates 131

multi-level labeling for offensive language, hate 132

speech, and other categories, serves as the founda- 133

tion for the newly introduced ToxiCloakCN, which 134

enhances detection by addressing the challenge of 135

cloaked offensive content, such as homophonic sub- 136

stitutions and emoji transformations (Xiao et al., 137

2024). These datasets provide valuable resources 138

but often fall short in capturing evolving tactics like 139

cloaking or nuanced expressions of offense. 140

2.2 Chinese Offensive Content Detection 141

A range of models have been developed to detect 142

offensive content in Chinese, leveraging techniques 143

such as lexicon-based approaches, supervised learn- 144

ing, and fine-tuned pre-trained models. Lexicon- 145

based models have been widely used but struggle to 146

detect emerging offensive terms (Deng et al., 2022). 147

Machine learning models, including supervised and 148

adversarial learning, offer improved detection, but 149

their performance is often limited by the evolution 150

of language and the subjectivity of offensive con- 151

tent (Liu et al., 2023). Research on domain adap- 152

tation (Ying et al., 2024) and cross-cultural trans- 153

fer learning (Zhou et al., 2023) has further shown 154

that language models trained on other languages 155

can be adapted to explicit detection of Chinese of- 156

fensive languages with promising results. Recent 157

research has highlighted the effectiveness of large 158

language models (LLMs) in context-aware hate 159

speech detection. Guo et al. showed that LLMs 160

outperform traditional models by using specialized 161

prompting strategies to better capture the context 162

of hate speech. (Guo et al., 2023) Kumarage et al. 163

also explored the strengths of LLMs in hate speech 164

classification (Kumarage et al., 2024) Additionally, 165

Nirmal et al. (2023) introduced an interpretable 166

hate speech detection method using LLM-extracted 167

rationales. (Nirmal et al., 2024) 168

Our proposed ABC dataset introduces new per- 169

turbations like radical-based decomposition and 170

substitution to challenge existing models, aiming 171

to improve the detection of more complex forms of 172

offensive content. 173

2.3 Language Perturbation 174

Language perturbation techniques have been ex- 175

plored to examine vulnerabilities in NLP models, 176

especially in adversarial settings. Techniques like 177

emoji insertion (Kirk et al., 2022) and token re- 178

placement (Garg and Ramakrishnan, 2020) are 179
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Figure 1: Offensive Langurage Detection Flowchart

commonly used to test the robustness of models180

against subtler forms of offensive content. In Chi-181

nese, language perturbation faces additional chal-182

lenges due to the language’s character-based struc-183

ture, where meaning can shift dramatically with184

slight modifications in characters or word order.185

Previous work on Chinese offensive language de-186

tection has addressed perturbations such as word187

perturbation and synonym usage (Su et al., 2022),188

while the introduction of ToxiCloakCN demon-189

strates the impact of homophonic substitutions and190

emoji transformations on model performance (Xiao191

et al., 2024).192

Our dataset expands on these perturbation tech-193

niques by incorporating radical splitting and sub-194

stitution of character components, adding a new195

layer of complexity to model testing and address-196

ing emerging evasion tactics in Chinese offensive197

language detection.198

3 Dataset Construction199

In this section, we describe the process of con-200

structing the dataset used for offensive language201

detection, including data collection, preprocessing,202

offensive keyword extraction, and annotation, as203

well as the techniques used to introduce meaningful204

perturbations to the dataset for training purposes.205

The visualization of the comprehensive process is206

shown in 2.207

3.1 Data Source and Preprocessing208

We collect comments from Douyin, a major short209

video platform in China. Due to the site’s filtering210

system, posts containing offensive language are 211

relatively rare. To address this, we focus our data 212

collection on several sensitive topics, such as mar- 213

riage, gender, fertility, LGBTQ issues, and race, 214

which are frequently discussed online. We then 215

compile a list of keywords for each topic and use 216

them to gather 45484 comments that do not have 217

replies. We exclude texts that are too short to con- 218

vey meaningful content, such as those consisting 219

only of auxiliary words or inflections. Additionally, 220

we remove irrelevant data, such as duplicate entries 221

and advertisements. Ultimately, 28080 comments 222

are retained. During the data cleaning process, we 223

standardize the unique web text formats as outlined 224

by Ahn et al. (2020), removing unnecessary new- 225

lines and spaces. To protect privacy, we anonymize 226

the data by filtering out usernames, links, emails 227

and stickers. Since emojis may contain valuable 228

emotional cues, we retain them for the purpose of 229

offensive language detection. 230

3.2 Offensive Keywords Extraction 231

In order to enrich our dataset with meaningful per- 232

turbations, we applied a multi-step approach for 233

offensive keyword extraction. First, we utilized 234

the BERTopic model for topic modeling on our 235

dataset, identifying offensive terms from the rep- 236

resentative words of each topic. Additionally, we 237

leveraged existing lexicons, such as the SexHate 238

Lexicon from the SWSR dataset and the gender 239

and LGBTQ+ lexicon from the ToxiCN dataset, 240

to filter relevant offensive keywords. After filter- 241

ing, we merged these external lexicons with the 242
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Figure 2: Offensive Langurage Detection Flowchart

offensive terms we defined ourselves, creating a243

comprehensive keyword list, consisting of 300 of-244

fensive keywords. This lexicon was then used to245

screen the entire dataset for offensive content.246

3.3 Human Annotation247

For the annotation process, we conducted a man-248

ual review of the filtered dataset. A total of four249

native Chinese annotators with social science back-250

grounds were involved, ensuring gender balance251

in the team. To assess the reliability of the annota-252

tions, we calculated the interannotator agreement253

using Fleiss’s Kappa, which yielded a value of254

0.829, indicating a high level of agreement among255

the annotators. This robust agreement suggests the256

reliability and consistency of the offensive labels257

applied to the dataset.258

3.4 Character-Level Perturbation259

To better simulate the process of character substi-260

tution and splitting used by people to evade cen-261

sorship on social media, our approach follows key262

principles grounded in visual recognition studies.263

Research has shown that substitutions or variations264

in character structure, as long as the distribution265

of information within the character remains con-266

sistent—such as maintaining the relative positions267

of phonetic and semantic radicals—do not signifi-268

cantly affect a reader’s ability to recognize meaning269

or pronunciation (Hsiao and Cheng, 2013). This270

aligns with findings that visual recognition advan-271

tages in the right visual field (RVF) persist when272

phonetic components appear on the right and se-273

mantic components on the left, a structure com-274

monly observed in Chinese characters (wen Hsiao,275

2011). Additionally, studies on radical combin-276

ability indicate that position-specific radical com-277

binability (SRC) is a stronger predictor of neural278

activation in character recognition than position- 279

general radical combinability (GRC), suggesting 280

that radical position matters more than sheer fre- 281

quency (Liu et al., 2022). By preserving these po- 282

sitional relationships—especially in left-right and 283

up-down structures—our modifications ensure that 284

the altered characters remain easily interpretable 285

by human readers while disrupting automated de- 286

tection systems. 287

Our perturbation strategy differs for offensive 288

and non-offensive text: 289

1. Perturbation of offensive Text: We only per- 290

turb words that appear in a predefined list 291

of specific offensive keywords. This selec- 292

tive perturbation ensures that modifications 293

are concentrated on words strongly associ- 294

ated with toxicity while avoiding unnecessary 295

changes to unrelated words. For example, in 296

the phrase “妈逼” (a profane expression), the 297

character “妈” will be perturbed, whereas in 298

“妈妈” (mother), no perturbation will occur. 299

2. Perturbation of Non-offensive Text: We per- 300

turb all individual characters that appear in 301

the keyword list, even if they are not part of 302

offensive words. While these perturbations 303

are unrelated to toxicity, this design prevents 304

the model from learning incorrect associations 305

during training—such as mistakenly linking 306

rare characters or structural variations with 307

toxicity. For instance, in the word “妈妈” 308

(mother), the character “妈” will be perturbed. 309

Our approach to character perturbation adheresit 310

to three main principles: 311

1. Character Structure: We selected characters 312

whose structure could be further split, avoid- 313

ing non-split characters such as “广” (which 314
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cannot be split further). We primarily chose315

left-right and top-bottom structured Chinese316

characters, as they are the most frequently317

used formations in written Chinese.318

2. Position Consistency: For both substitution319

and splitting, we ensured that the compo-320

nents retained their relative positions within321

the character. This structural stability mini-322

mizes disruptions in visual recognition, allow-323

ing readers to process the modified text with324

minimal effort.325

3. Radical Frequency: We focused on structural326

components (radicals) frequently employed in327

character variations, ensuring that the substi-328

tutions remained consistent with real-world329

linguistic modifications and had minimal im-330

pact on readability.331

By following these principles, our character per-332

turbation strategy effectively mimics real-world tac-333

tics used by social media users to bypass censorship334

while preserving readability for human readers.335

3.4.1 Character Splitting336

In the Character Splitting step, we used the split-337

ting dictionary provided by the funnlp library2 to338

match characters in our offensive word list. The339

library offers multiple splitting methods for each340

character, and we selected the most optimal split-341

ting method based on our principles.342

The splitting rules were as follows:343

1. We only split characters into two components.344

If a character’s components exceeded two,345

they were placed in non-typical positions, neg-346

atively affecting recognition. For example, the347

character "搏" (bó) splits into ’手’ (hand) +348

’甫’ (fu) + ’寸’ (inch), but ’寸’ is expected349

to be at the bottom of “甫,” making the split350

unnatural.351

2. When multiple splitting methods were avail-352

able, we chose the method where the compo-353

nents’ positions most closely resembled those354

of the original character. For instance, the355

character "擦" (wipe) has three splitting meth-356

ods:357

• "擦" → "手" (hand) + "察" (inspect)358

• "擦" → "扌" (hand radical) + "察" (in-359

spect)360

2https://github.com/fighting41love/funNLP

• "擦" → "才" (only) + "察" (inspect) 361

We chose the second method because "扌" 362

(hand radical) is most frequently seen on the 363

left side of a character, making it the most 364

natural and recognizable modification.3 365

3.4.2 Character Substitution 366

In the Character Substitution step, we relied on the 367

library of the Chinese Text Project (中国哲学书 368

电子化计划) to substitute the radical of characters 369

from 101 offensive words, selected from a total of 370

300 offensive terms. These substitutions involved 371

modifying 427 Chinese characters using different 372

radicals.4 373

Since a single Chinese character can be substi- 374

tuted with multiple radicals, we followed the prin- 375

ciple of radical frequency to determine the most 376

suitable replacements. Specifically, we used the 377

Xiandai Hanyu Changyong Zibiao (List of Fre- 378

quently Used Characters in Modern Chinese) pro- 379

vided by the Ministry of Education 5. Based on the 380

individual character frequencies, we selected the 381

most frequent substitute character with the highest 382

frequency of occurrence as the replacement. For 383

example, the character "猥琐" (lewd) was substi- 384

tuted with "偎唢" following this approach, as these 385

substitutions closely align with commonly used 386

radicals in modern Chinese. 387

This method ensures that the substitutions reflect 388

both linguistic frequency and the intended meaning 389

while avoiding arbitrary or non-standard replace- 390

ments, helping to maintain the readability of the 391

altered text. 392

4 Experiments 393

To evaluate the effectiveness of existing models and 394

methods on our proposed benchmark, we employed 395

the following experimental setup and methodolo- 396

gies. This systematic approach ensures a compre- 397

hensive assessment of model performance and ro- 398

bustness in detecting offensive language under var- 399

ious perturbations. 400

4.1 Baseline 401

The evaluation of three state-of-the-art 402

models—DeepSeek-V3, GPT-4o, and Qwen- 403

Max—revealed notable trends in their performance 404

3https://lingua.mtsu.edu/chinese-computing/s
tatistics/index.html

4https://ctext.org/dictionary.pl?if=gb
5https://lingua.mtsu.edu/chinese-computing/s

tatistics/index.html
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Model Accuracy Macro F1 Score
DeepSeek-V3 0.7286 0.7255
GPT-4o 0.7329 0.7309
Qwen-Max 0.7447 0.7432

Table 1: Performance of Models on Full Dataset

under character decomposition (拆字) and char-405

acter substitution (换字) perturbations. On the406

original data, Qwen-Max achieved the highest407

accuracy (0.7868) and Macro F1 score (0.7858),408

followed by DeepSeek-V3 and GPT-4o. After409

applying character decomposition, all models expe-410

rienced a performance decline, with DeepSeek-V3411

dropping to an accuracy of 0.7165 and a Macro F1412

score of 0.7150, GPT-4o dropping to an accuracy413

of 0.6875 and a Macro F1 score of 0.6839, and414

Qwen-Max dropping to an accuracy of 0.7281 and415

a Macro F1 score of 0.7267.416

For character substitution, Qwen-Max again led417

with an accuracy of 0.8132 and a Macro F1 score of418

0.8122, while DeepSeek-V3 and GPT-4o achieved419

accuracies of 0.7752 and 0.7818, respectively. The420

performance drop following character decomposi-421

tion highlights the increased difficulty posed by this422

perturbation type. Notably, Qwen-Max exhibited423

the smallest performance degradation, suggesting424

stronger robustness to adversarial transformations425

compared to the other models. These results un-426

derscore the challenges of character-level pertur-427

bations and the varying resilience of models in428

handling such modifications. Detailed model per-429

formance can be seen in Table 1 and Table 2.430

4.2 Experiment Settings431

To ensure standardized and reproducible outputs432

from large language models (LLMs) in our experi-433

ments, we utilized the dspy framework. This frame-434

work provides a structured approach to prompt en-435

gineering and output generation, enabling consis-436

tent evaluation across different models and settings.437

Prior research has demonstrated that using Chi-438

nese prompts yields marginally better performance439

in detecting offensive language in Chinese text440

compared to English prompts (Xiao et al., 2024).441

To align with these findings and maintain consis-442

tency, we adopted a uniform Chinese prompt across443

all experiments. The prompt used for offensive lan-444

guage detection is as follows:445

Prompt: "下面是一条来自于社交媒体446

的评论，请判断这条评论是否是冒犯447

性的(offensive)。若你认为评论是’冒犯性 448

的(offensive)’的，请输出1，否则输出0。" 449

(Translation: "Below is a comment from social 450

media. Please determine whether this comment is 451

offensive. If you consider the comment ’offensive,’ 452

output 1; otherwise, output 0.") 453

This prompt was designed to explicitly instruct 454

the model to classify the input text as either offen- 455

sive or non-offensive, ensuring clarity and consis- 456

tency in model responses. 457

Model Configuration For all experiments involv- 458

ing LLMs, we set the temperature parameter to 0 to 459

minimize randomness in model outputs and ensure 460

deterministic behavior. All other hyperparameters 461

were kept at their default values to maintain a fair 462

and controlled evaluation environment. 463

This standardized setup allows for a rigorous 464

comparison of model performance on our bench- 465

mark, while also providing a foundation for future 466

reproducibility and extension of our work. 467

5 Results and Discussion 468

5.1 Single Char 469

During the construction of the dataset, we observed 470

that certain single-character tokens (e.g., “鸡” of- 471

ten used as a sexualized insult, and “艾”, “梅”, “淋” 472

commonly appear as the first character in sexually 473

transmitted disease names) could potentially indi- 474

cate toxic content. However, a significant portion 475

of comments containing these tokens were found to 476

be non-toxic upon manual inspection, highlighting 477

that the toxicity of such tokens is highly context- 478

dependent. 479

In our toxic comment dataset, we included com- 480

ments containing these specific tokens and manu- 481

ally annotated them to determine their toxicity. De- 482

spite this effort, we identified a critical limitation: 483

current automated methods struggle to accurately 484

distinguish whether comments containing these to- 485

kens are toxic or not. This underscores the need 486

for more sophisticated context-aware approaches to 487

improve the precision of toxicity detection. Future 488

work should focus on developing models capable 489

of capturing nuanced contextual cues to address 490

this challenge effectively. 491

5.2 Lexicon and False Positive 492

The lexicon-based filtering approach exhibited 493

a high false positive rate, where non-toxic con- 494

tent was frequently misclassified as toxic. A pri- 495

mary reason for this is the prevalence of com- 496
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Model Before Split After Split Before Substitution After Substitution
Accuracy Macro F1 Accuracy Macro F1 Accuracy Macro F1 Accuracy Macro F1

DeepSeek-V3 0.7665 0.7661 0.7165 0.7150 0.7752 0.7737 0.7107 0.7101
GPT-4o 0.7629 0.7619 0.6875 0.6839 0.7818 0.7807 0.6793 0.6792
Qwen-Max 0.7868 0.7858 0.7281 0.7267 0.8132 0.8122 0.7157 0.7157

Table 2: Model Performance in Different Conditions

ments criticizing socially undesirable behaviors497

(e.g., fraud, promiscuity), which, despite their498

harsh tone, do not constitute offensive language.499

This phenomenon poses a significant challenge for500

offensive language detection systems, as it blurs501

the line between legitimate criticism and actual502

toxicity.503

To mitigate this issue, future research should pri-504

oritize the development of more advanced semantic505

understanding and context-aware models. Incor-506

porating domain-specific knowledge and leverag-507

ing larger, more diverse datasets could help reduce508

false positives. Additionally, exploring hybrid ap-509

proaches that combine lexicon-based methods with510

machine learning models may offer a more robust511

solution for distinguishing between toxic content512

and socially critical discourse.513

5.3 Future Works514

Addressing offensive language that evades censor-515

ship mechanisms through techniques such as char-516

acter splitting or using visually similar characters517

may involve two potential approaches. One ap-518

proach is to employ computer vision (CV) meth-519

ods to identify and associate similar characters and520

split characters. However, this method is costly521

and complicated, as the flexible structure of Chi-522

nese characters makes the problem more challeng-523

ing. An alternative approach is to use "masking"524

techniques, which obscure key offensive terms525

while still allowing offensive language to be un-526

derstood and recognized through contextual seman-527

tic clues—essentially enabling the system to infer528

meaning even when specific words are not explic-529

itly stated (i.e., "although nothing was directly said,530

the intent is still understood"). The dataset we531

propose, which introduces perturbations only to532

offensive terms, is adaptable to both of these strate-533

gies.534

6 Limitations535

Despite the contributions made by CangjieToxi,536

there are several limitations in this study that should537

be acknowledged. First, while the dataset intro-538

duces novel perturbations such as character split- 539

ting and character substitution, it remains limited 540

to Chinese language contexts, and the effective- 541

ness of these evasion techniques may vary in other 542

languages with different writing systems or char- 543

acter structures. Second, the perturbation methods 544

used in this work, although effective in creating 545

subtle forms of offensive language, are still con- 546

strained by the manual construction of these trans- 547

formations, and there may be additional, unfore- 548

seen evasion tactics that were not covered. Third, 549

the performance of state-of-the-art models on our 550

dataset demonstrates clear limitations, but further 551

research is needed to explore new model architec- 552

tures and training methodologies that can better 553

adapt to these types of perturbations. Finally, while 554

we have focused on offensive language detection 555

within social media contexts, the dataset’s appli- 556

cability to other domains, such as formal text or 557

legal documents, remains to be evaluated. Future 558

work will aim to expand these methods, explore 559

additional types of perturbations, and assess the ro- 560

bustness of models across different languages and 561

content domains. 562
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