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Abstract
We introduce Concept Bottleneck Reward Models
(CB-RM), a reward modeling framework that en-
ables interpretable preference learning through
selective concept annotation. Unlike standard
RLHF methods that rely on opaque reward func-
tions, CB-RM decomposes reward prediction
into human-interpretable concepts. To make this
framework efficient in low-supervision settings,
we formalize an active learning strategy that dy-
namically acquires the most informative concept
labels. We propose an acquisition function based
on Expected Information Gain and show that it
significantly accelerates concept learning without
compromising preference accuracy. Evaluated
on the UltraFeedback dataset, our method out-
performs baselines in interpretability and sample
efficiency, marking a step towards more transpar-
ent, auditable, and human-aligned reward models.

1. Introduction
Motivation. A key challenge in aligning machine learning
(ML) systems, particularly Large Language Models (LLM),
with human preferences lies in the interpretability of the
reward models used for their alignment with human val-
ues. While significant progress has been made in learning
reward functions from human feedback (Christiano et al.,
2017; Ouyang et al., 2022), most existing approaches rely
on black-box reward models, making it difficult to under-
stand which factors drive human preferences. This lack of
interpretability limits the ability to diagnose, refine, and
trust these models in real-world applications (Doshi-Velez
& Kim, 2017). To address this, we propose a framework for
learning interpretable reward functions that explicitly iden-
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tify and leverage latent dimensions of human preferences
with minimal annotation costs, building on the Concept
Bottleneck Model (CBM) paradigm (Koh et al., 2020). By
actively querying human feedback for annotations of inter-
pretable latent dimensions, we aim to uncover the underly-
ing concepts that influence user decisions. Our proposed
approach not only enhances the transparency of reward mod-
els but also ensures robust alignment with human values.
Integrating uncertainty estimation and bayesian experimen-
tal design (Melo et al., 2024), we optimize the human feed-
back, scaling the annotation process. This work advances
the development of interpretable and trustworthy systems,
with more transparent human-machine interactions.

Background Reward modeling is central to Reinforce-
ment Learning from Human Feedback (RLHF), a framework
where ML systems learn to align with human preferences
by optimizing behavior based on feedback—typically in the
form of pairwise comparisons between model outputs. In-
stead of handcrafting reward functions, RLHF uses human
preference feedback to train proxy reward models, which
are then used to guide policy optimization. This has been
effective in fine-tuning LLMs for instruction following and
safe interaction tasks (Christiano et al., 2017; Ouyang et al.,
2022). However, the reward models used in RLHF are often
opaque and monolithic, making it difficult to understand,
debug, or adapt their behavior (Bai et al., 2022). Moreover,
they require large quantities of labeled data, which is ex-
pensive and generally noisy (Casper et al., 2023; Sharma
et al., 2024). To faithfully capture the spectrum of human
intent, reward models should support interpretability, per-
sonalization, and uncertainty estimation. These properties
are not only useful for model introspection but are critical
for scalable and trustworthy alignment.

CBMs (Koh et al., 2020) offer an interpretable alternative
to black-box function approximators by explicitly modeling
the intermediate concepts that drive model decisions. These
structured neural models decompose predictions into two
stages: (i) predicting human-interpretable concepts from
raw inputs, and (ii) predicting the final task label based
solely on these concepts. This structure enables inspec-
tion, intervention, and debugging of the model’s behavior.
CBMs have been extended to interactive settings with dif-
ferent interaction policies (Chauhan et al., 2023), stochastic
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variants considering correlations to propagate through pre-
dictions (Vandenhirtz et al., 2024), and adapting to external
interventions from pretrained models (Laguna et al., 2024).
Although previous work explores how to intervene most
effectively at test time, the strategies assume full access
to concept annotations during training. This is, however,
not the case in typical data collection setups for preference
learning. In this work, we introduce an Active Learning
(AL) framework on Concept Bottleneck Reward Models
(CB-RM). Our AL algorithm must decide which concept
labels to query during training for maximal utility. This set-
ting poses new challenges: the model must identify which
missing concept labels will have the most influence on gen-
eralization and interpretability. Prioritizing such queries
effectively is crucial for building scalable, data-efficient,
and trustworthy reward models. A recent attempt at inter-
pretable reward modeling, ArmoRM (Wang et al., 2024),
learns multi-objective concept scores in a similar fashion
to CBMs and combines them via a mixture-of-experts gat-
ing mechanism. However, we identify several potential
concerns regarding this work and address them here.

Contributions In this work, we overcome the above chal-
lenges with the following contributions: (i) We introduce
CB-RM, a novel approach for modeling reward functions
with underlying representations of human understandable
concepts; (ii) We model an AL CB-RM framework that
selectively acquires concept annotations during training
episodes for improved interpretability and enables effective
learning in low-data regimes—we introduce this formaliza-
tion for the first time in the CBM context, which itself has
extensive potential applications; (iii) We demonstrate that
active concept acquisition is critical in preference learning
settings, where annotating every concept for every pairwise
example is expensive and infeasible. To this end, we intro-
duce an acquisition strategy based on Expected Information
Gain (EIG), which significantly improves the baselines on
concept learning efficiency across training episodes with-
out compromising downstream preference prediction accu-
racy. Here, we define concepts as interpretable response at-
tributes—such as helpfulness, correctness, and others—that
reflect human evaluative preferences.

2. Problem Formalism
Setup Let Dpool = {(xi, y

′
i, yi)} be an unlabeled pool

of pairwise preference data conventionally used in reward
modeling for RLHF. We denote by xi ∈ X ⊂ Σ∗ a prompt,
and y′i, yi ∈ Y ⊂ Σ∗ two candidate responses. We use
Σ∗ to denote the space of natural language and X , Y the
subsets of all plausible human prompts and LLM responses,
respectively. We assume the existence of a ground-truth
human reward function r : X × Y → R that determines the
preference choice between two candidate responses based

on the standard BTL (Bradley & Terry, 1952) model:

p(y ≻ y′|x) = σ (r(x, y)− r(x, y′)) . (1)

In this work, we assume that the rewards assigned to can-
didate responses depend on a set of underlying latent con-
cepts C extractable from the texts (i.e. helpfulness, cor-
rectness, coherence, ...). Thus, we model r via a context-
aware bottleneck composed of two functions: fθ and gϕ.
fθ : X × Y → C, maps a prompt-response pair (x, y)
to a vector fθ(x, y) ≡ c ∈ C representing the set of
concepts present in (x, y) and gϕ : X → RK , where
dim(C) = K, maps the prompt x to weight vector gϕ(x) ≡
w ≡ (w1, w2, . . . , wK) ∈ RK , with wk representing the
importance of the k-th concept in the context of the topic or
task implicitly defined in x. The final reward function can
be described as:

rθ,ϕ(x, y) = gϕ(x)
T fθ(x, y) = wT c. (2)

To account for uncertainty in the concept predictions, we
model the concept encoder fθ as a probabilistic function.
Specifically, for each input (x, y), it predicts a Gaussian
distribution over concept scores:

fθ(x, y) ∼ N (µ(x, y),diag(σ2(x, y))), (3)

where µ ∈ RK is the predicted mean vector and σ2 ∈ RK

is the vector of variances for each concept dimension. Given
two responses y and y′ to the same prompt x, we define the
concept difference distribution as the distribution of the
vector ∆c = fθ(x, y)− fθ(x, y

′). Since both fθ(x, y) and
fθ(x, y

′) are modeled as independent Gaussians we have:

∆c ∼ N
(
µ(x, y)− µ(x, y′), diag(σ2(x, y) + σ2(x, y′))

)
,

(4)

which enables downstream acquisition strategies to leverage
both mean and variance for uncertainty-aware querying. The
CB-RM model is trained jointly on the task and concept
objectives, with equal weighting by default. While this
framework can be generalized, we focus on classification
tasks, using cross-entropy loss for both objectives.

Goal To learn rθ,ϕ we must obtain preference labels ℓi ∈
{0, 1} determining if for a given sample (xi, yi, y

′
i) the first

(ℓi = 0) or the second (ℓi = 1) response is preferred. In
addition, to learn the human-interpretable concept bottle-
neck, we also require a learning signal for grounding the
latent representations ci in a human-interpretable space of
concepts.

In this work, we choose to collect relative concept la-
bels ski ∈ {0, 1}, where i ∈ {1, . . . , |Dpool|} and k ∈
{1, . . .K}. That is, for a tuple (xi, yi, y

′
i), we query binary

concept labels indicating which of the two responses yi or y′i
performs better with respect to the k-th concept e.g., which
response is more helpful or more coherent. Obtaining both
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Figure 1. Overview of CB-RM with Active Learning. In CB-RM, each prompt-response pair is encoded by an LLM encoder and an
MLP to predict Gaussian-distributed concept representations ∆c, to generate a reward prediction using context-conditioned weights w
from gϕ(x). During Active Learning, concept-label pairs are selectively acquired using an Activation Function (AF), the best performing
being EIG, to maximize concept learning across episodes. Human-annotated concept scores from an LLM judge supervise the pipeline.

preference labels and concept annotations across the entire
dataset Dpool—which must be large for robust reward learn-
ing—is expensive. Therefore, we propose an active learning
strategy to efficiently select queries, reducing labeling costs.

3. Method: Active Learning in CB-RM
Our method builds on CBMs using probabilistic concept pre-
diction to produce reward scores, and selectively acquires
concept labels during training via active learning. In what
follows, we formalize this framework and introduce acquisi-
tion strategies designed to improve supervision efficiency.

We explore selective acquisition strategies that prioritize
concept labels expected to be most beneficial for training.
Figure 1 shows a general overview of the proposed AL
method in CB-RM. To manage training stability and incor-
porate recent feedback efficiently, we adopt a FIFO (First-In-
First-Out) (Dwaracherla et al., 2024) replay buffer strategy.
After each training episode, newly acquired preference and
concept annotations are appended to the buffer, while the
oldest entries are discarded once capacity is reached. This
approach maintains a bounded memory footprint and en-
sures the model trains predominantly on up-to-date and
relevant samples. Empirically, this strategy supports rapid
adaptation to informative queries without overfitting to stale
data, aligning with best practices in active exploration under
feedback constraints. Algorithm 1, Appendix A includes a
comprehensive description of the AL pipeline.

We propose a set of acquisition functions to guide the se-
lective annotation of concept labels during training. Let
the unlabeled pool be defined as U ⊂ [|Dpool|] × [K],
representing the Cartesian product of instance indices and
concept indices. Each instance index i ∈ [1, . . . , |Dpool|]
corresponds to a tuple (xi, yi, y

′
i), and each concept index

k ∈ [1, . . . ,K] corresponds to the k-th concept. Thus, each

pair (i, k) ∈ U identifies which label ski to query. During
each learning episode, we select a batch of B pairs (i, k)
from U according to an acquisition function A•(i, k), anno-
tate the selected concept labels, and retrain the model. We
consider the following acquisition strategies:

Random Selection As a baseline acquisition strategy, we
uniformly sample concept-query tuples:

Arandom = UniformSample(U). (5)

Concept Variance We select the concept-query tuples
with the highest predictive variance in concept differences:

AVar(i, k) = Var
[
∆cki

]
= σ2

k(xi, yi) + σ2
k(xi, y

′
i), (6)

where ∆cki is the k-th dimension of the concept difference.

Concept-weighted Influence Score (CwIS) We select
concept-query tuples based on their influence on the reward
difference, weighted by how uncertain the model is about
the prediction itself:

ACwIS(i, k) =
∣∣∣r(xi, yi)− r(xi, y

′
i)− r(k)(xi, yi) + r(k)(xi, y

′
i)
∣∣∣

+ λ · Var[∆cki ], (7)

where r(k)(·) denotes the reward computed after interven-
ing on the k-th concept (i.e., setting its logit to a fixed
high/low value), and we set λ to 0.1. This acquisition
function targets concept annotations that are both highly
influential for reward prediction and uncertain. Our CwIS
strategy is inspired by the CooP policy of Chauhan et al.
(2023), which combines concept uncertainty and influence
for test-time interventions. While they target inference-time
interaction, CwIS is the closest adaptation of existing com-
plementary literature, despite differing goals.
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Expected Information Gain (EIG) EIG maximizes the
expected reduction in uncertainty about the model’s predic-
tions after observing a concept label, which can be approx-
imated by computing the difference between the expected
entropy and the entropy of the expected prediction after
sampling (Houlsby et al., 2011). Concretely, we have:

AEIG(i, k) = Eθ,ϕ

[
H

[
p(ski | xi, yi, y

′
i, θ, ϕ)

]]
−H

[
Eθ,ϕ

[
p(ski | xi, yi, y

′
i, θ, ϕ)

]]
. (8)

4. Experimental Setup
We evaluate our method on the UltraFeedback dataset (Cui
et al., 2024), a large-scale resource of diverse prompt-
response pairs from 17 language models, designed to sup-
port alignment research without relying on explicit human
preference labels. Further explanation of the dataset is
included in Appendix B.1. To encode the prompts and
responses, we leverage the representations predicted for
an LLM encoder (See Figure 1). In particular, to avoid
data leakage, all embeddings are computed using LLaMA-2
7B (AI, 2023), whose weights were released prior to the Ul-
traFeedback dataset. This ensures no overlap between model
pretraining and evaluation data. To acquire the ground
truth concept annotations resembling the human concept-
preferences, we annotate each sample using an LLM judge,
OpenAI GPT-4o-based, with ten interpretable and broadly
applicable concepts: helpfulness, correctness, coherence,
complexity, verbosity, instruction following, truthfulness,
honesty, safety, and readability. These were chosen for
their relevance to human evaluative reasoning. With our ap-
proach, we circumvent some of the potential issues present
in prior work on interpretable reward models (Wang et al.,
2024). These include: repeated concept definitions, un-
evenly distributed annotations across datasets, potentially
introducing bias (Kobalczyk & van der Schaar, 2025), the
use of LLM encoders already trained on the same preference
data, raising concerns of information leakage and confound-
ing effects, the lack of concept-level evaluation, and finally,
the assumed access to all concept labels. In contrast, our
approach generates interpretable labels that are uniformly
available across all data points, ensuring greater robustness
for downstream learning. Further implementation details are
found in Appendix B.2 and the code1 is publicly available.

5. Results
To assess the effectiveness of the proposed acquisition func-
tions, we track the improvement in concept accuracy across
AL episodes, aiming to enhance reward model interpretabil-
ity in a cost-efficient manner. In Figure 2 (Top), we see how
EIG consistently achieves the fastest gains in concept accu-
racy when compared with the random baseline. In Figure 2

1
https://github.com/sonialagunac/cb-rm-workshop

(Bottom), we include a comparison with the remaining base-
lines (not in (Top) for clarity), showing that CwIS performs
closer to EIG, while concept variance does not significantly
affect. Each plot is evaluated over five random seeds. At the
same time, preference accuracy remains comparable across
all acquisition methods.
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Random Concept Variance CwIS EIG
Figure 2. Top: Concept and preference accuracy in the EIG and
random acquisition strategies. Bottom: Concept and preference
accuracy in all studied acquisition strategies. Shaded areas denote
standard deviation across 5 seeds.

6. Discussion and Conclusion
Although preference accuracy remains comparable across
methods, models trained with EIG are notably more robust
and interpretable in terms of concept performance (Figure 2).
Among baselines, CwIS ranks second after EIG. However,
unlike in test-time intervention methods (Chauhan et al.,
2023; Shin et al., 2023), concept uncertainty alone does not
ensure optimal active learning. This underscores a key dis-
tinction: intervention targets immediate fixes, while active
learning must prioritize long-term representation quality
and generalization. The instability in preference perfor-
mance likely stems from noisy or biased feedback (Casper
et al., 2023; Sharma et al., 2024), especially for complex
responses, leading to misaligned or saturated reward signals.

We also observe that embeddings from LLMs that have
been likely exposed to the UltraFeedback dataset during
their pretraining, exhibit strong concept correlations at the
representation level, and the additional concept-level su-
pervision does not improve performance (more details in
Appendix C). This observation suggests a potential infor-
mation leakage in the LLM’s representations. Our findings
caution against blind reliance on encoder outputs and sug-
gest a direction for future work on identifying the impact of
data leakage in robust reward modeling.
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Conclusions We propose CB-RM, a concept-based re-
ward modeling framework that enables interpretable prefer-
ence learning through selective concept annotation. By
introducing an active learning formulation and an EIG-
based acquisition strategy, we show that it is possible to
efficiently improve concept accuracy in low-supervision
settings without sacrificing preference performance. Our
results highlight EIG’s effectiveness in aligning latent con-
cepts with human preferences, paving the way for more
transparent and auditable reward models. While challenges
and open questions remain, our approach—combining
CBMs, information-theoretic acquisition, and structured
training—presents a step toward programmatic reward mod-
els aligned with human reasoning.
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A. Active Learning in CB-RM
Algorithm 1 outlines the active learning loop used in CB-RM, including acquisition, labeling, and model retraining steps.

Algorithm 1 Active Learning with CB-RM
Require: Pool dataset U , labeled set L, number of episodes T , number of labels to query at each episode B.
1: Train model on initial labeled set L
2: for episode t = 1 to T do
3: Compute acquisition scores for all candidate (x, y) ∈ U using an acquisition function
4: Select B indices (i, k) to query the concept annotations.
5: For each pair (i, k), query the k-th concept label of the i-th instance (xi, yi, y

′
i) and update the labeled set L.

6: Remove selected indices from the pool U .
7: Retrain CB-RM model on the updated labeled set L.
8: end for

B. Experimental Details
B.1. Ultrafeedback Dataset

We use the UltraFeedback dataset (Cui et al., 2024), a large-scale resource of 63,967 prompts and 255,864 responses
designed for training and evaluating alignment methods in large language models. Prompts are sourced from high-quality
datasets like TruthfulQA, UltraChat, FLAN, and ShareGPT, and span a broad range of tasks including question answering,
instruction following, and factual verification. Each prompt is paired with four responses sampled from a diverse pool of 17
open-source and commercial models (i.e., LLaMA2, GPT-4, Vicuna), ensuring broad stylistic and qualitative coverage.

Responses were generated using varied decoding strategies and model sizes to capture natural variation in assistant behavior.
The instructions are primarily single-turn queries but include both simple factual and more complex creative or ethical tasks.
This diversity makes UltraFeedback a robust testbed for preference modeling without relying on explicit human labels,
offering rich signal for evaluating interpretable, concept-based reward models.

B.2. Extended Implementation Details

Regarding the dataset, we use a train-validation-test split of 70-10-20 of Ultrafeedback. In order to generate the concept
annotations using LLM judge, for each example, the LLM was presented with a system prompt and a user query, followed
by two alternative assistant responses. The model was then instructed to rate which response was better with respect to ten
predefined concepts. Each concept was scored independently on a scale from 0 to 1, where a score of 0 indicates that the
first response is clearly better, and 1 that the second response is clearly better. We generate the final preference labels as a
linear combination of the mentioned concepts to ensure the ultimate reward model remains interpretable.

Moreover, the implemented FIFO has a buffer capacity of 32000 and a number of acquired samples of 320. Both the CBM
and gating mechanism use a one-layer perceptron to extract concept logits in a probabilistic variant and weights, and were
trained for 1 epoch. This architectural modeling ensures the use of programmatic representations: by structuring reward
models through interpretable components, we enable modular, debuggable learning that goes beyond black-box supervision.

C. Active Learning Results on Large LLMs with Information Leakage
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Random Concept Variance CwIS EIG
Figure 3. Concept and preference accuracy in all studied acquisition strategies using embeddings generated from Llama3-8B. Shaded
areas denote standard deviation across 5 seeds.
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Figure 3 illustrates the limitations of applying active learning with concept-based acquisition strategies on large LLMs
such as LLaMA-3-8B, whose training cutoff date is after the release of the UltraFeedback dataset and likely have been
exposed to this dataset during their pre-training. In this setting, embeddings exhibit strong linear correlations with target
concepts, and additional supervision yields little to no improvement. This highlights a critical risk of information leakage,
where pretrained representations already encode the target signals, undermining the benefits of active acquisition. We
include this analysis to caution practitioners: when evaluating interpretability or data efficiency methods, care must be
taken to avoid confounded setups that mask true learning dynamics. Furthermore, the CBM paradigm itself has been
shown to be vulnerable to information leakage within the bottleneck, with recent works proposing methods to quantify this
effect (Makonnen et al., 2025). Therefore, it is crucial to avoid additional sources of leakage in encoder representations,
which would only compound the problem and obscure the model’s reasoning further.
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