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ABSTRACT

Training and serving long-context large language models (LLMs) incurs substantial
overhead. To address this, two critical steps are often required: a pretrained LLM
typically undergoes a separate stage for context length extension by training on
long-context data, followed by architectural modifications to reduce the overhead
of KV cache during serving. This paper argues that integrating length extension
with a GPU-friendly KV cache reduction architecture not only reduces training
overhead during length extension, but also achieves better long-context perfor-
mance. This leads to our proposed LONGGEN, which finetunes a pretrained LLM
into an efficient architecture during length extension. LONGGEN builds on three
key insights: (1) Sparse attention patterns, such as window attention (attending to
recent tokens), attention sink (initial ones), and blockwise sparse attention (strided
token blocks) are well-suited for building efficient long-context models, primarily
due to their GPU-friendly memory access patterns, enabling efficiency gains not
just theoretically but in practice as well. (2) It is essential for the model to have
direct access to all tokens. A hybrid architecture with 1/3 full attention layers and
2/3 efficient ones achieves a balanced trade-off between efficiency and long-context
performance. (3) Lightweight training on 5B long-context data is sufficient to
extend the hybrid model’s context length from 4K to 128K.
We evaluate LONGGEN on both Llama-2 7B and Llama-2 70B, demonstrating
its effectiveness across different scales. During training with 128K-long contexts,
LONGGEN achieves 1.55x training speedup and reduces wall-clock time by 36%,
compared to a full-attention baseline. During inference, LONGGEN reduces KV
cache memory by 62%, achieving 1.67x prefilling speedup and 1.41x decoding
speedup. Compared to baselines that apply KV-cache reduction techniques to
full-attention long-context LLMs, LONGGEN achieves substantially stronger per-
formance not only on the Needle-in-a-Haystack retrieval task, but also on more
challenging long-context reasoning tasks, including BABILong and RULER.

1 INTRODUCTION

Transformer-based large language models (LLMs) capable of processing long contexts have unlocked
new opportunities across a wide range of applications, such as processing long multi-turn dialogue,
understanding code repositories, and answering complex queries that require synthesizing information
from multiple documents. However, their quadratic complexity incurs substantial overhead for both
training and inference with long contexts (Jiang et al., 2024b; Sun et al., 2024a). To address this,
typical approaches involve a two-stage framework (Xiong et al., 2023; Dubey et al., 2024).

• To enhance the model long context capabilities without the substantial overhead of training
with long contexts, an LLM is typically pretrained on large short-context datasets (e.g., 2TB
of 4K tokens) and undergoes a separate context length extension phase, usually through
continual pretraining on a smaller amount of long-context data (e.g., 5B of 128K tokens).

• Serving a long-context LLM is also challenging due to high memory requirements for
caching key and value vectors (KV cache). For example, a 7B Llama-2 model in BF16
precision uses 14 GB for model weights, while the KV cache for a single 128K sequence
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Figure 1: Overview of LONGGEN. Left: It uses a hybrid architecture, and applies KV-reduced
attention in 2/3 layers at the top and bottom, while keeping the middle 1/3 layers full attention. Right:
Two KV-reduced attention variants are explored.
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Figure 2: Training and inference efficiency under different sparsity levels. Left: Training wall-clock
speedup. Mid: KV memory reduction. Right: Inference speedup. We compare training wall-clock
time with FlashAttention and benchmark inference on vLLM. All results are measured on Llama2-7B,
which consists of 32 layers in total. “1/7”, “1/5”, “1/3 Full” and “All Full” indicate using 5, 7, 12,
and 32 full layers, respectively.

adds 69 GB - exceeding an H100 GPU’s capacity. Recent works have sought to reduce KV
cache memory overhead post-hoc by analyzing LLM attention patterns and leveraging these
insights to create sparse attention mechanisms, usually without additional fine-tuning.

Despite their promising performance in language modeling perplexity, these methods underperform
on long-context retrieval and complex reasoning tasks (§2). This paper argues that integrating the
two stages not only builds an efficient long-context LLM with improved long-context performance,
but also reduces the cost of length extension training.

Our proposed approach LONGGEN, as illustrated in Figure 1, is a simple and effective hybrid
transformer architecture that could be built upon any pretrained transformer to extend its context
length. LONGGEN incorporates two key designs: (1) It conducts context extension with various
GPU-friendly KV cache-saving designs, including but not limited to window attention (Jiang et al.,
2023), attention sink (Xiao et al., 2024), and blockwise strided attention (Zaheer et al., 2020b).
Compared with delicately curated KV cache reduction methods, LONGGEN employs a simpler and
more efficient KV design, which maintains uniform memory access patterns for attention heads and
achieves load balance among token blocks. Practically, our customized triton training kernel inherits
from FlashAttention-2 (Dao, 2023), but achieves faster speed in sparse settings, and the inference
kernel is well-suited to vLLM (Kwon et al., 2023) for high-throughput serving. (2) LONGGEN uses
this sparse attention in a hybrid architecture, where 2/3 of the attention layers use sparse attention
while the remaining 1/3 retain full attention, which we find is essential for handling complex tasks
requiring direct access to long-context information(§4.4).

Experiments are conducted on a Llama-2-7B base model (Touvron et al., 2023) and its 70B counterpart
with group query attention. We extend their context length from 4K to 128K and perform evaluations
on multiple long-context benchmarks, including the needle-in-a-haystack (NIAH) retrieval, and two
more distinguishing benchmarks, BABILong (Kuratov et al., 2024) and RULER (Hsieh et al., 2024),
where long-context reasoning is also needed. Through ablations on the position and number of
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sparse attention layers, we study how sparsity level affects long-context capability. Results show
that with full layers in the middle, LONGGEN could achieve comparable performances with standard
transformers even with 2/3 of its remaining layers being with sparse attention. Meanwhile, LONGGEN
only requires lightweight training on 5B Slimpajama (Shen et al., 2023) tokens (less than 0.1% GPU
hours of pretraining) and maintains its short context capability, as indicated by the MMLU (Hendrycks
et al., 2020) score. With our customized kernel, it achieves a 1.55x wall-clock training speedup, as
shown in Figure 2. During inference, it reduces 62% KV cache memory, bringing 1.67x prefilling
speedup and 1.41x decoding speedup.

2 BACKGROUND

LLM context length extension. Due to the overhead of training transformers on long sequences,
context extension is usually separated from standard pretraining as a dedicated post-training stage.
State-of-the-art models, such as Gemini (Team et al., 2023), Llama series (Touvron et al., 2023; Dubey
et al., 2024) and Qwen (Bai et al., 2023) are typically pretrained on large short-sequence corpora, then
undergo length extension on relatively smaller amounts of longer sequences. For example, Llama-3
is pre-trained on 15T tokens within an 8K context length, then post-trained on an additional 800B
tokens to extend to 128K length (Dubey et al., 2024; Xiong et al., 2023). A related data engineering
work (Fu et al., 2024) significantly reduce the tokens needed for context extension to only 5B by
carefully balancing the data source to be similar with that of the pretraining corpus. Typically, there
is no architectural modifications during length extension. As a result, these long-context models
are challenging to serve due to the memory overhead incurred by KV cache (Jiang et al., 2024a).
Therefore, techniques are required to reduce the inference-time memory overhead of these models.

Figure 3: Inference time KV cache reduction methods fail on long context.

Inference-time KV reduction fails to generalize to long contexts. To reduce the inference cost of
large transformer models, one straightforward idea is to apply inference time KV reduction methods.
By only saving the mostly attended KV Cache, they reduce inference memory consumption and
forward computing FLOPs. For efficient decoding, the key and value vectors over the context are
kept in the GPU memory, usually called KV cache. Its memory overhead has become the primary
bottleneck of serving LLMs. Various techniques have been developed to reduce KV cache overhead
by storing only a subset of the KV and evicting the rest (Xiao et al., 2024; Liu et al., 2023; Ge et al.,
2024). However, as we show here, they often underperform in long-context scenarios, where KV
cache reduction is needed the most.

We evaluate two established KV cache reduction methods, Attention Sink (Xiao et al., 2024), and
PyramidKV (Zhang et al., 2024a) on a context-extended Llama2-7B-128K model.1 Attention Sink
(AttnSink) only retains initial and local tokens, while PyramidKV identifies the unique attention dis-
tribution at each layer and allocates a dynamic KV budget. Similarly to Heavy-Hitter (H2O) (Zhang
et al., 2023), PyramidKV preserves tokens that have the largest cumulative attention scores. Ad-
ditionally, we include the original Llama2-7B-128K baseline and our LONGGEN, and report their
performance in Figure 3. For fair comparison, we keep the same KV cache budget for Attn Sink,
PyramidKV, and LONGGEN, i.e., 60% of the original full transformer. Figure 3 shows the results on
the needle-in-a-haystack (NIAH) retrieval task. Both the original Llama2-7B-128K base model and
LONGGEN can pass the needle retrieval task with 100% accuracy, which we will analyze later in the
experiment section §4.2. However, both KV eviction methods underperform on NIAH, especially
with > 32K contexts. Intuitively, their underperformance can be attributed to two factors:

1Details about this Llama2-7B-128K model can be found in §4.1.
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• Lack of full context access. Due to KV reduction at all layers, the model loses direct access
to certain positions, making it more challenging for the model to perform accurate retrieval.

• Lack of sparse context adaption. The model parameters, especially position embeddings,
remain fixed during cache reduction. However, it has been observed that the widely used
RoPE-style position embedding (Su et al., 2021) struggles to generalize to unseen position
ranges (Wang et al., 2024). After KV reduction, the position range becomes non-contiguous,
creating a mismatch with the training setup. This can potentially hurt the model’s ability to
adapt to longer contexts.

The lessons from the above experiment motivates LONGGEN’s key design choices: (1) retaining full
context at some layers, and (2) training the model to adapt to sparse attention at the others.

3 LONGGEN

LONGGEN improves long-context training and inference efficiency. It finetunes a pretrained LLM
into an efficient architecture during length extension. LONGGEN uses a hybrid architecture, with
KV-reduced attention patterns in bottom and top layers, while retaining full contexts in the middle
layers (Figure 1). We will explore various strategies to initialize the sparse attention, followed by
a comprehensive analysis of FLOPs and memory savings to demonstrate the theoretical efficiency
benefits of LONGGEN.

3.1 CONTEXT EXTENSION WITH EFFICIENT ARCHITECTURES

A hybrid architecture Previous work has found attention is relatively specialized in the middle
layers. Some middle-layer attention heads are shown to be strongly related to retrieval and reasoning,
indicating refined information aggregation in those layers Wu et al. (2024); Fu (2024); Zhang et al.
(2024b). Inspired by their findings, we design LONGGEN to be in an hourglass shape—sparse
attention in both ends to efficiently reduce computing cost, and full attention in the middle to
maximize long context performance. We will show the necessity of preserving full contexts for
middle layers in §4.4. We post-train this hybrid architecture on on longer sequences with the same
loss function as in pretraining.

Different KV-Reduced Attention Strategies Efficient attention layers in LONGGEN can be
initialized using various KV cache reduction strategies. Instead of choosing attention patterns that
adaptively allocate memory for each head, LONGGEN prefers uniformly structured attention patterns.
Specifically, we introduce two criteria for sparse attention patterns: (1) Static access of position.
For each head, the position to be retained should be consistent and agnostic of input tokens. This
enables a uniform GPU memory access pattern in training, which allows for optimized sparse training
kernel and memory IO. During inference, it is also feasible to enforce the a fixed cache management
strategy, thus avoiding extra computation and tensor replacement. From both sides, static attention
patterns lead to better efficiency. (2) Block-wise context handling. In GPU, threads are assigned
to streaming multiprocessors in block granularity, where each block handles consequent memory
space, which is usually significantly larger than the memory occupied by each token. Consequently,
token-wise KV design will create idling threads and lower the utilization rate of SRAM. Therefore,
we load context by blocks and set the block size to be similar with each thread block size. Guided
by the two principles, we equip LONGGEN with two existing KV cache reduction strategies and
illustrate them in Figure 1. Our first variant is Attention Sink, which combines initial tokens with local
blocks of context window (Xiao et al., 2024). This technique builds upon the proven effectiveness of
sliding window attention in long context training, as demonstrated by Mistral (Jiang et al., 2023). An
alternative initialization strategy is block sparse attention, which divides the context into multiple
blocks and selectively attends to specific block indices based on a predetermined stride (Zaheer et al.,
2020a; Qiu et al., 2019).

3.2 KERNEL-LEVEL OPTIMIZATION TO IMPROVE EFFICIENCY

Since our implementation differs from traditional transformers in sparse attention computation
only, LONGGEN can benefit from the tools developed to improve transformer efficiency, such
as flash attention. In fact, we build our customized kernel upon flash attention. Similarly to
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Training FLOPs KV Cache Mem Inference Prefilling Time

Full Attention O(Lfull(ND2 +N2D)) O(LfullND) O(Lfull(N
2D +ND2))

Sparse Attention in LONGGEN O(Lsparse(SD
2 + S2D)) O(LsparseSD) O(Lsparse(S

2D + SD2))

Table 1: Efficiency comparison between conventional full attention and the sparse attention in
LONGGEN. Training FLOPs count both attention forward and backward operations. Lfull and Lpartial
are the number of full context and partial context layers. N and D represent sequence length and
head dimension, respectively. In LONGGEN’s attention sink variant, S represents a fixed window
block size. In the block sparse variant, S represents a fixed total block size. In both variants, S does
not grow with context length, and S ≪ N .

FlashAttention (Dao et al., 2022), LONGGEN takes an attention mask matrix as input. The attention
mask is represented in compressed sparse row format, which consumes O(N) memory instead of
the original O(N2). Note that the sparse mask is static for all heads, so there is no overhead in
building the dynamic masks. During forward and backward steps, we skip computing a position by
avoiding loading it into HBM if its mask value is zero. This implementation enables FLOPs saving,
significantly accelerating training and inference.

During inference, the bottleneck is to load KV cache as fast as possible. Instead of loading the
entire head dimension, we split the loading of the head dimension across different thread blocks. We
empirically found this to be more efficient than the original FlashAttention, probably because of
reduced SRAM usage per loading cycle. For the attention sink initialization, we follow Mistral to use
the rolling buffer cache for local sliding window tokens (Jiang et al., 2023).

3.3 THEORETICAL TRAINING AND INFERENCE ADVANTAGE

Training Since each token needs to be stored to calculate the loss function, LONGGEN does
not provide any memory savings during the training process. The major efficiency gain comes
from a substantial reduction in training FLOPs. Table 1 demonstrates that when the context length
N significantly exceeds the block size S, the FLOPs required for sparse attention layers become
negligible (S ≪ N ). Consequently, LONGGEN effectively reduces the total FLOPs to a fraction of
Lfull/(Lfull + Lsparse) compared to the original transformer model. Empirical studies indicate that
a ratio of Lfull : Lsparse = 1 : 2 provides an optimal balance, achieving significant efficiency gains
without compromising the model’s long-context performance.

Inference During the inference phase, LONGGEN demonstrates notable improvements in both
prefilling time and KV cache memory usage, as shown in the last two columns of Table 1. In
models with full layers, KV cache typically grows linearly with sequence length, while prefilling
time exhibits quadratic growth. However, LONGGEN effectively mitigates these factors. Analogous
to the training phase analysis, when S ≪ N , the cost induced by sparse attention layers becomes
negligible, reducing both metrics to Lfull/(Lfull + Lsparse) of the original values.

With our customized triton kernels, LONGGEN can translate the theoretical efficiency gain to wall-
clock speedup and GPU memory saving, which we will further illustrate in § 4.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

In order to evaluate LONGGEN across different model scales and architecture, we experiment with
Llama-2-7B-base (regular multihead attention) and Llama-2-70B-base (grouped-query attention).
Following Fu et al. (2024), we continue pretraining them on the same SlimPajama data blend, an open-
source reproduction of Llama-2’s pretraining corpus (Shen et al., 2023). We curate long sequence
training data by concatenating short texts in Slimpajama to 128K length and marking the document
boundary with <bos> token. We train models on 5B tokens, which only account for 0.2% of its 2.4T
pretraining corpus. With 32 Nvidia A100-80G GPUs, the post-training of 7B and 70B models with
full attention consumes 74 and 387 GPU hours, respectively. The learning rate is 2e-5, the global
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KV Cache
Eviction Methods Attn Sink H2O RazorAttention PyramidKV

NIAH Pass Rate 28% 32% 46% 51%
Long-context
Training Methods Sliding Window YOCO LONGGEN

w/ AttnSink
LONGGEN

w/ BlockSparse

NIAH Pass Rate 48% 88% 100% 100%

Table 2: Averaged pass rate of different methods on the needle-in-a-haystack retrieval task. All
methods are based on a Llama2-7B model. Evaluation context length ranges from 512 to 128K.

Table 3: Evaluation results on the first five tasks of BABILong. Columns correspond to sequence
lengths, rows denote models. Each number indicates the average accuracy of the model over 5 tasks
at a given sequence length, calculated over 1000 samples.

batch size is 32, and we modify the RoPE base to 5M. Each kernel block handles 64 tokens. For
LONGGEN with attention sink, we retain the first block for sink tokens and the most recent 32 blocks
for local context. Similarly, for LONGGEN with block sparse, we set the stride length as 64 blocks,
meaning we only retain one context block for every 64 blocks. This ensures that when having the
same numbers of sparse layers, LONGGEN w/ AttnSink and LONGGEN w/ BlockSparse share similar
KV cache budgets, which are estimated as 2K retained tokens for a 128K sequence length. We run
inference on the vLLM benchmark 2 and compare efficiency accordingly.

We evaluate on three long-context benchmarks—Needle-in-a-Haystack (NIAH) retrieval, BABI-
Long (Kuratov et al., 2024), and RULER (Hsieh et al., 2024). The latter two require models to not
only retireve multiple pieces of evidence from the long context, but also reason over them; each
evidence sentence is randomly placed in a long sequence. Following BABILong paper, we used
3 different random seeds to generate 2250 test samples for each task, and average model perfor-
mance on the first five tasks. For RULER, we only evaluate models on its two QA subtasks for two
reasons: (1) We observe huge performance variance on multi-needle retrieval and other synthetic
tasks. When varying random seeds, the performance can fluctuate up to 40%. (2) Compared with
other synthetic counting tasks, the two multi-hop QA tasks are more practical and close to real-world
application. For short-context evaluation, we followed Llama2 to test on MMLU (Hendrycks et al.,
2020), Math (Hendrycks et al., 2021), and BigBenchHard(BBH) (Suzgun et al., 2022).

4.2 OVERALL PERFORMANCE

Baselines We evaluate LONGGEN against various baselines, reporting performance on NIAH and
BABILong datasets in Tables 2 and 3, respectively. The comparative methods span three categories:
(1) Full Attention: Serving as an upper-bound reference, this approach lacks efficiency optimizations

2vllm/benchmark/benchmark_latebcg.py
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NIAH BABILong RULER MMLU Math BBH

Full Attention-7B 100% 0.29 0.41 0.419 0.12 0.32

LONGGEN-7B 100% 0.27 0.38 0.415 0.13 0.31
Full Attention-70B 100% 0.46 0.67 0.661 0.32 0.49

LONGGEN-70B 100% 0.46 0.65 0.658 0.32 0.49

Table 4: Overall long context performance of LONGGEN compared with full attention baseline.
Evaluation context length ranges from 512 to 128K. NIAH measures the averaged correct answer rate
of the models on the needle-in-a-haystack retrieval task. BABILong refers to the averaged accuracy
score on the first five tasks on the BABILong benchmark. RULER reports the averaged accuracy on
two multi-hop question answering subtasks from RULER.

and is computationally expensive for long contexts. (2) KV Cache Eviction Methods: We incorporate
two widely adopted inference-time KV reduction techniques: Attention Sink (Xiao et al., 2024)
and Heavy Hitter (H2O) (Zhang et al., 2023). Additionally, we include recently proposed methods
such as RazorAttention (Tang et al., 2024) and PyramidKV (Zhang et al., 2024a), which capture
fine-grained attention distribution patterns and adaptively allocate KV budgets. (3) Long Context
Training Methods: This category includes sliding window attention, YOCO (Sun et al., 2024b), and
our proposed approach with both patterns. Sliding window attention at all layers is employed by
Mistral for long context training, while YOCO utilizes a cross-decoder design to reuse the KV cache
from earlier layers. To ensure a fair comparison, we maintain consistent KV cache budgets across all
methods by adjusting the corresponding hyperparameters. Due to variations in implementation, KV
budgets may fluctuate by approximately 5% between different methods.

Performance Evaluation on Long-Context Analysis of the NIAH results in Table 2 yields two
key findings: (1) Long context training methods consistently outperform inference-time KV eviction
techniques. As discussed in §2, ensuring full access to the context window and training models to
adapt to longer context lengths is crucial. (2) Among the long context training methods, LONGGEN
uniquely achieves perfect needle retrieval results. In contrast to window attention, LONGGEN retains
the entire sequence. Compared to YOCO, LONGGEN more closely resembles the original transformer
architecture in pretraining. Furthermore, our method takes advantage of the information aggregation
capabilities in middle layers.

To assess advanced retrieval and reasoning capabilities, we present results on BABILong in Table 3,
detailing accuracy at each sequence length. While exhibiting similar trends to NIAH, BABILong
provides better differentiation between methods. Among efficient models, LONGGEN demonstrates
superior performance, achieving an average accuracy of 0.27. Notably, despite achieving 100%
accuracy on NIAH, LONGGEN still slightly underperforms full attention on more challenging tasks.
These findings underscore the importance of evaluating models on challenging reasoning tasks.

Comprehensive Comparison with Full Attention We compare LONGGEN-7B and LONGGEN-
70B with their full attention counterparts, which serves as the upper bound for our hybrid sparse
architecture. Our experiments revealed no significant performance disparities between LONGGEN
w/ AttnSink and LONGGEN w/ BlockSparse since their accuracies exhibited minor fluctuations
across different training iterations. For simplicity, we present the evaluation results of LONGGEN w/
AttnSink on both short-context and long-context benchmarks in Table 4. It is worth noting that we do
not express a preference for either strategy in terms of performance.

Although our proposed models demonstrate marginally lower performance compared to the full
attention models, they achieve comparable results across various context scales while offering
substantial efficiency improvements. Our analysis yielded two key findings: (1) Their performance
gap is more significant in long-context scenarios compared to short-context ones. This can be
attributed to the fact that most short context is fully captured by the local blocks in LONGGEN,
whereas information from longer distances is only sparsely represented. (2) The performance gap
between ours and the upper bound narrows as the model scale increases. This trend may be attributed
to the higher degree of information sparsity exhibited by larger models, thus highlighting the potential
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Table 5: Ablation on the placement of the full attention layers. We train the base Llama2-7B model
with 32 layers in total on 128K context length, and report results on BABILong. We fix the full
attention layer budget as one-third of all layers (12 sparse layers in total) and test varied locations of
full layers. Top, middle, and bottom settings stack all full layers together while interleaving setting
inserts every full layer between two sparse ones.

Table 6: Ablation on the number of full layers in LONGGEN w/ AttnSink. The base model is
Llama2-7B-128K with 32 layers in total. We locate all full attention layers in the middle of the
model for the best performance. All, 1/3, 1/5, and 1/16 Full indicate using 32, 12, 6, and 2 full layers,
respectively.

for applying our approach to models with even larger parameter counts. These findings underscore
LONGGEN’s potential for scaling to more expansive parameter spaces.

4.3 EFFICIENCY IMPROVEMENT

Training Similar to FlashAttention (Dao et al., 2022), we use wall-clock training speedup to
evaluate training efficiency. We measured the latency of training a Llama2-7b model on 128K
sequence length with 256 A100-80G GPUS. We set tensor parallel size as 8 and use distributed
optimizer and checkpoint activation. Results are presented in the leftmost part of Figure 2. By adding
sparse layers, LONGGEN significantly improves training throughput. Our chosen “1/3 Full” setting
could achieve 1.55 times speedup in total wall-clock training time. While increasing the sparsity level
will bring us more efficiency gain, we avoid doing this in pursuit of optimal long-context performance.
We will explain more details in §4.4.

Inference To verify that LONGGEN will bring practical system-level improvement during serving,
we pair our inference kernel to be compatible with vLLM. Using vLLM’s official benchmarking
tools, we report KV cache memory saving and inference latency reduction in Figure 2. Both memory
and latency are measured on one single 128K sequence with a tensor parallel size of 4. From the
figure, our chosen “1/3 Full (12 Full layers)” setting reduces memory consumption from 69.2 GB to
26.5 GB (a 62% reduction). Meanwhile, it saves 40% profiling time and 29 % decoding time. The
results demonstrates LONGGEN’s potential for efficient long-context serving. Similarly, we do not
opt for sparser architecture due to performance consideration.

4.4 IDENTIFYING ESSENTIAL FACTORS FOR LONG-CONTEXT

In this section, we investigate the impact of varying the number and location of full attention layers
on long-context performance.

Position of Full Layers We first examine the effect of full layer positioning by maintaining a
constant number of 12 full layers and altering their placement. We explore four configurations:
(1) stacking in the top layers, (2) stacking in the middle layers, (3) stacking in the bottom layers,
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and (4) interleaving in the middle layers. Table 5 presents the results on the BABILong dataset,
demonstrating that the position of full layers significantly influences long-context performance.
Notably, positioning full layers in the middle of the network yields optimal results. These findings
align with previous research indicating that attention heads in the middle layers play a crucial role in
information aggregation.

Number of Full Layers Subsequently, we investigate the relationship between the number of full
layers and model performance. While increasing the number of full layers is expected to approach the
performance upper bound, we aim to identify an optimal balance between computational efficiency
and accuracy. Table 6 illustrates the performance for various numbers of full layers. Our analysis
reveals that maintaining full layers between 1/5 (6 layers) and 1/3 (12 layers) of the total network
depth adequately preserves satisfactory long-context accuracy.

These empirical observations inspire the final architectural design of LONGGEN, which incorporates
1/3 full layers positioned in the middle of the network.

5 RELATED WORK

5.1 EFFICIENT LONG CONTEXT TRAINING ARCHITECTURE

To overcome the quadratic complexity of transformers, several model architecture alternatives have
been introduced. With recent key modifications (Gu & Dao, 2023) to enhance training efficiency,
state-space models emerged as they only require linear computation complexity. Gu et al. (2020; 2021)
first mitigate the training scalability issue of sequential models with hippo matrix and parallelizable
operands. Mamba (Gu & Dao, 2023; Dao & Gu, 2024) introduces input-dependent state parametriza-
tion to SSMs and optimized hardware-aware implementations. (Park et al., 2024; Zuo et al., 2022; Ma
et al., 2023; Ren et al., 2023; Glorioso et al., 2024; Ren et al., 2024) propose hybrid architectures by
integrating different variations of transformer layers into SSMs. However, as recent studies suggests,
SSMs are less competitive in long context capabilities compared to transformers (Wen et al., 2024;
Arora et al., 2024). Earlier, several works attempts to inject sparsity into transformers to improve
efficiency in long context settings (Tay et al., 2023; Child et al., 2019; Beltagy et al., 2020; Zaheer
et al., 2020a). However, as pointed out in Dao et al. (2022), these algorithms can hardly bring
wall-clock speed-up due to poor compatibility with accelerators. Meanwhile, Sun et al. (2024b)
revives the encoder-decoder architecture to save KV cache, where all decoder layers consume the
same KV vectors from the encoder side with cross attention. However, it’s unclear how to use the
architecture in context extension, as it diverges significantly from default decoder-only models.

5.2 INFERENCE TIME KV CACHE REDUCTION

Recently, many attempts have been made to evict KV cache at inference time for faster long context
serving scenarios (Miao et al., 2023). Zhang et al. (2023); Liu et al. (2023) proposes to discard less
important KV vectors based on the accumulated attention score. Han et al. (2023); Xiao et al. (2024)
find LLMs tend to store important global information into initial tokens, known as attention sink. By
keeping only the attention sink and recent tokens in cache, LLMs can maintain a reasonably well
performance. Ge et al. (2024); Li et al. (2024) design algorithms to adaptively maintain KV cache
with hybrid eviction policies. PyramidKV (Zhang et al., 2024b) find that the sparsity in attention
varies between layers and proposes to dynamically allocate KV cache budget for each layer. This line
of work shows that LLMs can work with partial context at inference time. (Li et al., 2024; Zhang
et al., 2024b) However, Jiang et al. (2024a); Zhang et al. (2024b) shows that many of the methods will
have significant degradation in long context tasks. Also, it’s questionable whether complex eviction
methods are compatible with realistic serving systems, as calculating accumulative attention score
and releasing arbitrary memories are challenging to implement in PagedAttention and Prefix Caching
(Kwon et al., 2023; Zheng et al., 2023).

6 CONCLUSION

In this paper, we propose LONGGEN to finetune a pretrained LLM into an efficient architecture during
length extension. We incorporate GPU-friendly sparse attention to enable practical efficiency gain.
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Additionally, we find using a hybrid architecture with 1/3 full attention layers and 2/3 efficient ones
can achieve a balanced trade-off between efficiency and long-context performance. Through light-
weight training, we extend the context length of llama2-7B and 70B from 4K to 128K. Evaluations
on multiple long-context benchmarks suggest that LONGGEN reaches on-par performance with full
attention on long-context retrieval and reasoning. While at the same time, it reduces wall-clock
training time by 36% and KV-cache by 62%, reaching 1.67x acceleration on prefilling and 1.41x on
decoding stage. Our study motivates future work on efficient transformer architectures and low-cost
methods for long context extension.
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