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Abstract

Large language models (LLMs) call for exten-001
sion of context to handle many critical appli-002
cations. However, the existing approaches are003
prone to expensive costs and inferior quality004
of context extension. In this work, we pro-005
pose Extensible Embedding, which realizes006
high-quality extension of LLM’s context with007
strong flexibility and cost-effectiveness. Exten-008
sible embedding stand as an enhancement of009
typical token embedding, which represents the010
information for an extensible scope of context011
instead of a single token. By leveraging such012
compact input units of higher information den-013
sity, the LLM can access to a vast scope of con-014
text even with a small context window. Exten-015
sible embedding is systematically optimized in016
architecture and training method, which leads017
to multiple advantages. 1) High flexibility of018
context extension, which flexibly supports ad-019
hoc extension of diverse context lengths. 2)020
Strong sample efficiency of training, which en-021
ables the embedding model to be learned in a022
cost-effective way. 3) Superior compatibility023
with the existing LLMs, where the extensible024
embedding can be seamlessly introduced as025
a plug-in component. Comprehensive evalua-026
tions on long-context language modeling and027
understanding tasks verify extensible embed-028
ding as an effective, efficient, flexible, and com-029
patible method to extend the LLM’s context.030

1 Introduction031

Large language models (LLMs) need to process032

long-sequence data in order to accomplish many033

critical tasks, like RAG and long-doc reading com-034

prehension. Unfortunately, the existing LLMs are035

limited by their context windows, which are far036

from enough to fully cover the input data in corre-037

sponding scenarios. To overcome this limitation,038

people resort to fine-tuning to extend the LLM’s039

context window (Chen et al., 2023b; Dacheng et al.,040

2023; Peng et al., 2023). Despite the popularity in041

practice, the fine-tuning approaches will lead to042

huge training and inference costs. Besides, the fine- 043

tuning over long-sequence data is likely to impair 044

the LLM’s original capability on shorter contexts, 045

which is unfavorable to the practical usage. Al- 046

though there are other alternative ways to establish 047

long contexts, e.g., sparse attention (Child et al., 048

2019; Beltagy et al., 2020; Zaheer et al., 2020), 049

stream processing (Xiao et al., 2023a; Han et al., 050

2023), retrieval (Xu et al., 2023; Wu et al., 2022; 051

Tworkowski et al., 2023), the existing solutions are 052

prone to problems, like inferior extension quality 053

or incompatibility with the existing LLMs. 054

It’s usually believed that the size of context 055

window, e.g., 4096 for LLaMA-2 (Touvron et al., 056

2023), is equivalent to the maximum of tokens the 057

LLM can perceive. However, we challenge this 058

common belief by arguing that the size of context 059

window is just a constraint of the input units in- 060

stead of the limit of context the LLM can perceive. 061

Based on this argument, we propose a new method 062

called Extensible Embedding to facilitate the uti- 063

lization of long context for LLMs. It stands as an 064

enhancement of typical token embeddings, which 065

is used to represent the information for an exten- 066

sible scope of context, e.g., multiple words or a 067

sentence. Therefore, it can possess a much higher 068

information density than token embeddings. On 069

top of such compact form of representations, the 070

LLM will be able to access to the information from 071

a vast context with its original context window. 072

The extensible embedding is realized by a com- 073

pact model architecture. We employ a lightweight 074

model, namely extensible embedder, to transform 075

the input into output embeddings. Then we adopt 076

another down-scaling function, which down sam- 077

ples the output embeddings by a factor of k (e.g., 078

k = 32). In other words, one out of k output em- 079

beddings are sampled as an extensible embedding. 080

Notably, the down-scaling can be conducted with 081

an arbitrary scaling factor and sampling scheme at 082

the inference time. Thus, it contributes to a high 083
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flexibility of practical usage, which enables the084

ad-hoc extension of different context lengths.085

The extensible embedder is learned through the086

two-stream auto-regression (AR) tasks, where each087

training sample is processed by two passes of feed-088

forward. In the first pass, the extensible embed-089

dings are generated and cached for each training090

sample. In the second pass, the next tokens are pre-091

dicted based on the extensible embeddings of their092

preceding contexts. Based on such a tailored for of093

auto-regression, comprehensive training losses can094

be derived from all tokens within each training sam-095

ple. Therefore, it brings forth two benefits: on one096

hand, the extensible embeddings can be learned to097

assist the LLM’s generation directly, which is well098

aligned with the downstream LLM’s working pro-099

cess; on the other hand, it results in an exceptional100

sample efficiency, which enables the model to be101

effectively trained with a small amount of data.102

The training process is performed with the down-103

stream LLM’s parameters fixed all the time. Thus,104

the extensible embeddings can work as a plug-in105

module, which brings extended contextual infor-106

mation without compromising the LLM’s original107

performance with short contexts. Interestingly, we108

also observe the strong but unexpected compatibil-109

ity of extensible embedding beyond its downstream110

LLM. In particularly, the well-trained extensible111

embeddings for one LLM can be effectively applied112

to other fine-tuned derivatives of its downstream113

LLM without any further adaptation. Such a prop-114

erty suggests the extensible embedding’s poten-115

tial as a versatile method for the context extension116

across a family of closely related LLMs.117

We initialize the extensible embedder with the118

first 8 layers of LLaMA-2-7B model (Touvron119

et al., 2023), where it is trained to extend the con-120

text for another downstream LLaMA-2-7B model1.121

With just 100K training samples from RedPajama122

(Computer, 2023) and LongAlpaca (Chen et al.,123

2023b), the extensible embedder is able to achieve124

a superior capability in context extension. Notably,125

it enables the extension of LLaMA-2-7B (4K) over126

100K, while producing superior performances on127

both long-context language modeling and under-128

standing tasks. Besides, by applying to other fine-129

tuned derivatives of LLaMA-2-7B with larger con-130

text windows, e.g., LongChat-32K (Dacheng et al.,131

2023), it can further enable high-quality generation132

with super-long contexts over 1 million tokens.133

1. The model and source code will be publicly available.

To summarize, this work is highlighted for the 134

following contributions. 1) Extensible embedding 135

presents a simple but effective method, which es- 136

tablishes a long context for the LLM based on com- 137

pact representation of the input. 2) The tailored 138

model architecture facilitates superior and flexible 139

extension for different context lengths, and 3) the 140

sample-efficient two-stream AR task enables the 141

cost-effective training of the model. 4) Compre- 142

hensive experiments verify extensible embedding 143

as an effective, efficient, flexible, and compatible 144

method for the extension of LLM’s context. 145

2 Extensible Embedding 146

2.1 Framework 147

The workflow of extensible embedding is shown as 148

Figure 1, where a long-sequence input X (e.g., a 149

long document of 16K tokens) can be utilized by 150

a LLM (e.g., LLaMA-2) with a short context win- 151

dow (4K). Firstly, the input X is partitioned into 152

chunks: {X1, ...XN}. The chunk length Li is set 153

as the maximum window size of the extensible em- 154

bedder, e.g., Li = 4096 with LLaMA-2, where the 155

coherence of context can be best preserved. Sec- 156

ondly, each chunk is transformed by the extensible 157

embedder into its output embeddings. The output 158

embeddings are down-scaled by the scaling factor 159

k (e.g., k = 32), where L/k extensible embed- 160

dings (denoted as EX) are produced as the compact 161

representation of the input. Finally, the new tokens 162

are predicted conditioned on the extensible embed- 163

dings from the preceding chunks and the normal 164

token embeddings within the recent context. 165

2.2 Embedding Generation 166

The typical token embedding, which is correspond- 167

ing to each individual token, is information sparse. 168

In contrast, the extensible embedding is used to rep- 169

resent an extensible scope of context, e.g., multiple 170

words or sentences, which possess a higher infor- 171

mation density. We employ a language model as 172

the embedder (LMex), which transforms the input 173

Xi : {xi,1, ...xi,L} into output embeddings Oi: 174

Oi : {oi,1, ...oi,L} ← LMex(xi,1, ...xi,L; θex). 175

On top of an expressive embedder, each output em- 176

bedding can serve as a high-quality representation 177

for its preceding context, i.e. oi,j for xi,1, ...xi,j . To 178

acquire the compact representation for the entire in- 179

put, the output embeddings are further down-scaled 180
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Figure 1: Framework. The input data is partitioned into chunks. Each sub-sequence is transformed and down-scaled
as extensible embeddings. The new tokens are predicted based on the extensible embeddings from preceding chunks
and the token embeddings in the same chunk. The extensible embedder is learned with a fixed downstream LLM.

by the scaling factor k, where m (m = L/k) ex-181

tensible embeddings (exi,∗) are generated for Xi:182

{exi,1, ..., exi,m} ← DownScale({oi,1, ...oi,L}).183

There can be many alternative ways to realize the184

functionality of down-scaling, where arbitrary pool-185

ing functions along the sequence dimension can186

be applied. In our work, we simply down-scale187

the output embeddings through the strided sam-188

pling, where the last embedding in every k steps189

is chosen, i.e., exi,j ← oi,k×j . On one hand, such190

a simple scheme is easy to realize on top of the191

existing LLM’s architecture, and it produces the192

optimal empirical performance in the downstream193

tasks. On the other hand, it leads to a high flexibil-194

ity of usage, where the context can be extended by195

an arbitrary scaling factor by simply adjusting the196

downs-sampling rate (k) at the inference time.197

2.3 Learning Method198

The extensible embeddings are learned by the auto-199

regression (AR) tasks, where the loss is minimized200

for the prediction of next tokens conditioned on201

the extensible embeddings from the preceding con-202

text. The auto-regression can be simply performed203

by having the long context transformed into ex-204

tensible embeddings and predicting the last few205

tokens within one training sample, e.g., predicting206

the answer to a question based on the extensible207

embeddings of a long document. However, the208

naive method will be limited by its inferior training209

effect, because the long context accounts for the210

majority of computation cost whereas no prediction 211

loss can be produced from it. 212

In our work, we propose two-stream AR which 213

trains the model with optimized sample efficiency 214

(Figure 2). In the first pass of inference, the extensi- 215

ble embeddings are generated for the entire context. 216

For example, with a chunk size of 3 and an scal- 217

ing factor of 3, the input data X = {x1, ...x15} 218

is transformed into the extensible embeddings 219

{ex1,1, ex2,1, ex3,1, ex4,1} (the last chunk is ex- 220

empted). In the second past, each single token 221

within the long context is streamingly predicted by 222

chunks. Particularly, the prediction is made con- 223

ditioned on the extensible embeddings from the 224

previous chunks and the preceding normal token 225

embeddings within the same chunk. Formally, 226

min
θex

∑
X

∑
i>1

logP (xi,j | 227

ex1,1, ...exi−1,k, xi,1, ...xi,j−1; θ, θex). 228

For example, x6 is predicted based on ex1 (repre- 229

senting x1−3) and x4. Crucially, the chunk size of 230

training is made much smaller than the LLM’s win- 231

dow size (e.g., 512), where the prediction of new 232

tokens can mostly rely on the contextual informa- 233

tion offered by the extensible embeddings. Thanks 234

to the above processing, the prediction loss can be 235

comprehensively derived from the each training 236

sample, which enables the model to be effectively 237

learned from a small amount of data. We also ran- 238

domly sample the extension ratio k from a candi- 239

date scope (e.g., [2, 4, 8, 16, 32]) for each training 240
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Normal Token Embeddings {x1 … x12}

Extensible Embeddings {ex1 …ex4}

Decoding pass for x4-6 and x7-9 Decoding pass for x10-12 and x13-15Inference pass for extensible embeddings

{ ex1 : x1-3, ex2 : x4-6 , ex3 : x7-9, ex4 : x10-12 }

Down Scaling (k=3)

Extensible Embedder

Figure 2: Two-Stream AR. In the first pass, the normal embeddings are transformed into extensible embeddings
(with a scaling factor k = 3). In the second pass (window size 10, chunk size 3), the auto-regression is accomplished
in two sliding steps: the x1−3 and x4−6 predicted in the first step, x7−9 and x10−12 predicted in the second step.

sample, which benefits the model’s generalization241

for the extension of diverse context lengths.242

The extensible embeddings are learned with the243

downstream LLM’s parameters (θ) fixed all the244

time. As a result, the LLM’s original capabilities245

on short contexts are not affected by the introduc-246

tion of extensible embeddings. Besides, we also247

empirically observe the strong but unexpected com-248

patibility from the above training process, where249

the extensible embeddings can be directly applied250

to the fine-tuned derivatives of the downstream251

LLM without further adaptation.252

2.4 Inference253

The inference with the extensible embeddings is254

discussed w.r.t. the online and offline scenario, re-255

spectively. In particularly, the online scenario deals256

with the situation where the long-sequence data is257

streamingly presented (e.g., conversation). In this258

scenario, the generation process is conducted in259

consecutive sessions. In each session (i-th), the260

LLM predicts the new token (ti,j) based on the261

extensible embeddings from the previous sessions262

(Ex<i) and the preceding normal token embed-263

dings within the current session ({xi,<j}). The264

current session comes to its end when the total sum265

of both types of embeddings reaches the maximum266

capacity of context window (L∗): |Ex<i|+j = L∗.267

Then, the normal token embeddings {xi,∗} will be268

transformed into the extensible embeddings of the269

current session Exi and used by the next session.270

The offline scenario handles the cases where271

the long-sequence data is fully presented before-272

hand (e.g., RAG, reading comprehension of long-273

docment). In this scenario, the extensible embed-274

dings can be pre-computed for the data, which will275

significantly benefit the efficiency of online infer-276

ence. In fact, it is OK to simply save the whole277
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Figure 3: The extensible embedding trained on LLaMA-
2-7B can be directly utilized by LongAlpaca-16K and
LongChat-32K, leading to the scaling of their context
lengths by ×16 and ×32 (PPL on PG19). Remarkably,
the context of LongChat can be extended to 1 million.

output embeddings from the extensible embedder, 278

and flexibly sample for the extensible embeddings 279

during inference based on the ad-hoc scaling factor. 280

3 Experiments 281

In this section, we conduct comprehensive experi- 282

ments to investigate the following key issues about 283

extensible embedding. 1) The effectiveness of con- 284

text extension. 2) The flexibility and compatibility. 285

3) The running efficiency. 4) The technical factors 286

about extensible embedding. 287

3.1 Experimental Settings 288

We leverage LLaMA-2-7B (chat) (Touvron et al., 289

2023) as our downstream LLM. We initialize exten- 290

sible embedder with the first 8 layers of LLaMA-2- 291

7B (chat). The training takes place on one Nvidia 292

8×A800 GPU machine, with a batch size of 8 and 293

a learning rate of 5e−5 using the linear scheduler. 294

The training is consecutively performed with 90K 295

sampled instances from Redpajama (Computer, 296

2023) and 10K training instances from LongAl- 297

paca (Chen et al., 2023b). Extensible embedding 298
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Model PG19 Books3

4K 8K 16K 32K 100K 4K 8K 16K 32K 100K

LLaMA-2-7B 7.77 >103 >103 >103 OOM 4.21 >103 >103 >103 OOM
PI 7.77 8.68 18.65 >102 OOM 4.21 5.99 11.4 69.8 OOM
NTK 7.77 8.13 10.71 55.22 OOM 4.21 5.10 7.71 52.3 OOM
StreamingLLM 7.98 8.01 8.00 8.00 8.00 4.32 4.34 4.33 4.33 4.34

LongAlpaca-16K 8.45 8.15 8.12 >103 OOM 4.93 4.67 4.64 >103 OOM
LongChat-32K 7.59 7.25 7.00 6.85 OOM 4.12 3.95 3.87 3.85 OOM
AutoCompressor-6K 26.9 >103 103 >104 OOM 17.1 >103 >103 >104 OOM
LongLLaMA 7.12 6.95 6.78 OOM OOM 3.99 3.90 3.84 OOM OOM

ExtEmbedding (×16) 7.75 7.48 7.38 7.31 >102 4.32 4.20 4.15 4.13 >103

ExtEmbedding (×32) 8.61 8.15 7.87 7.69 7.54 4.67 4.48 4.36 4.28 4.25

Table 1: Language modeling performance (measured by perplexity) on PG19 and Books3.

is trained with the downstream LLM’s parameters299

always fixed. We consider the following baselines.300

The fine-tuning free methods: Positional Interpola-301

tion (PI) (Chen et al., 2023a), NTK-Aware Scaled302

RoPE (NTK) (ntk, 2023), StreamingLLM (Xiao303

et al., 2023b). The fine-tuned full-attention meth-304

ods: LongAlpaca-7B-16K (Chen et al., 2023b),305

LongChat-7B-32K (Dacheng et al., 2023). The306

fine-tuned methods with modified architectures307

for long context: AutoCompressor-7B-6K (Rae308

et al., 2019), LongLLaMA-7B (Tworkowski et al.,309

2023). All baselines are based on LLaMA-2-7B,310

except LongLLaMA which leverages CodeLLaMA311

(Roziere et al., 2023).312

3.2 Language Modeling313

The long-context language modeling is evaluated314

with PG19 (Rae et al., 2019) and Books3 (Gao315

et al., 2020). Following the method used by Alexis316

et al. (Chevalier et al., 2023a), the perplexity is317

measured by predicting the last 512 tokens based318

on the preceding context. There are two evaluation319

settings about the extensible embedding: ExtEm-320

bedding (×16) and ExtEmbedding (×32), where321

the scaling factor k is set as 16 and 32, respectively.322

The evaluation results are shown in Table 1, where323

the following observations can be derived.324

On the one hand, we can observe the superior325

long-context language modeling quality achieved326

by extensible embedding. Firstly, extensible em-327

bedding leads to a notable improvement over the328

LLaMA-2-7B baseline, which indicates that the329

extended context can be effectively utilized to im-330

prove the generation quality. Secondly, the relative331

improvement (over LLaMA-2-7B) from extensible332

embedding is more pronounced than the fine-tuning333

free method. Although the fine-tuned full-attention334

methods may produce better performances in some335

cases, they require the change of the LLM’s orig-336

inal parameters, and work with much higher run- 337

ning costs. Thirdly, extensible embedding is able 338

to flexibly support much longer contexts by simply 339

adjusting the scaling factor (k). In particular, by in- 340

creasing the scaling factor from 16 to 32, LLaMA- 341

2-7B’s context length can be continually extended 342

beyond 100K (up to 32×4K). The above observa- 343

tions validate the effectiveness of context extension 344

with extensible embedding. 345

On the other hand, we can also make interest- 346

ing observations about the extensible embedding’s 347

compatibility with the fine-tuned derivatives of its 348

downstream LLM. We utilize two baseline models 349

for evaluation: LongAlpaca and LongChat. Both 350

models are fine-tuned from LLaMA-2-7B with 351

long-sequence data, which achieve longer context 352

windows of 16K and 32K, respectively. As we 353

can observe from Figure 3, the well-trained ex- 354

tensible embeddings on LLaMA-2-7B can be di- 355

rectly applied to the two models without any adap- 356

tation, which scales up their contexts by 16× and 357

32× times (with ExtEmbedding 16× and 32×, re- 358

spectively). Remarkably, we can reach a context 359

length of 1 million tokens by enhancing LongChat- 360

32K with ExtEmbedding (32×). We make further 361

exploration with more fine-tuned derivatives (in 362

Appendix B) and different evaluation tasks (§3.3), 363

whose results affirm the ubiquity of this property. 364

3.3 Language Understanding 365

We evaluate long-context language understanding 366

using 9 datasets from LongBench (Bai et al., 2023), 367

which are about single-doc QA, multi-doc QA, and 368

summarization. It’s worth noting that the sequence 369

lengths for majority of the evaluation samples are 370

less than 16K or 32K. Therefore, the performance 371

from the two fine-tuned methods LongAlpaca and 372

LongChat can almost be a upper-bound for the rest 373

of the methods. For each evaluation sample, the 374
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Model Len. Single-Doc QA Multi-Doc QA Summarization

NQA QASP MF Avg. HQA 2WIKI MSQ Avg. GOV QS MN Avg.

LLaMA-2-7B 4K 18.70 19.20 36.80 24.90 25.40 32.80 9.40 22.60 27.30 20.80 25.80 24.70
PI 16K 12.85 20.86 23.24 18.98 22.41 22.13 6.94 17.16 29.77 18.48 26.85 25.03
NTK 16K 15.96 19.26 34.41 23.21 29.16 29.06 11.79 23.34 29.56 17.44 26.19 24.40
StreamingLLM 4K 18.95 16.84 26.16 21.47 30.09 26.87 11.03 22.22 25.81 20.64 25.88 22.20

LM. w. ExtEmbedding* 4K 19.59 23.18 33.90 25.56 34.53 32.93 13.30 26.92 27.06 21.15 25.69 24.63

LongAlpaca-16K (4k) 4K 17.85 27.66 34.91 26.81 29.50 31.32 12.50 24.44 30.09 23.12 27.57 26.93
LongAlpaca-16K (8k) 8K 18.60 28.89 38.35 28.61 32.32 30.84 11.34 24.83 31.43 24.42 27.87 27.91
LongAlpaca-16K 16K 19.13 28.91 37.03 28.36 36.93 30.32 17.23 28.16 31.30 24.16 27.84 27.77

LA. w. ExtEmbedding* 4K 20.12 29.45 36.25 28.61 37.58 33.54 13.84 28.32 30.45 22.66 27.52 26.88

LongChat-32K (4k) 4K 15.30 27.81 41.30 28.14 28.33 25.00 12.30 21.88 31.67 21.66 26.44 26.59
LongChat-32K (8k) 8K 17.35 29.14 41.67 29.39 29.58 24.65 10.83 21.69 32.40 22.30 26.39 27.03
LongChat-32K (16k) 16K 20.82 29.19 42.53 30.85 31.78 25.04 13.16 23.33 31.28 22.65 26.44 26.79
LongChat-32K 32K 21.00 29.25 42.70 30.98 32.99 24.86 14.02 23.96 31.03 23.00 26.44 26.82

LC. w. ExtEmbedding* 4K 17.07 30.59 42.69 30.12 31.52 25.84 13.17 23.51 31.19 20.62 26.77 26.19

Table 2: The evaluation of long-context understanding with tasks from LongBench. “(*k)” indicates that the input
data is truncated to *k for the corresponding model. (LM.: LLaMA-2-7B, LA.: LongAlpaca, LC.: LongChat)

scaling factor is adjusted case-by-case for extensi-375

ble embedding, which will let the compressed input376

just fit into the 4K context window of LLaMA-2-377

7B. The evaluation results are presented in Table 2,378

where the following observations can be made.379

Firstly, extensible embedding can substantially380

improve upon the LLaMA-2-7B baseline for both381

single-doc QA and multi-doc QA. By comparison,382

the fine-tuning free methods bring in almost no383

contribution or even negative effect to long-context384

understanding, despite their effectiveness in lan-385

guage modeling. Although the fine-tuned methods386

bring seemingly better results on both QA and sum-387

marization tasks, we find that the improvement388

is mainly from the LLM’s improved performance389

with short contexts (due to fine-tuning) rather than390

the incorporation of longer contexts. Particularly,391

both LongAlpaca and LongChat already achieve392

sufficiently high performances with the basic 4k393

context. For summarization, the further extension394

of context length is of little benefit. To some extent,395

the summarization cannot properly reflect the long396

context capability as most of the useful information397

for summarization is presented in the beginning or398

the end of each document, which has been covered399

by the basic 4K context. In the sense of relative400

improvement purely from the extended context, the401

extensible embedding’s effect is comparable with402

fine-tuning. Meanwhile, it preserves a higher effi-403

cient because it only takes a 4K context.404

Secondly, extensible embedding remains com-405

patible with the fine-tuned derivatives of LLaMA-406

2-7B in this scenario. We directly apply the well-407

trained extensible embedding for LongAlpaca and408

LongChat. As introduced, the sequence lengths 409

for the majority of evaluation samples are less 410

than 16K or 32K. For those cases, the extensible 411

embeddings will not introduce extra context, but 412

only compress their original context to 4K, which 413

makes the inference process more efficient. No- 414

tably, the two model’s strong performances with 415

the full-scale contexts can be effectively preserved 416

by LA./LC. w. ExtEmbedding, which indicates 417

two interesting properties: 1) the extensible embed- 418

ding presents an almost lossless compression of the 419

context, 2) the well-trained extensible embedding 420

for LLaMA-2-7B can be seamlessly transferred to 421

LongAlpaca and LongChat. 422

3.4 Efficiency Analysis 423

We analyze the efficiency in terms of GPU memory 424

usage and inference time. The experiment is on a 425

single Nvidia A800-80G GPU. The performance is 426

measured by taking the average value of 100 for- 427

ward passes where the last 512 tokens are predicted 428

based on the input context. We include the follow- 429

ing baselines. LongChat based on full-attention, 430

where FlashAttention-2 (Dao, 2023) is enabled for 431

its acceleration. StreamingLLM based on stream 432

processing, whose window size is set to 2048; it is 433

exempted from time evaluation because its current 434

stepwise implementation is too slow. The extensi- 435

ble embedding uses a scaling factor k = 32, where 436

both working modes are evaluated: the online mode 437

where data is streamingly presented and extensible 438

embeddings are generated step-by-step; the offline 439

mode where data is presented in advance and exten- 440

sible embeddings are pre-computed. The following 441

observations can be made from Table 3. 442
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Model GPU Memory (GB) Inference Time (s)

4K 8K 16K 32K 100K 4K 8K 16K 32K 100K

LongChat-32K 18.12 23.68 34.79 57.03 OOM 0.32 0.65 1.43 3.32 OOM
StreamingLLM 15.11 15.11 15.11 15.11 15.11 - - - - -
LongLLaMA 17.73 21.40 33.41 OOM OOM 0.60 1.44 3.30 OOM OOM

ExtEmbedding (online) 20.33 21.59 21.59 21.59 21.59 0.28 0.49 0.86 1.57 3.43
ExtEmbedding (offline) 13.96 14.21 14.75 15.79 17.54 0.08 0.08 0.10 0.12 0.23

Table 3: Efficiency analysis in terms of GPU memory usage and inference time.

First of all, the online mode leads to a constant443

memory usage, while the offline mode results in an444

even smaller consumption. As introduced (§2.4),445

the memory usage of extensible embedding comes446

from two parts. The first part is the generation of447

extensible embeddings, where the stream process-448

ing is conducted with a 4K sliding window (the449

offline mode is free from this step, thus taking even450

less GPU memory). The second part is the final in-451

ference stage based on the extensible embeddings,452

where the input sequence has been substantially453

condensed and become much shorter than its orig-454

inal length. Because the two operations are con-455

secutively conducted, their memory costs will not456

accumulate. The online mode deals with both parts,457

but the overall memory cost is dominated by the458

first part. The offline mode only needs to handle459

the second part, which results in an even smaller460

cost. Both modes are free from processing the en-461

tire long input simultaneously, which contributes462

to a very economic usage of GPU memory.463

Secondly, extensible embedding exhibits a much464

smaller time cost compared with the baseline meth-465

ods. For ExtEmbedding (online), the majority of466

its computation is spent on the generation of exten-467

sible embedding. Because of the stream processing,468

the growth of its inference time is linear to the se-469

quence length. Besides, with the pre-computation470

of the extensible embeddings, the inference time471

can be dramatically reduced for the offline mode.472

Such a superior time efficiency will substantially473

benefit extensible embedding’s application in sce-474

narios like RAG and long-doc QA, where long-475

sequence data can be presented in advance.476

3.5 Ablation Studies477

We perform ablation studies to analysze the influ-478

ential factors about extensible embedding, whose479

results are presented with Table 4, 5, and 6.480

Firstly, we explore the impact of down-scaling481

by comparing the default strided down-sampling482

(§2.2) with: 1) random down-sampling, which ran-483

domly chooses L/k output embeddings from the484

embedder, 2) terminal down-sampling, which se-485

Factor Setting PG19 QA

Down scaling
Random down-sampling 7.64 23.39
Terminal down-sampling 7.58 24.04
Strided down-sampling* 7.31 25.56

Embedder size
First 4-layer (Llama-2-7B) 7.46 23.32
First 8-layer (Llama-2-7B)* 7.31 25.56

Scale sampling
Monotonous (k = 16) 7.29 21.37
Dynamic Sampling* 7.31 25.56

Table 4: Ablation studies. PG19 is measured by PPL
under a 32K context; Single-Doc QA is measured by F1
score. Default settings are marked with “*”.

lects the last L/k output embeddings from the em- 486

bedder (L: chunk size). On one hand, the default 487

strided down-sampling method outperforms the 488

two baselines probably due to its more effective 489

coverage of the context. On the other hand, the 490

baselines can be directly applied to the embedder 491

trained with strided down-sampling, which reflects 492

the flexibility of usage of extensible embedding. 493

Secondly, we analyze the impact from the size 494

of embedder. Our default method uses the first 8 495

layers of LLaMA-2-7B, while the baseline uses the 496

first 4 layers. It can be observed that the improved 497

size leads to a better performance. There is no 498

surprise about this observation because a larger 499

embedder is more expressive and able to produce a 500

better representation of the context. Nevertheless, 501

it also comes with a larger computation cost. The 502

optimal trade-off between cost and effectiveness 503

must be determined for each scenario case-by-case. 504

Thirdly, we study the necessity of dynamically 505

sampling the scaling factor during training (Scale 506

sampling, §2.3). As a comparison, we employ a 507

constant scaling factor k=16 (Monotonous). The 508

Monotonous baseline achieves a comparable PPL 509

on PG19 as our default method, because the lan- 510

guage modeling task only performs a constant 511

scaling down of the context by a factor of k=16. 512

However, the default method notably outperforms 513

Monotonous on Single-Doc QA, which relies on 514

diversified scaling factors to condense the input of 515

different lengths for a 4K context window. 516

We further investigate the impact of our training 517

method based on two-stream AR (§2.3), where two 518
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Training method
PPL (PG19) at different steps

100 500 1,000

Text Continuation 32.41 11.96 11.89
Auto-Encoding 10.27 9.95 10.25
Two-Stream AR* 8.85 8.17 8.00

Table 5: Impact from different training methods.

common strategies are introduced as our baselines519

(Mu et al., 2023; Chevalier et al., 2023b; Ge et al.,520

2023): 1) auto-encoding, where the input data is521

encoded in the first place and then decoded from522

the encoding result; 2) text continuation, where the523

head of input data (the first half) is encoded and524

the remaining part of the data is decoded from the525

encoding result. The experiment results are shown526

in Table 5, where two-stream AR notably outper-527

forms the baselines. In just 100 steps, two-stream528

AR is able to achieve a remarkable performance529

of language modeling on PG19, which verifies it530

superior sample efficiency of training.531

Finally, we make ad-hoc selection of scaling fac-532

tor (k) and benchmark the PPL on PG19 at different533

context lengths (Table 6). On one hand, a smaller534

scaling factor, which means less compression of535

the data, can preserve a better generation quality.536

On the other hand, a larger scaling factor, which537

means higher compression of the data, will achieve538

a longer extension of the context. Consequently,539

the scaling factor should be properly selected in540

practice, such that the needed context can be fully541

covered with the lowest level of data compression.542

4 Related Works543

The extension of LLM’s context is a critical issue.544

Recently, numerous methods have been proposed545

to tackle this problem from different perspectives.546

The popular approaches involve the modification547

of position encoding, e.g., Position Interpolation548

(Chen et al., 2023a) and NTK-Aware (ntk, 2023),549

which allows the LLMs to work with new positions550

during the inference time. The context extension551

quality from the modified position encoding can552

be improved by fine-tuning over long-sequence553

data (Peng et al., 2023). However, the fine-tuning554

is expensive, even with accelerations like LoRA555

(Chen et al., 2023b; Hu et al., 2021) and sparse556

attention (Chen et al., 2023b; Child et al., 2019).557

Besides, the fine-tuning operation may also bring558

unfavorable effect to the LLM’s existing capability.559

In addition to the increasing of window size, peo-560

ple also explore different methods to process a long561

context with a short context window. One common562

Scaling factor
Context Length

4K 8K 16K 32K 100K

k = 2 6.80 11.76 >102 >102 >102

k = 4 7.05 6.89 23.35 >102 >102

k = 8 7.40 7.18 7.13 27.10 >102

k = 16 7.75 7.48 7.38 7.31 >102

k = 32 8.61 8.15 7.87 7.69 7.54

Table 6: Impact from different scaling factors.

strategy is to leverage sliding windows (Chen et al., 563

2023a; Han et al., 2023), where the long context 564

can be streamingly processed. However, the typical 565

stream processing will simply ignore the informa- 566

tion beyond the context window instead of making 567

use of it. Another line of research is about context 568

compression, which follows the same spirit as our 569

method. In general, the context can be compressed 570

in two optional ways. One is to explicitly compress 571

the input data with methods like, summarization 572

(Jiang et al., 2023), extraction (Jiang et al., 2023), 573

or retrieval (Xu et al., 2023). Despite simplicity, 574

the explicit compression is prone to incomplete 575

and incoherent contextual information. The other 576

option is to implicitly compress the input into la- 577

tent embeddings (Bulatov et al., 2022; Mu et al., 578

2023; Chevalier et al., 2023b; Ge et al., 2023). The 579

performance of implicit methods highly depend on 580

the quality of compression, which is a joint result 581

from the architecture of compressor and the learn- 582

ing method. So far, none of the previous methods 583

are able to effectively realize a dramatic extension 584

of LLM’s context as extensible embedding (longer 585

than 100K) due to the substantial loss of compres- 586

sion. The previous methods also lack the flexibility 587

to support different context lengths. Besides, many 588

of them need modifications on model architectures, 589

which can be incompatible with the existing LLMs. 590

5 Conclusion 591

In this paper, we present extensible embedding as 592

a new method to extend the LLM’s context. It 593

presents a compact representation for an extensi- 594

ble scope of context, which let the LLM to fully 595

perceive the long-sequence input with its limited 596

context window. It is realized based on a flexible 597

model architecture and sample-efficient training 598

algorithm, which not only optimizes the quality 599

of context extension, but also leads to a remark- 600

able flexibility and compatibility of usage, as well 601

as a high efficiency of training and inference. The 602

effectiveness of our method is verified with compre- 603

hensive evaluations, where the LLM’s context can 604

be dramatically extended with a superior quality. 605
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6 Limitation606

Extensible embedding is developed on top of the607

open-source LLM, i.e. LLaMA-2-7B (chat). There-608

fore, it is subject to same potential ethical and so-609

cial risks, like bias, discrimination, and toxicity as610

LLaMA-2. Due to the constraint of computation611

resource, extensible embedding only leverages a612

relatively small encoding backbone in the experi-613

ment. The proposed technique should be able to614

achieve an even better performance if the model615

can be further scaled up in the future. Finally, as616

a compression method, extensible embedding will617

still incur information loss despite its substantial618

improvement over the existing methods. The inves-619

tigations on when, where, and what information is620

likely to be missed will be important for the appli-621

cation and future development of the technique.622

7 Ethical Consideration623

Extensible embedding is based on open-source624

LLM, i.e. LLaMA-2-7B (chat). Therefore, it is625

influenced by the inherent impacts of open-source626

model. In particular, open-source LLM may use627

private data or controversial data during the train-628

ing. Moreover, introducing extensible embedding629

into downstream models will further increase bias,630

resulting in a more severe discrimination or unfair-631

ness in language models.632
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Code llama: Open foundation models for code. arXiv724
preprint arXiv:2308.12950.725

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-726
bert, Amjad Almahairi, Yasmine Babaei, Nikolay727
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti728
Bhosale, et al. 2023. Llama 2: Open founda-729
tion and fine-tuned chat models. arXiv preprint730
arXiv:2307.09288.731

Szymon Tworkowski, Konrad Staniszewski, Mikołaj732
Pacek, Yuhuai Wu, Henryk Michalewski, and Pi-733
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A The Overall Comparison of Extensible Embedding 766
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Figure 4: Comparison between extensible embedding and other context extension methods, including 1) Position
Interpolation (Chen et al., 2023a), 2) NTK-Aware Scaled RoPE (ntk, 2023), 3) LongLLaMA (Tworkowski et al.,
2023). Extensible Tokenization presents a superior long-context language modeling capability, along with better
efficency in terms of memory and time. Perplexity is measured on PG19 (Rae et al., 2019) following the method in
(Chevalier et al., 2023a)

B The Compatibility of Extensible Embedding 767

To further investigate the compatibility of extensible embedding, we directly apply the well-trained 768

extensible tokenizer to more LLaMA-2-7B based model (Figure 5). We select the following models: 1) 769

Vicuna-16K (Zheng et al., 2023), 2) Finance-Chat-4K (Cheng et al., 2023), 3) Law-Chat-4K (Cheng 770

et al., 2023), and 4) Medicine-Chat-4K (Cheng et al., 2023). All these models are not only popular in the 771

community, but have also been fine-tuned for specific domains. The method for measuring perplexity is 772

consistent with main text. 773

Firstly, all these models extend their context length after implementing extensible embedding. For 774

instance, with extensible embedding, Vicuna-16K’s context length can extend up to 100K. Secondly, as 775

the increase of the context length, the context generation quality improves. Thirdly, we find all these 776

fine-tuned models perform well under different scaling factors, which indicates that extensible embedding 777

maintains its flexibility when directly applying it to fine-tuned models. 778

4K 8K 16K 32K 50K 100K
Context Length

Base

ExtEmbedding (×2)

ExtEmbedding (×4)

ExtEmbedding (×8)

ExtEmbedding (×16)

ExtEmbedding (×32)

7.3 7.27 7.15

7.05 6.9 6.88 11.5

7.31 7.14 7.13 7.08 7.11

7.64 7.45 7.39 7.34 7.32 7.33

7.95 7.73 7.66 7.56 7.55 7.5

8.68 8.26 8.1 7.96 7.89 7.82

(a) Vicuna-16K

4K 8K 16K 32K 50K 100K
Context Length

6.45

6.95 13.2

7.21 7.05 27.1

7.53 7.39 7.35 31.5

7.78 7.63 7.54 7.56 7.61

7.97 7.75 7.66 7.58 7.55 7.58

(b) Finance-Chat-4K

4K 8K 16K 32K 50K 100K
Context Length

6.46

6.98 13.2

7.23 7.09 27.4

7.54 7.42 7.39 31.9

7.77 7.64 7.58 7.61 7.64

7.97 7.76 7.67 7.62 7.59 7.62

(c) Law-Chat-4K

4K 8K 16K 32K 50K 100K
Context Length

6.4

6.93 13.1

7.19 7.03 27.2

7.5 7.36 7.33 31.6

7.75 7.6 7.52 7.54 7.58

7.96 7.73 7.64 7.56 7.54 7.57

(d) Medicine-Chat-4K

Figure 5: Compatibility of extensible embedding. The metric is perplexity on PG19. The darker the color, the
higher the perplexity. And the blank area denotes instance where perplexity > 102.
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