
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A LITTLE GOES A LONG WAY:
EFFICIENT LONG CONTEXT TRAINING AND INFERENCE
WITH PARTIAL CONTEXTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training and serving long-context large language models (LLMs) incurs substantial
overhead. To address this, two critical steps are often required: a pretrained LLM
typically undergoes a separate stage for context length extension by training on
long-context data, followed by architectural modifications to reduce the overhead
of KV cache during serving. This paper argues that integrating length extension
with a GPU-friendly KV cache reduction architecture not only reduces training
overhead during length extension, but also achieves better long-context perfor-
mance. This leads to our proposed LONGGEN, which finetunes a pretrained LLM
into an efficient architecture during length extension. LONGGEN builds on three
key insights: (1) Sparse attention patterns, such as window attention (attending to
recent tokens), attention sink (initial ones), and blockwise sparse attention (strided
token blocks) are well-suited for building efficient long-context models, primarily
due to their GPU-friendly memory access patterns, enabling efficiency gains not
just theoretically but in practice as well. (2) It is essential for the model to have
direct access to all tokens. A hybrid architecture with 1/3 full attention layers and
2/3 efficient ones achieves a balanced trade-off between efficiency and long-context
performance. (3) Lightweight training on 5B long-context data is sufficient to
extend the hybrid model’s context length from 4K to 128K.
We evaluate LONGGEN on both Llama-2 7B and Llama-2 70B, demonstrating
its effectiveness across different scales. During training with 128K-long contexts,
LONGGEN achieves 1.55x training speedup and reduces wall-clock time by 36%,
compared to a full-attention baseline. During inference, LONGGEN reduces KV
cache memory by 62%, achieving 1.67x prefilling speedup and 1.41x decoding
speedup. Compared to baselines that apply KV-cache reduction techniques to
full-attention long-context LLMs, LONGGEN achieves substantially stronger per-
formance not only on the Needle-in-a-Haystack retrieval task, but also on more
challenging long-context reasoning tasks, including BABILong and RULER.

1 INTRODUCTION

Transformer-based large language models (LLMs) capable of processing long contexts have unlocked
new opportunities across a wide range of applications, such as processing long multi-turn dialogue,
understanding code repositories, and answering complex queries that require synthesizing information
from multiple documents. However, their quadratic complexity incurs substantial overhead for both
training and inference with long contexts (Jiang et al., 2024b; Sun et al., 2024a). To address this,
typical approaches involve a two-stage framework (Xiong et al., 2023; Dubey et al., 2024).

• To enhance the model long context capabilities without the substantial overhead of training
with long contexts, an LLM is typically pretrained on large short-context datasets (e.g., 2TB
of 4K tokens) and undergoes a separate context length extension phase, usually through
continual pretraining on a smaller amount of long-context data (e.g., 5B of 128K tokens).

• Serving a long-context LLM is also challenging due to high memory requirements for
caching key and value vectors (KV cache). For example, a 7B Llama-2 model in BF16
precision uses 14 GB for model weights, while the KV cache for a single 128K sequence

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of LONGGEN. Left: It uses a hybrid architecture, and applies KV-reduced
attention in 2/3 layers at the top and bottom, while keeping the middle 1/3 layers full attention. Right:
Two KV-reduced attention variants are explored.

1/7 Full 1/5 Full 1/3 Full All Full
Number of Full Layers

150K

200K

250K

300K

To
ke

ns
 P

er
 S

ec
on

d 301092
278354

252715

163203

Wall-Clock Training Speedup
LongGen
FlashAttention-2

1/7 Full 1/5 Full 1/3 Full All Full
Number of Full Layers

0
10
20
30
40
50
60
70

M
em

or
y 

(G
B)

11.7
15.9

26.5

69.2

KV Memory Reduction
LongGen
FlashAttention-2

0 5 7 12 32
Number of Full Layers

20

30

40

50

60

70

80

La
te

nc
y 

(s
ec

on
ds

)

End-to-End Inference on vLLM
Prefilling Latency (sec/128K tokens)
Decoding Latency (sec/512 tokens)

Figure 2: Training and inference efficiency under different sparsity levels. Left: Training wall-clock
speedup. Mid: KV memory reduction. Right: Inference speedup. We compare training wall-clock
time with FlashAttention and benchmark inference on vLLM. All results are measured on Llama2-7B,
which consists of 32 layers in total. “1/7”, “1/5”, “1/3 Full” and “All Full” indicate using 5, 7, 12,
and 32 full layers, respectively.

adds 69 GB - exceeding an H100 GPU’s capacity. Recent works have sought to reduce KV
cache memory overhead post-hoc by analyzing LLM attention patterns and leveraging these
insights to create sparse attention mechanisms, usually without additional fine-tuning.

Despite their promising performance in language modeling perplexity, these methods underperform
on long-context retrieval and complex reasoning tasks (§2). This paper argues that integrating the
two stages not only builds an efficient long-context LLM with improved long-context performance,
but also reduces the cost of length extension training.

Our proposed approach LONGGEN, as illustrated in Figure 1, is a simple and effective hybrid
transformer architecture that could be built upon any pretrained transformer to extend its context
length. LONGGEN incorporates two key designs: (1) It conducts context extension with various
GPU-friendly KV cache-saving designs, including but not limited to window attention (Jiang et al.,
2023), attention sink (Xiao et al., 2024), and blockwise strided attention (Zaheer et al., 2020b).
Compared with delicately curated KV cache reduction methods, LONGGEN employs a simpler and
more efficient KV design, which maintains uniform memory access patterns for attention heads and
achieves load balance among token blocks. Practically, our customized triton training kernel inherits
from FlashAttention-2 (Dao, 2023), but achieves faster speed in sparse settings, and the inference
kernel is well-suited to vLLM (Kwon et al., 2023) for high-throughput serving. (2) LONGGEN uses
this sparse attention in a hybrid architecture, where 2/3 of the attention layers use sparse attention
while the remaining 1/3 retain full attention, which we find is essential for handling complex tasks
requiring direct access to long-context information(§4.4).

Experiments are conducted on a Llama-2-7B base model (Touvron et al., 2023) and its 70B counterpart
with group query attention. We extend their context length from 4K to 128K and perform evaluations
on multiple long-context benchmarks, including the needle-in-a-haystack (NIAH) retrieval, and two
more distinguishing benchmarks, BABILong (Kuratov et al., 2024) and RULER (Hsieh et al., 2024),
where long-context reasoning is also needed. Through ablations on the position and number of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

sparse attention layers, we study how sparsity level affects long-context capability. Results show
that with full layers in the middle, LONGGEN could achieve comparable performances with standard
transformers even with 2/3 of its remaining layers being with sparse attention. Meanwhile, LONGGEN
only requires lightweight training on 5B Slimpajama (Shen et al., 2023) tokens (less than 0.1% GPU
hours of pretraining) and maintains its short context capability, as indicated by the MMLU (Hendrycks
et al., 2020) score. With our customized kernel, it achieves a 1.55x wall-clock training speedup, as
shown in Figure 2. During inference, it reduces 62% KV cache memory, bringing 1.67x prefilling
speedup and 1.41x decoding speedup.

2 BACKGROUND

LLM context length extension. Due to the overhead of training transformers on long sequences,
context extension is usually separated from standard pretraining as a dedicated post-training stage.
State-of-the-art models, such as Gemini (Team et al., 2023), Llama series (Touvron et al., 2023; Dubey
et al., 2024) and Qwen (Bai et al., 2023) are typically pretrained on large short-sequence corpora, then
undergo length extension on relatively smaller amounts of longer sequences. For example, Llama-3
is pre-trained on 15T tokens within an 8K context length, then post-trained on an additional 800B
tokens to extend to 128K length (Dubey et al., 2024; Xiong et al., 2023). A related data engineering
work (Fu et al., 2024) significantly reduce the tokens needed for context extension to only 5B by
carefully balancing the data source to be similar with that of the pretraining corpus. Typically, there
is no architectural modifications during length extension. As a result, these long-context models
are challenging to serve due to the memory overhead incurred by KV cache (Jiang et al., 2024a).
Therefore, techniques are required to reduce the inference-time memory overhead of these models.

Figure 3: Inference time KV cache reduction methods fail on long context.

Inference-time KV reduction fails to generalize to long contexts. To reduce the inference cost of
large transformer models, one straightforward idea is to apply inference time KV reduction methods.
By only saving the mostly attended KV Cache, they reduce inference memory consumption and
forward computing FLOPs. For efficient decoding, the key and value vectors over the context are
kept in the GPU memory, usually called KV cache. Its memory overhead has become the primary
bottleneck of serving LLMs. Various techniques have been developed to reduce KV cache overhead
by storing only a subset of the KV and evicting the rest (Xiao et al., 2024; Liu et al., 2023; Ge et al.,
2024). However, as we show here, they often underperform in long-context scenarios, where KV
cache reduction is needed the most.

We evaluate two established KV cache reduction methods, Attention Sink (Xiao et al., 2024), and
PyramidKV (Zhang et al., 2024a) on a context-extended Llama2-7B-128K model.1 Attention Sink
(AttnSink) only retains initial and local tokens, while PyramidKV identifies the unique attention dis-
tribution at each layer and allocates a dynamic KV budget. Similarly to Heavy-Hitter (H2O) (Zhang
et al., 2023), PyramidKV preserves tokens that have the largest cumulative attention scores. Ad-
ditionally, we include the original Llama2-7B-128K baseline and our LONGGEN, and report their
performance in Figure 3. For fair comparison, we keep the same KV cache budget for Attn Sink,
PyramidKV, and LONGGEN, i.e., 60% of the original full transformer. Figure 3 shows the results on
the needle-in-a-haystack (NIAH) retrieval task. Both the original Llama2-7B-128K base model and
LONGGEN can pass the needle retrieval task with 100% accuracy, which we will analyze later in the
experiment section §4.2. However, both KV eviction methods underperform on NIAH, especially
with > 32K contexts. Intuitively, their underperformance can be attributed to two factors:

1Details about this Llama2-7B-128K model can be found in §4.1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Lack of full context access. Due to KV reduction at all layers, the model loses direct access
to certain positions, making it more challenging for the model to perform accurate retrieval.

• Lack of sparse context adaption. The model parameters, especially position embeddings,
remain fixed during cache reduction. However, it has been observed that the widely used
RoPE-style position embedding (Su et al., 2021) struggles to generalize to unseen position
ranges (Wang et al., 2024). After KV reduction, the position range becomes non-contiguous,
creating a mismatch with the training setup. This can potentially hurt the model’s ability to
adapt to longer contexts.

The lessons from the above experiment motivates LONGGEN’s key design choices: (1) retaining full
context at some layers, and (2) training the model to adapt to sparse attention at the others.

3 LONGGEN

LONGGEN improves long-context training and inference efficiency. It finetunes a pretrained LLM
into an efficient architecture during length extension. LONGGEN uses a hybrid architecture, with
KV-reduced attention patterns in bottom and top layers, while retaining full contexts in the middle
layers (Figure 1). We will explore various strategies to initialize the sparse attention, followed by
a comprehensive analysis of FLOPs and memory savings to demonstrate the theoretical efficiency
benefits of LONGGEN.

3.1 CONTEXT EXTENSION WITH EFFICIENT ARCHITECTURES

A hybrid architecture Previous work has found attention is relatively specialized in the middle
layers. Some middle-layer attention heads are shown to be strongly related to retrieval and reasoning,
indicating refined information aggregation in those layers Wu et al. (2024); Fu (2024); Zhang et al.
(2024b). Inspired by their findings, we design LONGGEN to be in an hourglass shape—sparse
attention in both ends to efficiently reduce computing cost, and full attention in the middle to
maximize long context performance. We will show the necessity of preserving full contexts for
middle layers in §4.4. We post-train this hybrid architecture on on longer sequences with the same
loss function as in pretraining.

Different KV-Reduced Attention Strategies Efficient attention layers in LONGGEN can be
initialized using various KV cache reduction strategies. Instead of choosing attention patterns that
adaptively allocate memory for each head, LONGGEN prefers uniformly structured attention patterns.
Specifically, we introduce two criteria for sparse attention patterns: (1) Static access of position.
For each head, the position to be retained should be consistent and agnostic of input tokens. This
enables a uniform GPU memory access pattern in training, which allows for optimized sparse training
kernel and memory IO. During inference, it is also feasible to enforce the a fixed cache management
strategy, thus avoiding extra computation and tensor replacement. From both sides, static attention
patterns lead to better efficiency. (2) Block-wise context handling. In GPU, threads are assigned
to streaming multiprocessors in block granularity, where each block handles consequent memory
space, which is usually significantly larger than the memory occupied by each token. Consequently,
token-wise KV design will create idling threads and lower the utilization rate of SRAM. Therefore,
we load context by blocks and set the block size to be similar with each thread block size. Guided
by the two principles, we equip LONGGEN with two existing KV cache reduction strategies and
illustrate them in Figure 1. Our first variant is Attention Sink, which combines initial tokens with local
blocks of context window (Xiao et al., 2024). This technique builds upon the proven effectiveness of
sliding window attention in long context training, as demonstrated by Mistral (Jiang et al., 2023). An
alternative initialization strategy is block sparse attention, which divides the context into multiple
blocks and selectively attends to specific block indices based on a predetermined stride (Zaheer et al.,
2020a; Qiu et al., 2019).

3.2 KERNEL-LEVEL OPTIMIZATION TO IMPROVE EFFICIENCY

Since our implementation differs from traditional transformers in sparse attention computation
only, LONGGEN can benefit from the tools developed to improve transformer efficiency, such
as flash attention. In fact, we build our customized kernel upon flash attention. Similarly to

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Training FLOPs KV Cache Mem Inference Prefilling Time

Full Attention O(Lfull(ND2 +N2D)) O(LfullND) O(Lfull(N
2D +ND2))

Sparse Attention in LONGGEN O(Lsparse(SD
2 + S2D)) O(LsparseSD) O(Lsparse(S

2D + SD2))

Table 1: Efficiency comparison between conventional full attention and the sparse attention in
LONGGEN. Training FLOPs count both attention forward and backward operations. Lfull and Lpartial
are the number of full context and partial context layers. N and D represent sequence length and
head dimension, respectively. In LONGGEN’s attention sink variant, S represents a fixed window
block size. In the block sparse variant, S represents a fixed total block size. In both variants, S does
not grow with context length, and S ≪ N .

FlashAttention (Dao et al., 2022), LONGGEN takes an attention mask matrix as input. The attention
mask is represented in compressed sparse row format, which consumes O(N) memory instead of
the original O(N2). Note that the sparse mask is static for all heads, so there is no overhead in
building the dynamic masks. During forward and backward steps, we skip computing a position by
avoiding loading it into HBM if its mask value is zero. This implementation enables FLOPs saving,
significantly accelerating training and inference.

During inference, the bottleneck is to load KV cache as fast as possible. Instead of loading the
entire head dimension, we split the loading of the head dimension across different thread blocks. We
empirically found this to be more efficient than the original FlashAttention, probably because of
reduced SRAM usage per loading cycle. For the attention sink initialization, we follow Mistral to use
the rolling buffer cache for local sliding window tokens (Jiang et al., 2023).

3.3 THEORETICAL TRAINING AND INFERENCE ADVANTAGE

Training Since each token needs to be stored to calculate the loss function, LONGGEN does
not provide any memory savings during the training process. The major efficiency gain comes
from a substantial reduction in training FLOPs. Table 1 demonstrates that when the context length
N significantly exceeds the block size S, the FLOPs required for sparse attention layers become
negligible (S ≪ N ). Consequently, LONGGEN effectively reduces the total FLOPs to a fraction of
Lfull/(Lfull + Lsparse) compared to the original transformer model. Empirical studies indicate that
a ratio of Lfull : Lsparse = 1 : 2 provides an optimal balance, achieving significant efficiency gains
without compromising the model’s long-context performance.

Inference During the inference phase, LONGGEN demonstrates notable improvements in both
prefilling time and KV cache memory usage, as shown in the last two columns of Table 1. In
models with full layers, KV cache typically grows linearly with sequence length, while prefilling
time exhibits quadratic growth. However, LONGGEN effectively mitigates these factors. Analogous
to the training phase analysis, when S ≪ N , the cost induced by sparse attention layers becomes
negligible, reducing both metrics to Lfull/(Lfull + Lsparse) of the original values.

With our customized triton kernels, LONGGEN can translate the theoretical efficiency gain to wall-
clock speedup and GPU memory saving, which we will further illustrate in § 4.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

In order to evaluate LONGGEN across different model scales and architecture, we experiment with
Llama-2-7B-base (regular multihead attention) and Llama-2-70B-base (grouped-query attention).
Following Fu et al. (2024), we continue pretraining them on the same SlimPajama data blend, an open-
source reproduction of Llama-2’s pretraining corpus (Shen et al., 2023). We curate long sequence
training data by concatenating short texts in Slimpajama to 128K length and marking the document
boundary with <bos> token. We train models on 5B tokens, which only account for 0.2% of its 2.4T
pretraining corpus. With 32 Nvidia A100-80G GPUs, the post-training of 7B and 70B models with
full attention consumes 74 and 387 GPU hours, respectively. The learning rate is 2e-5, the global

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

KV Cache
Eviction Methods Attn Sink H2O RazorAttention PyramidKV

NIAH Pass Rate 28% 32% 46% 51%
Long-context
Training Methods Sliding Window YOCO LONGGEN

w/ AttnSink
LONGGEN

w/ BlockSparse

NIAH Pass Rate 48% 88% 100% 100%

Table 2: Averaged pass rate of different methods on the needle-in-a-haystack retrieval task. All
methods are based on a Llama2-7B model. Evaluation context length ranges from 512 to 128K.

Table 3: Evaluation results on the first five tasks of BABILong. Columns correspond to sequence
lengths, rows denote models. Each number indicates the average accuracy of the model over 5 tasks
at a given sequence length, calculated over 1000 samples.

batch size is 32, and we modify the RoPE base to 5M. Each kernel block handles 64 tokens. For
LONGGEN with attention sink, we retain the first block for sink tokens and the most recent 32 blocks
for local context. Similarly, for LONGGEN with block sparse, we set the stride length as 64 blocks,
meaning we only retain one context block for every 64 blocks. This ensures that when having the
same numbers of sparse layers, LONGGEN w/ AttnSink and LONGGEN w/ BlockSparse share similar
KV cache budgets, which are estimated as 2K retained tokens for a 128K sequence length. We run
inference on the vLLM benchmark 2 and compare efficiency accordingly.

We evaluate on three long-context benchmarks—Needle-in-a-Haystack (NIAH) retrieval, BABI-
Long (Kuratov et al., 2024), and RULER (Hsieh et al., 2024). The latter two require models to not
only retireve multiple pieces of evidence from the long context, but also reason over them; each
evidence sentence is randomly placed in a long sequence. Following BABILong paper, we used
3 different random seeds to generate 2250 test samples for each task, and average model perfor-
mance on the first five tasks. For RULER, we only evaluate models on its two QA subtasks for two
reasons: (1) We observe huge performance variance on multi-needle retrieval and other synthetic
tasks. When varying random seeds, the performance can fluctuate up to 40%. (2) Compared with
other synthetic counting tasks, the two multi-hop QA tasks are more practical and close to real-world
application. For short-context evaluation, we followed Llama2 to test on MMLU (Hendrycks et al.,
2020), Math (Hendrycks et al., 2021), and BigBenchHard(BBH) (Suzgun et al., 2022).

4.2 OVERALL PERFORMANCE

Baselines We evaluate LONGGEN against various baselines, reporting performance on NIAH and
BABILong datasets in Tables 2 and 3, respectively. The comparative methods span three categories:
(1) Full Attention: Serving as an upper-bound reference, this approach lacks efficiency optimizations

2vllm/benchmark/benchmark_latebcg.py

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

NIAH BABILong RULER MMLU Math BBH

Full Attention-7B 100% 0.29 0.41 0.419 0.12 0.32

LONGGEN-7B 100% 0.27 0.38 0.415 0.13 0.31
Full Attention-70B 100% 0.46 0.67 0.661 0.32 0.49

LONGGEN-70B 100% 0.46 0.65 0.658 0.32 0.49

Table 4: Overall long context performance of LONGGEN compared with full attention baseline.
Evaluation context length ranges from 512 to 128K. NIAH measures the averaged correct answer rate
of the models on the needle-in-a-haystack retrieval task. BABILong refers to the averaged accuracy
score on the first five tasks on the BABILong benchmark. RULER reports the averaged accuracy on
two multi-hop question answering subtasks from RULER.

and is computationally expensive for long contexts. (2) KV Cache Eviction Methods: We incorporate
two widely adopted inference-time KV reduction techniques: Attention Sink (Xiao et al., 2024)
and Heavy Hitter (H2O) (Zhang et al., 2023). Additionally, we include recently proposed methods
such as RazorAttention (Tang et al., 2024) and PyramidKV (Zhang et al., 2024a), which capture
fine-grained attention distribution patterns and adaptively allocate KV budgets. (3) Long Context
Training Methods: This category includes sliding window attention, YOCO (Sun et al., 2024b), and
our proposed approach with both patterns. Sliding window attention at all layers is employed by
Mistral for long context training, while YOCO utilizes a cross-decoder design to reuse the KV cache
from earlier layers. To ensure a fair comparison, we maintain consistent KV cache budgets across all
methods by adjusting the corresponding hyperparameters. Due to variations in implementation, KV
budgets may fluctuate by approximately 5% between different methods.

Performance Evaluation on Long-Context Analysis of the NIAH results in Table 2 yields two
key findings: (1) Long context training methods consistently outperform inference-time KV eviction
techniques. As discussed in §2, ensuring full access to the context window and training models to
adapt to longer context lengths is crucial. (2) Among the long context training methods, LONGGEN
uniquely achieves perfect needle retrieval results. In contrast to window attention, LONGGEN retains
the entire sequence. Compared to YOCO, LONGGEN more closely resembles the original transformer
architecture in pretraining. Furthermore, our method takes advantage of the information aggregation
capabilities in middle layers.

To assess advanced retrieval and reasoning capabilities, we present results on BABILong in Table 3,
detailing accuracy at each sequence length. While exhibiting similar trends to NIAH, BABILong
provides better differentiation between methods. Among efficient models, LONGGEN demonstrates
superior performance, achieving an average accuracy of 0.27. Notably, despite achieving 100%
accuracy on NIAH, LONGGEN still slightly underperforms full attention on more challenging tasks.
These findings underscore the importance of evaluating models on challenging reasoning tasks.

Comprehensive Comparison with Full Attention We compare LONGGEN-7B and LONGGEN-
70B with their full attention counterparts, which serves as the upper bound for our hybrid sparse
architecture. Our experiments revealed no significant performance disparities between LONGGEN
w/ AttnSink and LONGGEN w/ BlockSparse since their accuracies exhibited minor fluctuations
across different training iterations. For simplicity, we present the evaluation results of LONGGEN w/
AttnSink on both short-context and long-context benchmarks in Table 4. It is worth noting that we do
not express a preference for either strategy in terms of performance.

Although our proposed models demonstrate marginally lower performance compared to the full
attention models, they achieve comparable results across various context scales while offering
substantial efficiency improvements. Our analysis yielded two key findings: (1) Their performance
gap is more significant in long-context scenarios compared to short-context ones. This can be
attributed to the fact that most short context is fully captured by the local blocks in LONGGEN,
whereas information from longer distances is only sparsely represented. (2) The performance gap
between ours and the upper bound narrows as the model scale increases. This trend may be attributed
to the higher degree of information sparsity exhibited by larger models, thus highlighting the potential

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Ablation on the placement of the full attention layers. We train the base Llama2-7B model
with 32 layers in total on 128K context length, and report results on BABILong. We fix the full
attention layer budget as one-third of all layers (12 sparse layers in total) and test varied locations of
full layers. Top, middle, and bottom settings stack all full layers together while interleaving setting
inserts every full layer between two sparse ones.

Table 6: Ablation on the number of full layers in LONGGEN w/ AttnSink. The base model is
Llama2-7B-128K with 32 layers in total. We locate all full attention layers in the middle of the
model for the best performance. All, 1/3, 1/5, and 1/16 Full indicate using 32, 12, 6, and 2 full layers,
respectively.

for applying our approach to models with even larger parameter counts. These findings underscore
LONGGEN’s potential for scaling to more expansive parameter spaces.

4.3 EFFICIENCY IMPROVEMENT

Training Similar to FlashAttention (Dao et al., 2022), we use wall-clock training speedup to
evaluate training efficiency. We measured the latency of training a Llama2-7b model on 128K
sequence length with 256 A100-80G GPUS. We set tensor parallel size as 8 and use distributed
optimizer and checkpoint activation. Results are presented in the leftmost part of Figure 2. By adding
sparse layers, LONGGEN significantly improves training throughput. Our chosen “1/3 Full” setting
could achieve 1.55 times speedup in total wall-clock training time. While increasing the sparsity level
will bring us more efficiency gain, we avoid doing this in pursuit of optimal long-context performance.
We will explain more details in §4.4.

Inference To verify that LONGGEN will bring practical system-level improvement during serving,
we pair our inference kernel to be compatible with vLLM. Using vLLM’s official benchmarking
tools, we report KV cache memory saving and inference latency reduction in Figure 2. Both memory
and latency are measured on one single 128K sequence with a tensor parallel size of 4. From the
figure, our chosen “1/3 Full (12 Full layers)” setting reduces memory consumption from 69.2 GB to
26.5 GB (a 62% reduction). Meanwhile, it saves 40% profiling time and 29 % decoding time. The
results demonstrates LONGGEN’s potential for efficient long-context serving. Similarly, we do not
opt for sparser architecture due to performance consideration.

4.4 IDENTIFYING ESSENTIAL FACTORS FOR LONG-CONTEXT

In this section, we investigate the impact of varying the number and location of full attention layers
on long-context performance.

Position of Full Layers We first examine the effect of full layer positioning by maintaining a
constant number of 12 full layers and altering their placement. We explore four configurations:
(1) stacking in the top layers, (2) stacking in the middle layers, (3) stacking in the bottom layers,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

and (4) interleaving in the middle layers. Table 5 presents the results on the BABILong dataset,
demonstrating that the position of full layers significantly influences long-context performance.
Notably, positioning full layers in the middle of the network yields optimal results. These findings
align with previous research indicating that attention heads in the middle layers play a crucial role in
information aggregation.

Number of Full Layers Subsequently, we investigate the relationship between the number of full
layers and model performance. While increasing the number of full layers is expected to approach the
performance upper bound, we aim to identify an optimal balance between computational efficiency
and accuracy. Table 6 illustrates the performance for various numbers of full layers. Our analysis
reveals that maintaining full layers between 1/5 (6 layers) and 1/3 (12 layers) of the total network
depth adequately preserves satisfactory long-context accuracy.

These empirical observations inspire the final architectural design of LONGGEN, which incorporates
1/3 full layers positioned in the middle of the network.

5 RELATED WORK

5.1 EFFICIENT LONG CONTEXT TRAINING ARCHITECTURE

To overcome the quadratic complexity of transformers, several model architecture alternatives have
been introduced. With recent key modifications (Gu & Dao, 2023) to enhance training efficiency,
state-space models emerged as they only require linear computation complexity. Gu et al. (2020; 2021)
first mitigate the training scalability issue of sequential models with hippo matrix and parallelizable
operands. Mamba (Gu & Dao, 2023; Dao & Gu, 2024) introduces input-dependent state parametriza-
tion to SSMs and optimized hardware-aware implementations. (Park et al., 2024; Zuo et al., 2022; Ma
et al., 2023; Ren et al., 2023; Glorioso et al., 2024; Ren et al., 2024) propose hybrid architectures by
integrating different variations of transformer layers into SSMs. However, as recent studies suggests,
SSMs are less competitive in long context capabilities compared to transformers (Wen et al., 2024;
Arora et al., 2024). Earlier, several works attempts to inject sparsity into transformers to improve
efficiency in long context settings (Tay et al., 2023; Child et al., 2019; Beltagy et al., 2020; Zaheer
et al., 2020a). However, as pointed out in Dao et al. (2022), these algorithms can hardly bring
wall-clock speed-up due to poor compatibility with accelerators. Meanwhile, Sun et al. (2024b)
revives the encoder-decoder architecture to save KV cache, where all decoder layers consume the
same KV vectors from the encoder side with cross attention. However, it’s unclear how to use the
architecture in context extension, as it diverges significantly from default decoder-only models.

5.2 INFERENCE TIME KV CACHE REDUCTION

Recently, many attempts have been made to evict KV cache at inference time for faster long context
serving scenarios (Miao et al., 2023). Zhang et al. (2023); Liu et al. (2023) proposes to discard less
important KV vectors based on the accumulated attention score. Han et al. (2023); Xiao et al. (2024)
find LLMs tend to store important global information into initial tokens, known as attention sink. By
keeping only the attention sink and recent tokens in cache, LLMs can maintain a reasonably well
performance. Ge et al. (2024); Li et al. (2024) design algorithms to adaptively maintain KV cache
with hybrid eviction policies. PyramidKV (Zhang et al., 2024b) find that the sparsity in attention
varies between layers and proposes to dynamically allocate KV cache budget for each layer. This line
of work shows that LLMs can work with partial context at inference time. (Li et al., 2024; Zhang
et al., 2024b) However, Jiang et al. (2024a); Zhang et al. (2024b) shows that many of the methods will
have significant degradation in long context tasks. Also, it’s questionable whether complex eviction
methods are compatible with realistic serving systems, as calculating accumulative attention score
and releasing arbitrary memories are challenging to implement in PagedAttention and Prefix Caching
(Kwon et al., 2023; Zheng et al., 2023).

6 CONCLUSION

In this paper, we propose LONGGEN to finetune a pretrained LLM into an efficient architecture during
length extension. We incorporate GPU-friendly sparse attention to enable practical efficiency gain.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Additionally, we find using a hybrid architecture with 1/3 full attention layers and 2/3 efficient ones
can achieve a balanced trade-off between efficiency and long-context performance. Through light-
weight training, we extend the context length of llama2-7B and 70B from 4K to 128K. Evaluations
on multiple long-context benchmarks suggest that LONGGEN reaches on-par performance with full
attention on long-context retrieval and reasoning. While at the same time, it reduces wall-clock
training time by 36% and KV-cache by 62%, reaching 1.67x acceleration on prefilling and 1.41x on
decoding stage. Our study motivates future work on efficient transformer architectures and low-cost
methods for long context extension.

REFERENCES

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, James Zou, Atri
Rudra, and Christopher Ré. Simple linear attention language models balance the recall-throughput
tradeoff. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
e93ffDcpH3.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
CoRR, abs/2004.05150, 2020. URL https://arxiv.org/abs/2004.05150.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. CoRR, abs/1904.10509, 2019. URL http://arxiv.org/abs/1904.10509.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=ztn8FCR1td.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yao Fu. How do language models put attention weights over long context. Yao FuâĂŹs Notion, 2024.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context. arXiv preprint arXiv:2402.10171,
2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive KV cache compression for llms. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=uNrFpDPMyo.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A compact 7b SSM hybrid model. CoRR, abs/2405.16712,
2024. doi: 10.48550/ARXIV.2405.16712. URL https://doi.org/10.48550/arXiv.
2405.16712.

10

https://openreview.net/forum?id=e93ffDcpH3
https://openreview.net/forum?id=e93ffDcpH3
https://arxiv.org/abs/2004.05150
http://arxiv.org/abs/1904.10509
https://openreview.net/forum?id=ztn8FCR1td
https://openreview.net/forum?id=ztn8FCR1td
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://openreview.net/forum?id=uNrFpDPMyo
https://doi.org/10.48550/arXiv.2405.16712
https://doi.org/10.48550/arXiv.2405.16712


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023. doi: 10.48550/ARXIV.2312.00752. URL https://doi.org/10.
48550/arXiv.2312.00752.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 572–585, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
05546b0e38ab9175cd905eebcc6ebb76-Abstract.html.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
on-the-fly length generalization for large language models. CoRR, abs/2308.16137, 2023. doi: 10.
48550/ARXIV.2308.16137. URL https://doi.org/10.48550/arXiv.2308.16137.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference 1.0:
Accelerating pre-filling for long-context llms via dynamic sparse attention. CoRR, abs/2407.02490,
2024a. doi: 10.48550/ARXIV.2407.02490. URL https://doi.org/10.48550/arXiv.
2407.02490.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024b.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack.
arXiv preprint arXiv:2406.10149, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine Kaufmann,
and Jonathan Mace (eds.), Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023, pp. 611–626. ACM, 2023. doi: 10.1145/
3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: LLM knows what you are looking for before
generation. CoRR, abs/2404.14469, 2024. doi: 10.48550/ARXIV.2404.14469. URL https:
//doi.org/10.48550/arXiv.2404.14469.

11

https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2312.00752
https://proceedings.neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://doi.org/10.48550/arXiv.2308.16137
https://doi.org/10.48550/arXiv.2407.02490
https://doi.org/10.48550/arXiv.2407.02490
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.48550/arXiv.2404.14469
https://doi.org/10.48550/arXiv.2404.14469


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anas-
tasios Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of
importance hypothesis for LLM KV cache compression at test time. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: Moving average equipped gated attention. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL https://openreview.net/forum?id=qNLe3iq2El.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi Jin, Tianqi Chen, and Zhihao
Jia. Towards efficient generative large language model serving: A survey from algorithms to
systems. CoRR, abs/2312.15234, 2023. doi: 10.48550/ARXIV.2312.15234. URL https:
//doi.org/10.48550/arXiv.2312.15234.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak,
Kangwook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? A com-
parative study on in-context learning tasks. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=GbFluKMmtE.

Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise
self-attention for long document understanding. arXiv preprint arXiv:1911.02972, 2019.

Liliang Ren, Yang Liu, Shuohang Wang, Yichong Xu, Chenguang Zhu, and ChengXiang
Zhai. Sparse modular activation for efficient sequence modeling. In Alice Oh, Tristan
Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
3f0739410e1c9c5da04fa10c1f3f86b6-Abstract-Conference.html.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Simple hy-
brid state space models for efficient unlimited context language modeling. CoRR, abs/2406.07522,
2024. doi: 10.48550/ARXIV.2406.07522. URL https://doi.org/10.48550/arXiv.
2406.07522.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, et al. Slimpajama-dc: Understanding data
combinations for llm training. arXiv preprint arXiv:2309.10818, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: enhanced transformer with
rotary position embedding. corr abs/2104.09864 (2021). arXiv preprint arXiv:2104.09864, 2021.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
arXiv preprint arXiv:2405.05254, 2024a.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
CoRR, abs/2405.05254, 2024b. doi: 10.48550/ARXIV.2405.05254. URL https://doi.org/
10.48550/arXiv.2405.05254.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

12

http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
https://openreview.net/forum?id=qNLe3iq2El
https://doi.org/10.48550/arXiv.2312.15234
https://doi.org/10.48550/arXiv.2312.15234
https://openreview.net/forum?id=GbFluKMmtE
http://papers.nips.cc/paper_files/paper/2023/hash/3f0739410e1c9c5da04fa10c1f3f86b6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3f0739410e1c9c5da04fa10c1f3f86b6-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2406.07522
https://doi.org/10.48550/arXiv.2406.07522
https://doi.org/10.48550/arXiv.2405.05254
https://doi.org/10.48550/arXiv.2405.05254


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang. Razorat-
tention: Efficient kv cache compression through retrieval heads. arXiv preprint arXiv:2407.15891,
2024.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Comput. Surv., 55(6):109:1–109:28, 2023. doi: 10.1145/3530811. URL https://doi.org/
10.1145/3530811.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Suyuchen Wang, Ivan Kobyzev, Peng Lu, Mehdi Rezagholizadeh, and Bang Liu. Resonance rope: Im-
proving context length generalization of large language models. arXiv preprint arXiv:2403.00071,
2024.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. Rnns are not transformers (yet): The key bottleneck
on in-context retrieval. CoRR, abs/2402.18510, 2024. doi: 10.48550/ARXIV.2402.18510. URL
https://doi.org/10.48550/arXiv.2402.18510.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
explains long-context factuality. arXiv preprint arXiv:2404.15574, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=NG7sS51zVF.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context scaling of
foundation models. arXiv preprint arXiv:2309.16039, 2023.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santi-
ago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird:
Transformers for longer sequences. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020a. URL https://proceedings.neurips.cc/
paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020b.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024a.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O:
heavy-hitter oracle for efficient generative inference of large language models. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html.

13

https://doi.org/10.1145/3530811
https://doi.org/10.1145/3530811
https://doi.org/10.48550/arXiv.2402.18510
https://openreview.net/forum?id=NG7sS51zVF
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark W. Barrett, and Ying Sheng. Efficiently
programming large language models using sglang. CoRR, abs/2312.07104, 2023. doi: 10.48550/
ARXIV.2312.07104. URL https://doi.org/10.48550/arXiv.2312.07104.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Denis Charles, Eren Manavoglu, Tuo Zhao, and Jianfeng Gao.
Efficient long sequence modeling via state space augmented transformer. CoRR, abs/2212.08136,
2022. doi: 10.48550/ARXIV.2212.08136. URL https://doi.org/10.48550/arXiv.
2212.08136.

14

https://doi.org/10.48550/arXiv.2312.07104
https://doi.org/10.48550/arXiv.2212.08136
https://doi.org/10.48550/arXiv.2212.08136

	Introduction
	Background
	LongGen
	Context Extension with Efficient Architectures
	Kernel-Level Optimization to Improve Efficiency
	Theoretical Training and Inference Advantage

	Experiments
	Experimental Settings
	Overall Performance
	Efficiency Improvement
	Identifying Essential Factors for Long-Context

	Related Work
	Efficient Long Context Training Architecture
	Inference Time KV Cache Reduction

	Conclusion

