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ABSTRACT

Non-convex Machine Learning problems typically do not adhere to the standard
smoothness assumption. Based on empirical findings, Zhang et al. (2020b) pro-
posed a more realistic generalized (L0, L1)-smoothness assumption, though it re-
mains largely unexplored. Many existing algorithms designed for standard smooth
problems need to be revised. However, in the context of Federated Learning, only
a few works address this problem but rely on additional limiting assumptions. In
this paper, we address this gap in the literature: we propose and analyze new meth-
ods with local steps, partial participation of clients, and Random Reshuffling with-
out extra restrictive assumptions beyond generalized smoothness. The proposed
methods are based on the proper interplay between clients’ and server’s stepsizes
and gradient clipping. Furthermore, we perform the first analysis of these methods
under the Polyak-Łojasiewicz condition. Our theory is consistent with the known
results for standard smooth problems, and our experimental results support the
theoretical insights.

1 INTRODUCTION

Distributed optimization problems and distributed algorithms have gained a lot of attention in recent
years in the Machine Learning (ML) community. In particular, modern problems often lead to the
training of deep neural networks with billions of parameters on large datasets (Brown et al., 2020;
Kolesnikov et al., 2019). To make the training time feasible (Li, 2020), it is natural to parallelize
computations (e.g., stochastic gradients computations), i.e., apply distributed training algorithms
(Goyal et al., 2017; You et al., 2019; Le Scao et al., 2023). Another motivation for the usage of
distributed methods is dictated by the fact that data can be naturally distributed across multiple
devices/clients and be private, which is a typical scenario in Federated Learning (FL) (Konecný
et al., 2016; McMahan et al., 2016; Kairouz et al., 2019).

Typically, such problems are not L-smooth as indicated by Defazio & Bottou (2019) that motivated
the optimization researchers to study so-called generalized smoothness assumptions. In particular,
Zhang et al. (2020b) propose (L0, L1)-smoothness assumption, which allows the norm of the Hes-
sian to grow linearly with the norm of the gradient, and empirically validate it for several problems
involving the training of neural networks. In addition, Ahn et al. (2023); Crawshaw et al. (2024b);
Wang et al. (2024) demonstrate that linear transformers with few layers satisfy this assumption,
highlighting the practical importance of (L0, L1)-smoothness. Moreover, the theoretical conver-
gence of different methods is studied under (L0, L1)-smoothness in the literature (Zhang et al.,
2020b;a; Koloskova et al., 2023a; Chen et al., 2023; Li et al., 2024a;b; Crawshaw et al., 2024b).
Noticeably, most of these methods utilize gradient clipping (Pascanu et al., 2013).

However, in the context of Distributed/Federated Learning, the theoretical convergence of meth-
ods is weakly explored under (L0, L1)-smoothness. In particular, only a couple of papers analyze

∗Equal contribution. Contacts: yury.demidovich@kaust.edu.sa.

1



Published as a conference paper at ICLR 2025

methods with local steps and Random Reshuffling – two highly important techniques in FL – un-
der (L0, L1)-smoothness but only with additional restrictive assumptions such as data homogeneity
(Liu et al., 2022), bounded variance (Wang et al., 2024) or cosine relatedness (Qian et al., 2021).
Also, to the best of our knowledge, there is only a single result for the methods with partial partic-
ipation of clients under (L0, L1)-smoothness with local steps but without data shuffling Crawshaw
et al. (2024a). This leads us to the question: is it possible to design methods with local steps, Ran-
dom Reshuffling, and partial participation of clients with provable convergence guarantees under
(L0, L1)-smoothness without additional restrictive assumptions? In this paper, we give a positive
answer to this question.

1.1 OUR CONTRIBUTIONS

• New method with local steps. We propose a new method with local steps called Clip-LocalGDJ
(Algorithm 1). This method can be seen as a version of LocalGD (Mangasarian, 1995; McMahan
et al., 2016) with different clients and server stepsizes and (smoothed) gradient clipping (Pascanu
et al., 2013) on a server side. We also prove the convergence of Clip-LocalGDJ for distributed
non-convex (L0, L1)-smooth problems without additional assumptions such as data homogeneity
used in the previous works (Liu et al., 2022).

• New method with local steps and Random Reshuffling. The second method we propose –
CLERR (Algorithm 2) – utilizes local steps and Random Reshuffling and clipping once-in-a-
epoch. For the new method, we derive rigorous convergence bounds for distributed non-convex
(L0, L1)-smooth problems without additional assumptions such as bounded variance (Wang et al.,
2024) or cosine relatedness (Qian et al., 2021).

• New method with local steps, Random Reshuffling, and partial participation. We extend
RR-CLI (Malinovsky et al., 2023a), utilizing Random Reshuffling of clients (as an alternative
to clients’ sampling) and clients’ data at each meta-epoch, and adjust it to the case of (L0, L1)-
smooth objectives through the usage of (smoothed) gradient clipping at the end of each meta-
epoch. For the resulting method called Clipped RR-CLI (Algorithm 3), we derive a convergence
rate for distributed non-convex (L0, L1)-smooth problems without additional restrictive assump-
tions. To the best of our knowledge, this is the first result for an FL method with partial participa-
tion of clients under (L0, L1)-smoothness assumption.

• Results for the PŁ-functions. For all three new methods, we derive new results under Polyak-
Łojasiewicz condition (Polyak, 1963; Lojasiewicz, 1963) that, to the best of our knowledge, are
the first results for FL methods under (L0, L1)-smoothness and Polyak-Łojasiewicz condition.
The analysis is based on the careful consideration of two possible cases (the gradient is either
“small” or “big”) and induction proof of the boundedness of certain metrics.

• Tightness of the results. The derived results are tight: in the special case of L-smooth functions,
our results recover the known ones for the non-clipped version of the algorithms.

• Numerical experiments. Our numerical experiments illustrate the superiority of the proposed
methods over the existing baselines.

1.2 PRELIMINARIES

In this paper, we consider a standard distributed optimization problem

min
x∈Rd

{
f(x)

def
=

1

M

M∑
m=1

fm(x)

}
, (1)

where [M ]
def
= {1, 2, . . . ,M} represents the set of all workers participating in the training, and each

fm : Rd → R is a non-convex function corresponding to the loss computed on the data available
on client m for the current model parameterized by x ∈ Rd. Throughout the paper, we consider
two setups: either workers can compute the full gradient ∇fm(x) of their loss functions or they can
compute only a stochastic gradient at each step. In the latter case, we will assume that functions
{fm}Mm=1 have the finite-sum form

fm(x) =
1

N

N∑
j=1

fmj(x), ∀m ∈ [M ],
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where fmj(x) corresponds to the local loss of the current model parameterized by x ∈ Rd, evaluated
for the j-th data point on the dataset belonging to the m-th client.

1.3 RELATED WORK

Local training. Local Training (LT), where clients perform multiple optimization steps on their
local data before engaging in the resource-intensive process of parameter synchronization, stands
out as one of the most effective and practical techniques for training FL models. LT was proposed
by Mangasarian (1995); Povey et al. (2014); Moritz et al. (2015) and later promoted by McMahan
et al. (2016). Early theoretical analyses of LT methods relied on restrictive data homogeneity as-
sumptions, which are often unrealistic in real-world federated learning (FL) settings (Stich, 2018;
Li et al., 2019; Haddadpour & Mahdavi, 2019). Later, Khaled et al. (2019a;b) removed limiting data
homogeneity assumptions for LocalGD (Gradient Descent (GD) with LT). Then, Woodworth et al.
(2020); Glasgow et al. (2022) derived lower bounds for GD with LT and data sampling, showing
that its communication complexity is no better than minibatch Stochastic Gradient Descent (SGD)
in settings with heterogeneous data. Another line of works focused on the mitigating so-called client
drift phenomenon, which naturally occurs in LocalGD applied to distributed problems with hetero-
geneous local functions (Karimireddy et al., 2020; Tran-Dinh et al., 2021; Gorbunov et al., 2021b;
Thapa et al., 2022; Mishchenko et al., 2022; Malinovsky et al., 2023b).

Random reshuffling. Although standard Stochastic Gradient Descent (SGD) (Robbins & Monro,
1951) is well-understood from a theoretical perspective (Rakhlin et al., 2012; Bottou et al., 2018;
Nguyen et al., 2018; Gower et al., 2019; Drori & Shamir, 2020; Khaled & Richtárik, 2020; Demi-
dovich et al., 2024), most widely-used ML frameworks rely on sampling without replacement, as it
works better in the training neural networks (Bottou, 2009; Recht & Ré, 2013; Bengio, 2012; Sun,
2020). It leverages the finite-sum structure by ensuring each function is used once per epoch. How-
ever, this introduces bias: individual steps may not reflect full gradient descent steps on average.
Thus, proving convergence requires more advanced techniques. Three popular variants of sampling
without replacement are commonly used. Random Reshuffling (RR), where the training data is ran-
domly reshuffled before the start of every epoch, is an extremely popular and well-studied approach.
The aim of RR is to disrupt any potentially untoward default data sequencing that could hinder train-
ing efficiency. RR works very well in practice. Shuffle Once (SO) is analogous to RR, however, the
training data is permuted randomly only once prior to the training process. The empirical perfor-
mance is similar to RR. Incremental Gradient (IG) is identical to SO with the difference that the
initial permutation is deterministic. This approach is the simplest, however, ineffective. IG has been
extensively studied over a long period (Luo, 1991; Grippo, 1994; Li et al., 2022; Ying et al., 2019;
Gürbüzbalaban et al., 2019; Nguyen et al., 2021). A major challenge with IG lies in selecting a par-
ticular permutation for cycling through the iterations, a task that Nedic & Bertsekas (2001) highlight
as being quite difficult. (Bertsekas, 2015) provides an example that underscores the vulnerability of
IG to poor orderings, especially when contrasted with RR. Meaningful theoretical analyses of the
SO method have only emerged recently (Safran & Shamir, 2020; Rajput et al., 2020). RR has been
shown to outperform both SGD and IG for objectives that are twice-smooth (Gürbüzbalaban et al.,
2015; Haochen & Sra, 2019). Jain et al. (2019) examine the convergence of RR for smooth objec-
tives. Safran & Shamir (2020); Rajput et al. (2020) provide lower bounds for RR. Mishchenko et al.
(2020) recently conducted a thorough analysis of IG, SO and RR using innovative and simplified
proof techniques, resulting in better convergence rates. Recent advances on RR can be found in (Cha
et al., 2023; Cai et al., 2023; Koloskova et al., 2023b).

Generalized smoothness. Let us remind that the function f is said to be L-smooth if there ex-
ist L ≥ 0 such that ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ for all x, y ∈ Rd. For twice-differentiable
functions, it is equivalent to

∥∥∇2f(x)
∥∥ ≤ L, for all x ∈ Rd. This assumption is very standard in

the optimization field. Recently, based on extensive experiments, Zhang et al. (2020b) introduced a
generalization of this condition called (L0, L1)-smoothness. Namely, twice-differentiable function
f is said to be (L0, L1)-smooth if

∥∥∇2f(x)
∥∥ ≤ L0 + L1 ∥∇f(x)∥ , for all x ∈ Rd. Compared to

the standard smoothness, this condition is its strict relaxation, and it is applied to a broader range
of functions. Zhang et al. (2020b) demonstrated empirically that generalized smoothness provides
a more accurate representation of real-world task objectives, especially in the context of training
deep neural networks. During LSTM training, it was noted that the local Lipschitz constant L0
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Algorithm 1 Clip-LocalGDJ: Clipped Local Gradient Descent with Jumping

1: Input: Synchronization/communication times 0 = t0 < t1 < t2 < . . . < tP−1, initial vector
x0 ∈ Rd, number of epochs P ≥ 1, constants c0, c1 > 0.

2: Initialize xm
0 = x̂0 = x0 for all m ∈ [M ]

def
= {1, 2, . . . ,M}.

3: for p = 0, 1, . . . , P − 1 do
4: Choose the server stepsize γp = 1

c0+c1∥∇f(x̂tp )∥
.

5: Choose small inner stepsize αp > 0.
6: for m = 1, . . . ,M do
7: xm

tp = x̂tp

8: for t ∈ {tp, . . . tp+1 − 2} do
9: xm

t+1 = xm
t − αp∇fm(xm

t )
10: end for
11: end for
12: gp = 1

αp(tp+1−1−tp)

(
x̂tp − 1

M

∑M
m=1 x

m
tp+1−1

)
13: x̂tp+1 = x̂tp − γpgp
14: end for

near the stationary point is thousands of times smaller than the global Lipschitz constant L. Un-
der this condition, Zhang et al. (2020b) provided a theoretical justification for the gradient clipping
technique (Pascanu et al., 2013), which is considered effective in mitigating the issue of exploding
gradients. Their results were improved by (Zhang et al., 2020a; Koloskova et al., 2023a). (Chen
et al., 2023) establish various useful properties of generalized-smooth functions, propose general-
izations of (L0, L1)-smoothness and optimal first-order algorithms for solving generalized-smooth
non-convex problems. Li et al. (2024a;b) extend the (L0, L1)-smoothness condition, introduce a
novel analysis technique that bounds gradients along the trajectory, analyze GD, SGD, Nesterov’s
accelerated gradient method and Adam. (Crawshaw et al., 2024b) consider a coordinate-wise ver-
sion of generalized smoothness. (Ahn et al., 2023; Crawshaw et al., 2024b; Wang et al., 2024)
demonstrate that linear transformers with few layers satisfy generalized smoothness empirically.
There are few papers on distributed algorithms that combine local steps or reshuffling with gener-
alized smoothness. Qian et al. (2021) examined clipped IG; Wang et al. (2024) investigated Adam
with RR; (Liu et al., 2022) studied LocalGD, however, all of the papers contain additional restrictive
assumptions. This is a significant gap in the literature and we close it in our paper. Finally, Craw-
shaw et al. (2024a) use local steps and partial participation for (L0, L1)-smooth objectives, but they
do not use reshuffling and add heterogeneity assumptions.

2 NEW METHODS

In this section, we introduce the new methods – Clip-LocalGDJ (Algorithm 1), CLERR (Algo-
rithm 2), and Clipped RR-CLI (Algorithm 3).

Clip-LocalGDJ. As standard LocalGD, the first method (Clip-LocalGDJ, Algorithm 1) alternates
between local GD steps on each worker and synchronization/averaging steps. However, there are two
noticeable differences between Clip-LocalGDJ and LocalGD. The first one is the usage of different
clients’ and server’s stepsizes. In our method, clients’ stepsizes are typically smaller than the server’s
ones, which allows us to handle the client drift. Then, on the server, the pseudogradient gp is
computed, and the server performs a Clip-GD-type step, which is a second important difference
compared to LocalGD. Since the server’s stepsize is typically larger than the clients’ stepsizes, the
local steps can be seen as steps determining the update direction, and the server step can be seen as
a larger “jump” in the averaged update direction.

CLERR. In CLERR (Algorithm 2), each client does a full epoch of RR before between synchro-
nization steps (similarly to (Malinovsky et al., 2023b)), and similarly to Clip-LocalGDJ, (smoothed)
clipping is applied only to the averaged pseudogradient gt once in an epoch. In contrast, a naı̈ve
combination of clipping with RR uses clipping at each step, which can amplify the bias of RR and
lead to poor performance (as we illustrate in our experiments).
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Algorithm 2 CLERR: Clipped once in an Epoch Random Reshuffling

1: Input: Starting point x0 ∈ Rd, number of epochs T, constants c0, c1 > 0.
2: for t = 0, . . . , T − 1 do
3: Choose global stepsize γt =

1
c0+c1∥∇f(xt)∥ .

4: Choose small inner stepsize αt > 0.
5: Sample a permutation πt = {πt(1), . . . , πt(N)}.
6: for m = 1, . . . ,M do
7: xm

t,0 = xt

8: for j = 0, . . . , N − 1 do
9: xm

t,j+1 = xm
t,j − αt∇fm,πt(j)(x

m
t,j).

10: end for
11: gmt = 1

αtN
(xt − xm

t,N )
12: end for
13: gt =

1
M

∑M
m=1 g

m
t .

14: xt+1 = xt − γtgt.
15: end for

Clipped RR-CLI. Clipped RR-CLI (Algorithm 3) is the first FL algorithm that combines clip-
ping, local steps, local dataset reshuffling, server and client step sizes and regularized client partial
participation (sampling of clients without replacement). It is based on RR-CLI proposed by Ma-
linovsky et al. (2023a) and leverages the core techniques proposed in FedAvg (McMahan et al.,
2016). The key idea is similar to CLERR, but in addition to the reshuffling of clients’ data, Clipped
RR-CLI performs a reshuffling of the groups of clients as an alternative to the standard i.i.d. sam-
pling of clients at each communication round. At the end of each meta-epoch, the server performs a
smoothed Clip-GD-type step similar to the one used in CLERR, which allows the method to make
a larger step with an accumulated pseudogradient.

When the number of workers is large, partial participation is preferable. In this case, Clipped RR-
CLI (Algorithm 3) is the best option as it utilizes partial participation. Otherwise, if we have access
to full gradients on the workers, then Clip-LocalGDJ(Algorithm 1) is preferable. In case when the
workers can compute only a stochastic gradient, then CLERR (Algorithm 2) is recommended.

3 ASSUMPTIONS

In this section, we list assumptions adopted in the paper.
Assumption 1. There exists f⋆, f⋆

m, f⋆
mj ∈ R such that f(x) ≥ f⋆, fm(x) ≥ f⋆

m, fmj(x) ≥ f⋆
mj ,

m ∈ [M ], j ∈ [N ], for all x ∈ Rd.

The next assumption is a strict relaxation of the standard smoothness.
Assumption 2 (Asymmetric (L0, L1)-smoothness (Zhang et al., 2020b; Chen et al., 2023)). The
functions f(x), {fm(x)}Mm=1 and {fmj(x)}M,N

m=1,j=1 are asymmetrically (L0, L1)-smooth:

∥∇f(x)−∇f(y)∥ ≤ (L0 + L1∥∇f(x)∥)∥x− y∥, ∀x, y ∈ Rd,

∥∇fm(x)−∇fm(y)∥ ≤ (L0 + L1∥∇fm(x)∥)∥x− y∥, ∀m ∈ [M ], x, y ∈ Rd,

∥∇fmj(x)−∇fmj(y)∥ ≤ (L0 + L1∥∇fmj(x)∥)∥x− y∥, ∀m ∈ [M ], j ∈ [N ], x, y ∈ Rd.

Empirical findings of Zhang et al. (2020b) revealed that generalized smoothness characterizes real-
world task objectives in a more precise way, particularly when applied to the training of DNNs.
Moreover, the above assumption is satisfied in Distributionally Robust Optimization for some prob-
lems (Jin et al., 2021).

The assumption below generalizes the smoothness condition even further.
Assumption 3 (Symmetric (L0, L1)-smoothness (Chen et al., 2023)). The functions f(x),

{fm(x)}Mm=1 and {fmj(x)}M,N
m=1,j=1 are symmetrically (L0, L1)-smooth:

∥∇f(x)−∇f(y)∥ ≤ (L0 + L1 sup
u∈[x,y]

∥∇f(u)∥)∥x− y∥, ∀x, y ∈ Rd,
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Algorithm 3 Clipped RR-CLI: Federated optimization with server and global steps, clipping, ran-
dom shuffling and partial participation with shuffling

1: Input: cohort size C ∈ {1, 2, . . . ,M}; number of rounds R = M/C; initial iterate/model
x0 ∈ Rd; number of meta-epochs T ≥ 1, constants c0, c1 > 0.

2: for meta-epoch t = 0, 1, . . . , T − 1 do
3: Choose global stepsize θt =

1
c0+c1∥∇f(xt)∥ .

4: Choose small server stepsize ηt > 0.
5: Choose small client stepsize γt > 0.
6: x0

t = xt

7: Client-Reshuffling: sample a permutation λ = (λ0, λ1, . . . , λR−1) of [R]
8: for communication rounds r = 0, . . . , R− 1 do
9: Send model xr

t to participating clients m ∈ Sλr
t (server broadcasts xr

t to clients m ∈ Sλr
t )

10: for all clients m ∈ Sλr
t , locally in parallel do

11: xr,0
m,t = xr

t (client m initializes local training using the latest global model xr
t )

12: Data-Random-Reshuffling: sample a permutation πm = (π0
m, π1

m, . . . , πN−1
m ) of [N ]

13: for all local training data points j = 0, 1, . . . , N − 1 do
14: xr,j+1

m,t = xr,j
m,t − γt∇f

πj
m

m (xr,j
m,t) (client m passes once its local data in πm order)

15: end for
16: grm,t =

1
γtN

(xr
t − xr,N

m,t) (client m computes local update direction gm,t)
17: end for
18: grt = 1

C

∑
m∈Sλr

t

grm,t (server aggregates local directions gm,t of the clients cohort St)

19: xr+1
t = xr

t − ηtg
r
t (server updates the model in aggregated direction gt with server stepsize ηt)

20: end for
21: gt =

1
R

∑R−1
i=0 grt

22: xt+1 = xt − θtgt (global step after all communication rounds during meta-epoch)
23: end for

∥∇fm(x)−∇fm(y)∥ ≤ (L0 + L1 sup
u∈[x,y]

∥∇fm(u)∥)∥x− y∥, ∀m ∈ [M ], x, y ∈ Rd,

∥∇fmj(x)−∇fmj(y)∥ ≤ (L0+L1 sup
u∈[x,y]

∥∇fmj(u)∥)∥x−y∥, ∀m ∈ [M ], j ∈ [N ], x, y ∈ Rd.

A common generalization of strong convexity in the literature is the Polyak–Łojasiewicz condition.
Assumption 4 (Polyak–Łojasiewicz condition (Polyak, 1963; Lojasiewicz, 1963)). Suppose As-
sumption 1 holds for the function f. There exists µ > 0, such that ∥∇f(x)∥2 ≥ 2µ (f(x)− f⋆) .

4 THEORETICAL CONVERGENCE RATES

In this section, we describe our convergence results. Let us first introduce the notation. Put ∆⋆ def
=

f⋆ − 1
M

∑M
m=1 f

⋆
m, ∆

⋆ def
= f⋆ − 1

M

∑M
m=1

1
N

∑N−1
j=0 f⋆

mj . Define δ0
def
= f (x0) − f⋆. Let ζ be a

constant such that 0 < ζ ≤ 1
4 . Fix accuracy ε > 0. Let P ≥ 1 be the number of epochs. For all

0 ≤ p ≤ P − 1, denote
âp = L0 + L1∥∇f(x̂tp)∥, ap = L0 + L1 max

m
∥∇fm(x̂tp)∥, 1 ≤ tp+1 − tp ≤ H.

We start by formulating the convergence result for Clip-LocalGDJ (Algorithm 1) in non-convex
asymmetric generalized-smooth case. More details can be found in Appendix B.1.
Theorem 1. Let Assumptions 1 and 2 hold. Choose any P ≥ 1. Choose small local stepsizes αp,

server stepsizes γp so that ζ
âp

≤ γp ≤ 1
4âp

. Then, the iterates
{
x̂tp

}P−1

p=0
of Algorithm 1 satisfy

min
0≤p≤P−1

{
ζ

8
min

{∥∇f(x̂tp)∥2

L0
,
∥∇f(x̂tp)∥

L1

}}
≤

(
1 +

3(H−1)2α2
pa

3
p

2âp

)P
P

δ0

+
3(H − 1)2α2

pa
3
p

2âp
∆⋆.
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Corollary 1. If P ≥ 32δ0
ζε and αp is small enough, then

min0≤p≤P−1

{
min

{
∥∇f(x̂tp )∥

2

L0
,
∥∇f(x̂tp )∥

L1

}}
≤ ε.

The rates we obtain in Corollary 1 are consistent with the previously established rates of LocalGD
and GD in the standard smooth case, i.e., when L1 = 0. Indeed, we recover the rate O

(
L0δ0
ε

)
for

LocalGD (Koloskova et al., 2020). Notice, that if H = 1, the Algorithm 1 reduces to vanilla GD,
and we recover its rate O

(
L0δ0
ε

)
(Khaled & Richtárik, 2020). In the (L0, L1)-smooth case, setting

H = 1, we recover the rate O
(
L0δ0
ε

)
of clipped GD from (Zhang et al., 2020b).

Below we state the convergence result for Clip-LocalGDJ (Algorithm 1) in non-convex asymmetric
generalized-smooth case under the PŁ-condition. For more details, see Appendix B.2.

Theorem 2. Let Assumptions 1 and 2 hold. Let Assumption 4 hold. Choose any integer P >
64δ0L

2
1

µζ .

Choose small local stepsizes αp, server stepsizes γp so that ζ
âp

≤ γp ≤ 1
4âp

. Let P̃ be an integer

such that 0 ≤ P̃ ≤ 64δ0L
2
1

µζ , A > 0 be a constant, α ≤
√

δ0
AP . Put δP

def
= f (x̂tP ) − f⋆. Then, the

iterates
{
x̂tp

}P
p=0

of Algorithm 1 satisfy

δP ≤
(
1− µζ

4L0

)P−P̃

δ0 +
4L0Aα2

µζ
.

Corollary 2. Choose α ≤ min

{√
δ0
AP , L1

√
8δ0ε
L0AP

}
. If P ≥ 64δ0L

2
1

µζ + 4L0

µζ ln 2δ0
ε , then δP ≤ ε.

In the standard smooth case, when L1 = 0, we guarantee the iteration complexity O
(

L0

µ ln 2δ0
ε

)
,

which matches the LocalGD (Koloskova et al., 2020) and GD (Khaled & Richtárik, 2020) rates.

The above results can be generalized to the symmetric (L0, L1)-smooth case, see Theorem 5 in
Appendix B.3 for details.

Let T ≥ 1 be the number of epochs. For all 0 ≤ t ≤ T − 1, denote

ât = L0 + L1∥∇f(xt)∥, at = L0 + L1 max
m

∥∇fm(xt)∥ , ãt = L0 + L1 max
m,j

∥∇fmj (xt)∥ .

Further, we outline the convergence result for CLERR (Algorithm 2) in non-convex asymmetric
generalized-smooth case. For more details, see Appendix C.1.
Theorem 3. Let Assumptions 1 and 2 hold. Choose any T ≥ 1. Choose small client stepsizes αt,

global stepsizes γt so that ζ
ât

≤ γt ≤ 1
4ât

. Then, the iterates {xt}T−1
t=0 of Algorithm 2 satisfy

E

[
min

t=0,...,T−1

{
ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}}]

≤
8
(
1 +

3α2
t ã

3
t

8ât
((N − 1)(2N − 1) + 2(N + 1))

)T
T

δ0 +
6α2

t ã
3
t

ât
(N + 1)∆⋆. (2)

Corollary 3. If T ≥ 256δ0
ζε and αt is small enough, we have

E
[
mint=0,...,T−1

{
min

{
∥∇f(xt)∥2

L0
, ∥∇f(xt)∥

L1

}}]
≤ ε.

In the standard smooth case, we recover the rate O
(
L0δ0
ε

)
of RR (Mishchenko et al., 2020).

We relegate the convergence result for CLERR (Algorithm 2) in non-convex asymmetric
generalized-smooth case under the PŁ-condition to Appendix C.2. In the standard smooth case
we recover the rate O

(
L0

µ ln 2δ0
ε

)
of RR (Mishchenko et al., 2020).

Further, we formulate the convergence result for Clipped RR-CLI (Algorithm 3) in non-convex
asymmetric generalized-smooth case. For more details, see Appendix D.1.
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Theorem 4. Let Assumptions 1 and 2 hold for functions f, {fm}Mm=1 and {fmj}M,N
m=1,j=1 . Choose

any T ≥ 1. Choose small local stepsizes γt, small server stepsizes ηt, global stepsizes θt so that
ζ
ât

≤ θt ≤ 1
4ât

. Then, the iterates {xt}T−1
t=0 of Algorithm 3 satisfy

E
[

min
0≤t≤T−1

{
ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}}]

≤

(
1 +

2âtã
2
t+â3

t

4â2
t

(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

))T
T

δ0

+
2âtã

2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
.

Corollary 4. If T ≥ 72δ0
ζε and γt, ηt are small enough, then

E
[
mint=0,...,T−1

{
min

{
∥∇f(xt)∥2

L0
, ∥∇f(xt)∥

L1

}}]
≤ ε.

Finally, we provide the convergence result for Clipped RR-CLI (Algorithm 3) in non-convex asym-
metric generalized-smooth case under the PŁ-condition in Appendix D.2.

5 EXPERIMENTS

We split our experimental results into 3 parts. In Section 5.1, we provide results for the Algorithm 2
with random reshuffling and jumping in the end of each epoch. In Section 5.2, we consider Algo-
rithm 1 with local steps and jumping in the end of every communication round. In Section 5.3 we
consider Algorithm 3, which has local steps, uses random reshuffling of clients and client data and
performs jumping in the end of every epoch. Moreover, in Section F we provide additional technical
details on the experiments. Finally, in Section G we provide additional experiments, that did not fit
in the main text. In Section G.1 we investigate the influence of inner step size on the convergence of
Algorithm 2, and in Section G.2 we provide additional logistic regression experiments.

All the mentioned methods have a parameterized stepsize γt =
1

c0+c1∥gt∥ . If we denote

β =
1

2c0
, λ =

c0
c1

, (3)

we can estimate γt as stepsize multiplied by clipping coefficient: β
2 min

{
1, λ

∥gt∥

}
≤ γt ≤

βmin
{
1, λ

∥gt∥

}
. We use this connection in the process of tuning constants c0 and c1.

In our experiments, we consider the synthetic problem, a sum of shifted fourth-order functions:

f(x) =
1

N

N∑
i=1

∥x− xi∥4, xi ∈ [−10, 10]d. (4)

The main reason to consider this problem is that it is (L0, L1)-smooth, but not L-smooth Zhang
et al. (2020b). Additionally, in Section 5.1.1 we consider the problem of image classification of
ResNet-20 He et al. (2016) on CIFAR-10 dataset Krizhevsky et al. (2009). All the methods and
baselines were tuned with grid-search over logarithmic grid.

5.1 METHODS WITH RANDOM RESHUFFLING

We conduct this experiment on problem (4), where d = 1, N = 1000. We consider the Shuffle
Once methods, which shuffle data once at the beginning of training. As baselines, we consider the
following methods: regular SO method, which is just SGD with shuffling at the start of training,
Nastya from Malinovsky et al. (2022) with one worker, Clipped SO (CSO), which clips stochastic
gradients at every step of the method. The results are presented in Figure 1. As one can see from
Figure 1, methods with clipping significantly outperform the rest. This empirical result justifies
the theoretical fact of the importance of clipping for optimization of (L0, L1)-smooth objectives.
Additionally, we see that among methods with clipping, CLERR shows better results than CSO.
From this, we can conclude that clipping the final (pseudo)gradient approximation at the end of an
epoch gives better results than clipping on every step.
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Figure 1: Function residual for (4), αt = 10−7.

Figure 2: Loss, gradient norm and accuracy on test dataset for ResNet-18 on Cifar-10, αt = 0.01

5.1.1 RESNET-18 ON CIFAR-10

In Zhang et al. (2020b) the authors obtained results on a positive correlation between gradient norm
and local smoothness for the problem of training neural networks in language modeling and image
classification tasks. To check, whether our findings in synthetic experiments also take place for
neural networks, we decided to test Algorithm 2 in the same image classification problem: train
ResNet-18 He et al. (2016) on the CIFAR-10 dataset Krizhevsky et al. (2009). Additionally, we
consider heuristical modification of Algorithm 2, which we call CLERR-h. The details of it we
provide next. The overall results of the experiment on test data are shown in Figure 2. Additionally,
we provide results on train data along with technical details in Appendix ??.

From this Figure we can see, that both jumping (Nastya and CLERR) and clipping on outer step
(CLERR) does not have any impact on this problem. On the other hand, CSO shows the best results.
Since in this problem regular clipping already works very well, we decided to heuristically modify
our Algorithm 2: take the best clipping level and inner stepsize of CSO and use it on inner iterations,
and tune c0 with c1 for outer stepsize. We call this method CLERR-h and also provide its results in
Figure 2. CLERR-h chooses a rather big outer stepsize, while the outer clipping level is very tiny.
For big clipping levels method diverges. These results show that jumping does not give performance
gains when the method clips on every inner step.

5.2 METHODS WITH LOCAL STEPS

In this experiment, we aim to show the effect of the jumping technique on federated learning meth-
ods. We consider problem (4) with d = 100, N = 1000. To make the distributions of data on each
client more distinct between each other, we sort the whole dataset at the beginning of the experiment
by ∥xi∥. Here we consider a high-dimensional setup so that the starting point has less impact on
the algorithm performance. Indeed, in one-dimensional case, if we started from x0 ̸∈ [−10, 10],
the anti-gradient of every fi(x) = (x − xi)

4 would point towards minimum. Therefore, we could
find such stepsize, that method converges in one iteration. On the other hand, if we consider a high-
dimensional setup, then regardless of the starting point, the gradient of each fi(x) has a different
direction. In this experiment we compare Algorithm 1 (C-LGDJ) with Communication Efficient
Local Gradient Clipping (CELGC) (Liu et al., 2022) and Clipping-Enabled-FedAvg (CE-FedAvg)
Zhang et al. (2022). The results are shown in Figure 3.
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(a) x0 = (1, ..., 1) (b) x0 = (10, ..., 10)
Figure 3: Function residual for (4), starting from different x0 for different number of local steps on
the client device τ .

Overall, we arrive at two conclusions. Firstly, local steps do not have any positive effect on this
problem. The plots with the increased number of client steps τ only strengthen this point. Secondly,
since local steps are pointless, the method works better if the server gets a better gradient approxi-
mation, which is true if the method clips gradients on the server, not on the client. This is exactly
the reason why C-LGDJ has better performance in Figure 3b.

5.3 METHODS WITH LOCAL STEPS, RANDOM RESHUFFLING AND PARTIAL PARTICIPATION

Figure 4: Function residual for (4),
starting from x0 = (1, ..., 1) with batch
size 16.

In the final experiment, we consider methods with partial
participation. The goal of this experiment is to investigate
how clipping, local steps, partial participation and random
reshuffling of both clients and client data works together.
We compare Algorithm 3 with CE-FedAvg Zhang et al.
(2022) with partial participation (CE-FedAvg-PP) on prob-
lem (4) with d = 100, N = 1000. Again, to make the
distributions of data on each client more distinct between
each other, we sort the whole dataset at the beginning of the
experiment by ∥xi∥. The results are presented in Figure 4.

Since CRR-CLI uses random reshuffling of the data instead
of sampling with replacement, and clips only in the end
of meta-epoch, it has better gradient approximation on the
global step, which results in better performance, than CE-
FedAvg-PP.

6 DISCUSSION

In this paper, we consider a more general smoothness assumption and propose three new distributed
methods for Federated Learning with local steps under this setting. Specifically, we analyze local
gradient descent (GD) steps, local steps with Random Reshuffling, and a method that combines local
steps with Random Reshuffling and Partial Participation. We provide a tight analysis for general non-
convex and Polyak-Łojasiewicz settings, recovering previous results as special cases. Furthermore,
we present numerical results to support our theoretical findings.

For future work, it would be valuable to explore local methods with communication compression
under the generalized smoothness assumption, as well as methods incorporating incomplete local
epochs. Additionally, investigating local methods with client drift reduction mechanisms to address
the effects of heterogeneity, along with potentially parameter-free approaches, represents a promis-
ing direction.
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A IMPLICATIONS OF GENERALIZED SMOOTHNESS

Lemma 1. Let f satisfy Assumption 2. Then, for any x, y ∈ Rd we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(x)∥
2

∥x− y∥2.

Moreover, if f⋆ := infx∈Rd f(x) > −∞, then, for all x ∈ Rd, we obtain
∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
≤ f(x)− f⋆.

Proof of Lemma 1. The first statement of the lemma is proven in (Zhang et al., 2020b, Appendix
A.1). The second statement is proven in (Gorbunov et al., 2024): it follows from the first statement,
if one substitutes y for x− ∥∇f(x)∥

L0+L1∥∇f(x)∥∇f(x) and uses the fact that f⋆ ≤ f(y).

Lemma 2. Let f satisfy Assumption 3. Then, for any x, y ∈ Rd we have

f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(x)∥
2

exp(L1∥x− y∥)∥x− y∥2.

Moreover, if f⋆ := infx∈Rd f(x) > −∞, then, for η > 0, such that η exp η ≤ 1, for all x ∈ Rd, we
obtain

η∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
≤ f(x)− f⋆.

Proof of Lemma 2. The first part of this lemma is one of the results of (Chen et al., 2023, Proposition
3.2). The second statement is proven in (Gorbunov et al., 2024). To deal with it, let us substitute y

in the first statement with x− η∥∇f(x)∥
L0+L1∥∇f(x)∥∇f(x) :

f⋆ ≤ f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(x)∥
2

exp(L1∥x− y∥)∥x− y∥2

= f(x)− η∥∇f(x)∥2

L0 + L1∥∇f(x)∥

+
L0 + L1∥∇f(x)∥

2
· exp

(
L1η∥∇f(x)∥

L0 + L1∥∇f(x)∥

)
· η2∥∇f(x)∥2

(L0 + L1∥∇f(x)∥)2

≤ f(x)− η∥∇f(x)∥2

L0 + L1∥∇f(x)∥
+

η∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
· η exp(η)

≤ f(x)− η∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
.

Rearranging the terms, we get the second statement of the lemma.

Lemma 3. Assumption 3 holds for the function f if and only if, for any x, y ∈ Rd,

∥∇f(x)−∇f(y)∥ ≤ (L0 + L1 ∥∇f(y)∥) exp (L1 ∥x− y∥) ∥x− y∥ .

Proof of Lemma 3. This lemma is one of the results of (Chen et al., 2023, Proposition 3.2)
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B LOCAL GRADIENT DESCENT

B.1 ASYMMETRIC GENERALIZED-SMOOTH NON-CONVEX FUNCTIONS

Theorem 1 (non-convex asymmetric generalized-smooth convergence analysis of Algorithm 1). Let
Assumptions 1 and 2 hold for functions f and {fm}Mm=1. Choose any P ≥ 1. For all 0 ≤ p ≤ P−1,
denote

âp = L0 + L1∥∇f(x̂tp)∥, ap = L0 + L1 max
m

∥∇fm(x̂tp)∥, 1 ≤ tp+1 − tp ≤ H.

Put ∆⋆ = f⋆ − 1
M

∑M
m=1 f

⋆
m. Impose the following conditions on the local stepsizes αp and server

stepsizes γp :

αp ≤ min

{
1

2Hap
,

1

cap

√
âp
ap

}
,

ζ

âp
≤ γp ≤ 1

4âp
, 0 ≤ p ≤ P − 1,

where 0 < ζ ≤ 1
4 , c ≥

√
P . Let δ0

def
= f (x0) − f⋆. Then, the iterates

{
x̂tp

}P−1

p=0
of Algorithm 1

satisfy

min
0≤p≤P−1

{
ζ

8
min

{∥∇f(x̂tp)∥2

L0
,
∥∇f(x̂tp)∥

L1

}}
≤

(
1 +

3(H−1)2α2
pa

3
p

2âp

)P
P

δ0

+
3(H − 1)2α2

pa
3
p

2âp
∆⋆.

Put vp
def
= tp+1 − 1.

Lemma 4. Assume that f and each fm satisfy Assumptions 1 and 2. Then we have the following
bound:

1

M

M∑
m=1

v∑
t=tp+1

∥∥xm
t − x̂tp

∥∥2 ≤ 8 (vp − tp)
3
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
.

Proof of Lemma 4. We have

∥∥xm
t − x̂tp

∥∥2 =

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm
(
xm
j

)∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥
t−1∑
j=tp

αp

(
∇fm(xm

j )−∇fm(x̂tp)
)∥∥∥∥∥∥

2

+ 2

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

≤ 2(t− tp)

t−1∑
j=tp

(αp)
2 (

L0 + L1

∥∥∇fm(x̂tp)
∥∥)2 ∥∥xm

j − x̂tp

∥∥2

+ 2

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

.
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Averaging, we get

1

M

M∑
m=1

∥∥xm
t − x̂tp

∥∥2 ≤ 2(t− tp)

M

M∑
m=1

t−1∑
j=tp

(αp)
2 (

L0 + L1

∥∥∇fm(x̂tp)
∥∥)2 ∥∥xm

j − x̂tp

∥∥2

+
2

M

M∑
m=1

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

≤ 2(t− tp)

M
(ap)

2
M∑

m=1

t−1∑
j=tp

(αp)
2 ∥∥xm

j − x̂tp

∥∥2

+
2

M

M∑
m=1

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

.

Recall that αp ≤ 1

2H(L0+L1 maxm∥∇fm(x̂tp )∥)
. Then we have

1

M

M∑
m=1

∥∥xm
t − x̂tp

∥∥2 ≤ t− tp
2H2M

M∑
m=1

t−1∑
j=tp

∥∥xm
j − x̂tp

∥∥2

+
2

M

M∑
m=1

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

. (5)

Let us bound the last term:

2

M

M∑
m=1

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

≤ 2

M

M∑
m=1

∥∥∇fm(x̂tp)
∥∥2 (t− tp)

2
α2
p

≤ 4

M

M∑
m=1

(
L0 + L1

∥∥∇fm(x̂tp)
∥∥) (fm (x̂tp

)
− f⋆

m

)
× (t− tp)

2
α2
p

≤
4 (t− tp)

2
apα

2
p

M

M∑
m=1

(
fm
(
x̂tp

)
− f⋆

m

)
= 4 (t− tp)

2
apα

2
p

(
f(x̂tp)− f⋆ +

(
f⋆ − 1

M

M∑
m=1

f⋆
m

))
p

= 4 (t− tp)
2
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
.
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Further, summing (7) with respect to t, we obtain

1

M

M∑
m=1

v∑
t=tp+1

∥∥xm
t − x̂tp

∥∥2 ≤ 1

2H2M

M∑
m=1

v∑
t=tp+1

(t− tp)

t−1∑
j=tp

∥∥xm
j − x̂tp

∥∥2
+

v∑
t=tp+1

4 (t− tp)
2
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
≤ v − tp

2H2M

M∑
m=1

v∑
t=tp+1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2
+ 4

v∑
t=tp+1

(v − tp)
2
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
≤ (v − tp)

2

2H2M

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2
+ 4 (v − tp)

3
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
.

Using the fact that v − tp ≤ H − 1 < H, we obtain that

1

M

M∑
m=1

v∑
t=tp+1

∥∥xm
t − x̂tp

∥∥2 ≤ 8 (v − tp)
3
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
.

Proof of Theorem 1. Applying Lemma 1, we obtain that

f(x̂tp+1) ≤ f(x̂tp)− γp⟨∇f
(
x̂tp

)
, gp⟩+

(
L0 + L1

∥∥∇f
(
x̂tp

)∥∥) γ2
p ∥gp∥

2

2
.

Additionally, from the fact that 2⟨a, b⟩ = −∥a− b∥2 + ∥a∥2 + ∥b∥2

f(x̂tp+1
) ≤ f(x̂tp)− γp⟨∇f

(
x̂tp

)
, gp⟩+

(
L0 + L1

∥∥∇f
(
x̂tp

)∥∥) γ2
p ∥gp∥

2

2

≤ f(x̂tp)−
γp
2
(−∥∇f(x̂tp)− gp∥2 + ∥∇f(xp)∥2 + ∥gp∥2)

+ (L0 + L1∥∇f(x̂tp)∥)
γ2
p∥gp∥2

2

≤ f(x̂tp)−
γp
2
∥∇f(x̂tp)∥2 +

γp
2
∥∇f(x̂tp)− gp∥2 + (L0 + L1∥∇f(x̂tp)∥)

γ2
p∥gp∥2

2
.

Consider γp

2 ∥∇f(x̂tp)− gp∥2. We have

γp
2
∥∇f(x̂tp)− gp∥2 =

γp
2

∥∥∥∥∥∥ 1

M

M∑
m=1

∇fm(x̂tp)−
1

v − tp

v∑
j=tp

∇fm
(
xm
j

)∥∥∥∥∥∥
2

≤ γp
2

1

M(v − tp)

M∑
m=1

(L0 + L1∥∇fm(x̂tp)∥)2
v∑

j=tp

∥xm
j − x̂tp∥2

≤ γp
2(v − tp)

(L0 + L1 max
m

∥∇fm(x̂tp)∥)2
1

M

M∑
m=1

v∑
j=tp

∥xm
j − x̂tp∥2

=
γpa

2
p

2(v − tp)

1

M

M∑
m=1

v∑
j=tp

∥xm
j − x̂tp∥2.
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Notice that

γ2
p ∥gp∥

2

2
=

γ2
p

2

∥∥∥∥∥∥ 1

M(v − tp)

M∑
m=1

v∑
j=tp+1

∇fm
(
xm
j

)∥∥∥∥∥∥
2

≤
γ2
p

(v − tp)2

∥∥∥∥∥∥ 1

M

M∑
m=1

v∑
j=tp+1

(
∇fm

(
xm
j

)
−∇fm

(
x̂tp

))∥∥∥∥∥∥
2

+
γ2
p

(v − tp)2

∥∥∥∥∥∥ 1

M

M∑
m=1

v∑
j=tp+1

∇fm
(
x̂tp

)∥∥∥∥∥∥
2

≤
γ2
p

(v − tp)

(
L0 + L1 max

m

∥∥∇fm(x̂tp)
∥∥)2 1

M

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2
+ γ2

p

∥∥∇f
(
x̂tp

)∥∥2
=

γ2
pa

2
p

M(v − tp)

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2 + γ2
p

∥∥∇f
(
x̂tp

)∥∥2 .
Therefore, we obtain

f
(
x̂tp+1

)
≤ f(x̂tp)−

γp
2
∥∇f(x̂tp)∥2 +

γpa
2
p

2M(v − tp)

M∑
m=1

v∑
j=tp

∥xm
j − x̂tp∥2 +

âpγ
2
p∥gp∥2

2

≤ f(x̂tp)−
γp
2
∥∇f(x̂tp)∥2 +

γpa
2
p

2M(v − tp)

M∑
m=1

v∑
j=tp

∥xm
j − x̂tp∥2

+
âpa

2
pγ

2
p

M(v − tp)

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2 + âpγ
2
p

∥∥∇f
(
x̂tp

)∥∥2
= f(x̂tp) +

(
âpγ

2
p − γp

2

)∥∥∇f
(
x̂tp

)∥∥2
+

(
âpa

2
pγ

2
p +

γpa
2
p

2

)
1

M(v − tp)

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2 .
Recall that γp ≤ 1

4âp
. Then, using Lemma 4, we have

f
(
x̂tp+1

)
≤ f

(
x̂tp

)
− γp

4

∥∥∇f
(
x̂tp

)∥∥2
+

(
âpa

2
pγ

2
p +

γpa
2
p

2

)
1

M(v − tp)

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2
≤ f

(
x̂tp

)
− γp

4

∥∥∇f
(
x̂tp

)∥∥2
+

(
âpa

2
pγ

2
p +

γpa
2
p

2

)
8(v − tp)

2apα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
≤ f

(
x̂tp

)
− γp

4

∥∥∇f
(
x̂tp

)∥∥2 + 3(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
2âp

.

Let us rewrite the inequality in the following way:

γp
4

∥∥∇f
(
x̂tp

)∥∥2 ≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

3(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
2âp

. (6)
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Since γp ≥ ζ
âp
, we get that

γp
∥∥∇f

(
x̂tp

)∥∥2
4

≥
ζ
∥∥∇f

(
x̂tp

)∥∥2
4âp

.

Therefore,

γp
4
∥∇f(x̂tp)∥2 ≥

{
ζ∥∇f(x̂tp )∥

2

8L0
, ∥∇f(x̂tp)∥ ≤ L0

L1
,

ζ∥∇f(x̂tp )∥
8L1

, ∥∇f(x̂tp)∥ > L0

L1
,
=

ζ

8
min

{∥∇f(x̂tp)∥2

L0
,
∥∇f(x̂tp)∥

L1

}
.

Denote δp
def
= f

(
x̂tp

)
− f⋆. Then we have

ζ

8
min

{∥∇f(x̂tp)∥2

L0
,
∥∇f(x̂tp)∥

L1

}
≤ δp − δp+1 +

3(H − 1)2α2
pa

3
p (δp +∆⋆)

2âp
.

Let αp ≤ 1
cap

√
âp

ap
, where c ≥

√
P . Applying the result of Mishchenko et al. (2020, Lemma 6), we

appear at

min
0≤p≤P−1

{
ζ

8
min

{∥∇f(x̂tp)∥2

L0
,
∥∇f(x̂tp)∥

L1

}}
≤

(
1 +

3(H−1)2α2
pa

3
p

2âp

)P
P

δ0

+
3(H − 1)2α2

pa
3
p

2âp
∆⋆.

Corollary 1. Fix ε > 0. Choose c =
√
3(H − 1)2P . Let αp ≤ 2

√
âpδ0

3P (H−1)2a3
p∆

⋆ . Then, if

P ≥ 32δ0
ζε , we have min0≤p≤P−1

{
min

{
∥∇f(x̂tp )∥

2

L0
,
∥∇f(x̂tp )∥

L1

}}
≤ ε.

Proof of Corollary 1. Since c =
√

3(H − 1)2P and αp ≤ 1
cap

√
âp

ap
, αp ≤ 2

√
âpδ0

3P (H−1)2a3
p∆

⋆ , due

to the choice of P ≥ 32δ0
ζε , we obtain that(

1 +
3(H−1)2α2

pa
3
p

2âp

)P
P

δ0 ≤
√
eδ0
P

≤ 2δ0
P

≤ ζε

16
,

and that
3(H − 1)2α2

pa
3
p

2âp
∆⋆ ≤ ζε

16
.

Therefore, min0≤p≤P−1

{
min

{
∥∇f(x̂tp )∥

2

L0
,
∥∇f(x̂tp )∥

L1

}}
≤ ε.

B.2 ASYMMETRIC GENERALIZED-SMOOTH FUNCTIONS UNDER PŁ-CONDITION

Theorem 2 (Asymmetric generalized-smooth convergence analysis of Algorithm 1 in PŁ-case). Let
Assumptions 1 and 2 hold for functions f and {fm}Mm=1 . Let Assumption 4 hold. Choose 0 < ζ ≤ 1

4 .

Let δ0
def
= f (x0)− f⋆. Choose any integer P >

64δ0L
2
1

µζ . For all 0 ≤ p ≤ P − 1, denote

âp = L0 + L1∥∇f(x̂tp)∥, ap = L0 + L1 max
m

∥∇fm(x̂tp)∥, 1 ≤ tp+1 − tp ≤ H.

Put ∆⋆ = f⋆ − 1
M

∑M
m=1 f

⋆
m. Impose the following conditions on the local stepsizes αp and server

stepsizes γp :

αp ≤ min

{
1

2Hap
,

1

cap

√
âp
ap

,

√
µζâp

48L2
1(H − 1)2a3p

(
f(x̂tp)− f⋆ +∆⋆

) ,√
2δ0âp

3P (H − 1)2a3p
(
f(x̂tp)− f⋆ +∆⋆

)} ,
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ζ

âp
≤ γp ≤ 1

4âp
, 0 ≤ p ≤ P − 1,

where c ≥
√
P . Let P̃ be an integer such that 0 ≤ P̃ ≤ 64δ0L

2
1

µζ , A > 0 be a constant, α ≤
√

δ0
AP .

Then, the iterates
{
x̂tp

}P
p=0

of Algorithm 1 satisfy

δP ≤
(
1− µζ

4L0

)P−P̃

δ0 +
4L0Aα2

µζ
,

where δP
def
= f (x̂tP )− f⋆.

Proof of Theorem 2. Let us follow the first steps of the proof of Theorem 1. Consider (6):

γp
4

∥∥∇f
(
x̂tp

)∥∥2 ≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

3(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
2âp

.

Since γp ≥ ζ
âp
, and f satisfies Polyak–Łojasiewicz Assumption 4, we obtain that

µζ
(
f(x̂tp)− f⋆

)
2âp

≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

3(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
2âp

.

1. Let P̃ be the number of steps p, so that
∥∥∇f

(
x̂tp

)∥∥ ≥ L0

L1
. For such p, we have L0 +

L1

∥∥∇f
(
x̂tp

)∥∥ = âp ≤ 2L1

∥∥∇f
(
x̂tp

)∥∥ . Therefore, we get

µζ
(
f(x̂tp)− f⋆

)
4L1

∥∥∇f
(
x̂tp

)∥∥ ≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

3(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
2âp

.

Notice that the relation âp ≤ 2L1

∥∥∇f
(
x̂tp

)∥∥ and Lemma 1 together imply∥∥∇f
(
x̂tp

)∥∥
4L1

≤
∥∥∇f

(
x̂tp

)∥∥2
2âp

≤ f
(
x̂tp

)
− f⋆.

Hence, we have

µζ

16L2
1

≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

3(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
2âp

.

Subtracting f⋆ on both sides and introducing δp
def
= f

(
x̂tp

)
− f⋆, we obtain

δp+1 ≤ δp −
µζ

16L2
1

+
3(H − 1)2a3pα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
2âp

.

As αp ≤
√

µζâp

48L2
1(H−1)2a3

p(f(x̂tp )−f⋆+∆⋆)
, it follows that

3(H−1)2a3
pα

2
p(f(x̂tp )−f⋆+∆⋆)
2âp

≤ µζ
32L2

1
.

Therefore, we get

δp+1 ≤ δp −
µζ

32L2
1

.

2. Suppose now that
∥∥∇f

(
x̂tp

)∥∥ ≤ L0

L1
. For such p, we have L0 + L1

∥∥∇f
(
x̂tp

)∥∥ = âp ≤ 2L0.
Hence,

µζ
(
f(x̂tp)− f⋆

)
4L0

≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

3(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
2âp

.

Subtracting f⋆ on both sides and introducing δp
def
= f

(
x̂tp

)
− f⋆, we obtain

δp+1 ≤ δpρ+
3(H − 1)2a3pα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
2âp

, where ρ
def
= 1− µζ

4L0
.
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Let αp
def
= αα̂p and α̂p ≤

√
2Aâp

3(H−1)2a3
p(f(x̂tp )−f⋆+∆⋆)

for some constant A > 0. Then,

δp+1 ≤ ρδp +Aα2.

Unrolling the recursion, we derive

δP ≤ ρP−P̃ δ0 +Aα2
∞∑
i=0

ρi − µζ

32L2
1

N−1∑
i=0

ρi

≤ ρP−P̃ δ0 +
Aα2

1− ρ
− 1− ρP̃

1− ρ

µζ

32L2
1

.

Notice that δp+1 ≤ δp +Aα2, which implies

δP ≤ δ0 +
(
P − P̃

)
Aα2 − P̃

µζ

32L2
1

.

Since α ≤
√

δ0
AP , we conclude that

0 ≤ δP ≤ 2δ0 − P̃
µζ

32L2
1

, ⇒ P̃ ≤ 64δ0L
2
1

µζ
.

Therefore, for P >
64δ0L

2
1

µζ we can guarantee that P − P̃ > 0 and

δP ≤ ρP−P̃ δ0 +
Aα2

1− ρ
− P̃ ρP̃

µζ

32L2
1

≤ ρP−P̃ δ0 +
Aα2

1− ρ
.

Corollary 2. Fix ε > 0. Choose α ≤ min

{√
δ0
AP , L1

√
8δ0ε
L0AP

}
. Then, if P ≥ 64δ0L

2
1

µζ + 4L0

µζ ln 2δ0
ε ,

we have δP ≤ ε.

Proof of Corollary 2. Since 0 ≤ P̃ ≤ 64δ0L
2
1

µζ , A > 0, α ≤
√

δ0
AP , α ≤ L1

√
8δ0ε
L0AP , due to the

choice of P ≥ 64δ0L
2
1

µζ + 4L0

µζ ln 2δ0
ε , we obtain that(

1− µζ

4L0

)P−P̃

δ0 ≤ e−
µζ
4L0

(P−P̃)δ0 ≤ ε

2
,

and that
4L0A

µζ
· δ0
AP

≤ ε

2
.

Therefore, δP ≤ ε.

B.3 SYMMETRIC GENERALIZED-SMOOTH NON-CONVEX FUNCTIONS

Theorem 5. Let Assumptions 1 and 2 hold for functions f and {fm}Mm=1. Choose any P ≥ 1. For
all 0 ≤ p ≤ P − 1, denote

âp = L0 + L1∥∇f(x̂tp)∥, ap = L0 + L1 max
m

∥∇fm(x̂tp)∥, 1 ≤ tp+1 − tp ≤ H.

Put ∆⋆ = f⋆ − 1
M

∑M
m=1 f

⋆
m. Impose the following conditions on the local stepsizes αp and server

stepsizes γp :

αp ≤ min

{
1

2Hap
,

1

cap

√
âp
ap

,
âpC

ap
(
L0 + L1Atp

)} ,
ζ

âp
≤ γp ≤ 1

8âp
, 0 ≤ p ≤ P − 1,
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where 0 < ζ ≤ 1
8 , c ≥

√
P , C ≤ ln 1.5

H , Atp
def
= max

{√
2L0M(δtp+∆⋆)

ν ,
2L1M(δtp+∆⋆)

ν

}
, ν such

that ν exp ν = 1. Let δ0
def
= f (x0)− f⋆. Then, the iterates

{
x̂tp

}P−1

p=0
of Algorithm 1 satisfy

min
0≤p≤P−1

{
ζ

8
min

{∥∇f(x̂tp)∥2

L0
,
∥∇f(x̂tp)∥

L1

}}
≤

(
1 +

7(H−1)2α2
pa

3
p

âp

)P
P

δ0

+
7(H − 1)2α2

pa
3
p

âp
∆⋆.

Let us remind that âp = L0 + L1∥∇f(x̂tp)∥, ap = L0 + L1 maxm ∥∇fm(x̂tp)∥ and ∆⋆ = f⋆ −
1
M

∑M
m=1 f

⋆
m. Put vp

def
= tp+1 − 1.

Lemma 5. Assume that f and each fm satisfy Assumptions 1 and 3. Then we have the following
bound:

1

M

M∑
m=1

v∑
t=tp+1

∥∥xm
t − x̂tp

∥∥2 ≤ 32 (v − tp)
3
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
.

Proof of Lemma 5. We have

∥∥xm
t − x̂tp

∥∥2 =

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm
(
xm
j

)∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥
t−1∑
j=tp

αp

(
∇fm(xm

j )−∇fm(x̂tp)
)∥∥∥∥∥∥

2

+ 2

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

≤ 2(t− tp)

t−1∑
j=tp

(αp)
2 (

L0 + L1

∥∥∇fm(x̂tp)
∥∥)2

× exp
{
L1

∥∥xm
j − x̂tp

∥∥}∥∥xm
j − x̂tp

∥∥2 + 2

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

≤ 2(t− tp)

t−1∑
j=tp

(αp)
2 (

L0 + L1

∥∥∇fm(x̂tp)
∥∥)2

× exp

L1

∥∥∥∥∥∥
j−1∑
ℓ=tp

αp∇fm (xm
ℓ )

∥∥∥∥∥∥
∥∥xm

j − x̂tp

∥∥2 + 2

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

.

Let us show that if αp ≤ 1

2(L0+L1 maxm maxtp≤ℓ≤tp+1
∥∇fm(xm

ℓ )∥)
, then fm(xm

ℓ ) ≤ fm(xm
tp) for

tp ≤ ℓ ≤ tp+1 − 1. Notice that locally we perform the iterations of the gradient descent. It means,
that

fm(xm
ℓ+1) ≤ fm(xm

ℓ )− αp∥∇fm(xm
ℓ )∥2 + L0 + L1∥∇fm(xm

ℓ )∥
2

exp {L1αp ∥∇fm(xm
ℓ )∥}α2

p∥∇fm(xm
ℓ )∥2

≤ fm(xm
ℓ )− αp∥∇fm(xm

ℓ )∥2 + αp

2
∥∇fm(xm

ℓ )∥2 exp {αp (L0 + L1 ∥∇fm(xm
ℓ )∥)}

= fm(xm
ℓ )− αp

(
1−

√
3

2

)
∥∇fm(xm

ℓ )∥2.

Then fm(xm
ℓ ) ≤ fm(xm

tp) = fm
(
x̂tp

)
for tp ≤ ℓ ≤ tp+1 − 1 follows. Therefore, for such αp we

have that

fm(xm
ℓ )− f⋆

m ≤ fm(xm
tp)− f⋆

m ≤
M∑

m=1

(
fm(xm

tp)− f⋆
m

)
= Mδtp +M∆⋆.
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From Lemma 2 we have

min

{
ν∥∇fm(xm

ℓ )∥2

L0
,
ν ∥∇fm(xm

ℓ )∥
L1

}
≤ ν∥∇fm(xm

ℓ )∥2

2(L0 + L1∥∇fm(xm
ℓ )∥)

≤ fm(xm
ℓ )− f⋆

m

≤ M
(
δtp +∆⋆

)
.

For every tp ≤ ℓ ≤ tp+1 − 1, for every m, we establish

∥∇fm(xm
ℓ )∥ ≤ max


√

2L0M
(
δtp +∆⋆

)
ν

,
2L1M

(
δtp +∆⋆

)
ν

 def
= Atp .

Let us choose αp ≤ C
L0+L1Atp

for some C ≤ ln 1.5
H and show by induction that for such lo-

cal processes maxm ∥∇fm(xm
ℓ )∥ ≤ Atp , for all tp ≤ ℓ ≤ tp+1 − 1. Indeed, for ℓ = tp

it holds trivially. Suppose it holds for all ℓ such that tp ≤ ℓ ≤ ℓ′ for some ℓ′. Then,
fm
(
xm
ℓ′+1

)
≤ fm (xm

ℓ′ ) holds for any αp ≤ C
L0+L1∥∇fm(xℓ′ )∥

, including the chosen stepsize. Hence,
fm
(
xm
ℓ′+1

)
≤ fm(xtp). Therefore, maxm ∥∇fm(xm

ℓ )∥ ≤ Atp , for all tp ≤ ℓ ≤ tp+1 − 1. Then,
C

L0+L1Atp
≤ 1

2(L0+L1 maxm maxtp≤ℓ≤tp+1
∥∇fm(xm

ℓ )∥)
.

It means that exp
{
L1

∥∥∥∑j−1
ℓ=tp

αp∇fm (xm
ℓ )
∥∥∥} ≤ eln 1.5 = 1.5.

Averaging, we get

1

M

M∑
m=1

∥∥xm
t − x̂tp

∥∥2 ≤ 3(t− tp)

M

M∑
m=1

t−1∑
j=tp

(αp)
2 (

L0 + L1

∥∥∇fm(x̂tp)
∥∥)2 ∥∥xm

j − x̂tp

∥∥2

+
2

M

M∑
m=1

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

≤ 3(t− tp)

M
(ap)

2
M∑

m=1

t−1∑
j=tp

(αp)
2 ∥∥xm

j − x̂tp

∥∥2

+
2

M

M∑
m=1

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

.

Recall that αp ≤ 1
2Hap

. Then we have

1

M

M∑
m=1

∥∥xm
t − x̂tp

∥∥2 ≤ 1.5 (t− tp)

2H2M

M∑
m=1

t−1∑
j=tp

∥∥xm
j − x̂tp

∥∥2 + 2

M

M∑
m=1

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

.

(7)
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Let us bound the last term, using Lemma 2 and the fact that 1/η ≤ 2 :

2

M

M∑
m=1

∥∥∥∥∥∥
t−1∑
j=tp

αp∇fm(x̂tp)

∥∥∥∥∥∥
2

≤ 2

M

M∑
m=1

∥∥∇fm(x̂tp)
∥∥2 (t− tp)

2
α2
p

≤ 8

M

M∑
m=1

(
L0 + L1

∥∥∇fm(x̂tp)
∥∥) (fm (x̂tp

)
− f⋆

m

)
× (t− tp)

2
α2
p

≤
8 (t− tp)

2
apα

2
p

M

M∑
m=1

(
fm
(
x̂tp

)
− f⋆

m

)
= 8 (t− tp)

2
apα

2
p

(
f(x̂tp)− f⋆ +

(
f⋆ − 1

M

M∑
m=1

f⋆
m

))
p

= 8 (t− tp)
2
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
.

Further, summing (7) with respect to t, we obtain

1

M

M∑
m=1

v∑
t=tp+1

∥∥xm
t − x̂tp

∥∥2 ≤ 1.5

2H2M

M∑
m=1

v∑
t=tp+1

(t− tp)

t−1∑
j=tp

∥∥xm
j − x̂tp

∥∥2
+

v∑
t=tp+1

8 (t− tp)
2
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
≤ 1.5 (v − tp)

2H2M

M∑
m=1

v∑
t=tp+1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2
+ 8

v∑
t=tp+1

(v − tp)
2
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
≤ 1.5 (v − tp)

2

2H2M

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2
+ 8 (v − tp)

3
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
.

Using the fact that v − tp ≤ H − 1 < H, we obtain that

1

M

M∑
m=1

v∑
t=tp+1

∥∥xm
t − x̂tp

∥∥2 ≤ 32 (v − tp)
3
apα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
.

Proof of Theorem 5. Applying Lemma 1, we obtain that

f(x̂tp+1) ≤ f(x̂tp)− γp⟨∇f
(
x̂tp

)
, gp⟩+

(
L0 + L1

∥∥∇f
(
x̂tp

)∥∥) exp {L1γp ∥gp∥}
γ2
p ∥gp∥

2

2
.

Additionally, from the fact that 2⟨a, b⟩ = −∥a− b∥2 + ∥a∥2 + ∥b∥2

f(x̂tp+1) ≤ f(x̂tp)− γp⟨∇f
(
x̂tp

)
, gp⟩+

(
L0 + L1

∥∥∇f
(
x̂tp

)∥∥) exp {L1γp ∥gp∥}
γ2
p ∥gp∥

2

2

≤ f(x̂tp)−
γp
2
(−∥∇f(x̂tp)− gp∥2 + ∥∇f(xp)∥2 + ∥gp∥2)

+ (L0 + L1∥∇f(x̂tp)∥) exp {L1γp ∥gp∥}
γ2
p∥gp∥2

2

≤ f(x̂tp)−
γp
2
∥∇f(x̂tp)∥2 +

γp
2
∥∇f(x̂tp)− gp∥2 + (L0 + L1∥∇f(x̂tp)∥) exp {L1γp ∥gp∥}

γ2
p∥gp∥2

2
.
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Consider γp

2 ∥∇f(x̂tp)− gp∥2. We have

γp
2
∥∇f(x̂tp)− gp∥2 =

γp
2

∥∥∥∥∥∥ 1

M

M∑
m=1

∇fm(x̂tp)−
1

v − tp

v∑
j=tp

∇fm
(
xm
j

)∥∥∥∥∥∥
2

≤ γp
2

1

M(v − tp)

M∑
m=1

(L0 + L1∥∇fm(x̂tp)∥)2
v∑

j=tp

∥xm
j − x̂tp∥2 exp

{
2L1

∥∥xm
j − x̂tp

∥∥}
≤ 9γp

8(v − tp)
(L0 + L1 max

m
∥∇fm(x̂tp)∥)2

1

M

M∑
m=1

v∑
j=tp

∥xm
j − x̂tp∥2

=
9γpa

2
p

8(v − tp)

1

M

M∑
m=1

v∑
j=tp

∥xm
j − x̂tp∥2.

Notice that

γ2
p ∥gp∥

2

2
=

γ2
p

2

∥∥∥∥∥∥ 1

M(v − tp)

M∑
m=1

v∑
j=tp+1

∇fm
(
xm
j

)∥∥∥∥∥∥
2

≤
γ2
p

(v − tp)2

∥∥∥∥∥∥ 1

M

M∑
m=1

v∑
j=tp+1

(
∇fm

(
xm
j

)
−∇fm

(
x̂tp

))∥∥∥∥∥∥
2

+
γ2
p

(v − tp)2

∥∥∥∥∥∥ 1

M

M∑
m=1

v∑
j=tp+1

∇fm
(
x̂tp

)∥∥∥∥∥∥
2

≤
γ2
p

(v − tp)

(
L0 + L1 max

m

∥∥∇fm(x̂tp)
∥∥)2 1

M

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2 exp{2L1

∥∥xm
j − x̂tp

∥∥}
+ γ2

p

∥∥∇f
(
x̂tp

)∥∥2
=

9γ2
pa

2
p

4M(v − tp)

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2 + γ2
p

∥∥∇f
(
x̂tp

)∥∥2 .

Further, recalling that γ≤ 1
8âp

and αp ≤ âpC

ap(L0+L1Atp)
≤ C

L0+L1Atp
, we have

L1γp ∥gp∥ = γpL1

∥∥∥∥∥∥ 1

M(v − tp)

M∑
m=1

v∑
j=tp+1

∇fm
(
xm
j

)∥∥∥∥∥∥
≤ γpL1

M (v − tp)

∥∥∥∥∥∥
M∑

m=1

v∑
j=tp+1

(
∇fm

(
xm
j

)
−∇fm

(
x̂tp

))∥∥∥∥∥∥+ γpL1

M (v − tp)

∥∥∥∥∥∥
M∑

m=1

v∑
j=tp+1

∇fm
(
x̂tp

)∥∥∥∥∥∥
≤ γpapL1

M (v − tp)

M∑
m=1

v∑
j=tp+1

∥∥xm
j − x̂tp

∥∥+ γpL1

∥∥∇f
(
x̂tp

)∥∥
≤ apL1

8âpM (v − tp)

M∑
m=1

v∑
j=tp+1

∥∥∥∥∥∥
j−1∑
ℓ=tp

αp∇fm (xm
ℓ )

∥∥∥∥∥∥+ γpL1

∥∥∇f
(
x̂tp

)∥∥
≤ ln 1.5

8
+

1

8
.
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Therefore, since exp {L1γp ∥gp∥} ≤ 2, we obtain

f
(
x̂tp+1

)
≤ f(x̂tp)−

γp
2
∥∇f(x̂tp)∥2 +

9γpa
2
p

8M(v − tp)

M∑
m=1

v∑
j=tp

∥xm
j − x̂tp∥2 +

âpγ
2
p∥gp∥2

2
exp {L1γp ∥gp∥}

≤ f(x̂tp)−
γp
2
∥∇f(x̂tp)∥2 +

9γpa
2
p

8M(v − tp)

M∑
m=1

v∑
j=tp

∥xm
j − x̂tp∥2

+
9âpa

2
pγ

2
p

2M(v − tp)

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2 + 2âpγ
2
p

∥∥∇f
(
x̂tp

)∥∥2
= f(x̂tp) +

(
2âpγ

2
p − γp

2

)∥∥∇f
(
x̂tp

)∥∥2
+

(
9âpa

2
pγ

2
p

2
+

9γpa
2
p

8

)
1

M(v − tp)

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2 .
Since γp ≤ 1

8âp
≤ 1

2
√
2âp

. Then, using Lemma 5, we have

f
(
x̂tp+1

)
≤ f

(
x̂tp

)
− γp

4

∥∥∇f
(
x̂tp

)∥∥2
+

(
9âpa

2
pγ

2
p

2
+

9γpa
2
p

8

)
1

M(v − tp)

M∑
m=1

v∑
j=tp

∥∥xm
j − x̂tp

∥∥2
≤ f

(
x̂tp

)
− γp

4

∥∥∇f
(
x̂tp

)∥∥2
+

(
9âpa

2
pγ

2
p

2
+

9γpa
2
p

8

)
32(v − tp)

2apα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
≤ f

(
x̂tp

)
− γp

4

∥∥∇f
(
x̂tp

)∥∥2 + 7(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
âp

.

Let us rewrite the inequality in the following way:

γp
4

∥∥∇f
(
x̂tp

)∥∥2 ≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

7(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
âp

. (8)

Since γp ≥ ζ
âp
, we get that

γp
∥∥∇f

(
x̂tp

)∥∥2
4

≥
ζ
∥∥∇f

(
x̂tp

)∥∥2
4âp

.

Therefore,

γp
4
∥∇f(x̂tp)∥2 ≥

{
ζ∥∇f(x̂tp )∥

2

8L0
, ∥∇f(x̂tp)∥ ≤ L0

L1
,

ζ∥∇f(x̂tp )∥
8L1

, ∥∇f(x̂tp)∥ > L0

L1
,
=

ζ

8
min

{∥∇f(x̂tp)∥2

L0
,
∥∇f(x̂tp)∥

L1

}
.

Denote δp
def
= f

(
x̂tp

)
− f⋆. Then we have

ζ

8
min

{∥∇f(x̂tp)∥2

L0
,
∥∇f(x̂tp)∥

L1

}
≤ δp − δp+1 +

7(H − 1)2α2
pa

3
p (δp +∆⋆)

âp
.

Let αp ≤ 1
cap

√
âp

ap
, where c ≥

√
P . Applying the result of Mishchenko et al. (2020, Lemma 6), we

appear at

min
0≤p≤P−1

{
ζ

8
min

{∥∇f(x̂tp)∥2

L0
,
∥∇f(x̂tp)∥

L1

}}
≤

(
1 +

7(H−1)2α2
pa

3
p

âp

)P
P

δ0 +
7(H − 1)2α2

pa
3
p

âp
∆⋆.
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Corollary 5. Fix ε > 0. Choose c =
√
14(H − 1)2P . Let αp ≤

√
2âpδ0

7P (H−1)2a3
p∆

⋆ . Then, if P ≥
32δ0
ζε , we have min0≤p≤P−1

{
min

{
∥∇f(x̂tp )∥

2

L0
,
∥∇f(x̂tp )∥

L1

}}
≤ ε.

Proof of Corollary 5. Since c =
√
14(H − 1)2P and αp ≤ 1

cap

√
âp

ap
, αp ≤

√
2âpδ0

7P (H−1)2a3
p∆

⋆ , due

to the choice of P ≥ 32δ0
ζε , we obtain that(

1 +
7(H−1)2α2

pa
3
p

âp

)P
P

δ0 ≤
√
eδ0
P

≤ 2δ0
P

≤ ζε

16
,

and that
7(H − 1)2α2

pa
3
p

âp
∆⋆ ≤ ζε

16
.

Therefore, min0≤p≤P−1

{
min

{
∥∇f(x̂tp )∥

2

L0
,
∥∇f(x̂tp )∥

L1

}}
≤ ε.

B.4 SYMMETRIC GENERALIZED-SMOOTH FUNCTIONS UNDER PŁ-CONDITION

Theorem 6 (Symmetric generalized-smooth convergence analysis of Algorithm 1 in PŁ-case). Let
Assumptions 1 and 3 hold for functions f and {fm}Mm=1 . Let Assumption 4 hold. Choose 0 < ζ ≤ 1

4 .

Let δ0
def
= f (x0)− f⋆. Choose any integer P >

64δ0L
2
1

µζ . For all 0 ≤ p ≤ P − 1, denote

âp = L0 + L1∥∇f(x̂tp)∥, ap = L0 + L1 max
m

∥∇fm(x̂tp)∥, 1 ≤ tp+1 − tp ≤ H.

Put ∆⋆ = f⋆ − 1
M

∑M
m=1 f

⋆
m. Impose the following conditions on the local stepsizes αp and server

stepsizes γp :

αp ≤ min

{
1

2Hap
,

1

cap

√
âp
ap

,

√
µζâp

224L2
1(H − 1)2a3p

(
f(x̂tp)− f⋆ +∆⋆

) ,√
δ0âp

7P (H − 1)2a3p
(
f(x̂tp)− f⋆ +∆⋆

)} ,

ζ

âp
≤ γp ≤ 1

8âp
, 0 ≤ p ≤ P − 1,

where c ≥
√
P . Let P̃ be an integer such that 0 ≤ P̃ ≤ 64δ0L

2
1

µζ , A > 0 be a constant, α ≤
√

δ0
AP .

Then, the iterates
{
x̂tp

}P
p=0

of Algorithm 1 satisfy

δP ≤
(
1− µζ

4L0

)P−P̃

δ0 +
4L0Aα2

µζ
,

where δP
def
= f (x̂tP )− f⋆.

Proof of Theorem 6. Let us follow the first steps of the proof of Theorem 5. Consider (8):

γp
4

∥∥∇f
(
x̂tp

)∥∥2 ≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

7(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
âp

.

Since γp ≥ ζ
âp
, and f satisfies Polyak–Łojasiewicz Assumption 4, we obtain that

µζ
(
f(x̂tp)− f⋆

)
2âp

≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

7(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
âp

.
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1. Let P̃ be the number of steps p, so that
∥∥∇f

(
x̂tp

)∥∥ ≥ L0

L1
. For such p, we have L0 +

L1

∥∥∇f
(
x̂tp

)∥∥ = âp ≤ 2L1

∥∥∇f
(
x̂tp

)∥∥ . Therefore, we get

µζ
(
f(x̂tp)− f⋆

)
4L1

∥∥∇f
(
x̂tp

)∥∥ ≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

7(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
âp

.

Notice that the relation âp ≤ 2L1

∥∥∇f
(
x̂tp

)∥∥ and Lemma 1 together imply∥∥∇f
(
x̂tp

)∥∥
4L1

≤
∥∥∇f

(
x̂tp

)∥∥2
2âp

≤ f
(
x̂tp

)
− f⋆.

Hence, we have

µζ

16L2
1

≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

7(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
âp

.

Subtracting f⋆ on both sides and introducing δp
def
= f

(
x̂tp

)
− f⋆, we obtain

δp+1 ≤ δp −
µζ

16L2
1

+
7(H − 1)2a3pα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
âp

.

As αp ≤
√

µζâp

224L2
1(H−1)2a3

p(f(x̂tp )−f⋆+∆⋆)
, it follows that

7(H−1)2a3
pα

2
p(f(x̂tp )−f⋆+∆⋆)
âp

≤ µζ
32L2

1
.

Therefore, we get

δp+1 ≤ δp −
µζ

32L2
1

.

2. Suppose now that
∥∥∇f

(
x̂tp

)∥∥ ≤ L0

L1
. For such p, we have L0 + L1

∥∥∇f
(
x̂tp

)∥∥ = âp ≤ 2L0.
Hence,

µζ
(
f(x̂tp)− f⋆

)
4L0

≤ f
(
x̂tp

)
− f

(
x̂tp+1

)
+

7(H − 1)2a3pα
2
p

(
f(x̂tp)− f⋆ +∆⋆

)
âp

.

Subtracting f⋆ on both sides and introducing δp
def
= f

(
x̂tp

)
− f⋆, we obtain

δp+1 ≤ δpρ+
7(H − 1)2a3pα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
âp

, where ρ
def
= 1− µζ

4L0
.

Let αp
def
= αα̂p and α̂p ≤

√
Aâp

7(H−1)2a3
p(f(x̂tp )−f⋆+∆⋆)

for some constant A > 0. Then,

δp+1 ≤ ρδp +Aα2.

Unrolling the recursion, we derive

δP ≤ ρP−P̃ δ0 +Aα2
∞∑
i=0

ρi − µζ

32L2
1

N−1∑
i=0

ρi

≤ ρP−P̃ δ0 +
Aα2

1− ρ
− 1− ρP̃

1− ρ

µζ

32L2
1

.

Notice that δp+1 ≤ δp +Aα2, which implies

δP ≤ δ0 +
(
P − P̃

)
Aα2 − P̃

µζ

32L2
1

.

Since α ≤
√

δ0
AP , we conclude that

0 ≤ δP ≤ 2δ0 − P̃
µζ

32L2
1

, ⇒ P̃ ≤ 64δ0L
2
1

µζ
.
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Therefore, for P >
64δ0L

2
1

µζ we can guarantee that P − P̃ > 0 and

δP ≤ ρP−P̃ δ0 +
Aα2

1− ρ
− P̃ ρP̃

µζ

32L2
1

≤ ρP−P̃ δ0 +
Aα2

1− ρ
.

Corollary 6. Fix ε > 0. Choose α ≤ min

{√
δ0
AP , L1

√
8δ0ε
L0AP

}
. Then, if P ≥ 64δ0L

2
1

µζ + 4L0

µζ ln 2δ0
ε ,

we have δP ≤ ε.

Proof of Corollary 6. Since 0 ≤ P̃ ≤ 64δ0L
2
1

µζ , A > 0, α ≤
√

δ0
AP , α ≤ L1

√
8δ0ε
L0AP , due to the

choice of P ≥ 64δ0L
2
1

µζ + 4L0

µζ ln 2δ0
ε , we obtain that(

1− µζ

4L0

)P−P̃

δ0 ≤ e−
µζ
4L0

(P−P̃)δ0 ≤ ε

2
,

and that
4L0A

µζ
· δ0
AP

≤ ε

2
.

Therefore, δP ≤ ε.

C RANDOM RESHUFFLING

There are several approaches, that fall under the category of permutation methods, and one of the
most popular is Random Reshuffling (RR). In each epoch t of the RR algorithm, we sample indices
πt(1), . . . , πt(N) without replacement from the set {1, 2, . . . , N}. In other words, πt(1), . . . , πt(N)
forms a random permutation of {1, 2, . . . , N}. We then perform N steps in the following manner:

xm
t,j = xm

t,j−1 − αt∇fm,πt(j)(x
m
t,j−1), (9)

where fm,πt(j) is the m-th function after permutation πt on epoch t, and αt is a stepsize at t-th
epoch. We can rewrite this step as

xm
t,j = xm

t,0 − αt

j−1∑
k=0

∇fm,πt(j)(x
m
t,k).

After each epoch we perform additional outer step with stepsize γt:

xt+1 = xt − γtgt, gt =
1

MN

N∑
j=1

M∑
m=1

∇fm,πt(j)(x
m
t,j−1). (10)

C.1 ASYMMETRIC GENERALIZED-SMOOTH NON-CONVEX FUNCTIONS

Theorem 3 (non-convex asymmetric generalized-smooth convergence analysis of Algorithm 2). Let
Assumptions 1 and 2 hold for functions f and {fm}Mm=1 . Choose any T ≥ 1. For all 0 ≤ t ≤ T −1,
denote

ât = L0 + L1∥∇f(xt)∥, ãt = L0 + L1 max
mj

∥∇fmj(xt)∥ .

Put ∆
⋆
= f⋆ − 1

MN

∑N−1
j=0

∑M
m=1 f

⋆
m. Impose the following conditions on the client stepsizes αt

and global stepsizes γt :

αt ≤ min

{ √
2√

3N(N − 1)ãt
,

√
ât

cã
3/2
t

}
,

ζ

ât
≤ γt ≤

1

4ât
, 0 ≤ t ≤ T − 1,
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where 0 < ζ ≤ 1
4 , c ≥

√
((N − 1)(2N − 1) + 2(N + 1))T . Let δ0

def
= f (x0) − f⋆. Then, the

iterates {xt}T−1
t=0 of Algorithm 2 satisfy

E

[
min

t=0,...,T−1

{
ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}}]

≤
8
(
1 +

3α2
t ã

3
t

8ât
((N − 1)(2N − 1) + 2(N + 1))

)T
T

δ0 +
6α2

t ã
3
t

ât
(N + 1)∆⋆.

Lemma 6. Recall that ãt = L0 + L1 maxm,j ∥∇fmj(xt)∥. Then

γ2
t ∥gt∥2

2
≤ ãtγ

2
t

1

MN

N∑
j=1

M∑
m=1

∥xm
t,j−1 − xt∥2 + γ2

t ∥∇f(xt)∥2. (11)

Proof.

∥gt∥2

2
=

1

2

∥∥∥∥∥∥ 1

MN

N∑
j=1

M∑
m=1

∇fm,πt(j)(x
m
t,j−1)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

MN

N∑
j=1

M∑
m=1

(
∇fm,πt(j)(x

m
t,j−1)−∇fm,πt(j)(xt)

)∥∥∥∥∥∥
2

+ ∥∇f(xt)∥2

≤ 1

MN

N∑
j=1

M∑
m=1

(L0 + L1

∥∥∇fm,πt(j)(xt)
∥∥)2 ∥∥xm

t,j−1 − xt

∥∥2 + ∥∇f(xt)∥2

≤ (ãt)
2 1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j−1 − xt

∥∥2 + ∥∇f(xt)∥2

= (ãt)
2 1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j−1 − xt

∥∥2 + ∥∇f(xt)∥2 .

Lemma 7. Let Assumptions 1 and 2 hold for functions f and {fm}Mm=1 . Then, if we choose αt ≤√
2√

3n(n−1)(ãt)
, we get

E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ 2α2
t ãt ((N − 1)(2N − 1) + 2(N + 1)(f(xt)− f⋆))

+ 4α2
t ãt(N + 1)∆

⋆
. (12)

Proof. From (9) we have

xm
t,j = xm

t,j−1 − αt∇fm,πt(j)(x
m
t,j−1) = xt −

j∑
k=1

αt∇fm,πt(k)(x
m
t,k−1).
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Thus,

∥∥xm
t,j − xt

∥∥2 =

∥∥∥∥∥
j∑

k=1

αt∇fm,πt(k)(x
m
t,k−1)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥
j∑

k=1

αt

(
∇fm,πt(k)(x

m
t,k−1)−∇fm,πt(k)(xt)

)∥∥∥∥∥
2

+ 2

∥∥∥∥∥
j∑

k=1

αt∇fm,πt(k)(xt)

∥∥∥∥∥
2

≤ 2j

j∑
k=1

(αt)
2
(
L0 + L1

∥∥∇fm,πt(k)(xt)
∥∥)2 ∥∥xm

t,k−1 − xt

∥∥2
+ 2

∥∥∥∥∥
j∑

k=1

αt∇fm,πt(k)(xt)

∥∥∥∥∥
2

.

Using last inequality, we get

1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ≤
N∑
j=1

2j

N

j∑
k=1

(αt)
2
(
L0 + L1

∥∥∇fm,πt(k)(xt)
∥∥)2 ∥∥xm

t,k−1 − xt

∥∥2
+

2

N

N∑
j=1

∥∥∥∥∥
j∑

k=1

αt∇fm,πt(k)(xt)

∥∥∥∥∥
2

≤ (αt)
2 (ãt)

2
N∑
j=1

2j

N

j∑
k=1

∥∥xm
t,k−1 − xt

∥∥2 + 2α2
t

N

N∑
j=1

∥∥∥∥∥
j∑

k=1

∇fm,πt(k)(xt)

∥∥∥∥∥
2

.

Let αt ≤ β
ãt

, where β is constant. Then, we take a conditional expectation of the last inequality and
get the following

E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ E

2β2

N

N∑
j=1

j

j∑
k=1

∥∥xm
t,k−1 − xt

∥∥2 ∣∣∣∣xt


+

2α2
t

N

N∑
j=1

E

∥∥∥∥∥
j∑

k=1

∇fm,πt(k)(xt)

∥∥∥∥∥
2 ∣∣∣∣∣xt

 .

Denote σ2
t = 1

N

∑N−1
j=0

∥∥∇fm,πt(j)(xt)− f(xt)
∥∥2, and consider

E

∥∥∥∥∥
j∑

k=1

∇fm,πt(k)(xt)

∥∥∥∥∥
2 ∣∣∣∣∣xt

 .

From Malinovsky et al. (2022, Lemma 1) we get

E

∥∥∥∥∥
j∑

k=1

∇fm,πt(k)(xt)

∥∥∥∥∥
2 ∣∣∣∣∣xt

 ≤ j2 ∥∇f(xt)∥+ j2E

∥∥∥∥∥1j
j∑

k=1

(
∇fm,πt(k)(xt)− f(xt)

)∥∥∥∥∥
2 ∣∣∣∣xt


≤ j2 ∥∇f(xt)∥+

j(N − j)

N − 1
σ2
t .
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Thus,

E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ E

2β2

N

N∑
j=1

j

j∑
k=1

∥∥xm
t,k − xt

∥∥2 ∣∣∣∣xt


+

2α2
t

N

N∑
j=1

(
j2 ∥∇f(xt)∥+

j(N − j)

N − 1
σ2
t

)

≤ E

2β2

N
· N(N − 1)

2

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt


+

2α2
t

N

(
(N(N − 1)(2N − 1))

6
∥∇f(xt)∥2

)
+

2α2
t

N

N(N + 1)

3
σ2
t .

Further,

3 · E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ 3β2N(N − 1)E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt


+ 2α2

t

(
(N − 1)(2N − 1)

2
∥∇f(xt)∥2 + (N + 1)σ2

t

)
.

Thus, if we choose β ≤
√

2
3N(N−1) , we get

E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ (3− 3β2N(N − 1))E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt


≤ 2α2

t

(
(N − 1)(2N − 1)

2
∥∇f(xt)∥2 + (N + 1)σ2

t

)
≤ 2α2

t

(
(N − 1)(2N − 1)(f(xt)− f⋆)(L0 + L1 ∥∇f(xt)∥)

+ (N + 1)
1

N

N∑
j=1

∥∥∇fm,πt(j)(xt)
∥∥2 )

Lemma 1
≤ 2α2

t

(
(N − 1)(2N − 1)(f(xt)− f⋆)ãt

+ 2(N + 1) (ãt)
1

N

N∑
j=1

(fmj(xt)− f⋆
mj)

)

≤ 2α2
t

(
(N − 1)(2N − 1)(f(xt)− f⋆)ãt

+ 2(N + 1) (ãt)
1

N

N∑
j=1

(fmj(xt)− f⋆
mj)

)
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Now, adding and removing f⋆ to the sum factor on the right-hand side, we get

E

 1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ 2α2
t ãt(N − 1)(2N − 1)(f(xt)− f⋆)

+ 4α2
t ãt(N + 1)

1

NM

N∑
j=1

M∑
m=1

(fmj(xt)− f⋆
mj)

= 2α2
t ãt ((N − 1)(2N − 1) + 2(N + 1)) (f(xt)− f⋆)

+ 4α2
t ãt(N + 1)∆

⋆
.

Proof of Theorem 3. From Lemma 1 and (10) we get

f(xt+1) ≤ f(xt)− γt ⟨∇f(xt), gt⟩+ (L0 + L1∥∇f(xt)∥)
γ2
t ∥gt∥2

2
.

Additionally, from the fact that 2 ⟨a, b⟩ = −∥a− b∥2 + ∥a∥2 + ∥b∥2 we can get

f(xt+1) ≤ f(xt)− γt ⟨∇f(xt), gt⟩+ (L0 + L1∥∇f(xt)∥)
γ2
t ∥gt∥2

2

≤ f(xt)−
γt
2

(
−∥∇f(xt)− gt∥2 + ∥∇f(xt)∥2 + ∥gt∥2

)
+ (L0 + L1∥∇f(xt)∥)

γ2
t ∥gt∥2

2

≤ f(xt)−
γt
2
∥∇f(xt)∥2 +

γt
2
∥∇f(xt)− gt∥2 + (L0 + L1∥∇f(xt)∥)

γ2
t ∥gt∥2

2
.

Consider γt

2 ∥∇f(xt) − gt∥2 and denote ât = (L0 + L1∥∇f(xt)∥) and at = (L0 +
L1 maxm ∥∇fm(xt)∥), then:

γt
2
∥∇f(xt)− gt∥2 =

γt
2

∥∥∥∥∥∥ 1

MN

N∑
j=1

M∑
m=1

∇fm,πt(j)(xt)−∇fm,πt(j)(x
m
t,j)

∥∥∥∥∥∥
≤ γt

2

1

MN

N∑
j=1

M∑
m=1

(L0 + L1∥∇fm,πt(j)(xt)∥)2∥xt − xm
t,j∥2

=
γt
2
ã2t

1

MN

N∑
j=1

M∑
m=1

∥xt − xm
t,j∥2.

From the above inequality and Lemma 6 we get

f(xt+1) ≤ f(xt)−
γt
2
∥∇f(xt)∥2 +

γt
2
ã2t

1

MN

N∑
j=1

M∑
m=1

∥xt − xm
t,j∥2 + ât

γ2
t ∥gt∥2

2

(11)
≤ f(xt)−

γt
2
∥∇f(xt)∥2 +

γt
2
ã2t

1

MN

N∑
j=1

M∑
m=1

∥xt − xm
t,j∥2

+ âtã
2
tγ

2
t

1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j − xt

∥∥2 + âtγ
2
t ∥∇f(xt)∥2

≤ f(xt) +
(
âtγ

2
t − γt

2

)
∥∇f(xt)∥2 +

(
âtã

2
tγ

2
t +

γt
2
ã2t

) 1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j − xt

∥∥2 .
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Let γt ≤ 1
4ât

, then

f(xt+1) ≤ f(xt)−
γt
4
∥∇f(xt)∥2 +

(
âtã

2
tγ

2
t +

γt
2
ã2t

) 1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j − xt

∥∥2 .
Now, if we take conditional expectation of this and use Lemma 9, we get

E [f(xt+1)|xt] ≤ f(xt)−
γt
4
∥∇f(xt)∥2

+
(
âtã

2
tγ

2
t +

γt
2
ã2t

)
E

 1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt


≤ f(xt)−

γt
4
∥∇f(xt)∥2

+ 2α2
t ãt

(
âtã

2
tγ

2
t +

γt
2
ã2t

)
×
(
((N − 1)(2N − 1) + 2(N + 1)) (f(xt)− f⋆) + 2(N + 1)∆

⋆
)
.

Since γt ≤ 1
4ât

, then

γt
4
∥∇f(xt)∥2 ≤ f(xt)− E [f(xt+1)|xt] +

3α2
t ã

3
t

8ât

(
((N − 1)(2N − 1) + 2(N + 1)) δt + 2(N + 1)∆

⋆
)
.

(13)

Consider the left-hand side of (16). Due to the bounds 1
4ât

≥ γt ≥ ζ
ât

on γt, we have

γt
4
∥∇f(xt)∥2 ≥ ζ ∥∇f(xt)∥2

4ât
.

Then, we get

γt
4
∥∇f(xt)∥2 ≥

{
ζ∥∇f(xt)∥2

8L0
, ∥∇f(xt)∥ ≤ L0

L1
,

ζ∥∇f(xt)∥
8L1

, ∥∇f(xt)∥ > L0

L1

=
ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}
(14)

Denote δt ≡ f(xt)− f⋆, then from (16) and (17) we get

f(xt)− f(xt+1) +
3α2

t ã
3
t

8ât

(
((N − 1)(2N − 1) + 2(N + 1)) δt + 2(N + 1)∆

⋆
)

= δt − δt+1 +
3α2

t ã
3
t

8ât

(
((N − 1)(2N − 1) + 2(N + 1)) δt + 2(N + 1)∆

⋆
)

≥ ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}

Let αt ≤ 1
cãt

·
√

ât

ãt
, where c is a constant such that

√
((N − 1)(2N − 1) + 2(N + 1))T ≤ c. Now

we take full expectation and use from Mishchenko et al. (2020, Lemma 6):

E

[
min

t=0,...,T−1

{
ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}}]

≤

(
1 +

3α2
t ã

3
t

8ât
((N − 1)(2N − 1) + 2(N + 1))

)T
T

δ0 +
3α2

t ã
3
t

4ât
(N + 1)∆

⋆
.
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Corollary 3. Fix ε > 0. Choose c =
√

((N − 1)(2N − 1) + 2(N + 1))T . Let αt ≤
8
√

ât

3ã3
tT (N+1)∆⋆ . Then, if T ≥ 256δ0

ζε , we have

E

[
min

t=0,...,T−1

{
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}}]
≤ ε.

Proof of Corollary 3. Since c =
√

((N − 1)(2N − 1) + 2(N + 1))T and αt ≤ 1
cat

√
ât

ãt
, αt ≤

8
√

ât

3ã3
tT (N+1)∆

⋆ , due to the choice of T ≥ 256δ0
ζε , we obtain that(

1 +
3α2

t ã
3
t

8ât
((N − 1)(2N − 1) + 2(N + 1))

)T
T

δ0 ≤ e
3
8 δ0
T

≤ 2δ0
T

≤ ζε

16
,

and that
3α2

t ã
3
t

4ât
(N + 1)∆

⋆ ≤ ζε

16
.

Therefore, E
[
mint=0,...,T−1

{
min

{
∥∇f(xt)∥2

L0
, ∥∇f(xt)∥

L1

}}]
≤ ε.

C.2 ASYMMETRIC GENERALIZED-SMOOTH FUNCTIONS UNDER PŁ-CONDITION

Theorem 7. Let Assumptions 1 and 2 hold for functions f, {fm}Mm=1 and {fmj}M,N−1
m=1,j=0 . Let

Assumption 4 hold. Choose 0 < ζ ≤ 1
4 . Let δ0

def
= f (x0)− f⋆. Choose any integer T >

64δ0L
2
1

µζ . For
all 0 ≤ t ≤ T − 1, denote

ât = L0 + L1∥∇f(xt)∥, at = L0 + L1 max
m

∥∇fm(xt)∥ .

Put ∆
⋆
= f⋆ − 1

MN

∑M
m=1

∑N
j=1 f

⋆
mj . Impose the following conditions on the client stepsizes αt

and global stepsizes γt :

αt ≤ min

{ √
2√

3M(M − 1)ãt
,

√
ât

cãt
3/2

,√√√√ âtµζ

12L2
1ãt

3
(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)

√√√√ 8âtδ0

3T ãt
3
(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)},

ζ

ât
≤ γt ≤

1

4ât
, 0 ≤ t ≤ T − 1,

where c ≥
√

((N − 1)(2N − 1) + 2(N + 1))T . Let δ0
def
= f (x0) − f⋆. Let T̃ be an integer such

that 0 ≤ T̃ ≤ 64δ0L
2
1

µζ , A > 0 be a constant, α ≤
√

δ0
AT . Then, the iterates {xt}T−1

t=0 of Algorithm 2
satisfy

δT ≤
(
1− µζ

4L0

)T−T̃

δ0 +
4L0Aα2

µζ
,

where δT
def
= f (xT )− f⋆.

Proof of Theorem 7. Let us follow the first steps of the proof of Theorem 3. Consider (16):
γt
4
∥∇f(xt)∥2 ≤ f(xt)− f(xt+1)

+
3α2

t ãt
3

8ât

(
((N − 1)(2N − 1) + 2(N + 1)) δt + 2(N + 1)∆

⋆
)
.
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Since γp ≥ ζ
âp
, and f satisfies Polyak–Łojasiewicz Assumption 4, we obtain that

µζ
(
f(x̂tp)− f⋆

)
2âp

≤ f(xt)− f(xt+1)

+
3α2

t ãt
3

8ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
.

1. Let T̃ be the number of steps t, so that ∥∇f (x̂t)∥ ≥ L0

L1
. For such t, we have L0+L1 ∥∇f (xt)∥ =

ât ≤ 2L1 ∥∇f (xt)∥ . Therefore, we get

µζ (f(xt)− f⋆)

4L1 ∥∇f (xt)∥
≤ f(xt)− f(xt+1)

+
3α2

t ãt
3

8ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
.

Notice that the relation ât ≤ 2L1 ∥∇f(xt)∥ and Lemma 1 together imply

∥∇f(xt)∥
4L1

≤ ∥∇f(xt)∥2

2ât
≤ f(xt)− f⋆.

Hence, we have

µζ

16L2
1

≤ f(xt)− f(xt+1)

+
3α2

t ãt
3

8ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
.

Subtracting f⋆ on both sides and introducing δt
def
= f (xt)− f⋆, we obtain

δt+1 ≤ δt −
µζ

16L2
1

+
3α2

t ãt
3

8ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
.

As αt ≤
√

âtµζ

12L2
1ãt

3(δt((N−1)(2N−1)+2(N+1))+2(N+1)∆
⋆)
, it follows that

3α2
t ãt

3

8ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
≤ µζ

32L2
1

.

Therefore, we get

δt+1 ≤ δt −
µζ

32L2
1

.

2. Suppose now that ∥∇f (xt)∥ ≤ L0

L1
. For such t, we have L0+L1 ∥∇f (xt)∥ = âp ≤ 2L0. Hence,

µζ (f(xt)− f⋆)

4L0
≤ f(xt)− f(xt+1)

+
3α2

t ãt
3

8ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
.

Subtracting f⋆ on both sides and introducing δt
def
= f (xt)− f⋆, we obtain

δt+1 ≤ δtρ+
3α2

t ãt
3

8ât
(δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
).

where ρ
def
= 1 − µζ

4L0
. Let αt

def
= αα̂t with α̂t ≤

√
8âtA

3ãt
3(δt((N−1)(2N−1)+2(N+1))+2(N+1)∆

⋆)
for

some constant A > 0. Then,
δt+1 ≤ ρδt +Aα2.
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Unrolling the recursion, we derive

δT ≤ ρT−T̃ δ0 +Aα2
∞∑
i=0

ρi − µζ

32L2
1

N−1∑
i=0

ρi

≤ ρT−T̃ δ0 +
Aα2

1− ρ
− 1− ρT̃

1− ρ

µζ

32L2
1

.

Notice that δt+1 ≤ δt +Aα2, which implies

δT ≤ δ0 +
(
T − T̃

)
Aα2 − T̃

µζ

32L2
1

.

Since α ≤
√

δ0
AT , we conclude that

0 ≤ δT ≤ 2δ0 − T̃
µζ

32L2
1

, ⇒ T̃ ≤ 64δ0L
2
1

µζ
.

Therefore, for T >
64δ0L

2
1

µζ we can guarantee that T − T̃ > 0 and

δT ≤ ρT−T̃ δ0 +
Aα2

1− ρ
− T̃ ρT̃

µζ

32L2
1

≤ ρT−T̃ δ0 +
Aα2

1− ρ
.

Corollary 7. Fix ε > 0. Choose α ≤ min

{√
δ0
AT , L1

√
8δ0ε
L0AT

}
. Then, if T ≥ 64δ0L

2
1

µζ + 4L0

µζ ln 2δ0
ε ,

we have δT ≤ ε.

Proof of Corollary 9. Since 0 ≤ T̃ ≤ 64δ0L
2
1

µζ , A > 0, α ≤
√

δ0
AT , α ≤ L1

√
8δ0ε
L0AT , due to the

choice of T ≥ 64δ0L
2
1

µζ + 4L0

µζ ln 2δ0
ε , we obtain that(

1− µζ

4L0

)T−T̃

δ0 ≤ e−
µζ
4L0

(T−T̃)δ0 ≤ ε

2
,

and that
4L0A

µζ
· δ0
AT

≤ ε

2
.

Therefore, δT ≤ ε.

C.3 SYMMETRIC GENERALIZED-SMOOTH NON-CONVEX FUNCTIONS

Theorem 8. Let Assumptions 1 and 3 hold for functions f and {fm}Mm=1 . Choose any T ≥ 1. For
all 0 ≤ t ≤ T − 1, denote

ât = L0 + L1∥∇f(xt)∥, ãt = L0 + L1 max
mj

∥∇fmj(xt)∥ .

Put ∆
⋆
= f⋆ − 1

MN

∑N−1
j=0

∑M
m=1 f

⋆
m. Impose the following conditions on the client stepsizes αt

and global stepsizes γt :

αt ≤ min

{ √
2√

9N(N − 1)ãt
,

√
ât

cã
3/2
t

}
, αt ≤ max

{
1

4GtL1(N − 1)
,

1

6 (L0 + L1Gt) (N − 1)

}
,

ζ

ât
≤ γt ≤

1

8ât
, 0 ≤ t ≤ T − 1,
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where 0 < ζ ≤ 1
4 , c ≥

√
((N − 1)(2N − 1) + 2(N + 1))T and Gt =

maxm=1,...,M
j=1,...,N

{∥∇fmj (xt)∥} . Let δ0
def
= f (x0) − f⋆. Then, the iterates {xt}T−1

t=0 of Algo-

rithm 2 satisfy

E

[
min

t=0,...,T−1

{
ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}}]

≤
8
(
1 +

3α2
t ã

3
t

8ât
((N − 1)(2N − 1) + 2(N + 1))

)T
T

δ0 +
6α2

t ã
3
t

ât
(N + 1)∆⋆.

Lemma 8. Recall that ãt = L0 + L1 maxm,j ∥∇fmj(xt)∥. Then

γ2
t ∥gt∥2

2
≤ 3ãtγ

2
t

1

MN

N∑
j=1

M∑
m=1

∥xm
t,j−1 − xt∥2 + γ2

t ∥∇f(xt)∥2.

Proof.

∥gt∥2

2
=

1

2

∥∥∥∥∥∥ 1

MN

N∑
j=1

M∑
m=1

∇fm,πt(j)(x
m
t,j−1)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

MN

N∑
j=1

M∑
m=1

(
∇fm,πt(j)(x

m
t,j−1)−∇fm,πt(j)(xt)

)∥∥∥∥∥∥
2

+ ∥∇f(xt)∥2

≤ 1

MN

N∑
j=1

M∑
m=1

(L0 + L1

∥∥∇fm,πt(j)(xt)
∥∥)2 ∥∥xm

t,j−1 − xt

∥∥2 exp{2L1

∥∥xm
t,j−1 − xt

∥∥}+ ∥∇f(xt)∥2

≤ (ãt)
2 1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j−1 − xt

∥∥2 exp{2L1

∥∥xm
t,j−1 − xt

∥∥}+ ∥∇f(xt)∥2 .

Let Gt = maxm=1,...,M
j=1,...,N

{∥∇fmj (xt)∥} . By the induction with respect to j = 1, . . . , N, we prove

that, for any m ∈ {1, . . . ,M} , we have
∥∥∇fm,πt(j)

(
xm
t,j−1

)∥∥ ≤ 2Gt. Indeed, notice that∥∥∇fm,πt(j)

(
xm
t,j−1

)∥∥ ≤
∥∥∇fm,πt(j) (xt)

∥∥+ ∥∥∇fm,πt(j)

(
xm
t,j−1

)
−∇fm,πt(j) (xt)

∥∥
≤ Gt +

(
L0 + L1

∥∥∇fm,πt(j) (xt)
∥∥) exp{L1

∥∥xm
t,j−1 − xt

∥∥}∥∥xm
t,j−1 − xt

∥∥
≤ Gt +

(
L0 + L1

∥∥∇fm,πt(j) (xt)
∥∥) exp{L1

∥∥xm
t,j−1 − xt

∥∥}∥∥xm
t,j−1 − xt

∥∥
≤ Gt + (L0 + L1Gt) exp

{
L1

∥∥xm
t,j−1 − xt

∥∥}∥∥xm
t,j−1 − xt

∥∥ .
By the induction assumption, we obtain that∥∥xm

t,j−1 − xt

∥∥ ≤ αt

∥∥∥∥∥
j−1∑
i=1

∇fm,πt(i)

(
xm
t,i−1

)∥∥∥∥∥ ≤ αt

j−1∑
i=1

∥∥∇fm,πt(i)

(
xm
t,i−1

)∥∥
≤ αt(j − 1) · 2Gt ≤ αt(N − 1) · 2Gt.

Hence, we have that∥∥∇fm,πt(j)

(
xm
t,j−1

)∥∥ ≤ Gt + (L0 + L1Gt) exp {αtL1 (N − 1) · 2Gt}αt(N − 1) · 2Gt.

Let αt ≤ max
{

1
4GtL1(N−1) ,

1
6(L0+L1Gt)(N−1)

}
. Then,

∥∥∇fm,πt(j)

(
xm
t,j−1

)∥∥ ≤ 2Gt.

Therefore, we conclude that

∥gt∥2

2
≤ 3 (ãt)

2 1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j−1 − xt

∥∥2 + ∥∇f(xt)∥2 .
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Lemma 9. Let Assumptions 1 and 2 hold for functions f and {fm}Mm=1 . Then, if we choose αt ≤√
2√

3n(n−1)(ãt)
, we get

E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ 4α2
t ãt ((N − 1)(2N − 1) + 2(N + 1)(f(xt)− f⋆))

+ 8α2
t ãt(N + 1)∆

⋆
. (15)

Proof. From (9) we have

xm
t,j = xm

t,j−1 − αt∇fm,πt(j)(x
m
t,j−1) = xt −

j∑
k=1

αt∇fm,πt(k)(x
m
t,k−1).

Thus,

∥∥xm
t,j − xt

∥∥2 =

∥∥∥∥∥
j∑

k=1

αt∇fm,πt(k)(x
m
t,k−1)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥
j∑

k=1

αt

(
∇fm,πt(k)(x

m
t,k−1)−∇fm,πt(k)(xt)

)∥∥∥∥∥
2

+ 2

∥∥∥∥∥
j∑

k=1

αt∇fm,πt(k)(xt)

∥∥∥∥∥
2

≤ 2j

j∑
k=1

(αt)
2
(
L0 + L1

∥∥∇fm,πt(k)(xt)
∥∥)2 exp{2L1

∥∥xm
t,k−1 − xt

∥∥}∥∥xm
t,k−1 − xt

∥∥2
+ 2

∥∥∥∥∥
j∑

k=1

αt∇fm,πt(k)(xt)

∥∥∥∥∥
2

.

Using last inequality, we get

1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ≤
N∑
j=1

6j

N

j∑
k=1

(αt)
2
(
L0 + L1

∥∥∇fm,πt(k)(xt)
∥∥)2 ∥∥xm

t,k−1 − xt

∥∥2
+

2

N

N∑
j=1

∥∥∥∥∥
j∑

k=1

αt∇fm,πt(k)(xt)

∥∥∥∥∥
2

≤ (αt)
2 (ãt)

2
N∑
j=1

6j

N

j∑
k=1

∥∥xm
t,k−1 − xt

∥∥2 + 2α2
t

N

N∑
j=1

∥∥∥∥∥
j∑

k=1

∇fm,πt(k)(xt)

∥∥∥∥∥
2

.

Let αt ≤ β
ãt

, where β is constant. Then, we take a conditional expectation of the last inequality and
get the following

E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ E

6β2

N

N∑
j=1

j

j∑
k=1

∥∥xm
t,k−1 − xt

∥∥2 ∣∣∣∣xt


+

2α2
t

N

N∑
j=1

E

∥∥∥∥∥
j∑

k=1

∇fm,πt(k)(xt)

∥∥∥∥∥
2 ∣∣∣∣∣xt

 .
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Denote σ2
t = 1

N

∑N−1
j=0

∥∥∇fm,πt(j)(xt)− f(xt)
∥∥2, and consider

E

[∥∥∥∑j
k=1 ∇fm,πt(k)(xt)

∥∥∥2 ∣∣∣∣∣xt

]
. From Malinovsky et al. (2022, Lemma 1) we get

E

∥∥∥∥∥
j∑

k=1

∇fm,πt(k)(xt)

∥∥∥∥∥
2 ∣∣∣∣∣xt

 ≤ j2 ∥∇f(xt)∥+ j2E

∥∥∥∥∥1j
j∑

k=1

(
∇fm,πt(k)(xt)− f(xt)

)∥∥∥∥∥
2 ∣∣∣∣xt


≤ j2 ∥∇f(xt)∥+

j(N − j)

N − 1
σ2
t .

Thus,

E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ E

6β2

N

N∑
j=1

j

j∑
k=1

∥∥xm
t,k − xt

∥∥2 ∣∣∣∣xt


+

2α2
t

N

N∑
j=1

(
j2 ∥∇f(xt)∥+

j(N − j)

N − 1
σ2
t

)

≤ E

6β2

N
· N(N − 1)

2

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt


+

2α2
t

N

(
(N(N − 1)(2N − 1))

6
∥∇f(xt)∥2

)
+

2α2
t

N

N(N + 1)

3
σ2
t .

Further,

3 · E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ 9β2N(N − 1)E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt


+ 2α2

t

(
(N − 1)(2N − 1)

2
∥∇f(xt)∥2 + (N + 1)σ2

t

)
.

Thus, if we choose β ≤
√

2
9N(N−1) , η such that η exp η = 1, we get 1/η ≤ 2 and

E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ (3− 9β2N(N − 1))E

 1

N

N∑
j=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt


≤ 2α2

t

(
(N − 1)(2N − 1)

2
∥∇f(xt)∥2 + (N + 1)σ2

t

)
≤ 2α2

t

(
2(N − 1)(2N − 1)(f(xt)− f⋆)(L0 + L1 ∥∇f(xt)∥)

+ (N + 1)
1

N

N∑
j=1

∥∥∇fm,πt(j)(xt)
∥∥2 )

Lemma 2
≤ 4α2

t

(
(N − 1)(2N − 1)(f(xt)− f⋆)ãt

+ 2(N + 1) (ãt)
1

N

N∑
j=1

(fmj(xt)− f⋆
mj)

)

≤ 4α2
t

(
(N − 1)(2N − 1)(f(xt)− f⋆)ãt

+ 2(N + 1) (ãt)
1

N

N∑
j=1

(fmj(xt)− f⋆
mj)

)
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Now, adding and removing f⋆ to the sum factor on the right-hand side, we get

E

 1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt

 ≤ 4α2
t ãt(N − 1)(2N − 1)(f(xt)− f⋆)

+ 8α2
t ãt(N + 1)

1

NM

N∑
j=1

M∑
m=1

(fmj(xt)− f⋆
mj)

= 4α2
t ãt ((N − 1)(2N − 1) + 2(N + 1)) (f(xt)− f⋆)

+ 8α2
t ãt(N + 1)∆

⋆
.

Proof of Theorem 8. From Lemma 2 and (10) we get

f(xt+1) ≤ f(xt)− γt ⟨∇f(xt), gt⟩+ (L0 + L1∥∇f(xt)∥) exp {L1γt ∥gt∥}
γ2
t ∥gt∥2

2
.

Additionally, from the fact that 2 ⟨a, b⟩ = −∥a− b∥2 + ∥a∥2 + ∥b∥2 we can get

f(xt+1) ≤ f(xt)− γt ⟨∇f(xt), gt⟩+ (L0 + L1∥∇f(xt)∥) exp {L1γt ∥gt∥}
γ2
t ∥gt∥2

2

≤ f(xt)−
γt
2

(
−∥∇f(xt)− gt∥2 + ∥∇f(xt)∥2 + ∥gt∥2

)
+ (L0 + L1∥∇f(xt)∥) exp {L1γt ∥gt∥}

γ2
t ∥gt∥2

2

≤ f(xt)−
γt
2
∥∇f(xt)∥2 +

γt
2
∥∇f(xt)− gt∥2 + (L0 + L1∥∇f(xt)∥) exp {L1γt ∥gt∥}

γ2
t ∥gt∥2

2
.

Consider γt

2 ∥∇f(xt) − gt∥2 and denote ât = (L0 + L1∥∇f(xt)∥) and at = (L0 +
L1 maxm ∥∇fm(xt)∥), then:

γt
2
∥∇f(xt)− gt∥2 =

γt
2

∥∥∥∥∥∥ 1

MN

N∑
j=1

M∑
m=1

∇fm,πt(j)(xt)−∇fm,πt(j)(x
m
t,j)

∥∥∥∥∥∥
2

≤ γt
2

1

MN

N∑
j=1

M∑
m=1

(L0 + L1∥∇fm,πt(j)(xt)∥)2∥xt − xm
t,j∥2 exp

{
2L1

∥∥xt − xm
t,j

∥∥}
≤ 3γt

2
ã2t

1

MN

N∑
j=1

M∑
m=1

∥xt − xm
t,j∥2.
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Let us consider L1γt ∥gt∥ now. Recall that αt ≤ ât

4ãt(N−1)L1Gt
.

L1γt ∥gt∥ = L1γt

∥∥∥∥∥∥ 1

MN

N∑
j=1

M∑
m=1

∇fm,πt(j)(x
m
t,j−1)

∥∥∥∥∥∥
≤ L1γt

 1

MN

N∑
j=1

M∑
m=1

∥∥∇fm,πt(j)(x
m
t,j−1)−∇f(xt)

∥∥+ ∥∇f(xt)∥


≤ L1γt

 ãt
MN

N∑
j=1

M∑
m=1

∥∥xm
t,j−1 − xt

∥∥ exp{L1

∥∥xm
t,j−1 − xt

∥∥}+ ∥∇f(xt)∥


≤ 3L1γtãt

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j−1 − xt

∥∥+ 1

4

≤ 3L1ãt
4âtMN

N∑
j=1

M∑
m=1

∥∥xm
t,j−1 − xt

∥∥+ 1

4

≤ 3ãt
4ât

· αt(N − 1)L1Gt +
1

4

≤ 1

2
.

From the above inequality and Lemma 6 we get

f(xt+1) ≤ f(xt)−
γt
2
∥∇f(xt)∥2 +

3γt
2

ã2t
1

MN

N∑
j=1

M∑
m=1

∥xt − xm
t,j∥2 + ât

γ2
t ∥gt∥2

2
exp {L1γt ∥gt∥}

(11)
≤ f(xt)−

γt
2
∥∇f(xt)∥2 +

3γt
2

ã2t
1

MN

N∑
j=1

M∑
m=1

∥xt − xm
t,j∥2

+ 2âtã
2
tγ

2
t

1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j − xt

∥∥2 + 2âtγ
2
t ∥∇f(xt)∥2

≤ f(xt) +
(
2âtγ

2
t − γt

2

)
∥∇f(xt)∥2 +

(
2âtã

2
tγ

2
t +

3γt
2

ã2t

)
1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j − xt

∥∥2 .
Sine γt ≤ 1

8ât
, we obtain

f(xt+1) ≤ f(xt)−
γt
4
∥∇f(xt)∥2 +

(
2âtã

2
tγ

2
t +

3γt
2

ã2t

)
1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j − xt

∥∥2 .
Now, if we take conditional expectation of this and use Lemma 9, we get

E [f(xt+1)|xt] ≤ f(xt)−
γt
4
∥∇f(xt)∥2

+

(
2âtã

2
tγ

2
t +

3γt
2

ã2t

)
E

 1

MN

N∑
j=1

M∑
m=1

∥∥xm
t,j − xt

∥∥2 ∣∣∣∣xt


≤ f(xt)−

γt
4
∥∇f(xt)∥2

+ 2α2
t ãt

(
2âtã

2
tγ

2
t +

3γt
2

ã2t

)
×
(
((N − 1)(2N − 1) + 2(N + 1)) (f(xt)− f⋆) + 2(N + 1)∆

⋆
)
.
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Since γt ≤ 1
8ât

, then

γt
4
∥∇f(xt)∥2 ≤ f(xt)− E [f(xt+1)|xt] +

α2
t ã

3
t

2ât

(
((N − 1)(2N − 1) + 2(N + 1)) δt + 2(N + 1)∆

⋆
)
.

(16)

Consider the left-hand side of (16). Due to the bounds 1
4ât

≥ γt ≥ ζ
ât

on γt, we have

γt
4
∥∇f(xt)∥2 ≥ ζ ∥∇f(xt)∥2

4ât
.

Then, we get

γt
4
∥∇f(xt)∥2 ≥

{
ζ∥∇f(xt)∥2

8L0
, ∥∇f(xt)∥ ≤ L0

L1
,

ζ∥∇f(xt)∥
8L1

, ∥∇f(xt)∥ > L0

L1

=
ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}
(17)

Denote δt ≡ f(xt)− f⋆, then from (16) and (17) we get

f(xt)− f(xt+1) +
α2
t ã

3
t

2ât

(
((N − 1)(2N − 1) + 2(N + 1)) δt + 2(N + 1)∆

⋆
)

= δt − δt+1 +
α2
t ã

3
t

2ât

(
((N − 1)(2N − 1) + 2(N + 1)) δt + 2(N + 1)∆

⋆
)

≥ ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}
Let αt ≤ 1

cãt
·
√

ât

ãt
, where c is a constant such that

√
((N − 1)(2N − 1) + 2(N + 1))T ≤ c. Now

we take full expectation and use from Mishchenko et al. (2020, Lemma 6):

E

[
min

t=0,...,T−1

{
ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}}]

≤

(
1 +

α2
t ã

3
t

2ât
((N − 1)(2N − 1) + 2(N + 1))

)T
T

δ0 +
α2
t ã

3
t

ât
(N + 1)∆

⋆
.

Corollary 8. Fix ε > 0. Choose c =
√

((N − 1)(2N − 1) + 2(N + 1))T . Let αt ≤
4
√

ât

ã3
tT (N+1)∆⋆ . Then, if T ≥ 256δ0

ζε , we have

E

[
min

t=0,...,T−1

{
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}}]
≤ ε.

Proof of Corollary 8. Since c =
√

((N − 1)(2N − 1) + 2(N + 1))T and αt ≤ 1
cat

√
ât

ãt
, αt ≤

4
√

ât

ã3
tT (N+1)∆

⋆ , due to the choice of T ≥ 256δ0
ζε , we obtain that(

1 +
α2

t ã
3
t

2ât
((N − 1)(2N − 1) + 2(N + 1))

)T
T

δ0 ≤ e
1
2 δ0
T

≤ 2δ0
T

≤ ζε

16
,

and that
α2
t ã

3
t

ât
(N + 1)∆

⋆ ≤ ζε

16
.

Therefore, E
[
mint=0,...,T−1

{
min

{
∥∇f(xt)∥2

L0
, ∥∇f(xt)∥

L1

}}]
≤ ε. Notice that the computation of

Gt, 0 ≤ t ≤ T − 1, requires additional T epochs. Therefore, the total number of epochs is at least
2T ≥ 512δ0

ζε .
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C.4 SYMMETRIC GENERALIZED-SMOOTH FUNCTIONS UNDER PŁ-CONDITION

Theorem 9. Let Assumptions 1 and 3 hold for functions f, {fm}Mm=1 and {fmj}M,N−1
m=1,j=0 . Let

Assumption 4 hold. Choose 0 < ζ ≤ 1
4 . Let δ0

def
= f (x0)− f⋆. Choose any integer T >

64δ0L
2
1

µζ . For
all 0 ≤ t ≤ T − 1, denote

ât = L0 + L1∥∇f(xt)∥, at = L0 + L1 max
m

∥∇fm(xt)∥ .

Put ∆
⋆
= f⋆ − 1

MN

∑M
m=1

∑N
j=1 f

⋆
mj . Impose the following conditions on the client stepsizes αt

and global stepsizes γt :

αt ≤ min

{ √
2√

9N(N − 1)ãt
,

√
ât

cãt
3/2

,√√√√ âtµζ

16L2
1ãt

3
(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)

√√√√ 2âtδ0

T ãt
3
(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)},

ζ

ât
≤ γt ≤

1

8ât
, 0 ≤ t ≤ T − 1,

where c ≥
√

((N − 1)(2N − 1) + 2(N + 1))T . Let δ0
def
= f (x0) − f⋆. Let T̃ be an integer such

that 0 ≤ T̃ ≤ 64δ0L
2
1

µζ , A > 0 be a constant, α ≤
√

δ0
AT . Then, the iterates {xt}T−1

t=0 of Algorithm 2
satisfy

δT ≤
(
1− µζ

4L0

)T−T̃

δ0 +
4L0Aα2

µζ
,

where δT
def
= f (xT )− f⋆.

Proof of Theorem 9. Let us follow the first steps of the proof of Theorem 3. Consider (16):

γt
4
∥∇f(xt)∥2 ≤ f(xt)− f(xt+1) +

α2
t ã

3
t

2ât

×
(
((N − 1)(2N − 1) + 2(N + 1)) δt + 2(N + 1)∆

⋆
)
.

Since γt ≥ ζ
ât
, and f satisfies Polyak–Łojasiewicz Assumption 4, we obtain that

µζ (f(xt)− f⋆)

2ât
≤ f(xt)− f(xt+1)

+
α2
t ã

3
t

2ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
.

1. Let T̃ be the number of steps t, so that ∥∇f (x̂t)∥ ≥ L0

L1
. For such t, we have L0+L1 ∥∇f (xt)∥ =

ât ≤ 2L1 ∥∇f (xt)∥ . Therefore, we get

µζ (f(xt)− f⋆)

4L1 ∥∇f (xt)∥
≤ f(xt)− f(xt+1)

+
α2
t ã

3
t

2ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
.

Notice that the relation ât ≤ 2L1 ∥∇f(xt)∥ and Lemma 1 together imply

∥∇f(xt)∥
4L1

≤ ∥∇f(xt)∥2

2ât
≤ f(xt)− f⋆.
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Hence, we have

µζ

16L2
1

≤ f(xt)− f(xt+1) +
α2
t ã

3
t

2ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
.

Subtracting f⋆ on both sides and introducing δt
def
= f (xt)− f⋆, we obtain

δt+1 ≤ δt −
µζ

16L2
1

+
α2
t ã

3
t

2ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
.

As αt ≤
√

âtµζ

16L2
1ãt

3(δt((N−1)(2N−1)+2(N+1))+2(N+1)∆
⋆)
, it follows that

α2
t ã

3
t

2ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
≤ µζ

32L2
1

.

Therefore, we get

δt+1 ≤ δt −
µζ

32L2
1

.

2. Suppose now that ∥∇f (xt)∥ ≤ L0

L1
. For such t, we have L0+L1 ∥∇f (xt)∥ = âp ≤ 2L0. Hence,

µζ (f(xt)− f⋆)

4L0
≤ f(xt)− f(xt+1)

+
α2
t ã

3
t

2ât

(
δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
)
.

Subtracting f⋆ on both sides and introducing δt
def
= f (xt)− f⋆, we obtain

δt+1 ≤ δtρ+
α2
t ã

3
t

2ât
(δt((N − 1)(2N − 1) + 2(N + 1)) + 2(N + 1)∆

⋆
).

where ρ def
= 1− µζ

4L0
. Let αt

def
= αα̂t with α̂t ≤

√
2âtA

ãt
3(δt((N−1)(2N−1)+2(N+1))+2(N+1)∆

⋆)
for some

constant A > 0. Then,
δt+1 ≤ ρδt +Aα2.

Unrolling the recursion, we derive

δT ≤ ρT−T̃ δ0 +Aα2
∞∑
i=0

ρi − µζ

32L2
1

N−1∑
i=0

ρi

≤ ρT−T̃ δ0 +
Aα2

1− ρ
− 1− ρT̃

1− ρ

µζ

32L2
1

.

Notice that δt+1 ≤ δt +Aα2, which implies

δT ≤ δ0 +
(
T − T̃

)
Aα2 − T̃

µζ

32L2
1

.

Since α ≤
√

δ0
AT , we conclude that

0 ≤ δT ≤ 2δ0 − T̃
µζ

32L2
1

, ⇒ T̃ ≤ 64δ0L
2
1

µζ
.

Therefore, for T >
64δ0L

2
1

µζ we can guarantee that T − T̃ > 0 and

δT ≤ ρT−T̃ δ0 +
Aα2

1− ρ
− T̃ ρT̃

µζ

32L2
1

≤ ρT−T̃ δ0 +
Aα2

1− ρ
.
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Corollary 9. Fix ε > 0. Choose α ≤ min

{√
δ0
AT , L1

√
8δ0ε
L0AT

}
. Then, if T ≥ 64δ0L

2
1

µζ + 4L0

µζ ln 2δ0
ε ,

we have δT ≤ ε.

Proof of Corollary 9. Since 0 ≤ T̃ ≤ 64δ0L
2
1

µζ , A > 0, α ≤
√

δ0
AT , α ≤ L1

√
8δ0ε
L0AT , due to the

choice of T ≥ 64δ0L
2
1

µζ + 4L0

µζ ln 2δ0
ε , we obtain that(

1− µζ

4L0

)T−T̃

δ0 ≤ e−
µζ
4L0

(T−T̃)δ0 ≤ ε

2
,

and that
4L0A

µζ
· δ0
AT

≤ ε

2
.

Therefore, δT ≤ ε. Notice that the computation of Gt, 0 ≤ t ≤ T −1, requires additional T epochs.
Therefore, the total number of epochs is at least 2T ≥ 128δ0L

2
1

µζ + 8L0

µζ ln 2δ0
ε .

D PARTIAL PARTICIPATION

D.1 ASYMMETRIC GENERALIZED-SMOOTH NON-CONVEX FUNCTIONS

Theorem 4 Let Assumptions 1 and 2 hold for functions f, {fm}Mm=1 and {fmj}M,N
m=1,j=1 . Choose

any T ≥ 1. For all 0 ≤ t ≤ T − 1, denote

ât = L0 + L1∥∇f(xt)∥, at = L0 + L1 max
m

∥∇fm(xt)∥ , ãt = L0 + L1 max
m,j

∥∇fπj
m (xt)∥ .

Put ∆⋆ = f⋆ − 1
M

∑M
m=1 f

⋆
m and ∆

⋆
= f⋆ − 1

M

∑M
m=1

1
N

∑N
j=1 f

⋆
mj . Impose the following

conditions on the local stepsizes γt, server stepsizes ηt, global stepsizes θt :

γtNR ≤ ηtR ≤ min

{
1

16ât
,
2ât
c

√
1

at (2âtã2t + â3t )

}
, γt ≤

2ât
cRN

√
1

ãt (2âtã2t + â3t )
,

ζ

ât
≤ θt ≤

1

4ât
, 0 ≤ t ≤ T − 1,

where c ≥
√
T , 0 < ζ ≤ 1

4 . Let δ0
def
= f (x0)−f⋆. Then, the iterates {xt}T−1

t=0 of Algorithm 3 satisfy

E
[

min
0≤t≤T−1

{
ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}}]

≤

(
1 +

2âtã
2
t+â3

t

4â2
t

(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

))T
T

δ0

+
2âtã

2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
.

We need to use the following relations to establish convergence guarantees:

xR
t = xt − ηt

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj

m

(
xr,j
m,t

)
,

xr,j
m,t = xt − ηt

r−1∑
k=0

1

C

∑
m∈Sλk

t

1

N

N−1∑
j=0

∇fπj

m

(
xk,j
m,t

)
− γt

j−1∑
l=0

∇fπl

m

(
xr,l
m,t

)
,

xt+1 = xt −
θt
ηtR

(
xt − xR

t

)
.
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We assume that the whole sum is zero when the upper summation index is smaller than the lower
index. We can derive the following recursion from the above relations:

xt − xt+1 =
θt
ηtR

(
xt − xR

t

)
=

θt
R

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj

m

(
xr,j
m,t

)
.

Further, the first statement of Lemma 1 yields the following inequality:

f(xt+1) ≤ f(xt)− ⟨∇f (xt) , xt − xt+1⟩+ (L0 + L1 ∥∇f (xt)∥)
∥xt − xt+1∥2

2
.

We deal with the last term, using the second statement of Lemma 1:

∥xt − xt+1∥2 = θ2t

∥∥∥∥∥∥ 1R
R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj

m

(
xr,j
m,t

)∥∥∥∥∥∥
2

≤ 2θ2t

∥∥∥∥∥∥ 1R
R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

(
∇fπj

m

(
xr,j
m,t

)
−∇f(xt)

)∥∥∥∥∥∥
2

+ 2θ2t ∥∇f(xt)∥2

≤ 2θ2t
RCN

(L0 + L1 ∥∇f (xt)∥)2
R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

∥∥∥xt − xr,j
m,t

∥∥∥2
+ 4θ2t (L0 + L1 ∥∇f (xt)∥) (f(xt)− f⋆) .

We use the following notation: ât = L0 + L1∥∇f(xt)∥, at = L0 + L1 maxm ∥∇fm(xt)∥ , ãt =
L0 + L1 maxm,j

∥∥∥∇fπj

m (xt)
∥∥∥ . Next, we have that

∥∥∥xt − xr,j
m,t

∥∥∥2 =

∥∥∥∥∥∥ηt
r−1∑
k=0

1

C

∑
m∈Sλk

t

1

N

N−1∑
j=0

∇fπj

m

(
xk,j
m,t

)
+ γt

j−1∑
l=0

∇fπl

m

(
xr,l
m,t

)∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥ηt
r−1∑
k=0

1

C

∑
m∈Sλk

t

1

N

N−1∑
j=0

∇fπj

m

(
xk,j
m,t

)∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥γt
j−1∑
l=0

∇fπl

m

(
xr,l
m,t

)∥∥∥∥∥
2

.

Using Young’s inequality, we obtain

∥∥∥xt − xr,j
m,t

∥∥∥2 ≤ 4η2t

∥∥∥∥∥∥
r−1∑
k=0

1

C

∑
m∈Sλk

t

1

N

N−1∑
j=0

(
∇fπj

m

(
xk,j
m,t

)
−∇fπj

m (xt)
)∥∥∥∥∥∥

2

+ 4η2t

∥∥∥∥∥∥
r−1∑
k=0

1

C

∑
m∈Sλk

t

1

N

N−1∑
j=0

∇fπj

m (xt)

∥∥∥∥∥∥
2

+ 4γ2
t

∥∥∥∥∥
j−1∑
l=0

(
∇fπl

m

(
xr,l
m,t

)
− fπl

m (xt)
)∥∥∥∥∥

2

+ 4γ2
t

∥∥∥∥∥
j−1∑
l=0

∇fπl

m (xt)

∥∥∥∥∥
2

.
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Using Malinovsky et al. (2022, Lemma 1), we derive the following upper bound on
∥∥∥xt − xr,j

m,t

∥∥∥2 :∥∥∥xt − xr,j
m,t

∥∥∥2 ≤ 4η2t r
2 (ât)

2 1

rCN

r−1∑
k=0

∑
m∈Sλk

t

N−1∑
j=0

∥∥∥xt − xk,j
m,t

∥∥∥2
+ 4η2t

1

N2C2

(
N2C2r2∥∇f(xt)∥2 +

Cr (M − Cr)

M − 1
σ2
t

)
+ 4γ2

t j (ât)
2
j−1∑
l=0

∥∥∥xt − xr,l
m,t

∥∥∥2
+ 4γ2

t

(
j2∥∇fm(xt)∥2 +

j(N − j)

N − 1
σ2
m,t

)
,

where

σ2
t =

1

MN

M∑
m=1

N−1∑
j=0

∥∇fπj
m (xt)−∇fm (xt)∥2,

σ2
m,t =

1

N

N−1∑
j=0

∥∇fπj
m (xt)−∇fm (xt)∥2.

Using this bound on
∥∥∥xt − xr,j

m,t

∥∥∥2 , for Vt
def
= 1

CRN

∑R−1
r=0

∑
m∈Sλr

t

∑N−1
j=0

∥∥∥xr,j
m,t − xt

∥∥∥2 , we ob-
tain

E [Vt] =
1

CRN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

E
∥∥∥xr,j

m,t − xt

∥∥∥2
≤ (ât)

2

CRN

×
R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

4η2t r
2 1

rCN

r−1∑
k=0

∑
m∈Sλr

t

N−1∑
j=0

∥∥∥xt − xk,j
m,t

∥∥∥2 + 4γ2
t j

j−1∑
l=0

∥∥∥xr,l
m,t − xt

∥∥∥2


+
1

CRN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

(
4γ2

t

(
j2∥∇fm(xt)∥2 +

j(N − j)

N − 1
σ2
m,t

))

+
1

CRN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

(
4η2t

1

N2C2

(
N2C2r2∥∇f(xt)∥2 +

Cr(M − Cr)

M − 1
σ2
t

))
.

Recall that γtNR ≤ ηtR ≤ 1
16ât

. Summing over indices, we arrive at

E [Vt] ≤
R(R− 1)

2
4η2t (ât)

2 E [Vt] +
M(M − 1)

2
4γ2

t (ât)
2 E [Vt]

+
2

3
γ2
t

1

M

M∑
m=1

∥∇fm(xt)∥2(N − 1)(2M − 1) +
2

3
γ2
t (N + 1)

1

M

M∑
m=1

σ2
m,t

+
2

3
η2t ∥∇f(xt)∥2(R− 1)(2R− 1) +

2

3

M − C

(M − 1)C
η2t

R+ 1

N2
σ2
t

≤ 2η2t (ât)
2
(1 +R2)E [Vt] +

2

3
γ2
t

1

M

M∑
m=1

∥∇fm(xt)∥2(N − 1)(2M − 1)

+
2

3
η2t ∥∇f(xt)∥2(R− 1)(2R− 1) +

2

3
γ2
t (N + 1)

1

M

M∑
m=1

σ2
m,t

+
2

3
η2t

R+ 1

N2

M − C

(M − 1)C
σ2
t .
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To derive the bound on E [Vt] we need to require that γtNR ≤ ηtR ≤ 1
16ât

to have 1−2η2t (ât)
2
(1+

R2) > 0. Using Lemma 1, we have

E [Vt] ≤ 2γ2
tN

2 1

M

M∑
m=1

∥∇fm(xt)∥2 + 2η2tR
2∥∇f(xt)∥2

+ 2γ2
tN

1

M

M∑
m=1

σ2
m,t + 2η2t

R

N2

M − C

(M − 1)C
σ2
t

≤ 4γ2
tN

2 1

M

M∑
m=1

(L0 + L1 ∥∇fm(xt)∥) (fm(xt)− f⋆
m)

+ 4η2tR
2ât (f(xt)− f(x⋆)) + 2γ2

tN
1

M

M∑
m=1

1

N

N−1∑
j=0

∥∇fπj
m (xt)∥2

+ 2η2tR
M − C

(M − 1)C

1

M

M∑
m=1

∥∇fm(xt)∥2

≤ 4η2t
1

M

M∑
m=1

(L0 + L1 ∥∇fm(xt)∥) (fm(xt)− f⋆
m)

+ 4η2tR
2ât (f(xt)− f(x⋆))

+ 4γ2
tN

1

M

M∑
m=1

1

N

N−1∑
j=0

(L0 + L1 ∥∇fπj
m (xt)∥) (fπj

m (xt)− fπj ,⋆
m )

+ 4η2tR
M − C

(M − 1)C

1

M

M∑
m=1

(L0 + L1 ∥∇fm(xt)∥) (fm(xt)− f⋆
m) .

The bound for E [Vt] is given by the following:

E [Vt] ≤ 4η2t at

(
f(xt)− f⋆ +

(
f⋆ − 1

M

M∑
m=1

f⋆
m

))
+ 4η2tR

2ât (f(xt)− f⋆)

+ 4γ2
tNãt

f(xt)− f⋆ +

f⋆ − 1

M

M∑
m=1

1

N

N−1∑
j=0

fπj ,⋆
m


+ 4η2tRat

M − C

(M − 1)C

(
f(xt)− f⋆ +

(
f⋆ − 1

M

M∑
m=1

f⋆
m

))
.

Recall that ∆⋆ = f⋆ − 1
M

∑M
m=1 f

⋆
m,∆

⋆
= f⋆ − 1

M

∑M
m=1

1
N

∑N−1
j=0 f

πj ,⋆
m . Therefore,

E [Vt] ≤ 4η2t at (f(xt)− f⋆ +∆⋆) + 4η2tR
2ât (f(xt)− f⋆)

+ 4γ2
tNãt

(
f(xt)− f⋆ +∆

⋆
)
+ 4η2tRat

M − C

(M − 1)C
(f(xt)− f⋆ +∆⋆) .

Rewriting, we obtain

E [Vt] ≤ 4 (f(xt)− f⋆)

(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

M − C

(M − 1)C

)
+ 4η2t at∆

⋆ + 4γ2
tNãt∆

⋆
+ 4η2tRat

M − C

(M − 1)C
∆⋆

≤ 4 (f(xt)− f⋆)
(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

)
+ 4η2t at∆

⋆ + 4γ2
tNãt∆

⋆
+ 4η2tRat∆

⋆.
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Following this, we need to establish a bound for the scalar product

−⟨∇f (xt) , xt − xt+1⟩ = θt

〈
∇f (xt) ,−

1

R

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj

m

(
xr,j
m,t

)〉
.

Using the identity 2⟨a, b⟩ = ∥a+ b∥2 − ∥a∥2 − ∥b∥2, we obtain

−⟨∇f (xt) , xt − xt+1⟩ = −

θt
2
∥∇f (xt)∥2 +

θt
2

∥∥∥∥∥∥ 1R
R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj

m

(
xr,j
m,t

)∥∥∥∥∥∥
2


+
θt
2

∥∥∥∥∥∥∇f(xt)−
1

R

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj

m

(
xr,j
m,t

)∥∥∥∥∥∥
2

= −

θt
2
∥∇f (xt)∥2 +

θt
2

∥∥∥∥∥∥ 1R
R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj

m

(
xr,j
m,t

)∥∥∥∥∥∥
2


+
θt
2

∥∥∥∥∥∥ 1R
R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

(
∇fπj

m

(
xr,j
m,t

)
−∇fπj

m (xt)
)∥∥∥∥∥∥

2

.

Using Lemma 1 and omitting one of the terms, we get

−⟨∇f (xt) , xt−xt+1⟩ ≤ −θt
2
∥∇f (xt)∥2+

θt
2
(ãt)

2 1

R

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∥∥∥xr,j
m,t − xt

∥∥∥2.
Taking the expectation with respect to the randomness of the algorithm, we have

E [f(xt+1)] ≤ f(xt)−
θt
2
∥∇f (xt)∥2

+
θtã

2
t

2R

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∥∥∥xr,j
m,t − xt

∥∥∥2
+

ât
2
∥xt − xt+1∥2 .

Recalling the definition of E [Vt] and taking the conditional expectation, we obtain

E [f(xt+1)|xt] ≤ f(xt)−
θt
2
∥∇f (xt)∥2 +

θtã
2
t

2
E [Vt] + θ2t ât∥∇f(xt)∥2 + θ2t â

3
tE [Vt]

= f(xt)−
θt
2
(1− 2θtât) ∥∇f (xt)∥2 +

θtã
2
t

2
E [Vt] + θ2t â

3
tE [Vt] .

Using the fact that θt ≤ 1
4ât

, we arrive at

E [f(xt+1)|xt] ≤ f(xt)−
θt
4
∥∇f (xt)∥2 +

ã2t
8ât

E [Vt] +
â3t
16â2t

E [Vt] .

Recalling the bound on E [Vt] , we obtain

E [f(xt+1)|xt] ≤ f(xt)−
θt
4
∥∇f (xt)∥2 +

ã2t
8ât

E [Vt] +
â3t
16â2t

E [Vt]

≤ f(xt)−
θt
4
∥∇f (xt)∥2

+

(
ã2t
2ât

+
â3t
4â2t

)
(f(xt)− f⋆)

(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

)
+

(
ã2t
2ât

+
â3t
4â2t

)(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
. (18)
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Using the fact that θt ≥ ζ
ât
, we get that

θt∥∇f (xt)∥2

4
≥ ζ∥∇f (xt)∥2

4ât
.

Therefore,

θt∥∇f (xt)∥2

4
≥

{
ζ∥∇f(xt)∥2

8L0
, ∥∇f(xt)∥ ≤ L0

L1
,

ζ∥∇f(xt)∥
8L1

, ∥∇f(xt)∥ > L0

L1
,
=

ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}
.

Denote δt
def
= f (xt)− f⋆. Then we have

ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}
≤ −δt+1 + δt

+
2âtã

2
t + â3t
4â2t

(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

)
δt

+
2âtã

2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
.

Recall that ηt ≤ 2ât

cR

√
1

at(2âtã2
t+â3

t )
, γt ≤ 2ât

cRN

√
1

ãt(2âtã2
t+â3

t )
, c ≥

√
T . Using Mishchenko et al.

(2020, Lemma 6), we appear at

min
t=0,1,...T−1

{
ζ

8
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}}

≤

(
1 +

2âtã
2
t+â3

t

4â2
t

(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

))T
T

δ0

+
2âtã

2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
.

Corollary 4. Fix ε > 0. Choose c = 2
√
T . Let ηt ≤ 2ât

√
3δ0

2at(2âtã2
t+â3

t )∆
⋆RT

, γt ≤
2ât

N

√
3δ0

ãt(2âtã2
t+â3

t )∆
⋆
RT

. Then, if T ≥ 72δ0
ζε , we have

E

[
min

t=0,...,T−1

{
min

{
∥∇f(xt)∥2

L0
,
∥∇f(xt)∥

L1

}}]
≤ ε.

Proof of Corollary 4. Since c = 2
√
T and ηt ≤ 2ât

cR

√
1

at(2âtã2
t+â3

t )
, γt ≤ 2ât

cRN

√
1

ãt(2âtã2
t+â3

t )
,

and ηt ≤ 2ât
√

3δ0
2at(2âtã2

t+â3
t )∆

⋆RT
, γt ≤ 2ât

N

√
3δ0

ãt(2âtã2
t+â3

t )∆
⋆
RT

due to the choice of T ≥

max
{

72δ0
ζε , 12∆⋆

ζε , 6∆
⋆

ζε

}
, we obtain that(

1 +
2âtã

2
t+â3

t

4â2
t

(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

))T
T

δ0 ≤ eδ0
T

≤ 3δ0
T

≤ ζε

24
,

2âtã
2
t + â3t
4â2t

(
η2t at∆

⋆ + η2tRat∆
⋆
)
≤ ζε

24
,

and that
2âtã

2
t + â3t
4â2t

γ2
tNãt∆

⋆ ≤ ζε

24
.

Therefore, E
[
mint=0,...,T−1

{
min

{
∥∇f(xt)∥2

L0
, ∥∇f(xt)∥

L1

}}]
≤ ε.
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D.2 ASYMMETRIC GENERALIZED-SMOOTH FUNCTIONS UNDER PŁ-CONDITION

Theorem 10. Let Assumptions 1 and 2 hold for functions f, {fm}Mm=1 and {fmj}M,N
m=1,j=1 . Let

Assumption 4 hold. Choose 0 < ζ ≤ 1
4 . Let δ0

def
= f (x0)− f⋆. Choose any integer T >

64δ0L
2
1

µζ . For
all 0 ≤ t ≤ T − 1, denote

ât = L0 + L1∥∇f(xt)∥, at = L0 + L1 max
m

∥∇fm(xt)∥ , ãt = L0 + L1 max
m,j

∥∇fπj
m (xt)∥ .

Put ∆⋆ = f⋆ − 1
M

∑M
m=1 f

⋆
m and ∆

⋆
= f⋆ − 1

M

∑M
m=1

1
N

∑N−1
j=0 f⋆

mj . Impose the following
conditions on the local stepsizes γt, server stepsizes ηt, global stepsizes θt :

γtNR ≤ ηtR ≤ min

{
1

16ât
,
2ât
c

√
1

at (2âtã2t + â3t )
,

√
â2tµζ

32L2
1 (δt +∆⋆) at (2âtã2t + â3t )

,√
â2t δ0

TL2
1 (δt +∆⋆) at (2âtã2t + â3t )

}
,

γtNR ≤ min

2ât
c

√
1

ãt (2âtã2t + â3t )
,

√√√√ â2t δ0

TL2
1

(
δt +∆

⋆
)
ãt (2âtã2t + â3t )

,

√√√√ â2tµζ

32L2
1

(
δt +∆

⋆
)
ãt (2âtã2t + â3t )

 .

ζ

ât
≤ θt ≤

1

4ât
, 0 ≤ t ≤ T − 1,

where c ≥
√
T . Let T̃ be an integer such that 0 ≤ T̃ ≤ 64δ0L

2
1

µζ , A > 0 be a constant, α ≤
√

δ0
AT .

Then, the iterates {xt}T−1
t=0 of Algorithm 3 satisfy

δT ≤
(
1− µζ

4L0

)T−T̃

δ0 +
4L0Aα2

µζ
,

where δT
def
= f (xT )− f⋆.

Proof of Theorem 10. Let us follow the first steps of the proof of Theorem 4. Consider (18):

θt
4
∥∇f (xt)∥2 ≤ f(xt)− f(xt+1)

+
2âtã

2
t + â3t
4â2t

(f(xt)− f⋆)
(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

)
+

2âtã
2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
.

Since θt ≥ ζ
ât
, and f satisfies Polyak–Łojasiewicz Assumption 4, we obtain that

µζ (f(xt)− f⋆)

2ât
≤ f(xt)− f(xt+1)

+
2âtã

2
t + â3t
4â2t

(f(xt)− f⋆)
(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

)
+

2âtã
2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
.
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1. Let T̃ be the number of steps t, so that ∥∇f (x̂t)∥ ≥ L0

L1
. For such t, we have L0+L1 ∥∇f (xt)∥ =

ât ≤ 2L1 ∥∇f (xt)∥ . Therefore, we get

µζ (f(xt)− f⋆)

4L1 ∥∇f (xt)∥
≤ f(xt)− f(xt+1)

+
2âtã

2
t + â3t
4â2t

(f(xt)− f⋆)
(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

)
+

2âtã
2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
.

Notice that the relation ât ≤ 2L1 ∥∇f(xt)∥ and Lemma 1 together imply

∥∇f(xt)∥
4L1

≤ ∥∇f(xt)∥2

2ât
≤ f(xt)− f⋆.

Hence, we have

µζ

16L2
1

≤ f(xt)− f(xt+1)

+
2âtã

2
t + â3t
4â2t

(f(xt)− f⋆)
(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

)
+

2âtã
2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
.

Subtracting f⋆ on both sides and introducing δt
def
= f (xt)− f⋆, we obtain

δt+1 ≤ δt −
µζ

16L2
1

+
2âtã

2
t + â3t
4â2t

δt
(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

)
+

2âtã
2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
.

As γt ≤
√

4â2
tµζ

128L2
1(δt+∆

⋆)ãtR2N2(2âtã2
t+â3

t )
and ηt ≤

√
4â2

tµζ

128L2
1(δt+∆⋆)atR2(2âtã2

t+â3
t )
, it follows that

2âtã
2
t + â3t
4â2t

δt
(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

)
+

+
2âtã

2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
≤ µζ

32L2
1

.

Therefore, we get

δt+1 ≤ δt −
µζ

32L2
1

.

2. Suppose now that ∥∇f (xt)∥ ≤ L0

L1
. For such t, we have L0+L1 ∥∇f (xt)∥ = âp ≤ 2L0. Hence,

µζ (f(xt)− f⋆)

4L0
≤ f(xt)− f(xt+1)

+
2âtã

2
t + â3t
4â2t

(f(xt)− f⋆)
(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

)
+

2âtã
2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
.
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Subtracting f⋆ on both sides and introducing δt
def
= f (xt)− f⋆, we obtain

δt+1 ≤ δtρ+
2âtã

2
t + â3t
4â2t

δt
(
η2t at + η2tR

2ât + γ2
tNãt + η2tRat

)
+

2âtã
2
t + â3t
4â2t

(
η2t at∆

⋆ + γ2
tNãt∆

⋆
+ η2tRat∆

⋆
)
.

where ρ
def
= 1 − µζ

4L0
. Let γt

def
= αγ̂t and ηt

def
= αη̂t with γ̂t ≤

√
4â2

tA

4L2
1(δt+∆

⋆)ãtR2N2(2âtã2
t+â3

t )
and

η̂t ≤
√

4â2
tA

4L2
1(δt+∆⋆)atR2(2âtã2

t+â3
t )
, for some constant A > 0. Then,

δt+1 ≤ ρδt +Aα2.

Unrolling the recursion, we derive

δT ≤ ρT−T̃ δ0 +Aα2
∞∑
i=0

ρi − µζ

32L2
1

N−1∑
i=0

ρi

≤ ρP−P̃ δ0 +
Aα2

1− ρ
− 1− ρP̃

1− ρ

µζ

32L2
1

.

Notice that δt+1 ≤ δt +Aα2, which implies

δT ≤ δ0 +
(
T − T̃

)
Aα2 − T̃

µζ

32L2
1

.

Since α ≤
√

δ0
AT , we conclude that

0 ≤ δT ≤ 2δ0 − T̃
µζ

32L2
1

, ⇒ T̃ ≤ 64δ0L
2
1

µζ
.

Therefore, for T >
64δ0L

2
1

µζ we can guarantee that T − T̃ > 0 and

δT ≤ ρT−T̃ δ0 +
Aα2

1− ρ
− T̃ ρT̃

µζ

32L2
1

≤ ρT−T̃ δ0 +
Aα2

1− ρ
.

Corollary 10. Fix ε > 0. Choose α ≤ min

{√
δ0
AT , L1

√
8δ0ε
L0AT

}
. Then, if T ≥ 64δ0L

2
1

µζ +

4L0

µζ ln 2δ0
ε , we have δT ≤ ε.

Proof of Corollary 10. Since 0 ≤ T̃ ≤ 64δ0L
2
1

µζ , A > 0, α ≤
√

δ0
AT , α ≤ L1

√
8δ0ε
L0AT , due to the

choice of T ≥ 64δ0L
2
1

µζ + 4L0

µζ ln 2δ0
ε , we obtain that(

1− µζ

4L0

)T−T̃

δ0 ≤ e−
µζ
4L0

(T−T̃)δ0 ≤ ε

2
,

and that
4L0A

µζ
· δ0
AT

≤ ε

2
.

Therefore, δT ≤ ε.
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E EXTENSION TO GLOBAL STEPSIZES WITH PSEUDOGRADIENTS

Let us consider Algorithm 1. For the other two algorithms same results can be obtained in a similar
manner. We replace γp = 1

c0+c1∥∇f(x̂tp )∥
with γp = 1

c′0+c′1∥gp∥
after the computation of gp in the

pseudocode. Recall that

∥gp∥ =

∥∥∥∥∥∥ 1

M(v − tp)

M∑
m=1

v∑
j=tp+1

∇fm(xm
j )

∥∥∥∥∥∥ .
By the triangle inequality, we obtain that

∥gp∥ ≤ 1

(v − tp)

∥∥∥∥∥∥ 1

M

M∑
m=1

v∑
j=tp+1

(
∇fm(xm

j )−∇fm(x̂tp)
)∥∥∥∥∥∥+ ∥∥∇f(x̂tp)

∥∥
≤ 1

(v − tp)M

M∑
m=1

v∑
j=tp+1

∥∥∇fm(xm
j )−∇fm(x̂tp)

∥∥+ ∥∥∇f(x̂tp)
∥∥

Since every fm is (L0, L1)-smooth, we have that

∥gp∥ ≤ ap
(v − tp)M

M∑
m=1

v∑
j=tp+1

∥∥x̂tp − xm
j

∥∥+ ∥∥∇f(x̂tp)
∥∥ .

By Jensen’s inequality we have that

ap
(v − tp)M

M∑
m=1

v∑
j=tp+1

∥∥x̂tp − xm
j

∥∥ ≤ ap
(v − tp)M

√√√√(v − tp)M

M∑
m=1

v∑
j=tp+1

∥∥x̂tp − xm
j

∥∥2
Lemma 4

≤
√
8 (vp − tp) a3pα

2
p

(
f(x̂tp)− f⋆ +∆⋆

)
.

For any sufficiently small δ > 0, let us choose αp ≤ δ√
8(vp−tp)a3

p(f(x̂tp )−f⋆+∆⋆)
. Then, ∥gp∥ ≤

∥∇f(x̂tp)∥+ δ.

The lower bound on ∥gp∥ is obtained similarly: we just need to write the triangle inequality for the
∥∇f(x̂tp)∥. We have

∥∥∇f(x̂tp)
∥∥ ≤ 1

(v − tp)M

M∑
m=1

v∑
j=tp+1

∥∥∇fm(xm
j )−∇fm(x̂tp)

∥∥+ ∥gp∥

≤ δ + ∥gp∥ .

Finally, we obtain that ∥∇f(x̂tp)∥ − δ ≤ ∥gp∥ ≤ ∥∇f(x̂tp)∥+ δ. Hence

1

(c′0 + c′1δ) + c′1
∥∥∇f(x̂tp)

∥∥ ≤ 1

c′0 + c′1 ∥gp∥
≤ 1

(c′0 − c′1δ) + c′1
∥∥∇f(x̂tp)

∥∥ .
It means that the practical choice of the stepsize only slightly differs in the constants in the denomi-
nator. So, all our theory works for it as well.

F ADDITIONAL EXPERIMENTAL DETAILS FOR MAIN PART

In this section, we provide additional experimental details: parameters search grids and some tech-
nical details that did not fit in the main text. For all the plots we provide in the legend all the best
parameters found by the grid search. The parameter grids are provided as table for every method.
The code is available at https://github.com/postrou/local_steps_rr.
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It can be seen from pseudocode of Algorithms 1, 2, 3, that global stepsize depends on the full gra-
dient. However, our numerical tests showed that use of gradient approximations gp for Algorithm
1 and gt for Algorithms 2, 3 gives better numerical results while being less computationally ex-
pensive. Thus, in our practical experiments we decided to use this approximation in calculation of
global stepsize. We want to point out, that the theoretical analysis for this “practical” version of the
algorithm can be done considering very small inner stepsizes. Although, we decided not to include
it in the current version to keep the presentation more concise and avoid additional complexities.

F.1 METHODS WITH RANDOM RESHUFFLING

Figure 5: Function residual for (4), αt = 10−7. The best parameters are provided in the legend.
In these experiments we compare methods with random reshuffling, that shuffle data once at the
start of training process. The main idea is to show the positive impact of random reshuffling and
clipping on algorithm performance. We incorporate these two techniques inside our CLERR method
(Algorithm 2).

Firstly, consider (4). For these experiments we take d = 1 and randomly sample 1000 shifts xi ∈
[−10, 10]. We run all the methods for 10 different seeds on a logarithmic hyperparameter grid. Then
we choose the best hyperparameters according to the best mean loss values on the second half of
epochs. The parameter grid is provided in Table 1. To find f∗, we run the Newton method for couple
iterations until convergence.

Since both Nastya and Algorithm 2 have jumping at the end of every epoch, if we tuned the inner
stepsize along with other parameters, the inner stepsize would go to zero and the outer stepsize would
be selected such as these methods solve the problem in 1 step. This would be unfair because other
baselines do not use a jumping technique, so they would not be able to achieve such performance.
Thus, we decided to fix the inner stepsize for Algorithm 2 and Nastya equal to the best stepsize,
chosen for SO, and tune the clipping level and outer stepsize with the outer stepsize not exceeding
the values supported in theory. Here and later, for simplicity, we speak about Algorithm 2 in terms
of stepsize and clipping level, that we can obtain from c0 and c1 from (3). The best stepsize for SO
is 10−7, so we choose inner stepsize for Nastya and Algorithm 2 the same. Nastya chooses outer
stepsize equal 10−7, while CSO and CLERR (Algorithm 2) choose it equal to 10−4. CSO clips
gradients at the level 104, while CLERR – at the level 105.

Method Stepsize Clipping Level Inner Stepsize
SO [10−8, 10−2] - -
NASTYA [10−8, 10−2] - 10−7

CSO [10−8, 10−2] [100, 105] -
Algorithm 2 [10−8, 10−2] [100, 105] 10−7

Table 1: Parameter grids for experiments on methods with random reshuffling on (4).
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F.1.1 RESNET-18 ON CIFAR-10

Figure 6: Loss, gradient norm and accuracy on train and test dataset for ResNet-18 on CIFAR-10.
The best parameters are provided in the legend.
In this experiment we consider image classification task. We train ResNet-18 He et al. (2016) on
the CIFAR-10 Krizhevsky et al. (2009) dataset. The implementation of ResNet-18 was taken from
https://github.com/kuangliu/pytorch-cifar. All the methods are run on 3 differ-
ent random seeds on logarithmic hyperparameter grid. Then we choose the best hyperparameters
according to the best mean test accuracy on the last 25% of epochs.

In this experiment, we do not fix the inner stepsize for Nastya and CLERR, since methods do not
try to make it as small as possible, as it was in the previous experiment. However, both SO, Nastya,
and CLERR choose the same inner stepsize 10−2 as the best. Then, both Nastya and CLERR
choose bigger outer step size 10−1, and CLERR also chooses clipping level on outer step size as
10. Despite the fact that both Nastya and CLERR choose bigger outer stepsizes compared to inner
stepsize, jumping does not have any impact on this problem. CLERR clips outer gradients at the
level of 10, so this also does not help method to converge to a better area.

Moreover, we provide results of heuristically modified Algorithm 2, where we fix clipping level
and inner stepsize of Algorithm 2 equal to the best clipping level and the best stepsize from CSO
correspondingly. The tunable parameters are only c0 and c1 for outer stepsize. We call this method
CLERR-h. CLERR-h chooses an outer stepsize equal to 5, while the clipping level is very tiny and
equal to 10−2. All the parameter grids are provided in Table 2.

Method Stepsize Clipping Level Inner Stepsize c0 c1
RR [10−3, 10−1] - - - -
NASTYA [10−3, 10−1] - [10−4, 100] - -
CRR [10−3, 10−1] [100, 103] - - -
CLERR [10−3, 10−1] [100, 103] [10−4, 100] - -
CLERR-h - 101 10−1 [10−2, 101] [10−2, 101]

Table 2: Parameter grids for experiments on methods with random reshuffling on ResNet-18 on
CIFAR-10.
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F.2 METHODS WITH LOCAL STEPS

(a) x0 = (1, ..., 1) (b) x0 = (10, ..., 10)
Figure 7: Function residual for (4), starting from different x0 for different number of local steps on
the client device τ . The best parameters are provided in the legend.
In these experiments we compare methods with local steps: Algorithm 1 (C-LGDJ) with Communi-
cation Efficient Local Gradient Clipping (CELGC) (Liu et al., 2022) and Clipping-Enabled-FedAvg
(CE-FedAvg) Zhang et al. (2022). For comparison we take problem (4) for d = 100, where we
randomly sample 1000 shifts xi ∈ [−10, 10]d. To make the distributions of data on each client more
distinct between each other, we sort the whole dataset at the beginning of the experiment by ∥xi∥.
Each method has 10 clients, where each client has equal number of data. We provide results for
two starting points: x0 = (1, ..., 1) and x0 = (10, ..., 10). All the methods are run for 10 different
random seeds on logarithmic hyperparameter grid. The best hyperparameters are chosen according
to the best mean loss on the last 25% of epochs.

Each client performs τ = 1 or τ = 10 local steps, and each local step is performed on the whole
local data. For ease of implementation and due to computational limitations we iterate over all the
clients sequentially.

We reformulate constants c0 and c1 as server stepsize and clipping level from (3) to better interpret
the experimental results. We start by paying attention to results with a single local step. Firstly,
consider C-LGDJ (Algorithm 1). It chooses tiny client stepsizes 10−10 and small server stepsizes
5 · 10−5 for both starting points. For Figure 7a it also takes very big clipping level for server 1014,
compared to Figure 7b, where it clips on level 106, which is obvious because on the second picture
methods start farther from the minimum and have bigger gradients. Secondly, consider CELGC.
In both cases, it takes very small client stepsizes: 5 · 10−5 and 5 · 10−6 respectively, and very big
clipping levels: 1014 and 1015 respectively. Finally, CE-FedAvg also takes small client stepsizes:
10−4 and 10−5, rather big server stepsizes, which are equal to 1, and average client clipping levels:
10 in both cases. For τ = 10 we have the same parameters for C-LGDJ, CELGC tries to make even
smaller steps with high clipping levels, while CE-FedAvg uses a much bigger server stepsize and
much smaller client stepsize, for the case from Figure 7a.

The grids of hyperparameters for x0 = (1, ..., 1) are provided in Table 3, and for x0 = (10, ..., 10)
– in Table 4.

Method Cl. Stepsize Se. Stepsize Cl. Clip Level c0 c1
Clipped-L-SGD-J [10−10, 100] - - [10−10, 106] [10−10, 106]
CELGC - - - [10−15, 1010] [10−15, 1010]
CE-FedAvg [10−10, 100] [10−10, 103] [100, 104] - -

Table 3: Parameter grids for experiments on methods with local steps on (4) for x0 = (1, ..., 1).
Here ”cl.” means ”Client”, and ”se.” – ”server”.
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Method Cl. Stepsize Se. Stepsize Cl. Clip Level c0 c1
Clipped-L-SGD-J [10−10, 100] - - [10−10, 106] [10−10, 106]
CELGC - - - [10−10, 1010] [10−10, 1010]
CE-FedAvg [10−10, 100] [10−10, 100] [100, 104] - -

Table 4: Parameter grids for experiments on methods with local steps on (4) for x0 = (10, ..., 10).
Here ”cl.” means ”client”, and ”se.” – ”server”.

F.3 METHODS WITH LOCAL STEPS, RANDOM RESHUFFLING AND PARTIAL PARTICIPATION

Figure 8: Function residual for (4), starting from x0 = (1, ..., 1) with batch size 16. The best
parameters are provided in the legend.
In these experiments we compare methods with clipping, random reshuffling, local steps and partial
participation: Algorithm 3 (CRR-CLI) and with CE-FedAvg Zhang et al. (2022) with partial par-
ticipation (CE-FedAvg-PP). For comparison we take problem (4) for d = 100, where we randomly
sample 1000 shifts xi ∈ [−10, 10]d. Again, to make the distributions of data on each client more
distinct between each other, we sort the whole dataset at the beginning of the experiment by ∥xi∥.
All the methods are run for 10 different random seeds on logarithmic hyperparameter grid. The best
hyperparameters are chosen according to the best mean loss on the last 25% of epochs.

Each method has 10 clients, where each client has the same amount of data. The size of the cohort
is chosen to be 2. The method performs local steps on each client from the cohort, after which it
performs communication and goes to the next cohort. In the Algorithm 3 the clients to the cohort are
chosen sequentially with sliding window after Client-Reshuffling. In CE-FedAvg-PP clients to the
cohort are always chosen randomly. The starting point is chosen x0 = (1, ..., 1). All the methods
are run for 10 different random seeds. The best hyperparameters are chosen according to the best
mean loss on the last 25% of epochs.

For local steps we chose batch size equal to 16. In Algorithm 3 every client goes sequentially over
the whole shuffled local dataset with batch size window. In CE-FedAvg-PP we fix number of local
steps to 10, and each client samples batch on every local step.

Just like in previous experiment in Section 5.2, all the methods try to reduce the influence of local
steps by making inner stepsizes very small. Algorithm 3 chooses both client and server stepsizes
equal 10−10, and CE-FedAvg-PP chooses client stepsize equal 10−6 and client clipping level equals
1. Speaking of outer steps, Algorithm 3 chooses global stepsize equal to 5 · 10−7 with clipping
level 1016. And CE-FedAvg-PP has server stepsize equal to 10. The grids of hyperparameters are
provided in Table 5.
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Method Cl. Stepsize Se. Stepsize Cl. Clip Level c0 c1
CRR-CLI [10−10, 106] [10−10, 106] - [10−10, 105] [10−10, 105]
CE-FedAvg-PP [10−10, 103] [10−10, 103] [100, 104] - -

Table 5: Parameter grids for experiments on methods with clipping, random reshuffling, local steps
and partial participation. Here ”cl.” means ”client”, and ”se.” – ”server”.

Figure 9: Algorithm 2 with different step sizes on ResNet-18 on CIFAR-10.

G ADDITIONAL EXPERIMENTS

In this section, we provide additional numerical experiments, that did not fit in the main paper: in
Section G.1 we investigate the influence of that inner step size on the behavior of Algorithm 2, and in
Section G.2 we provide additional experiments on logistic regression, where we compare Algorithm
2 with clipped SGD.

G.1 HOW THE INNER STEP SIZE AFFECTS CONVERGENCE OF THE METHOD

In this experiment, we investigate the influence of the inner step size on the behavior of Algorithm
2 on ResNet-18 on CIFAR-10. To do this, we take the same hyperparameters for Algorithm 2 as in
Sections 5.1.1, F.1.1 and only change the inner step size. The results are provided in Figure 9.

On the one hand, if we take the inner step size too small (blue and orange lines), it converges very
slowly. This is obvious since Algorithm 2 becomes regular Clipped-GD, which can be seen from
pseudocode. Because Clipped-GD performs a single step per epoch, it has slow convergence. On
the other hand, if we take the inner step size too big (red line), the method diverges. It does not have
clipping on the inner step, so such behavior is expected. To summarize, it is important to take the
inner step size small, but not too small, because it may slow down the convergence.

G.2 LOGISTIC REGRESSION EXPERIMENTS

Since in the experiments on neural networks (Sections 5.1.1, F.1.1) regular CSO (SGD with clipping)
showed very good results, we decided to conduct additional experiments on logistic regression,
where we compare CSO with our Algorithm 2. We consider gisette and realsim datasets from libsvm
library Chang & Lin (2011). All the methods are run for 3 different random seeds on logarithmic
hyperparameter grid. The best hyperparameters are chosen according to the best mean loss on the
last 25% of epochs. The results are presented in Figure 9.
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(a) gisette (b) realsim
Figure 10: Gradient norm for logistic regression problem on gisette and realsim datasets. The best
parameters are provided in the legend.

Since the inner stepsize for CLERR has the same meaning as stepsize for CSO, we decided to take
the same parameter grids for these two parameters. The same goes for clipping levels in spite of
the fact that CLERR clips the gradient approximation only in the end of the epoch. This experiment
shows that CLERR either has the same performance as CSO or better. Since logistic regression
is (L0, L1)-smooth, such result is expected, as Algorithm 2 is designed for such type of functions.
Figure 10a shows us that CLERR chooses very small outer stepsize 10−3, while inner step size is
bigger than the one in CSO: 10−1 vs 10−2. In the Figure 10b CLERR chooses parameters in the
opposite way: inner step size is very small and equal to the one from CSO, while the outer stepsize
is bigger. The parameter grids for gisette dataset is presented in Table 6, and for realsim – in Table
7.

Stepsize Clipping Level Inner Stepsize
CSO [10−3, 10−1] [100, 102] -
CLERR [10−3, 10−1] [100, 102] [10−3, 10−1]

Table 6: Parameter grids for logistic regression experiments on gisette dataset

Stepsize Clipping Level Inner Stepsize
CSO [10−5, 10−1] [100, 102] -
CLERR [10−3, 10−1] [100, 102] [10−5, 10−1]

Table 7: Parameter grids for logistic regression experiments on realsim dataset

H EXTENDED RELATED WORK

The usage of distributed methods is dictated by the fact that data can be naturally distributed across
multiple devices/clients and be private, which is a typical scenario in Federated Learning (FL)
(Konecný et al., 2016; McMahan et al., 2016; Kairouz et al., 2019). FL systems have practical
considerations and are backed by extensive experiments from recent years. These highlight impor-
tant effective design rules and algorithmic features. Below is a quick overview of some key points.

Partial Participation. Partial Participation (PP) is a FL technique in which a server selects a
subset of clients to engage in the training process during each communication round. Its application
may be necessary in scenarios where server capacity or client availability is limited (Kairouz et al.,
2021). The technique is useful when the number of clients is large, as the benefits of convergence do
not grow proportionally with the size of the cohort (Charles et al., 2021). Clients can be selectively
chosen to form a cohort, prioritizing those that deliver the most impactful information (Chen et al.,
2020).

Local training. Local Training (LT), where clients perform multiple optimization steps on their
local data before engaging in the resource-intensive process of parameter synchronization, stands

66



Published as a conference paper at ICLR 2025

out as one of the most effective and practical techniques for training FL models. LT was proposed
by Mangasarian (1995); Povey et al. (2014); Moritz et al. (2015) and later promoted by McMahan
et al. (2016). While these works provided strong empirical evidence for the efficiency and potential
of LT-based methods, they lacked theoretical backing. Early theoretical analyses of LT methods re-
lied on restrictive data homogeneity assumptions, which are often unrealistic in real-world federated
learning (FL) settings (Stich, 2018; Li et al., 2019; Haddadpour & Mahdavi, 2019). Later, Khaled
et al. (2019a;b) removed limiting data homogeneity assumptions for LocalGD (Gradient Descent
(GD) with LT). Then, Woodworth et al. (2020); Glasgow et al. (2022) derived lower bounds for GD
with LT and data sampling, showing that its communication complexity is no better than minibatch
Stochastic Gradient Descent (SGD) in settings with heterogeneous data. Another line of works
focused on the mitigating so-called client drift phenomenon, which naturally occurs in LocalGD
applied to distributed problems with heterogeneous local functions (Karimireddy et al., 2020; Tran-
Dinh et al., 2021; Gorbunov et al., 2021b; Thapa et al., 2022; Mishchenko et al., 2022; Malinovsky
et al., 2023b; Yi et al., 2024).

Although removing the dependence on data homogeneity was a key advancement, the theoretical
result suggests LT worsens GD, which contradicts empirical evidence showing LT significantly im-
proves it. Karimireddy et al. (2020) identified the client drift phenomenon as the main cause of the
gap and proposed a solution to mitigate it, which led to the development of the Scaffold method,
featuring the same communication complexity as GD. Later, another algorithm S-Local-GD was
proposed by Gorbunov et al. (2021b). Finally, Mishchenko et al. (2022) demonstrated that a novel
and simplified form of LT exemplified by their ProxSkip method, results in provable communication
acceleration compared to GD. LocalGD is at the base of Federated Averaging (FedAvg) (McMahan
et al., 2016). Essentially, FedAvg is a variant of LocalGD with participating devices and data sam-
pled randomly. FedAvg has found applications in various ML tasks, such as, e.g., mobile keyboard
prediction (Hard et al., 2018). Wide applicability of FedAvg motivates theoretical study of its back-
bone LocalGD algorithm.

Random reshuffling. Stochastic Gradient Descent (SGD) serves as the foundation for nearly all
advanced methods used to train supervised machine learning models. SGD is often refined with
techniques like minibatching, momentum, and adaptive stepsizes. However, beyond these enhance-
ments, it is important to decide how to select the next data point for training. Typically, variants of
SGD apply a sampling with replacement approach where each new training data point is selected
from the full dataset independently of previous samples. Although standard Stochastic Gradient De-
scent (SGD) (Robbins & Monro, 1951) is well-understood from a theoretical perspective (Rakhlin
et al., 2012; Bottou et al., 2018; Nguyen et al., 2018; Gower et al., 2019; Drori & Shamir, 2020;
Khaled & Richtárik, 2020; Sokolov, 2022; Demidovich et al., 2024), most widely-used ML frame-
works rely on sampling without replacement, as it works better in the training neural networks (Bot-
tou, 2009; Recht & Ré, 2013; Bengio, 2012; Sun, 2020). It leverages the finite-sum structure by
ensuring each function is used once per epoch. However, this introduces bias: individual steps may
not reflect full gradient descent steps on average. Thus, proving convergence requires more advanced
techniques. Three popular variants of sampling without replacement are commonly used. Random
Reshuffling (RR), where the training data is randomly reshuffled before the start of every epoch, is
an extremely popular and well-studied approach. The aim of RR is to disrupt any potentially unto-
ward default data sequencing that could hinder training efficiency. RR works very well in practice.
Shuffle Once (SO) is analogous to RR, however, the training data is permuted randomly only once
prior to the training process. The empirical performance is similar to RR. Incremental Gradient (IG)
is identical to SO with the difference that the initial permutation is deterministic. This approach is
the simplest, however, ineffective. IG has been extensively studied over a long period (Luo, 1991;
Grippo, 1994; Li et al., 2022; Ying et al., 2019; Gürbüzbalaban et al., 2019; Nguyen et al., 2021). A
major challenge with IG lies in selecting a particular permutation for cycling through the iterations,
a task that Nedic & Bertsekas (2001) highlight as being quite difficult. (Bertsekas, 2015) provides
an example that underscores the vulnerability of IG to poor orderings, especially when contrasted
with RR. Meaningful theoretical analyses of the SO method have only emerged recently (Safran &
Shamir, 2020; Rajput et al., 2020). RR has been shown to outperform both SGD and IG for objec-
tives that are twice-smooth (Gürbüzbalaban et al., 2015; Haochen & Sra, 2019). Jain et al. (2019)
examine the convergence of RR for smooth objectives. Safran & Shamir (2020); Rajput et al. (2020)
provide lower bounds for RR. Mishchenko et al. (2020) recently conducted a thorough analysis of
IG, SO and RR using innovative and simplified proof techniques, resulting in better convergence
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rates. Recent advances on RR can be found in (Sadiev et al., 2022; Cha et al., 2023; Cai et al., 2023;
Koloskova et al., 2023b).

Other useful features. Further techniques in FL include compression during the communication
rounds (Alistarh et al., 2018; Gorbunov et al., 2021a; Panferov et al., 2024), clients’ drift reduc-
tion (Karimireddy et al., 2020; Gorbunov et al., 2021b).
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