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Abstract

We present SensorLM, a family of sensor-language foundation models that enable
wearable sensor data understanding with natural language. Despite its pervasive
nature, aligning and interpreting sensor data with language remains challenging
due to the lack of paired, richly annotated sensor-text descriptions in uncurated,
real-world wearable data. We introduce a hierarchical caption generation pipeline
designed to capture statistical, structural, and semantic information from sensor
data. This approach enabled the curation of the largest sensor-language dataset to
date, comprising over 59.7 million hours of data from more than 103,000 people.
Furthermore, SensorLM extends prominent multimodal pretraining architectures
(e.g., CLIP, CoCa) and recovers them as specific variants within a generic archi-
tecture. Extensive experiments on real-world tasks in human activity analysis and
healthcare verify the superior performance of SensorLM over state-of-the-art in
zero-shot recognition, few-shot learning, and cross-modal retrieval. SensorLM also
demonstrates intriguing capabilities including scaling behaviors, label efficiency,
sensor captioning, and zero-shot generalization to unseen tasks. Code is available at
https://github.com/Google-Health/consumer-health-research/tree/main/sensorlm.

1 Introduction

The human experience unfolds as a continuous dialogue between sensory perception and language
articulation. A perceived change in raw physiological readings like “heart rate”, can be seamlessly
translated from low-level statistical descriptions (e.g., “heart rate spikes from 65 to 90”) to high-level
semantic abstractions (e.g., “periods of strength training noted”). This intrinsic interplay between raw
sensation and linguistic abstraction forms human comprehension of internal states, health conditions,
behavioral changes, and more [7, 16]. Wearable sensors now record these narratives at unprecedented
resolution, producing minute-level data that captures dense insights into an individual’s physiological
and behavioral states [24,41]. Aligning and interpreting this rich, continuous stream of fine-grained
sensor data with intuitive and actionable language descriptions is critical for user engagement [40],
clinical decision-making [38], personalized insights [7], and behavioral interventions [26].

However, directly interpreting continuous raw sensor data poses significant challenges. While large
language models (LLMs) excel at processing textual sequences, they inherently struggle with the
high-dimensional, continuous, and temporally extensive nature of wearable data [21]. For example, a
single day of minute-level multimodal sensor recordings (see Fig. 1(a)) would expand to over 200,000
tokens [24], far exceeding the practical context length limits of most contemporary LL.Ms [30, 32].
Interestingly, even with minimal subsampling to fit within context constraints, LLMs fail to perform
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Figure 1: Sensor-language foundation models (SensorLV) for wearable data. Aligning and interpreting
sensor data with natural language remains challenging. (A) We present a comprehensive study using over 59.7
million hours of multimodal wearable data from over 103,000 individuals. (B) We design a hierarchical pipeline
for automatic paired text generation that covers statistical, structural, and semantic sensor information. (C) The
SensorLM pretraining framework and its use cases for diverse downstream tasks. (D) Radar plot comparing the
performance of SensorLM and baselines across various tasks and settings (details in Sec. 5).

well: Fig. 1(d) illustrates the poor zero-shot performance of Gemma-3-27B [30] and Gemini 2.0 [29]
(details in Sec. 5). As such, standard LLM methods either become overwhelmed by data volume or
sacrifice the granularity needed for aligning sensor events with meaningful linguistic descriptions.

Furthermore, despite preliminary efforts in constructing paired sensor-text datasets to facilitate
effective cross-modal alignment, the absence of large-scale, high-quality sensor-language corpora
remains a significant bottleneck [6, 10, 15,40]. As illustrated in Table 1, current sensor-text datasets
are significantly limited in scale and primarily structured in restrictive question-answering formats
[6,15,40]. This highlights a fundamental gap — the lack of principled and scalable methods for
generating truly large-scale and diverse sensor-language datasets. Consequently, existing approaches
yield sparse and narrowly scoped sensor-text pairs, insufficient for training generalizable foundation
models capable of comprehensive multimodal understanding across diverse, open-ended tasks.

To fill the gap, we introduce SensorLM, a family of sensor-language foundation models that unlock
meaningful interpretation of raw wearable data and enable novel sensor applications through natural
language. The effectiveness of SensorLM stems from three innovations: (1) a hierarchical, automated
caption-generation pipeline that systematically captures multi-level features—sratistical, structural,
and semantic—from fine-grained sensor streams; (2) building upon this pipeline, the curation of the
largest-scale sensor-language dataset to date, comprising over 59 million hours of wearable data
from more than 103,000 individuals; and (3) a generic pretraining framework that integrates diverse
multimodal architectures (e.g., CLIP [25], Cap [33], CoCa [39]) for scalable and robust learning.

To rigorously evaluate SensorLM, we benchmark its performance against state-of-the-art (SOTA)
methods across a diverse range of real-world tasks in domains such as human activity analysis and
metabolic health. Extensive experiments verify the efficacy of SensorLM on multimodal understand-
ing and its ability to enable new sensor-driven applications. Our contributions are as follows:

* We introduce a hierarchical captioning pipeline for raw sensor data, enabling the curation of the
largest sensor-language study to date with over 59 million hours of data from over 103,000 people.

* We design SensorLM, a family of sensor-language foundation models that enable diverse sensor
capabilities through natural language.

* We conduct extensive experiments across various tasks in human activity analysis and metabolic
health, verifying the superior performance of SensorLM against SOTA methods.

* Further analyses reveal intriguing properties of SensorLM on its scaling behaviors, data efficiency,
multimodal understanding & generation, and zero-shot generalization to unseen tasks and concepts.



Table 1: Comparisons of studies on sensor-text modeling.

Sensors’ Text

Study #People # Hours
(000s) PPG ACC EDA TEMP ALT  statistical  structural  semantic

Xing et al. [36] 4 <1 X v X X X X X v
Moon et al. [23] 60 <1 X v X X X X X v
Yu et al. [40] 60 5 X v X X X X X v
Lietal [15] 214 3.7 X v X X X X v v
SensorLM (ours) 103,731 59,749 v 4 v v v v v 4

f ppa: Photoplethysmography. ACC: Accelerometer. EDA: Electrodermal Activity. TEMP: Temperature. ALT: Altitude.

2 Related Work

Aligning Sensor with Language. Despite growing interests in integrating sensor data with natural
language, large-scale paired corpora derived from uncurated wearable data remain scarce, yet are
crucial for training effective cross-modal models [25, 35, 39]. Prior work typically addresses this
integration by using pre-derived textual summaries of sensor features or ingesting raw sensor values
as tabular inputs to LLMs in downstream prediction tasks [7, 13, 16,20]. Other multimodal methods
incorporate specialized sensor encoders with alignment modules to enhance an LLM’s capability to
interpret sensor data [6,10,14]. Recent efforts initiate the creation of sensor-text data primarily through
employing sensor question-answering frameworks [15,40], explicitly tailored towards human activity
recognition. However, these approaches often rely on manual summarization and are inherently
limited by sparse and narrowly-scoped sensor-text pairs, restricting generalization to broader scenarios
(see Table 1). In contrast, we focus on learning aligned sensor-language representations directly from
large-scale, hierarchical captions, enabling strong zero-shot generalization across diverse tasks.

Multimodal Sensor Foundation Models. Recent advances in sensor data modeling have demon-
strated improved accuracy, robustness, and generalization by leveraging self-supervised pretraining
on large-scale physiological and wearable sensor datasets [24, 41]. Existing sensor foundation
models primarily focus on single-modal but multi-channel sensor data, utilizing either contrastive-
based [1,31,37,41] or reconstruction-based pretraining objectives [24]. More recent efforts have
explored multimodal sensor foundation models by aligning individual physiological signals (e.g.,
ECG, EEG) or IMU sensor data with other modalities, including language or vision, through joint
representation learning [11,23,45]. Our work extends sensor foundation models towards comprehen-
sive multimodal sensor-language understanding, enabling novel sensor applications (see Fig. 1) and
multimodal capabilities via joint modeling of diverse sensor types and natural language.

Vision-Language Pretraining. Vision-language pretraining (VLP) has significantly advanced
multimodal Al, enabling models to effectively learn representations that integrate visual and textual
data [25,39]. Leveraging large-scale image-text datasets, VLP methods have produced multimodal
foundation models capable of strong zero-shot image classification, captioning, visual question
answering, and cross-modal retrieval [25,35,39]. Key VLP methods include contrastive learning (e.g.,
CLIP [25]), which aligns image and text embeddings while separating dissimilar pairs, and generative
pretraining (e.g., SIimVLM [35]), which employs a prefix language modeling objective. More recent
models like CoCa [39] combine both contrastive and generative objectives for enhanced multimodal
performance. The success of VLP has inspired similar pretraining strategies in other modalities such
as video, audio, time series [8,23,44], as well as specialized domains such as medicine [9,19,46]. Our
work extends VLP paradigms to the sensor domain, implementing a generic pretraining framework
that incorporates prominent multimodal architectures for scalable sensor-language modeling.

3 Sensor-Language Dataset Construction

Building a sensor-language foundation model requires two essential components: (1) a large-scale,
diverse collection of sensor data, and (2) corresponding captions that capture useful properties of the
data. We summarize prior efforts on sensor-text modeling in Table 1, and detail our study below.
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Figure 2: Hierarchical sensor caption generation pipeline. Given multimodal wearable data, we generate
three levels of captions: (1) statistical, capturing basic quantitative metrics; (2) structural, describing temporal
patterns, trends, and signal dynamics; and (3) semantic, providing contextual information such as behavioral
states or physical activity. When applicable, each caption is annotated with its time frame (marked in grey).

3.1 Sensor Data and Processing

We collected wrist-worn wearable sensor data from Fitbit and Pixel Watch devices. The dataset
includes multimodal time series signals from photoplethysmography (PPG), 3-axis accelerometer
(ACC), altimeter (ALT), skin temperature (TEMP), and electrodermal activity (EDA) sensors. From these
time series, we extracted 26 features: twelve metrics related to heart rate and heart rate variability
(HRV) derived from the PPG signal, ten accelerometer-based features (e.g., jerk, steps), as well as the
mean and slope of skin temperature, mean tonic electrodermal activity, and mean altimeter pressure
(full details are in Appendix A.1). The input to the model consists of one-day windows of sensor data
at minutely resolution, resulting in input matrices of shape [26 features x 1440 minutes].

3.2 Hierarchical Sensor Caption Generation

A significant challenge in sensor-language pretraining is the general absence of paired textual
descriptions for wearable sensor data. Unlike domains such as vision or clinical imaging, where data
often comes with associated text (e.g., image captions or clinical reports) [9, 25, 39], sensor data
collected in the wild typically lacks such naturally occurring pairings. Existing annotations, when
available, are often sparse and limited to coarse labels such as discrete activity categories (Table 1).

To bridge this gap and enable robust alignment between natural language and multimodal sensor
streams, we propose a hierarchical caption generation strategy. This approach creates captions at
three distinct levels of abstraction—statistical, structural, and semantic. By doing so, we aim to train
a model capable of representing not only basic numerical summaries and dynamic temporal patterns,
but also high-level events and contextual states observed in daily sensor data. An illustrative example
of the overall process and all three level of captions is shown in Fig. 2.

Statistical Captions. Statistical captions provide a quantitative summary of the sensor data. For each
distinct sensor feature channel (e.g., heart rate, temperature, step count), basic statistical measures—
including mean, maximum, minimum, and standard deviation—are computed. To enhance linguistic
diversity, these values are embedded into a variety of sentence structures using a set of templates
(details in Appendix A.2). This offers a concise, data-driven overview of individual sensor streams.

Structural Captions. Structural captions focus on encoding the dynamic characteristics and patterns
within time-series sensor data. This includes identifying and describing notable trends, fluctuations,
and other temporal features across sensor channels. Methodologically, we apply sliding windows to
each time series to detect significant increasing, decreasing, or stable trends, as well as identifying
sharp spikes and drops. Similar to statistical captions, these identified patterns are then verbalized
using a diverse set of templates, from which a random subset is selected for each data sample. This
enables the model to learn the temporal shape and behavioral dynamics of the sensor signals.

Semantic Captions. Semantic captions aim to capture the high-level meaning and context embedded
in the sensor data, reflecting what the individual might be doing or experiencing. This layer incorpo-
rates information about recognized activities and sleep periods, specifying start and end times of each
event—e.g., “Observed Outdoor Bike activity from minute 550 to 561”. Additionally, user-logged
mood data with corresponding timestamps is integrated, such as “The person logged their mood as
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Figure 3: The SensorLM architecture, pretraining objectives, and representative variants. Our framework
integrates both contrastive (Lcon) and generative (Lc.p) objectives, extending prior approaches (e.g., CLIP [25],
Cap [33], CoCa [39]) to sensor data and recovering them as specific configurations within a single architecture.

Frustrated at minute 1110.” Integrating this contextual information enables the model to associate
real-world events and subjective states with underlying sensor patterns.

3.3 Large-Scale Pretraining Sensor-Text Dataset

Building upon the collected sensor data and caption generation pipeline, we construct the largest
sensor-language paired pretraining dataset to date — orders of magnitude larger than prior studies
(Table 1). All data are de-identified and used with participant consent and IRB review (Advarra).
The dataset comprises 2,489,570 person-days of data from 103,643 people across 127 countries,
collected between March 1% and May 1%, 2024. (Further details are provided in Appendix A.1.)

We generate multiple caption combinations and evaluate their effectiveness in Sec. 5. Unless otherwise
specified, we use the combination of structural and semantic captions in our main experiments.

4 SensorLM

SensorLM presents a generic framework for training sensor-language foundation models (Fig. 3).
Inspired by prominent VLP architectures with contrastive (e.g., CLIP [25], SigLIP [42]), generative
(e.g., Cap [33]), and hybrid (e.g., CoCa [39]) objectives, SensorLM extends these approaches to
sensor data and recovers them as specific configurations within a single architecture.

From Unimodal to Multimodal Paradigms. We first position SensorLM within the broader family
of foundation models that leverage language supervision, adapting these paradigms to the sensor
domain. Traditional discriminative single-encoder models perform well on fixed-vocabulary tasks like
activity recognition but lack flexibility for open-ended language grounding. Contrastive dual-encoder
approaches [25] enable zero-shot generalization and efficient retrieval by aligning modalities in a
shared space. Encoder-decoder architectures, in contrast, generate rich natural language conditioned
on the input (e.g., sensor data), offering fine-grained interpretability via language. While expressive,
they may struggle with robust cross-modal alignment. SensorLM integrates these complementary
strategies into a single framework for sensor-language pretraining.

Architecture. SensorLM comprises a sensor encoder, a text encoder, and a multimodal text decoder
(Fig. 3). The sensor encoder transforms time-series sensor data into a compact latent representations.
We adapt a Vision Transformer (ViT) architecture to handle sensor data by segmenting the sequence
into patches, applying linear embeddings, and processing them through transformer blocks to capture
both local and long-range temporal dependencies. The text encoder follows a similar process to
encode input text into unimodal representations. Finally, the multimodal text decoder is a causally
masked transformer that integrates both sensor features (via cross-attention) and text features to
produce multimodal text representations.



Pretraining Objectives. SensorLM is pretrained with a composite loss function that combines both
contrastive and generative objectives. Given a batch of N sensor-text pairs {(Zn, Yn)},,cni- the

contrastive loss Lo is applied to normalized unimodal text embeddings v; (from the text encoder)
and sensor embeddings s; (from the sensor encoder) via a symmetric cross-modal objective [5]:

_ 1 og exp (sim(si, v;)/7) o exp(sim(v;, 8i)/7)
Lecon (zl +Zlgz )/7—))’

J 1 ]#1exp(51m(sl,vj /T) =1, J#exp(snn(vl,s]

sensor-to-text text-to-sensor

where sim(-, -) is the similarity measure between embeddings, and 7 denotes the temperature param-
eter. The captioning loss L, is a standard cross-entropy loss applied to the outputs of multimodal
text decoder. It maximizes the conditional likelihood of the paired text y given the sensor input x
under a forward autoregressive factorization:

T
Leap = — thl log Pp(y: | y<i, ).

Combined Objective and Representative Variants. The final objective is a weighted combination:
Lsensortt = Acon * Leon + Acap * Leap» Where Acon and Ay control the balance between contrastive and
generative learning. Under this unified formulation, SensorLM seamlessly recovers representative
variants within a single framework (Fig. 3): (1) CLIP (i.e., Acap = 0), (2) Cap (i.e., Acon = 0), and (3)
CoCa (i.e., Acon = Acap = 1). We investigate these model variants in Sec. 5.3.

The SensorLM Family. We train four variants of SensorLM with increasing sizes: SensorLM-S,
SensorLM-B, SensorLM-L, and SensorLM-XL. These variants employ sensor encoders with 3M,
114M, 404M, and 1.27B parameters (details in Appendix B.1). We study the effects of model scaling
in Sec. 5. Unless otherwise specified, we report results using SensorLM-B.

5 Experiments & Results

Datasets. We utilize three evaluation datasets for activity recognition, health-related tasks and cross-
modal retrieval. Detailed information and demographic breakdowns are provided in Appendix A.3.

* Activity dataset. The Activity dataset comprises 22,289 person-days from 10,013 individuals. We
randomly sampled ~ 1,000 test examples for each activity for zero-shot activity recognition (AR)
and few-shot adaptation. This dataset is from the same population as our pretraining sensor data.

* Metabolic dataset. The metabolic dataset, used for “Hypertension” and “Anxiety” prediction tasks,
were sourced from a held-out, IRB-approved observational study of adults in the US [22]. The
data comprises 241,532 examples (151,346 training and 90,186 testing) from 1,979 individuals.
It includes self-reported information covering demographics (e.g., age, sex, weight) and medical
conditions (e.g., “Hypertension” and “Anxiety”), providing rich labels for health analyses.

* Sensor-text retrieval dataset. We construct a retrieval dataset of 39,766 examples sourced from a
separate set of 975 individuals who were not included in the pretraining set. The same selection
criteria and caption generation method used in pretraining were applied.

Baselines. For zero-shot classification and cross-modal retrieval, there are currently no existing
multimodal baselines with these capabilities. We therefore compare against two LLMs, Gemini 2.0
Flash [29] and Gemma-3-27B [30], by formatting sensor data as tabular input. In addition, we finetune
Gemini 2.0 with paired sensor and activity data through supervised fine-tuning (SFT). For few-shot
learning and linear probing, we compare with SOTA SSL methods including SimCLR [5], DINO [3],
and Masked Siamese Network (MSN) [2]. Implementation details can be found in Appendix B.

Metrics. For zero-shot classification, we report area under the ROC curve (AUROC), Macro F1-
score, and Balanced Accuracy (BAcc). For few-shot learning, we report AUROC across 5, 10, 20, 50
samples per class. Cross-modal retrieval is evaluated using Recall@1 and Recall@5 (R@K).

5.1 Main Results

Zero-Shot Learning. One of the key capabilities enabled by SensorLM is zero-shot classification,
which we evaluate on a range of AR tasks. We use prompt ensembling [25] from the text encoder



Table 2: Zero-shot activity and concept classification. We compare SensorLM with representative LLM
baselines across (a) main activity classification, (b-d) activity-related concept classification, and (e-f) fine-grained
recognition. Gemini 2.0 with supervised fine-tuning (SFT) does not output class-probability scores; therefore
AUROC is not reported (“—"). Detailed task definitions and experimental setups are provided in Appendix B.5.

(a) Activity recognition (20-class)

(b) Activity by environmental context

Metrics AUROCT F1' BAcc' Metrics AUROCT F1' BAcc'
Gemma-3-27B [30]  0.50 0.01 0.05 Gemma-3-27B [30]  0.51 0.22 0.25
Gemini 2.0 [29] 0.51 0.03 0.07 Gemini 2.0 [29] 0.50 0.19 0.25
Gemini 2.0 (SFT) [29] — 0.06 0.10 Gemini 2.0 (SFT) [29] — 0.25 0.28

SensorLM 0.84 (+33%) 0.29 (+23%) 0.31 (+21%)

SensorLM

0.64 (+13%) 0.33 (+08%) 0.38 (+10%)

(c) Cardio vs. strength training

(d) Locomotion vs. stationary

Metrics AUROCT F1' BAcc' Metrics AUROC" F1' BAcc'
Gemma-3-27B [30]  0.53 0.42 0.49 Gemma-3-27B [30]  0.51 0.40 0.51
Gemini 2.0 [29] 0.50 0.39 0.50 Gemini 2.0 [29] 0.55 0.52 0.55
Gemini 2.0 (SFT) [29] — 0.44 0.53 Gemini 2.0 (SFT) [29] — 0.53 0.55
SensorLM 0.71 (+18%) 0.63 (+19%) 0.66 (+13%) SensorLM 0.61 (+06%) 0.58 (+05%) 0.58 (+03%)

(e) Fine-grained recognition (gym cardio)

(f) Fine-grained recognition (outdoor sports)

Metrics AUROC" F1' BAcc' Metrics AUROC" F1' BAcc'
Gemma-3-27B [30]  0.49 0.16 0.25 Gemma-3-27B [30]  0.50 0.18 0.25
Gemini 2.0 [29] 0.52 0.20 0.26 Gemini 2.0 [29] 0.54 0.22 0.29
Gemini 2.0 (SFT) [29] — 0.28 0.35 Gemini 2.0 (SFT) [29] — 0.26 0.32
SensorLM 0.76 (+24%) 0.50 (+22%) 0.51 (+16%) SensorLM 0.83 (+29%) 0.52 (+26%) 0.53 (+21%)

with diverse prompts to compute average label embeddings, and classify by selecting the label whose
embedding is closest to the sensor embedding. We include 6 tasks in total, including 20-class activity
recognition, activity concept classification (2-4 classes by “environmental” context or “physiological”
type), and fine-grained recognition (4 classes within “gym cardio” or “outdoor sports”). As shown
in Table 2, LL.M baselines perform near random on sensor-based activity classification. In contrast,
SensorLM demonstrates strong zero-shot capabilities across all metrics and tasks. For abstract
concepts such as “environmental” or “physiological” type, the superior performance suggests that the
model captures both explicit activity categories and higher-level conceptual understanding.

Zero-Shot Cross-Modal Retrieval. We evaluate the zero-
shot cross-modal retrieval performance of SensorLM by
assessing its ability to retrieve relevant text descriptions
given sensor queries (Sensor — Text) and vice versa (Text
— Sensor). Sensor-to-text retrieval enables querying de-
scription based on sensor input, while text-to-sensor re-
trieval supports use cases such as expert-driven querying
for specific sensor patterns using natural language. Table
3 confirms SensorLM’s exceptionally strong performance
across all sample sizes, significantly outperforming LLM
baselines, which largely failed at this task. SensorLM
achieves perfect retrieval on a 100-sample benchmark and
maintains high accuracy even at larger scales (5k and 40k
samples; full results in Appendix C.2).

Qualitatively, Fig. 4 verifies SensorLM’s ability to retrieve
accurate descriptions for unseen sensor data involving
multiple activities. In addition to correctly retrieving the
ground truth, the top similar captions are also semantically
relevant — capturing either similar activities occurring at
the same time (e.g., “Walk” vs. “Run”) or the same activity
at different times. This reflects its understanding of both
activity semantics and temporal alignment.

Table 3: Zero-shot cross-modal retrieval.
SensorLM achieves consistently strong re-
trieval performance on a held-out dataset.
Baseline LLMs struggle, with most tasks
infeasible due to context limits (marked as
“—"). Detailed experimental setups and com-
plete results are in Appendix B.7 and C.2.

100 samples 5,000 samples

Metrics R@l R@5 R@l R@5
Sensor — Text:

Gemma-3-27B [30] 1.0 5.0 - -
Gemini 2.0 [29] 50 9.0 — —
SensorLM 100.0 100.0 98.2 994
Text — Sensor:

Gemma-3-27B [30] — — — —
Gemini 2.0 [29] — — — —
SensorLM 100.0 100.0 96.7 99.2
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Figure 5: Few-shot adaptation to downstream tasks. We evaluate the label efficiency of different pretrained
sensor encoders with varying numbers of training labels per class. Across diverse tasks, SensorLM achieves
comparable or superior performance than SOTA methods. Additional results are provided in Appendix C.1.

Few-Shot Transfer Learning. We evaluate the quality of the learned sensor representations through
few-shot learning on three tasks: 20-class AR using the Activity dataset, and two binary prediction
tasks on clinical condition (“Hypertension”) and mental health (“Anxiety”) using the Metabolic
dataset. Fig. 5 shows the few-shot performance of SensorLM compared to baseline SSL. methods as
the number of training labels per class increases from 5 to 50. For AR, SensorLM significantly out-
performs baselines across all few-shot settings, achieving an AUROC of 0.88 with only 50 labels per
class, highlighting its effective representations in discriminating activities under limited supervision.
For “Hypertension” and “Anxiety” prediction, SensorLM shows competitive performance. Linear
probing results on the full training set support similar conclusions (Appendix C.1).

5.2 Analyses

Scaling Laws. We investigate the scaling behavior of SensorLM when trained on large-scale sensor-
language dataset by varying training compute, dataset size, and model scale [12]. As observed
in Fig. 6, the performance on zero-shot activity recognition improves consistently with increased
training steps and data size. For example, when scaling up the compute, SensorLM-B increases
from an AUROC of 0.66 at 17.4 TPU hours to 0.75 at 174 TPU hours. Expanding training data
also yields consistent gains, especially for larger models. However, gains beyond 12 million hours
diminish, showing saturation trends as reported in prior work [12,24]. Larger models such as
SensorLM-L and SensorLM-XL achieve higher performance when sufficiently trained, though under
low compute they may underperform due to undertraining (a phenomenon consistent with scaling
law observations). Overall, SensorLM demonstrates consistent and predictable scaling behaviors,
highlighting the applicability of scaling laws to sensor-language modeling.

Robustness to Out-of-Domain and Incomplete Data (Appendix C.7). We evaluate SensorLM ’s
robustness to out-of-domain (OOD) and missing data. With our metabolic downstream dataset
containing additional device types unseen during pretraining, we compare performance on in-domain
and OOD devices. SensorLM demonstrates strong generalization with only a degradation in some of
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Figure 6: Scaling behaviors of SensorLM. We show the zero-shot downstream performance of SensorLM as
a function of compute (left), data size (middle), and model size (right). Results demonstrate that increasing
compute, data, and model size each leads to consistent performance gains.

the tasks. We also assess missing-data scenarios, finding that performance degrades only marginally,
indicating that SensorLM remains robust and flexible with incomplete sensor inputs.

Zero-Shot Generalization to Unseen
Classes. To evaluate SensorLM’s gen-
eralizability to novel activities, we con-
ducted a case study by pre-training on
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(Fig. 7(b)), where semantically related
activities form coherent clusters, indicat-
ing that SensorLM infers unseen classes
based on their proximity to known con-
cepts in the learned embedding space.

Figure 7: Zero-shot generalization analysis of SensorLM.
(a) Overall performance on unseen activities. (b) Learned rep-
resentations in both the sensor and text embedding spaces. We
visualize conceptually similar but previously unseen activities as
a case study. The semantic alignment across modalities allows
SensorLM to infer the nature of unseen activities based on their
conceptual proximity to known ones.

Sensor Caption Generation. A key strength of SensorLM stems from its encoder-decoder archi-
tecture, trained with a generative objective. This design positions SensorLM to effectively process
multimodal sensor embeddings, yielding sensor captioning capabilities. Beyond its inherent clas-
sification and retrieval capabilities, SensorLM demonstrates strong generative performance. On a
dedicated evaluation set of 200 sensor-text pairs (sampled from the sensor-caption retrieval dataset),
SensorLM directly generates captions from sensor input (and a [START] token). As shown in Fig.
8, SensorLM (pre-trained on semantic captions) outperforms powerful LLM baselines, including
Gemini 2.0 Flash [29] and Gemma-3-27B [30]. These results highlight SensorLM’s capability as a
sensor-language foundation model that can both interpret sensor data and generate meaningful natural
language descriptions.

5.3 Ablation Studies

We provide main ablation studies on SensorLM, with complete results in Appendix C.4 and C.5.
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Figure 8: Sensor caption generation results. (A) Captioning performance of SensorLM and baselines. For
SensorLM, only the sensor data and a [START] token are provided to generate captions. (B) A correctly generated
example. (C) A partially correct example with inaccurate components. SensorLM produces meaningful and
semantically accurate captions. Detailed experimental setups and additional results are in Appendix B.9 and C.3.

Understanding the impact of pretraining caption Table 4: Comparisons of SensorLM caption
variants. We investigate how different levels of sensor variants. We evaluate different combinations of
descriptions affect downstream tasks. Table 4 shows caption types used during pretraining. AUROC"
that semantic captions are crucial for zero-shot AR, is used as the metric. Best results of each column
whereas models trained solely on statistical or structural ~ are in bold and the second best are underlined.
captions underperform due to a lack of activity-leve]l ~Default setting used in the main experiments is
concepts. Combining semantic and structural captions Marked in gray .

improves zero-shot AR over semantic-only models, in-
dicating that local signal patterns and temporal struc-
ture contribute complementary information. However,

Caption Variant Zero-Shot Linear Probing

statistical structural semantic  Activity — Activity Anxiety

adding statistical captions to semantic ones reduces '; f; i 8:2(1) 333 g%
zero-shot AR performance, likely because daily-level x x v 071 095 065
statistics are less relevant to fine-grained activities. Yet, v X v 066 084  0.68

o . wn S o X Y 7 084 094 065
statistical captions benefit “Anxiety” and “Hyperten- v v X 049 079 067
sion” predictions, either alone or when combined with v v v 066 086  0.68

other caption types. Overall, the “semantic + structural”
combination provides the best trade-off across tasks.

Pretraining architectural variants. We study differ- Taple 5: Comparisons of SensorLM architec-
ent architectural variants trained with contrastive and  tural variants. We compare different choices
generative objectives. As Table 5 reports, SensorLM used during pretraining. Default setting used in
(CoCa) consistently outperforms the single-objective the main experiments is marked in gray .

variants across key metrics for both zero-shot classi-

fication and linear probing. The generative objective Zero-Shot  Linear Probing
enhances the contrastive alignment by providing fine-  Arch Variant AUROCT F1' AUROC' FI'
grained text supervision, leading to improved cross-  sensorLm (CLIP) 083 029 093 053

modal understanding. Notably, the SensorLM (Cap)  SensorLM(SigLIP) ~ 078 017 ~ 087 038
m 1 rform rlv in zero-sh 1 ifi ion SensorLM (Cap) 0.55 0.01 0.90 0.32

odel performs poo Y In zero-shot classificatio due o morin (CoCa) 084 029 094 057
to the absence of a trained projection head.

6 Discussion

Limitations. It is crucial to understand that SensorLM is not a clinically validated diagnostic tool and
is not intended for clinical diagnosis, treatment, or medical decision-making; deployment for such
uses would require further analysis of applicable healthcare regulations. Additionally, our evaluation
is limited to specific wearable devices and sensor data; while the method is general, further work is
needed to explore its generalizability on other types of sensor data.

Conclusion. We present SensorLM, a family of sensor-language foundation models that unlock the
understanding of wearable sensor data through natural language, enabled by a novel hierarchical
captioning pipeline and the largest sensor-language dataset to date. SensorLM achieves superior per-
formance in zero-shot, few-shot, and cross-modal retrieval tasks, as well as demonstrating intriguing
properties such as scaling, generative, and zero-shot generalization capabilities.
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Table 6: Definitions of sensor features. We detail the names, units, and definitions of the 26 features derived
from PPG, accelerometer, skin conductance, skin temperature, and altitude signals.

Feature Unit Definition

Photoplethysmography (PPG)

Heart Rate Beats/Min Mean of instantaneous heart rate.
Shannon Ent. RR Nats Shannon entropy of the RR intervals.
Shannon Ent. RR Diffs Nats Shannon entropy of the RR interval differences.
RMSSD Msec Root mean squared st. dev. of RR intervals.
SDNN Msec Standard deviation of RR intervals.
RR Percent Valid % % of 5-minute window with valid RR intervals.
RR 80" Percentile Msec 80" percentile of 5-minute window of RR intervals.
RR 20" Percentile Msec 20%" percentile of RR intervals.
RR Median Msec Median RR interval.
Heart Rate at Rest Beats/Min Mean of heart rate at rest.
Accelerometer (ACC)
Step Count Steps Number of steps.
Jerk Autocorrelation Ratio a.u. Ratio of lag=1 autocorrelation to energy in 1st 3-axis principal
component.
Log Energy a.u. Log of sum of 3-axis root mean squared magnitude.
Covariance Condition a.u. Estimate of condition number for 3-axis covariance matrix.
Log Energy Ratio a.u. Log of ratio of sum of energy in 1st 3-axis principal component
over energy of 3-axis root mean squared magnitude.
Zero Crossing St.Dev. Seconds Standard deviation of time between zero crossing of 1st 3-axis
principal component.
Zero Crossing Average Seconds Mean of time between zero crossing of 1st 3-axis principal
component.
Axis Mean a.u. Mean of 3-axis.
Kurtosis a.u. Kurtosis of 3-axis root mean squared magnitude.
Sleep Coefficient a.u. Sum of 3-axis max-min range, binned into 16 log-scaled bins.

Skin Conductance (EDA)

Skin Conductance Value pSiemens Center of linear tonic SCL value fit.
Skin Conductance Slope ©S/Min Intraminute slope of SCL values.
Lead Contact Counts Counts Number of times leads of the sensor contacting wrist in a minute.

Skin Temperature (TEMP)

Skin Temperature Value °C Value of skin temperature.
Skin Temperature Slope °C/Min Slope of skin temperature.
Altimeter (ALT)
Altitude St.Dev. Norm Hectopascals Standard deviation of altimeter readings.

A Dataset Overview

A.1 Pretraining Sensor Dataset

Our wearable devices incorporate five distinct sensors: Photoplethysmography (PPG), Accelerometer
(ACC), Skin Conductance (electrodermal activity, EDA), Skin Temperature (TEMP), and Altitude (ALT).
While these sensors collect raw waveform signals at high frequencies (i.e., 100Hz, 25Hz, 200Hz,
6Hz, and 10Hz, respectively), we do not directly utilize these high-resolution signals. This decision is
driven by practical constraints, including prohibitive storage requirements and battery consumption,
which make raw data storage infeasible at our scale. Moreover, learning from full-day raw waveforms
is computationally impractical; for example, a 200Hz signal over 24 hours results in approximately
17 million time points per instance.

Instead, we curate minutely aggregated features from the raw signals and use them as model inputs.
These features are grounded in established domain literature, with prior work demonstrating their
clinical utility [24]. For example, heart rate variability metrics like RMSSD and the Shannon Entropy
of RR Intervals are recognized markers of cardiovascular health, while accelerometer-derived features
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Table 7: Detailed statistics and demographic information for the pretraining and downstream datasets.
We report participant counts for the pretraining, Activity (downstream), and Metabolic (downstream) datasets,
along with demographic breakdowns by sex, age, and BMI.

Activity (downstream) Metabolic (downstream)
Category Pretraining

train test train test

Sex:
Male 64,194 27,653 6,092 551 258
Female 39,376 10,145 2,248 670 455
Not Specified 73 24 3 0 0

Age:
18 — 39 52,004 19,340 4,492 415 223
40 — 59 41,296 15,309 3,172 637 384
60 — 79 9,340 2,875 618 198 121
>80 676 120 31 0 1
Not Specified 327 30 0 0 0

BMI:

Healthy (< 25) 38,582 15,942 3,685 319 188
Overweight (25 — 30) 34,188 14,154 3,017 343 206
Obese (> 30) 25,969 6,131 1,316 481 274
Not Specified 324 81 18 49 28
Total 103,643 37,822 8,343 1,250 729

such as Jerk Ratio capture movement quality. Descriptions of the derived features and their associated
sensor modalities are provided in Table 6. Our pretraining set included 18 smartwatch and fitness-
tracker models (Google Pixel Watch 1-3, Fitbit MobileTrack, Charge 4-6, Sense 1-2, Versa 2-4,
Inspire 2-3, Luxe, Versa, Charge 2, and Alta HR).

Table 7 summarizes the demographic composition of our pretraining dataset. The only inclusion
criterion was having valid sensor data for at least 20% of one day and at least one logged event. The
cohort is 38% female with a mean age of 41.7 years (range: 18 — 100). BMI distributions indicate
37% healthy (< 25), 33% overweight (25 — 30), and 25% obese (> 30), with the remaining 5%
unspecified.

All data are de-identified and used with participant consent and IRB review (Advarra). The use of
data for pretraining in this manner was approved as exempt under 45 CFR § 46.104(d)(4) “because
the research involves the use of identifiable private information/biospecimens; and information, which
may include information about biospecimens, is recorded by the investigator in such a manner that
the identity of the human subjects cannot readily be ascertained directly or through identifiers linked
to the subjects, the investigator does not contact the subjects, and the investigator will not re-identify
subjects.”

A.2 Sensor Caption Generation

To encourage linguistic diversity and prevent overfitting to a single text pattern, we employ a variety
of sentence templates across the three levels of sensor captions. This section details the design of
these templates.

Table 8 provides a selection of statistical caption templates, illustrated using “Heart rate” as the
example feature with an average of 88.7, standard deviation of 9.3, minimum of 70.8, and maximum
of 134.9. We employ 20 rewrite templates in total to generate varied statistical descriptions.

Table 9 shows examples of structural caption templates, including descriptions of trends (e.g., “a
decreasing trend in heart rate between minute 680 and 960”) and spike events (e.g., “a spike in step
count at minute 720”). We use 15 rewrite templates in total for structural captions.
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Table 8: Example of prompt templates used in statistical captions.

Statistical Caption Templates

1. The average Heart rate value is 88.7, with extremes at 134.9 (max)
and 70.8 (min), and a std of 9.3.

2. The Heart rate data exhibits a mean of 88.7, a standard deviation of
9.3, and its extreme values are 70.8 and 134.9.

3. Heart rate average 88.7, reaching a maximum of 134.9 and a minimum of
70.8, with a standard deviation of 9.3.

4. Heart rate exhibits a mean of 88.7, with peak and minimal values
reaching 134.9 and 70.8, and a standard deviation of 9.3.

5. For the Heart rate measurements, the mean is 88.7, the standard
deviation is 9.3, and the data lies between 70.8 and 134.9.

Table 9: Example of prompt templates used in structural captions.

Structural Caption Templates

Trends:

1. An decreasing trend in Heart rate data recorded between minute 680
and 960.
. Heart rate exhibits decreasing trend during minute 680-960 interval.
3. An decreasing trend in Heart rate data recorded between minute 680
and 960.
4. The Heart rate trend from minute 680 to 960 is decreasing.
5. From minute 680 to 960, Heart rate exhibits an decreasing trend.

N

Spikes:

1. Spike event recorded for steps at minute 720.

2. Data indicates a peak for steps at the 720-minute mark.
3. Minute 720 shows a spike for the steps.

4. A peak is detected for steps at minute 720.

5. The steps experienced a spike at minute 720.

Table 10 presents templates for semantic captions, which describe high-level activities and their
associated timeframes, such as “Outdoor Bike recorded between minute 1121 and 1133”. We use 20
rewrite templates in total for semantic captions.

A.3 Downstream Datasets

Table 7 summarizes the demographic distributions for the downstream linear probing and few-shot
evaluation datasets: the Activity dataset and the Metabolic dataset. For zero-shot classification tasks,
we resample the test data to create a more balanced evaluation set. Additional details, including the
number of samples per class, are provided in Appendix B.5.

The activity downstream dataset used these same devices as our pretraining set, while the metabolic
downstream dataset incorporated an additional 17 device types (Fitbit Flex, One, Zip, Charge, Charge
HR, Charge 3, Flex 2, Inspire HR, Blaze, Alta, Fitbit Ultra, Versa Lite, Surge, lonic, Fitbit Classic,
Ace 2, Inspire).
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Table 10: Example of prompt templates used in semantic captions.

Semantic Caption Templates

1. From minute 1121 to 1133, the user had a period of Outdoor Bike.

2. Outdoor Bike recorded within the 1121-1133 minute range.

3. Outdoor Bike episode occurred between minute 1121 and 1133.

4. Outdoor Bike was recorded between minute 1121 and 1133.

5. Identified Outdoor Bike across the timeframe of minute 1121 to 1133.

Table 11: The SensorLM family. SensorLM consists of four variants with increasing model sizes. Architectural
details for the sensor encoder, text encoder, and multimodal text decoder are provided.

Model Sensor Encoder Text Encoder & Multimodal Decoder Sensor / Text
ode

layers ~ MLP  #params layers,.  layers,,, =~ MLP  #params  hidden  heads
SensorLM-S 12 512 3M 12 3 512 12M 128 16
SensorLM-B 12 3072 114M 12 3 3072 191M 768 12
SensorLM-L 24 4096 404M 24 3 4096 519M 1024 16
SensorLM-XL 40 5632 1.27B 40 3 5632 1.45B 1408 16

B Implementation Details

B.1 SensorLM Model Architecture

As described earlier, SensorLM consists of a sensor encoder, a text encoder, and a multimodal text
decoder (Fig. 3). The input to the sensor encoder is a matrix of shape [26 features x 1440
minutes], representing one-day windows of sensor data at minutely resolution. The sensor encoder
is built using a ViT-2D backbone with a 2D patch size of (2, 10), producing 1872 tokens.

The text encoder and multimodal text decoder follow standard transformer architectures. The
multimodal text decoder attends to the output tokens of the sensor encoder via cross-attention
[39], enabling an encoder-decoder setup for caption generation. For contrastive learning, we use
representations from the sensor encoder and unimodal text encoder. Both representations are average-
pooled, passed through projection heads, normalized, and then used to compute the contrastive loss
Lcon between sensor embeddings s; and text embeddings v;.

The SensorLM family consists of four variants with different (increasing) model sizes: SensorLM-S,
SensorLM-B, SensorLM-L, and SensorLM-XL. Architectural specifications for each variant are
provided in Table 11.

B.2 Pretraining Details

All models are trained using the SensorLM pretraining objective (Lsensorrn) 0n Google v6 TPUs for
50k steps. We use a batch size of 1024 sensor-text pairs, with Acop = Acap = 1 for main experiments.
The temperature 7 for the contrastive loss is set to 0.01. Optimization is performed using Adam

optimizer with 8; = 0.9 and 83 = 0.95. A cosine warm-up schedule is applied for the first 10% of
training steps, followed by linear decay of the learning rate to zero.

B.3 Self-Supervised Learning Baselines
We compare SensorLM against the following self-supervised learning (SSL) baselines:

* SimCLR [5] is a widely adopted contrastive learning framework that aligns representations from
augmented views of the same input while repelling those of different inputs. It relies solely

17



Table 12: Hyperparameters for self-supervised learning baselines. We provide settings used for MSN [2],
DINO [3], and SimCLR [5]. A single row value indicates that the setting was applied to all methods.

Configuration MSN [2] DINO [3] SimCLR [5]
training steps 50,000

warmup steps 2,500

optimizer AdamW [18]

opt. momentum [, 2] [0.9, 0.99]

base learning rate 0.001 0.004 0.001
batch size 1,024

weight decay 0.0001

gradient clipping 3.0

learning rate schedule linear warmup & cosine decay
data resolution 26 (sensor) x 1440 (minutes)

on contrastive loss and unlabeled data, and has proven effective for both visual and text-based
representation learning.

* MSN [2] integrates contrastive-based pretraining with masked image modeling. MSN aligns the
representation of a masked view with that of the unmasked input by processing only visible patches.
This approach enhances scalability with Vision Transformers and yields semantically meaningful
features, achieving strong performance in low-shot classification tasks.

* DINO [3] employs a self-distillation strategy using a teacher-student framework. The student
network is trained to match the teacher’s representations across different augmentations. DINO has
demonstrated robust and generalizable feature learning across various domains.

All three baselines follow augmentation-driven training paradigms. We apply a standardized set
of time-series augmentations (e.g., jittering, scaling, time flipping) based on prior work
[17,27,28,43]. Each augmentation is applied independently with a probability of 0.5. Jittering adds
Gaussian noise with zero mean and a standard deviation uniformly sampled from [0, 0.5]. Scaling
multiplies the input by a random factor sampled from [1.1, 1.5]. Notably, we omit scaling for DINO
due to convergence issues observed during training.

All baseline models are pretrained from scratch under training settings listed in Table 12. For
consistency, all methods use the same ViT-2D backbone as the sensor encoder in SensorLM, with a
2D patch size of (2, 10).

B.4 LLM Baselines

For zero-shot classification, cross-modal retrieval, and sensor captioning, we compare SensorLM
against two LLMs: Gemini 2.0 Flash [29] and Gemma-3-27B [30], by formatting sensor data as
tabular input.

* Gemma-3-27B [30] is a state-of-the-art open-weight large language model developed by Google
DeepMind. Trained on a high-quality, multilingual corpus, it is optimized for instruction following
and reasoning tasks. We use the instruction-tuned variant, which exhibits strong performance in
both zero-shot and few-shot scenarios.

* Gemini 2.0 Flash [29] is a lightweight, high-performance member of Google’s Gemini multimodal
model family, designed for latency-sensitive applications. It supports vision-language reasoning
and offers strong cross-modal capabilities with low inference latency.

For both baselines, we subsample the sensor data to fit within the context length limitations of these
LLMs.
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Table 13: Definition of the activity-related concept classification tasks.

Class Activities included Prompt example

Task: Environmental context

Elliptical, Treadmill, Spinning, Weightlifting, Yoga,
Indoor Sports Core training, Pilates, Stairclimber, Dancing, Indoor User performed Indoor Sports.
climbing, Kickboxing

Bike, Run, Hike, Tennis, Mountain Bike, Rollerblad-

Outdoor Sports User performed Outdoor Sports.

ing, Golf

Water Sports Swim, Kayaking, Surfing, Paddleboarding User performed Water Sports.
Winter Sports Skiing, Snowboarding User performed Winter Sports.

Task: Locomotion vs. stationary
Locomotion Exercise Walk, Run, Hike, Stairclimber, Treadmill, Elliptical User performed Locomotion exercise.
Stationary Exercise Weightlifting, Yoga, Core training, Pilates User performed Stationary exercise.

Task: Cardio vs. strength training
Cardio Exercise Elliptical, Treadmill, Spinning, Stairclimber, Run User performed Cardio exercise.
Strength Exercise Weightlifting, Core training, Indoor climbing User performed Strength exercise.

B.5 Zero-Shot Classification
B.5.1 Task definition for zero-shot classification

We formulate six zero-shot classification tasks related to activity recognition. We compare SensorLM
with representative LLM baselines across main activity classification, activity-related concept classi-
fication, and fine-grained recognition, aiming to evaluate the effectiveness of SensorLM in diverse
human activity analysis scenarios.

Main activity classification encompasses 20 activities. For each activity, the number of samples is
indicated in parentheses. These include: Walking (881), Bike (860), Playing Sports (905), Running
(793), Aerobics (910), Elliptical (887), Spinning (866), Weightlifting (842), Swimming (882), Hiking
(848), Playing Tennis (821), CrossFit (902), Pilates (855), Stairclimber (863), Dancing (852), Indoor
climbing (854), Golf (710), Skiing (420), Snowboarding (167), and Kayaking (212).

For activity-related concept classification, we define three sub-tasks. The first one, “Activity by
environmental context”, comprises four classes: Indoor Sports, Outdoor Sports, Water Sports, and
Winter Sports. The second task, “Cardio vs. strength training”, distinguishes between two classes:
Cardio exercise and Strength exercise. Similarly, for the third task, “Locomotion vs. stationary”,
we have two classes: Locomotion exercise and Stationary exercise. The activities included in each
concept category are summarized in Table 13.

Finally, we introduce two fine-grained recognition tasks. The first task, “Fine-grained recognition
(Gym cardio)”, differentiates among Elliptical (887), Treadmill (884), Spinning (866), and Stair-
climber (863). The second task, “Fine-grained recognition (outdoor sports)”, involves classifying
among Hike (848), Mountain Bike (673), Skiing (420), and Snowboarding (167).

B.5.2 Implementation for zero-shot classification

Implementation details for SensorLM. We employ prompt ensembling [25] using a diverse set of
rewritten prompts that mirror the structure of pretraining captions. For each label class, we compute
the average embedding from the text encoder across all prompts. Zero-shot classification is performed
by selecting the label whose average text embedding is most similar to the sensor embedding from
the sensor encoder. Examples of the prompts are provided in Table 14; we use a total of 30 prompts.

Implementation details for LLM baselines. For zero-shot classification using LLM baselines (i.e.,
Gemini 2.0 Flash [29] and Gemma-3-27B [30]), we employ a prompt format illustrated in Table 15.
The prompt instructs the model to predict a class label based on the provided sensor data, which is
formatted as tabular input. Additionally, we also fine-tune Gemini 2.0 Flash [29] on our dataset using
supervised activity labels, following a standard supervised fine-tuning (SFT) procedure.
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Table 14: Example of templates used in zero-shot prompt ensemble.

Zero-Shot Templates

1. A period of Run was observed during the session.
2. Detected a phase of Run.

3. Data shows Run took place

4. The main action was Run

5. Run was detected during the observed period.

Table 15: Zero-shot classification prompt used for LLM baselines.

ro-Shot Classification Prompt

### Overall instruction: Your job is to identify user activity class by analyzing a given day of Fitbit data.
Available Activity Classes: {class_list}

### Sensor Description

##### Heart:

HR: Mean of the instantaneous heart rate in beats per minute. Calculated over a 1 minute window. Unit: Beats/Min
hr_at_rest_mean: Mean of the heart rate in beats per minute during periods of rest. Unit: Beats/Min
hrv_rr_80th_percentile_mean: The 80th percentile of the RR intervals in milliseconds for 5-minute windows with valid
RR intervals. Unit: Msec

hrv_rr_20th_percentile_mean: The 20th percentile of the RR intervals in milliseconds for 5-minute windows with valid
RR intervals. Unit: Msec

hrv_rr_median: The median RR interval in milliseconds for 5-minute windows with valid RR intervals. Unit: Msec
hrv_shannon_entropy_rr: Shannon entropy of the RR intervals for 5-minute windows with valid RR intervals. Unit: Nats
hrv_shannon_entropy_rrd: Shannon entropy of the RR interval differences for 5-minute windows with valid RR

intervals. Unit: Nats

rmssd_percentile_0595: Root mean squared standard deviation of RR intervals in milliseconds for 5-minute windows with
valid RR intervals. Unit: Msec

sdnn_percentile_0595: Standard deviation of RR intervals in milliseconds for 5-minute windows with valid RR
intervals. Unit: Msec

##### Activity:

steps: Number of steps calculated over a 1 minute window. Unit: Steps

jerk_auto: Ratio of lag=1 autocorrelation to energy in 1st 3-axis principal component. Unit: alog_energy

log_energy: Log of sum of 3-axis root mean squared magnitude. Unit: alog_energy

covariance: Estimate of condition number for 3-axis covariance matrix. Unit: acovariance

log_energy ratio: Log of ratio of sum of energy in 1st 3-axis principal component over energy of 3-axis root mean
squared magnitude. Unit: alog_energy_ratio

zero_crossing_std: Standard deviation of time between zero crossings of 1st 3-axis principal component. Unit: Seconds
zero_crossing_avg: Mean of the time between zero crossings of 1st 3-axis principal component in seconds. Unit: Seconds
axis_mean: Log of the mean square root of the squared X & Z axes of the accelerometer. Unit: a.u.

altim_std: Standard deviation of altimeter readings in Hectopascals. Unit: Hectopascals

kurtosis: Kurtosis of the 3-axis accelerometer root mean squared magnitude. Unit: a.u.

##### Sleep:

sleep_coefficient: Sum of 3-axis max-min range, binned into 16 log-scaled bins. Unit: aSleep

#i#### EDA:

eda_level_real: Mean tonic skin conductance value in micro Siemens over a 1 minute window. Unit: pSiemens
leads_contact_counts: Number of times the skin conductance sensor electrode leads make contact (likely related to
signal quality). Unit: Counts

ceda_slope_real _micro_siemens: Intraminute slope of SCL values. Unit: pSiemens/Min

skin_temperature_slope: Change in skin temperature in degrees Celsius per minute over a 1 minute window. Unit: °C/Min
wrist_temperatures: Mean skin temperature in degrees Celsius calculated over a 1 minute window. Unit: °C

#### Here is an example output with the predicted activity class and reasoning behind the choice:
«
"predicted_class": <predicted_class>,
"class_probabilities": {{
"class 1": <probability_of_class_1>,
"class 2": <probability_of_class_2>,
"class 3": <probability_of_class_3>,
"class 4": <probability_of_class_4>,

1,
"reasoning": <reasoning>

3}

### Now, it is your turn. Here is a day of Fitbit data for a user in csv format. Each row is a window of 10-minute
average values for the corresponding feature metric. Analyse the Fitbit data thoroughly and make the prediction.
{sensor_data}

### Your output in JSON format containing the predicted class and class probabilities for all classes. The class
probabilities should sum to 1. The predicted class should be from Available Activity Classes list mentioned earlier.
No other classes apart from them should be used. Also give a reason for your prediction:
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Table 16: Zero-shot cross-modal retrieval prompt used for LLM baselines.

Modal Retrieval Prompt

### Overall instruction: You will be given a day of user Fitbit data and a set of 100 captions. Your job is to
analyze the Fitbit data and select top 10 captions that describe the Fitbit data the best.

### Sensor Description

##### Heart:

HR: Mean of the instantaneous heart rate in beats per minute. Calculated over a 1 minute window. Unit: Beats/Min
hr_at_rest_mean: Mean of the heart rate in beats per minute during periods of rest. Unit: Beats/Min
hrv_rr_80th_percentile mean: The 80th percentile of the RR intervals in milliseconds for 5-minute windows with valid
RR intervals. Unit: Msec

hrv_rr_20th_percentile_mean: The 20th percentile of the RR intervals in milliseconds for 5-minute windows with valid
RR intervals. Unit: Msec

hrv_rr_median: The median RR interval in milliseconds for 5-minute windows with valid RR intervals. Unit: Msec
hrv_shannon_entropy_rr: Shannon entropy of the RR intervals for 5-minute windows with valid RR intervals. Unit: Nats
hrv_shannon_entropy_rrd: Shannon entropy of the RR interval differences for 5-minute windows with valid RR

intervals. Unit: Nats

rmssd_percentile_0595: Root mean squared standard deviation of RR intervals in milliseconds for 5-minute windows with
valid RR intervals. Unit: Msec

sdnn_percentile_0595: Standard deviation of RR intervals in milliseconds for 5-minute windows with valid RR
intervals. Unit: Msec

##H#H## Activity:

steps: Number of steps calculated over a 1 minute window. Unit: Steps

jerk_auto: Ratio of lag=1 autocorrelation to energy in 1st 3-axis principal component. Unit: alog_energy

log_energy: Log of sum of 3-axis root mean squared magnitude. Unit: alog_energy

covariance: Estimate of condition number for 3-axis covariance matrix. Unit: acovariance

log_energy ratio: Log of ratio of sum of energy in 1st 3-axis principal component over energy of 3-axis root mean
squared magnitude. Unit: alog_energy_ratio

zero_crossing_std: Standard deviation of time between zero crossings of 1st 3-axis principal component. Unit: Seconds
zero_crossing_avg: Mean of the time between zero crossings of 1st 3-axis principal component in seconds. Unit: Seconds
axis_mean: Log of the mean square root of the squared X & Z axes of the accelerometer. Unit: a.u.

altim_std: Standard deviation of altimeter readings in Hectopascals. Unit: Hectopascals

kurtosis: Kurtosis of the 3-axis accelerometer root mean squared magnitude. Unit: a.u.

##### Sleep:

sleep_coefficient: Sum of 3-axis max-min range, binned into 16 log-scaled bins. Unit: aSleep

##### EDA:

eda_level _real: Mean tonic skin conductance value in micro Siemens over a 1 minute window. Unit: pSiemens
leads_contact_counts: Number of times the skin conductance sensor electrode leads make contact (likely related to
signal quality). Unit: Counts

ceda_slope_real_micro_siemens: Intraminute slope of SCL values. Unit: pSiemens/Min

skin_temperature_slope: Change in skin temperature in degrees Celsius per minute over a 1 minute window. Unit: °C/Min
wrist_temperatures: Mean skin temperature in degrees Celsius calculated over a 1 minute window. Unit: °C

#### Here is an example output structure with the predicted top 10 captions:

«
"first": <caption_ID>,
"second": <caption_ID>,
"third": <caption_ID>,
"fourth": <caption_ID>,
"fifth": <caption_ID>,
"sixth": <caption_ID>,
"seventh": <caption_ID>,
"eighth": <caption_ID>,
"ninth": <caption_ID>,
"tenth": <caption_ID>

3}

### Now, it is your turn. Here is a day of Fitbit data for a user in csv format. Each row is a window of 10-minute
average values for the corresponding feature metric. Analyze the Fitbit data thoroughly and choose

top 10 captions from the list which best describe the Fitbit data.

{sensor_data}

Here is the set of 100 captions:
{caption_list}

### Your output in JSON format containing the predicted top 10 caption ids:
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Table 17: Caption generation prompt used for LLM baselines.

Caption Generation Prompt

### Overall instruction: You will be given a day of user Fitbit data. Your job is to analyze the Fitbit data and
generate a caption containing semantic information. Semantic information aims to capture the high-level meaning and
context embedded in the sensor data, essentially interpreting what the individual might be doing or experiencing.

### Sensor Description

##### Heart:

HR: Mean of the instantaneous heart rate in beats per minute. Calculated over a 1 minute window. Unit: Beats/Min
hr_at_rest_mean: Mean of the heart rate in beats per minute during periods of rest. Unit: Beats/Min
hrv_rr_80th_percentile_mean: The 80th percentile of the RR intervals in milliseconds for 5-minute windows with valid
RR intervals. Unit: Msec

hrv_rr_20th_percentile_mean: The 20th percentile of the RR intervals in milliseconds for 5-minute windows with valid
RR intervals. Unit: Msec

hrv_rr_median: The median RR interval in milliseconds for 5-minute windows with valid RR intervals. Unit: Msec
hrv_shannon_entropy_rr: Shannon entropy of the RR intervals for 5-minute windows with valid RR intervals. Unit: Nats
hrv_shannon_entropy_rrd: Shannon entropy of the RR interval differences for 5-minute windows with valid RR

intervals. Unit: Nats

rmssd_percentile_0595: Root mean squared standard deviation of RR intervals in milliseconds for 5-minute windows with
valid RR intervals. Unit: Msec

sdnn_percentile_0595: Standard deviation of RR intervals in milliseconds for 5-minute windows with valid RR
intervals. Unit: Msec

##### Activity:

steps: Number of steps calculated over a 1 minute window. Unit: Steps

jerk_auto: Ratio of lag=1 autocorrelation to energy in 1st 3-axis principal component. Unit: alog_energy

log_energy: Log of sum of 3-axis root mean squared magnitude. Unit: alog_energy

covariance: Estimate of condition number for 3-axis covariance matrix. Unit: acovariance

log_energy_ratio: Log of ratio of sum of energy in 1st 3-axis principal component over energy of 3-axis root mean
squared magnitude. Unit: alog_energy_ratio

zero_crossing_std: Standard deviation of time between zero crossings of 1st 3-axis principal component. Unit: Seconds
zero_crossing_avg: Mean of the time between zero crossings of 1st 3-axis principal component in seconds. Unit: Seconds
axis_mean: Log of the mean square root of the squared X & Z axes of the accelerometer. Unit: a.u.

altim_std: Standard deviation of altimeter readings in Hectopascals. Unit: Hectopascals

kurtosis: Kurtosis of the 3-axis accelerometer root mean squared magnitude. Unit: a.u.

##### Sleep:

sleep_coefficient: Sum of 3-axis max-min range, binned into 16 log-scaled bins. Unit: aSleep

#i#t### EDA:

eda_level_real: Mean tonic skin conductance value in micro Siemens over a 1 minute window. Unit: pSiemens
leads_contact_counts: Number of times the skin conductance sensor electrode leads make contact (likely related to
signal quality). Unit: Counts

ceda_slope_real_micro_siemens: Intraminute slope of SCL values. Unit: pSiemens/Min

skin_temperature_slope: Change in skin temperature in degrees Celsius per minute over a 1 minute window. Unit: °C/Min
wrist_temperatures: Mean skin temperature in degrees Celsius calculated over a 1 minute window. Unit: °C

#### Here are some example captions:

Example 1: Period of Outdoor Bike noted from minute 912 until 917. Outdoor Bike occurred from minute 619 to 628.
Outdoor Bike recorded within the 641-650 minute range. User engaged in Outdoor Bike between minute 928 and 937.
Outdoor Bike took place during the minutes 492 through 502. User engaged in Outdoor Bike between minute 720 and
730. From minute 446 to 456, the user had a period of Outdoor Bike. Outdoor Bike took place during the minutes 572
through 584.

Example 2: Observed Walk spanning minutes 402 to 408. An instance of Walk was identified from minute 652 to 663. A
continuous Walk phase from minute 692 to 703. Detection of Walk activity between minute 1021 and 1035. A Walk period
between minutes 651 and 668. Walk was recorded between minute 785 and 822. A Sleep period between minutes 1346 and
1440.

Example 3: An instance of Walk was identified from minute 279 to 289. An instance of Walk was identified from minute
799 to 828. A Walk period between minutes 279 and 309. Sleep occurred from minute 1303 to 1440.

Example 4: Walk state observed from minute 1132 up to 1139. Outdoor Bike between minutes 1051 and 1064. Outdoor Bike
state observed from minute 489 up to 505. Sleep occurred from minute 4 to 400. The person logged their mood as Excited
at minute 1204. The person registered a mood of Frustrated at minute 773. At minute 773, the individual’s feeling is
Frustrated.

### Now, it is your turn. Here is a day of Fitbit data for a user in csv format. Each row is a window of 10-minute
average values for the corresponding feature metric. Analyse the Fitbit data thoroughly and generate the caption which
best describe the Fitbit data.

{sensor_data}

### Your output:
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B.6 Few-Shot Learning

For both few-shot learning and linear probing tasks, the Tuple 18: Class distribution for the Anxi-
sensor encoder of SensorLM is frozen. A single linear ety and Hypertension prediction tasks.
layer” is trained using a multinomial loss with balanced

class weights (weights inversely proportional to class fre- Task / Label Train Test
quencies in the training set). This same approach is applied Anxiety

to all SSL baselines for consistency. positive 55.030 34749
For linear probing, we use the full training set (statistics negative 96,316 55437
provided in Table 7). For few-shot learning, we randomly Hypertension

sample 5-50 training examples per class and repeat each positive 36,349 23353
experiment five times with different random seeds. Table negative 114,997 66,833
18 summarizes the class distribution for the “Anxiety” and Total 151,346 90,186

“Hypertension” tasks.

B.7 Cross-Modal Retrieval

Implementation details for SensorLM. To evaluate zero-shot cross-modal retrieval, we use top-k
recall (R@k) for k € {1,5,10}. This metric measures the proportion of queries for which the
ground-truth pairing appears within the top k retrieved results. Retrieval is conducted in both Sensor
— Text and Text — Sensor directions. Cosine similarity between sensor and text embeddings is
used as the scoring function to rank candidates. For each query, recall is computed by locating the
ground-truth index within the ranked similarity list.

Implementation details for LL.LM baselines. For zero-shot cross-modal retrieval using the LLM
baselines (i.e., Gemini 2.0 Flash [29] and Gemma-3-27B [30]), we use a prompt format illustrated in
Table 16. The prompt instructs the model to retrieve the top-10 most relevant captions from a set
of 100 candidates, based on the provided sensor data formatted as tabular input. We evaluate only
in the Sensor — Text direction, as Text — Sensor retrieval is not feasible due to the context length
limitations of the LLMs.

B.8 Zero-Shot Generalization to Unseen Classes

To assess SensorLM’s generalization to novel activities, we conduct a case study involving pretraining
on a dataset comprising data only containing 20 activities, followed by testing exclusively on a set of
9 previously unseen classes.

The 20 activities used in the pretraining set include: Bike, Playing Sports, Running, Aerobics, Ellipti-
cal, Weightlifting, Swimming, Hiking, Playing Tennis, CrossFit, Core training, Pilates, Bootcamp,
Indoor Climbing, Golf, Kickboxing, Skiing, Rollerblading, and Kayaking.

The 9 unseen activities evaluated are: Snowboarding (167), Mountain Bike (673), Racquetball (19),
Yoga (879), Paddleboarding (51), Badminton (109), Dancing (852), Calisthenics (61) and Basketball
(127).

For each unseen activity, we evaluate SensorLM’s zero-shot performance using a one-versus-all
classification setup. The primary evaluation metric is the Area Under the Receiver Operating
Characteristic Curve (AUROC), with 95% bootstrap confidence intervals (CIs) computed using 1000
resampling iterations with replacement [4].

B.9 Caption Generation

Implementation details for SensorLM. For sensor captioning, we observe that increasing the number
of layers in the multimodal text decoder improves captioning performance. Accordingly, we train
a SensorLM-B model with 12 decoder layers (compared to the default 3) using semantic captions
during pretraining. During inference, captions are generated autoregressively from sensor data using
a [START] token.

*https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html
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(a) SimCLR [5]

Figure 9: Confusion matrices for linear probing activity classification. Comparison of SimCLR [5] and
SensorLM-trained sensor encoders on the downstream Activity dataset for 20-class classification. The y-axis
represents ground truth labels, and the x-axis shows predicted labels.

(b) SensorLM

Table 19: Linear probing results. We use all data for task-specific linear probing. AUROC is used as the
metric. Best results of each column are in bold and the second best are underlined.

Task

Hypertension

Anxiety

Activity

SimCLR [5]
DINO [3]
MSN [2]

SensorLM

0.56
0.56
0.58
0.60

0.64
0.62
0.66
0.65

0.68

0.66
0.72
0.94

Implementation details for LLLM baselines. For caption generation using LLM baselines (i.e.,
Gemini 2.0 Flash [29] and Gemma-3-27B [30]), we use prompt templates shown in Table 17. These
prompts instruct the model to generate a semantic caption based on the provided sensor data, formatted

as tabular input.

C Additional Results

C.1 Few-Shot Learning & Linear Probing

Table 19 presents task-specific linear probing results for SensorLM compared to several SSL baselines:
SimCLR, DINO, and MSN. All evaluations use the full available training data, and performance
is measured by AUROC. SensorLM achieves competitive or superior performance across all tasks,
with the highest AUROC for “Hypertension” (0.60) and "Activity" (0.94). For “Anxiety”, SensorLM
(0.65) performs comparably to MSN (0.66), the top-performing baseline for that task. These results
highlight SensorLM’s robust representation learning for downstream applications.

Fig. 9 shows confusion matrices for SensorLM and SimCLR, illustrating the improved discriminative
capability of SensorLM embeddings across diverse activity classes.

We also include results on two regression tasks: predicting Age and BMI from one day of sensor
data. Using a frozen sensor encoder and a linear regression probe’, we report Mean Absolute Error

Shttps://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LinearRegression.html
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Table 20: Performance of SensorLM and baselines on regression tasks.

Age BMI
Metrics MAE' MAPE' MAE' MAPE!
SimCLR 9.18 21.03 5.85 19.57
DINO 9.63 22.03 5.97 19.97
MSN 9.36 21.39 5.84 19.53
SensorLM 9.18 20.81 5.75 19.17

Table 21: Zero-shot cross-modal retrieval. We evaluate cross-modal retrieval on a held-out dataset containing
40,000 examples, testing performance across varying retrieval set sizes. SensorLM achieves consistently strong
retrieval performance across all settings. For baseline LLMs, most retrieval tasks are infeasible due to context
length limitations (marked as “—").

100 samples 5,000 samples 40,000 samples
Metrics R@1 R@5 R@10 R@l1 R@5 R@I10 R@l1 R@5 R@10

Sensor — Text:

Gemma-3-27B [30] 1.0 5.0 10.0 — — — - — -
Gemini 2.0 [29] 5.0 9.0 13.0 — — — — -
SensorLM 100.0  100.0 100.0 98.2 99.4 99.6 96.1 98.7 99.0

Text — Sensor:

Gemma-3-27B [30] — — — — — — — — _
Gemini 2.0 [29] — — — — — - — — _
SensorLM 100.0 100.0 100.0 96.7 99.2 99.4 90.0 96.9 98.1

(MAE) and Mean Absolute Percentage Error (MAPE). As shown in Table 20, SensorLM improves
performance compared to SSL baselines.

C.2 Cross-Modal Retrieval

Table 21 presents the complete results of zero-shot cross-modal retrieval, comparing SensorLM to
LLM baselines. Evaluations are conducted on query-target sets of size 100, 5k, and 40k, using
Recall@1, Recall@5, and Recall@10 (R@K). These metrics capture the proportion of queries where
the correct target appears among the top K retrieved results.

SensorLM consistently demonstrates strong retrieval performance across all settings and directions.
Notably, it achieves perfect 100% recall at R@1, R@5, and R@10 on the 100-sample benchmark for
both Sensor — Text and Text — Sensor retrieval. Even at the 40k scale, SensorLM maintains high
accuracy, with R@1 scores of 96.1% for Sensor — Text and 90.0% for Text — Sensor.

In contrast, the LLM baselines are largely unable to perform most retrieval tasks due to context length
limitations, marked as “—” in the table. Where results are available (mainly for the 100-sample
set), their performance is significantly lower than SensorLM. These findings highlight SensorLM ’s
superior capability in cross-modal retrieval, where general-purpose LLMs struggle without domain-
specific architectural adaptations or training.

In addition to the semantic caption example in Fig. 4, Fig. 10 provides qualitative evidence of
SensorLM’s ability to retrieve accurate statistical summaries from raw sensor inputs. SensorLM re-
trieves the ground-truth caption as well as similar alternatives that match sensor statistics (highlighted
in ), such as means, standard deviations, and extreme values. In contrast, unrelated captions
show low similarity scores, reflecting SensorLM’s understanding of the statistical structure of the
data.

Furthermore, Fig. 11 illustrates SensorLM’s capacity for retrieving structural descriptions from
sensor data. It accurately identifies the ground-truth structural caption and retrieves similar captions
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QO Ground Truth
Heart rate mean, max, min, std are 70.3, 143.5, 44.7, 18.1. The wrist

1
I
o« 85.1 > ! temperatures data exhibits a mean of 31.5, a std of 2.0, and its extreme
T 652 ! values are 24.5 and 35.2.
1
T 967 Q Similar Caption
8 43:3 heart rate metrics include a mean of 70.0, a maximum of 139.4, a
< minimum of 47.0, and a std of 16.1. The average wrist temperatures

value is 31.2, with extremes at 35.6 (max) and 19.0 (min), and a std of 3.9.

Q Dissimilar Caption

heart rate presents a mean of 98.7, a maximum of 152.1, a minimum of
61.0, and a std of 20.5. wrist temperatures exhibits a mean of 30.8, with
peak and minimal values reaching 30.8 and 30.8, and a std of 0.0.

(9] 240 480 720 960 1200
Time (minutes)

Figure 10: Zero-shot sensor-to-text retrieval qualitative example for statistical captions. We show
similarity scores (SC) for the correctly retrieved ground truth, a top similar caption, and a dissimilar caption.
Green highlights correct statistics; indicates close matches; and Red denotes distinctly different stasistics.
In addition to correctly retrieving the ground truth, SensorLM also demonstrates semantic understanding by
assigning high similarity scores to numerically closer candidates.

(s
Q Ground Truth
Heart rate indicates an increasing trend spanning minute 200 to 480.

1

I
o 85.1 > ! Heart rate is observed to be decreasing between minute 1240 and
T 652X\ \'\‘ : 1440... wrist temperature increases spanning minute 1240 to 1440.

o 967 Q Similar Caption
8 43:3 Heart rate reveals an decreasing trend during minute 1240 to
< 1440..Wrist temperature is increasing from minute 840 to minute 1120.

wrist temperatures is increasing from minute 1240 to minute 1440.
< 327
P 303 Q Dissimilar Caption
o 240 280 720 960 1200 Over minute 1000 to 1440, heart rate displays a decreasing trend. The

wrist temperature trend from minute 280 to 720 is decreasing. wrist

Time (minutes) temperature indicates an increasing trend spanning minute 760 to 960.

Figure 11: Zero-shot sensor-to-text retrieval qualitative example for structural captions. We show
similarity scores (SC) for the correctly retrieved ground truth, a top similar caption, and a dissimilar caption.
Green highlights correct patterns and time frames; indicates partial matches; and Red denotes incorrect
patterns and time frames. In addition to correctly retrieving the ground truth, SensorLM also demonstrates
semantic understanding by assigning high similarity scores to partially correct candidates.

Table 22: Sensor caption generation results. We compare SensorLM with LLM baselines using commonly
adopted metrics (e.g., BERTScore, METEOR, ROUGE) for natural language generation.

BERT Score
Metrics Precision” Recall’ F1T METEORT ROUGE"
Gemma-3-27B [30] 0.82 0.85 0.83 0.19 0.11
Gemini 2.0 [29] 0.86 0.87 0.86 0.26 0.20
SensorLM 0.93 0.91 0.92 0.33 0.40

that describe temporal dynamics, such as trends and spike events. This demonstrates SensorLM ’s
ability to interpret and express dynamic temporal features within sensor signals.

C.3 Caption Generation

Table 22 evaluates sensor caption generation performance, comparing SensorLM against LLM
baselines. We report standard Natural Language Generation (NLG) metrics: BERTScore (Precision,
Recall, F1), METEOR, and ROUGE, which collectively assess semantic similarity, fluency, and
content overlap. SensorLM consistently outperforms both LLM baselines across all metrics.

We also present three qualitative examples in Fig. 12, which compare sensor caption outputs from
Gemini 2.0 Flash and SensorLM against ground truth references. The examples focus on semantic
caption generation from wearable sensor inputs. Compared to the baseline, SensorLM demonstrates
stronger semantic understanding by generating coherent event descriptions with accurately localized
timeframes.
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Ground Truth Gemini 2.0 Flash I sensorlM

“ Outdoor Bike was detected between minutes 886 and 890. A Outdoor Bike event was detected between minutes 873
and 878. A Sleep event was detected between minutes 1436 and 1440.

i T Observed periods of Walk between minutes 430 and 500, as well as from minute 690 to 710, and again from 940 to
i e 970. Sleep detected from minute 1380 until 1400.

Outdoor bike was detected between minutes 873 and 878. Walk was detected between minutes 878 and 889. Sleep
was detected between minutes 1436 and 1440.

[
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\
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‘..
ili

A Sport event was detected between minutes 793 and 897. Sleep recorded within the 1268-1440 minute range.

iy sttt A Walk period between minutes 370 and 380, 420 and 470, 530 and 640, and 770 and 830. A Sleep period between
o e minutes 1310 and 1440.

Sport was recorded between minute 783 and 897. Sleep was detected between minutes 1271 and 1440.

Spinning is indicated between the 899 and 923 minute marks. Sleep took place during the minutes 42 through 642.

i s Observed periods of high heart rate and activity, potentially indicating exercise or exertion, between minutes 910 and
1050. A sleep period between minutes 1and 40. Walk was recorded between minute 650 and 670.

A spinning event was detected between minutes 899 and 927. A sleep period between minutes 42 and 656.

o
F il
i

Figure 12: Qualitative comparison of sensor caption generation between Gemini 2.0 Flash and SensorLM
against ground truth. We show various examples of semantic caption generation from wearable sensor inputs.
Compared to the baseline, SensorLM demonstrates stronger semantic understanding by generating coherent
events with near-correct localized timeframes.

Table 23: Comparisons of SensorLM caption versions. We evaluate different combinations of caption types
used during pretraining. AUROC is used as the metric. Best results of each column are in bold and the second
best are underlined. Default setting used in the main experiments is marked in gray .

Zero-Shot Linear Probing Retrieval (40k)
Caption Variant Activity Activity  Anxiety  Hypertension Recall@1
statistical 0.51 0.76 0.67 0.63 1.00
structural 0.50 0.78 0.63 0.59 1.00
semantic 0.71 0.95 0.65 0.60 0.89
statistical + semantic 0.66 0.84 0.68 0.62 1.00
structural + semantic 0.84 0.94 0.65 0.60 1.00
statistical + structural 0.49 0.79 0.67 0.63 0.64
statistical + structural + semantic 0.66 0.86 0.68 0.63 0.90

C.4 Complete Ablation Results

Here we present the complete results for the ablation studies introduced in Sec. 5.3. Table 23
examines how different combinations of sensor caption types (statistical, structural, and semantic)
affect SensorLM’s performance across downstream tasks. Semantic captions are critical for zero-shot
activity recognition, while combining them with structural captions further enhances performance
across tasks, including cross-modal retrieval. The results also reveal trade-offs: statistical captions
improve performance on “Anxiety” and “Hypertension”, but slightly reduce accuracy on “Activity”.

Table 24 evaluates different architectural variants of SensorLM during pretraining. SensorLM (CoCa)
consistently outperforms single-objective variants (SensorLM (CLIP) and SensorLM (Cap)) across
key metrics for both zero-shot classification and linear probing, validating the benefits of integrating
contrastive and generative objectives.



Table 24: Comparisons of SensorLM architectural variants. We compare different choices used during
pretraining. Default setting used in the main experiments is marked in gray .

Zero-Shot Linear Probing
Metrics AUROCT  F1T  Balanced Acc.™  AUROCT  F1T  Balanced Acc.”
SensorLM (CLIP) 0.83 0.29 0.31 0.93 0.53 0.55
SensorLM (SigLIP) 0.78 0.24 0.26 0.87 0.38 0.40
SensorLM (Cap) 0.55 0.01 0.05 0.90 0.32 0.52
SensorLM (CoCa) 0.84 0.29 0.32 0.94 0.57 0.60

Table 25: Comparisons between UniMTS and SensorLM. Performance on zero-shot and linear probing (LP)
settings across activity recognition and metabolic health tasks.

Zero-Shot Linear Probing (LP)
Model Activity (20-class) Gym Cardio ~ Outdoor Sports Activity  Anxiety Hypertension
UniMTS [44] 0.71 0.73 0.65 0.94 0.65 0.58
SensorLM 0.84 0.76 0.86 0.94 0.65 0.60

C.5 Comparisons to Existing Sensor Foundation Models

UniMTS [44] proposes a unified pre-training method for motion time series that synthesizes sensor
data from human skeletons and uses contrastive learning to align it with natural language. To compare
with UniMTS, we implement their captioning and pretraining method on our sensor-text data as a
zero-shot baseline. Specifically, it employs a CLIP [25] objective and treats activity descriptions as
language input, corresponding to the semantic caption in our framework. We adapt and train UniMTS
under our experimental setup and compare with our results in Table 25.

The table confirms that SensorLM outperforms UniMTS across all zero-shot evaluation tasks. To
further understand the effect of hierarchical captions on this existing work, we observe from the table
that: (1) Adding structural captions improves zero-shot AR performance, aligning with our caption
ablation findings. (2) Including statistical captions improves metabolic prediction tasks, though
with a slight trade-off in AR performance, again consistent with trends discussed previously. These
results support both the quality of the dataset and the value of the hierarchical captioning strategy in
improving generalization across diverse tasks.

C.6 Exploration of Loss Weights

As our work introduces a modular and generic pretraining framework, it is straightforward to attach,
remove, or reweight objectives. This modularity allows systematic ablations, rapid integration of new
components, and reveals design tradeoffs unexplored in prior image-text studies. Here we sweep
the relative weights of the contrastive (Acon) and captioning (Ac,p) losses beyond fixed settings by
CLIP (A¢con = 0) and CoCa (Acon = Acap = 1). We find clear task-specific trade-offs: a 1 : 2 balance
improves zero-shot activity recognition, whereas 5 : 1 yields the best metabolic-health prediction.
These results indicate that careful tuning, enabled by our framework, yields measurable gains.

C.7 Robustness to OOD Data and Missingness
Here we stratify our testing set to study the performance of SensorLM on data from OOD devices

and with missingness and missing modalities. All reported results in the main paper already include
these OOD and missing-data cases.

C.7.1 Out-of-Distribution Devices

Our pretraining set contains 18 smartwatch and fitness-tracker models, while the metabolic down-
stream dataset has an additional 17 device types. As a result, we are able to demonstrate generalizabil-
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Table 26: Exploration of the loss weights in pretraining. We sweep the relative weights of the contrastive
(Acon) and captioning (Acap) losses beyond the fixed CLIP (Acon = 0) and CoCa (Acon = Acap = 1) settings,
establishing different tradeoffs.

Weights Zero-Shot Linear Probing

Acon Acap Activity (20-class) Gym Cardio Outdoor Sports Activity Anxiety Hypertension

1 0.2 0.82 0.77 0.82 0.92 0.66 0.62
1 1 0.84 0.76 0.86 0.94 0.65 0.60
1 2 0.85 0.78 0.85 0.93 0.65 0.60

Table 27: Metabolic health prediction results on in-distribution (ID) and out-of-distributuion (OOD)
devices. AUROC is used for classification tasks (Anxiety, Hypertension) and MAE" for regression tasks (Age,
BMI).

Split  Anxiety (AUROC")  Hypertension (AUROCT)  Age (MAE')  BMI (MAEY)

ID 0.65 0.61 9.24 5.74
OOD 0.72 0.55 8.55 5.79

Table 28: Effect of missingness on SensorLM performance. We report AUROC across different missingness
levels and sensor modality settings.

Varying missing percentage

Missing % Activity Anxiety Hypertension
<40% 0.94 0.68 0.62
40-60% 0.94 0.65 0.59
60-80% 0.91 0.65 0.65

Specific sensor modality missing

Modality Missing Activity Anxiety Hypertension

w/0 missing 0.94 0.67 0.62
w/ missing 0.89 0.65 0.60

ity on the metabolic test set by comparing performance on in-domain (N=83,243) and out-of-domain
(N=6,943) devices. We follow the setting in the main paper (Sec. 5.1) and report classification
(AUROC) and regression (MAE) results. As the table confirms, the model exhibits sound OOD
generalization: while “BMI” and “Hypertension” predictions show slight variation, “Anxiety” and
“Age” predictions may improve under OOD conditions.

C.7.2 Missingness

In both our pretraining and downstream datasets, sensor missingness arises naturally (e.g., devices like
Fitbit Versa or Charge lack EDA sensors). We perform thorough preprocessing for data missingness
following established practices: When an entire sensor modality is absent, we impute values with
the population mean computed from the pretraining data. For temporal gaps within a sensor stream
(e.g., dropouts), we apply linear interpolation across gaps and forward/backward filling at sequence
boundaries. Consequently, SensorLM is trained on data with up to 80% missingness. It learns to
model missingness patterns and shows robustness across scenarios.

To further investigate the performance under missingness, we conducted additional experiments on (1)
subgroup analysis stratified by percentage of missingness, and (2) comparisons when certain sensor
modalities are entirely absent. First, we observe only mild degradation as missingness increases from
<40% to 60—-80%. Second, when specific sensor modalities (e.g., EDA or HRV) are entirely absent,
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we note a moderate AUROC decrease (0.02-0.09) relative to the full-modality setting. These findings
confirm that, although performance degrades slightly under missingness, SensorLM remains robust
and flexible with incomplete sensor data.

D Societal Impact

Broader Impacts. Ubiquitous health technologies, particularly wearables, offer tremendous poten-
tial to transform healthcare through continuous, longitudinal personal monitoring. However, the
complexity of raw sensor data often restricts insights to low-level metrics. SensorLM addresses this
challenge by translating multimodal sensor signals into natural language, enabling a more intuitive
and accessible interface for both consumers and domain experts. This capability promotes clearer,
more actionable insights, potentially fostering more proactive, personalized, and preventative health
management.

Limitations and Ethical Considerations. While consumer health research holds great promise, it
must be guided by careful attention to safety, fairness, and privacy. The possibility of misuse by
malicious actors underscores the importance of responsible development. Although we advocate for
open science, health data-by its nature-requires a delicate balance between research reproducibility
and participant confidentiality.

Importantly, SensorLM is a research prototype and is not intended for clinical use. It has not been
validated as a diagnostic tool and should not be used for medical decision-making without formal
regulatory approval. Clinical deployment would necessitate rigorous validation and compliance with
relevant healthcare regulations.

Finally, while SensorLM’s methodology is designed to be generalizable, our current evaluation is
limited to specific wearable devices and sensor modalities. Further research is needed to assess its
performance across broader device ecosystems, data modalities, and population groups.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline SensorLM ’s main contributions, in-
cluding the caption generation pipeline, curated sensor-language paired dataset, and SensorLM
pre-training framework.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are discussed in Sec. 6 regarding the evaluation data and device general-
izability.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.
All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail our caption generation pipeline, model training, and evaluation setup in

Sec.

3.2, Sec. 4, Sec. 5 and Appendix B for reproducibility.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code

and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to

make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For

example, if the contribution is a novel architecture, describing the architecture fully might

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the

results, access to a hosted model (e.g., in the case of a large language model), releasing of a

model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions

to provide some reasonable avenue for reproducibility, which may depend on the nature of the

contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer:
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Justification: Under our IRB-approved protocol, we have obtained informed consent to release a
de-identified version of the downstream dataset, including hypertension, anxiety, age, and BMI
labels. We are unable to release the pretraining data due to privacy concerns, but the main paper
and Appendix provide sufficient details for reproducibility. Access will be limited to researchers
with verified academic affiliations.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).
* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: They are detailed in Sec. 5 and Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We report CI for Fig. 7. While we do not have CIs reported for main zero-shot results
(Table 2), we include extensive metrics and comparisons with baselines showing substantial enough
performance gains.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]
Justification: All the details regarding compute resources are provided in Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All our user data from wearable devices are de-identified and used with participant
consent and IRB review. We also don’t release the data publicly to avoid chances of potential
misuse.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification: Yes, this is discussed in Appendix D, as our work has clear applications in healthcare.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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13.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]
Justification: The paper does not release data or models, so it poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The use of the baseline LLLM models and SSL methods is credited, with details in
Appendix B.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.
For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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15.
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [Yes]

Justification: Sec. 3 and Sec. 5 describes the IRB-approved observational studies, with more details
in the Appendix.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [Yes]
Justification: All data are de-identified and used with participant consent and IRB review.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness,
or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: SensorLM involves a transformer based text encoder and multimodal decoder to
model unimodal and multimodal representations. We also compare against some LLLM baselines
like Gemini and Gemma.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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