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Abstract

We study the problem of estimating the means of well-separated mixtures when
an adversary may add arbitrary outliers. While strong guarantees are available
when the outlier fraction is significantly smaller than the minimum mixing weight,
much less is known when outliers may crowd out low-weight clusters – a setting
we refer to as list-decodable mixture learning (LD-ML). In this case, adversarial
outliers can simulate additional spurious mixture components. Hence, if all means
of the mixture must be recovered up to a small error in the output list, the list size
needs to be larger than the number of (true) components. We propose an algorithm
that obtains order-optimal error guarantees for each mixture mean with a minimal
list-size overhead, significantly improving upon list-decodable mean estimation,
the only existing method that is applicable for LD-ML. Although improvements
are observed even when the mixture is non-separated, our algorithm achieves
particularly strong guarantees when the mixture is separated: it can leverage the
mixture structure to partially cluster the samples before carefully iterating a base
learner for list-decodable mean estimation at different scales.

1 Introduction

Estimating the mean of a distribution from empirical data is one of the most fundamental problems in
statistics. The mean often serves as the primary summary statistic of the dataset or is the ultimate
quantity of interest that is often not precisely measurable. In practical applications, data frequently
originates from a mixture of multiple groups (also called subpopulations) and a natural goal is to
estimate the distinct means of each group separately. For example, we might like to use representative
individuals to study how a complex decision or procedure would impact different subpopulations. In
other applications, such as genetics [1] or astronomy [2] research, finding the means themselves can
be a crucial first step towards scientific discovery. In both scenarios, the algorithm should output a
list of estimates that are close to the unobservable true means.

However, in practice, the data may also contain outliers, for example due to measurement errors or
abnormal events. We would like to find good mean estimates for all inlier groups even when the
proportion of such additive adversarial contaminations is larger than some smaller groups that we
want to properly represent. The central open question that motivates our work is thus:

What is the cost of efficiently recovering small groups that may be outnumbered by outliers?

More specifically, consider a scenario where the practitioner would like to recover the means of
small but significant enough inlier groups which constitute at least wlow ∈ (0, 1) proportion of the
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(corrupted) data. If k is the number of such inlier groups, for all i ∈ [k], we then denote by wi ⩾ wlow

the unknown weight of the i−th group with mean µi. Further, we use ε to refer to the proportion of
additive contamination – the data that comes from an unknown adversarial distribution. The goal is
to estimate the unknown means µi for all i ∈ [k].

Existing works on robust mixture learning such as [3, 4] consider the problem when the fraction
of additive adversarial outliers is smaller than the weight of the smallest subgroup, i.e. ε < wlow.
However, for large outlier proportions where ε ⩾ wlow, these algorithms are not guaranteed to
recover small clusters with wi ⩽ ε. In this case, outliers can form additional spurious clusters that
are indistinguishable from small inlier groups. As a consequence, generating a list of size equal to
the number of components would possibly lead to neglecting the means of small groups. In order
to ensure that the output contains a precise estimate for each of the small group means, it is thus
necessary the estimation algorithm to provide a list whose size is strictly larger than the number of
components. We call this paradigm list-decodable mixture learning (LD-ML), following the footsteps
of a long line of work on list-decodable learning (see Sections 2 and 5).

Specifically, the main challenge in LD-ML is to provide a short list that contains good mean estimates
for all inlier groups. We first note that there is a minimum list size the algorithm necessarily has to
output to guarantee that all groups are recovered. For example, consider an outlier distribution that
includes several copies of the smallest inlier group distribution with means spread out throughout
the domain. Since inlier groups are indisntinguishable from spurious outlier ones, the shortest list
that includes means of all inlier groups must be of size at least |L| ⩾ k + ε

mini wi
. Here, ε

mini wi

can be interpreted as the minimal list-size overhead that is necessary due to "caring" about groups
with weight smaller than ε. The key question is hence how good the error guarantees of an LD-ML
algorithm can be when the list size overhead stays close to ε

minwi
, while being agnostic to wi aside

from the knowledge of wlow. Furthermore, we are interested in computationally efficient algorithms
for LD-ML, especially when dealing with high-dimensional data.

To the best of our knowledge, the only existing efficient algorithms that are guaranteed to recover
inlier groups with weights wi ⩽ ε are list-decodable mean estimation (LD-ME) algorithms. LD-ME
algorithms model the data as a mixture of one inlier and outlier distribution with weights α ⩽ 1/2 and
1− α respectively. Provided with the weight parameter α, they output a list that contains an estimate
close to the inlier mean with high probability. However, for the LD-ML setting, the inlier weights wi

are not known and we would have to use LD-ME algorithms with wlow as weight estimates for each
group. This leads to suboptimal error in particular for large groups, that hence (somewhat counter
intuitively) would have to "pay" for the explicit constraint to recover small groups. Furthermore, even
if LD-ME were provided with wi, by design it would treat inlier points from other components also
as outliers, unnecessarily inflating the fraction of outliers to 1− wi instead of ε.

Contributions In this paper, we propose an algorithm that (i) correctly estimates the weight of
each component only given a lower bound and (ii) does not overestimate proportion of outliers
when components are well-separated. In particular, we construct a meta-algorithm that uses mean
estimation algorithms as base learners that are designed to deal with adversarial corruptions. This
meta-algorithm inherits guarantees from the base learner and any improvement of the latter translates
to better results for LD-ML. For example, if the base learner runs in polynomial time, so does our
meta-algorithm. Our approach of using the output of weak base learners to achieve better performance
is reminiscent of the boosting paradigm that is common in machine learning practice.

Our algorithm achieves significant improvements in error and list-size guarantees for multiple
settings. For ease of comparison, we summarize error improvements for inlier Gaussian mixtures
in Table 1 (see Theorem 3.3 for the general result regarding distributions with bounded moments).
The main focus of our contributions is represented in the second row; that is the setting where outliers
outnumber some inlier groups with weight wj ⩽ ε and the inlier components are well-separated,

i.e., ∥µi − µj∥ ≳1
√
log 1

wlow
, where µi’s are the inlier component means. As we mentioned before,

robust mixture learning algorithms, such as [4, 7], are not applicable here and the best error guarantees
in prior work is achieved by an LD-ME algorithm, e.g. from [3]. While its error bounds are of order
O(
√
log 1

wlow
) for a list size of O( 1

wlow
), our approach guarantees error O(

√
log ε

wi
) for a list size

1We adopt the following standard notation: f ≲ g, f = O(g), and g = Ω(f) mean that f ⩽ Cg for some
universal constant C > 0. Õ-notation hides polylogarithmic terms.
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Type of inlier mixture Best prior work Ours Inf.-theor. lower bound
Large (∀j : ε ⩽ wj), sep. groups Õ(ε/wi) Õ(ε/wi) Ω(ε/wi), see [5]

Small (∃j : ε ⩾ wj), sep. groups O
(√

log 1
wlow

)
O
(√

log ε+wi

wi

)
Ω
(√

log ε+wi

wi

)
, Prop. 3.5

Non-separated groups O
(√

log 1
wlow

)
O
(√

log 1
wi

)
Ω
(√

log 1
wi

)
, see [6]

Table 1: For a mixture of Gaussian components N(µi, Id), we show upper and lower bounds for the error of
the i-component given a output list L (of the respective algorithm) minµ̂∈L∥µ̂− µi∥. When the error doesn’t
depend on i, all means have the same error guarantee irrespective of their weight. Note that depending on the
type of inlier mixture, different methods in [3] are used as the ’best prior work’: robust mixture learning for the
first row and list-decodable mean estimation for the rest.

of k +O( ε
wlow

). Remarkably, we obtain the same error guarantees as if an oracle would run LD-ME
on each inlier group with the correct weight wi separately (with outliers). Hence, the only cost for
recovering small groups is the increased list-size overhead of order O( ε

wlow
). Further, a sub-routine

in our meta-algorithm also obtains novel guarantees under no separation assumption, as shown in the
third row of Table 1. This algorithm achieves the same error guarantees for similar list size as a base
learner that knows the correct weights of the inlier components.

Based on a reduction argument from LD-ME to LD-ML, we also provide information-theoretic (IT)
lower bounds for LD-ML. If the LD-ME base learners achieve the IT lower bound (possible for inlier
Gaussian mixtures), so does our LD-ML algorithm. In synthetic experiments, we implement our
meta-algorithm with the LD-ME base learner from [8] and show clear improvements compared to the
only prior method with guarantees, while being comparable or better than popular clustering methods
such as k-means and DBSCAN for various attack models.

2 Settings

We now introduce the learning settings that appear in the paper. Let d ∈ N+ be the ambient dimension
of the data and k ∈ N+ be the number of mixture components (inlier groups/clusters).

2.1 List-decodable mixture learning under adversarial corruptions

We focus on mixtures that consist of distributions that are sufficiently bounded in the following sense.
Definition 2.1. Let t ∈ N+ be even and let D(µ) be a distribution on Rd with mean µ. We say
that D(µ) has sub-Gaussian t-th central moments if for all even s ⩽ t and for every v ∈ Rd with
∥v∥ = 1, Ex∼D ⟨x− µ, v⟩s ⩽ (s− 1)!!.

This class of distributions is closely related to commonly studied distributions in the literature (see,
e.g., [5]) with bounded t-th moment. Our requirement for the boundedness of all moments s ⩽ t
stems from the fact that our algorithm should adapt to unknown and possibly non-uniform mixture
weights.

We assume that we are given samples from a corrupted d-dimensional mixture of k inlier distributions
Di(µi) satisfying Definition 2.1, where the mixture is defined as

X =

k∑
i=1

wiDi(µi) + εQ, (2.1)

and
∑k

i=1 wi + ε = 1, where for all i = 1, . . . , k, it holds that wi ⩾ wlow. Further, an ε > 0
proportion of the data comes from an outlier distribution Q chosen by the adversary with full
knowledge of our algorithm and inlier mixture. Samples drawn from Di(µi) constitute the ith inlier
cluster. The goal in mixture learning under corruptions as in Eq. (2.1), is to design an algorithm that
takes in i.i.d. samples from X and outputs a list L, such that for each i ∈ [k], there exists µ̂ ∈ L with
small estimation error ∥µi − µ̂∥.
To the best of our knowledge, we are the first to study the list-decodable mixture learning problem
(LD-ML) that considers the case of large fractions of outliers ε ⩾ mini wi and the goal is to achieve
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small estimation errors while the list size |L| remains small. While in robust estimation problems, the
fractions of inliers and outliers are usually provided to the algorithm, in mixture learning, the mixture
proportions are explicit quantities of interest. Throughout the paper, we hence assume that both the
true weights wi of the mixture and the fraction of outliers ε are unknown. Instead, by definition in
Eq. (2.1), we assume knowledge of a valid lower bound wlow ⩽ mini wi.

Note that when ε ≲ mini wi, the problem is known as robust mixture learning and can be solved with
list size |L| = k as discussed in [3, 4, 7]. However, algorithms for robust mixture learning fail when
the fraction of outliers becomes comparable to the inlier group size. In the presence of “spurious”
adversarial clusters, it is information-theoretically impossible to output a list L, such that (i) |L| = k
and (ii) L contains precise estimate for each true mean.

2.2 Mean estimation under adversarial corruptions

In order to solve LD-ML, we use mean estimation procedures that have provable guarantees under
adversarial contamination. Mean estimation can be viewed as a particular case of the mixture learning
problem in Eq. (2.1) with k = 1, the fraction of inliers α = w1 and the fraction of outliers ε = 1− α.
The mean estimation algorithms we use to solve LD-ML with wlow need to exhibit guarantees under a
stronger adversarial model, where the adversary can also replace a small fraction (depending on wlow)
of the inlier points; see details in Definition B.1. This is a special case of the general contamination
model as opposed to the slightly more benign additive contamination model in Eq. (2.1). For different
regimes of α we use black-box learners that solve corresponding regime when provided with α.

Robust mean estimation When the majority of points are inliers, we are in the RME setting.
Robust statistics has studied this setting with different corruption models and efficient algorithms are
known to achieve information-theoretically optimal error guarantees (see Section 5).

List-decodable mean estimation When inliers form a minority, we are in the list-decodable setting
and are required to return a list instead of a single estimate. We refer to this setting as cor-kLD
(corrupted known list-decoding). For mixture learning, α is usually unknown and we need to
solve the cor-aLD (corrupted agnostic list-decoding) problem (i.e., α is not provided, but instead
a lower bound αlow ∈ [wlow, α] is given to the algorithm). Finally, when only additive adversarial
contamination is present, as in Eq. (2.1), we recover the standard list-decoding setting studied in
prior works (see Section 5) that we call sLD (simple list-decoding). In Appendix G we show that two
algorithms designed for sLD also exhibit guarantees for cor-kLD for any wlow.

3 Main results

We now present our main results for list-decodable and robust mixture learning defined in Section 2.
In Section 3.1, we provide algorithmic upper bounds and information-theoretic lower bounds. For the
special case of spherical Gaussian mixtures, we show in Section 3.1 that we achieve optimality. Our
results are constructive as we provide a meta-algorithm for which these bounds hold.

As depicted in Figure 1, our meta-algorithm (Algorithm 2) is a two-stage process. The outer stage
(Algorithm 6) reduces the problem to mean estimation by leveraging the mixture structure and
splitting the data into a small collection T of sets T . Each set T ∈ T should (i) contain at most one
inlier cluster (and few samples from other clusters) and (ii) the total number of outliers across all
sets should be at most O(εn). We then run the inner stage (Algorithm 3) on sets T , which outputs a
mean estimate for the inlier cluster in T . First, a cor-aLD algorithm identifies the weight of the inlier
cluster and returns the result of a cor-kLD base learner with this weight. Then, if the weight is large,
we improve the error via an RME base learner. A careful filtering procedure in both stages achieves
the significantly reduced list size and better error guarantees. We require the base learners to satisfy
the following set of assumptions.

Assumption 3.1 (Mean-estimation base learners for mixture learning). Let t be an even integer
and consider the corruption setting defined in Definition B.1. Further, let the inlier distribution
D(µ∗) ∈ D where D is the the family of distributions satisfying Definition 2.1 for t. We assume that
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Outer stage (Algorithm 6): creates collection T of sets T
Inner stage (Algorithm 3): for each T in T:

1. Run algorithm for cor-aLD
2. Improve errors if possible

Base cor-kLD
Algorithm

Base RME
Algorithm

Figure 1: Schematic of the meta-algorithm (Algorithm 2) underlying Theorem 3.3

(a) for α ∈ [wlow, 1/3] in the cor-kLD regime, there exists an algorithm AkLD that uses
NLD(α) samples and TLD(α) time to output a list of size bounded by 1/αO(1) that with
probability at least 1/2 contains some µ̂ with ∥µ̂− µ∗∥ ⩽ f(α), where f is non-increasing.

(b) for α ∈ [1− εRME, 1], with 0 ⩽ εRME ⩽ 1/2− 2w2
low in the RME regime, there exists an

RME algorithm AR that uses NR(α) samples and TR(α) time to output with probability at
least 1/2 some µ̂ with ∥µ̂− µ∗∥ ⩽ g(α), where g is non-increasing.

Note that the sample and time-complexity functions such as NLD and TLD, might depend on t, for
example growing as dt. We emphasize that (i) the guarantees of our meta-algorithm depend on
the guarantees of the base learners and (ii) we only require the base learners to work in the well-
studied setting with known fraction of inliers. Corollary 3.4 uses known base learners for Gaussian
distributions achieving information-theoretically optimal error bounds. There also exists base learners
for distributions beyond Gaussians, such as bounded covariance or log-concave distributions, see,
e.g. [9].

3.1 Upper bounds for list-decodable mixture learning

Key quantities that appear in our error bounds are the relative proportion of inliers w̃i and outliers ε̃i:

w̃i =
wi

wi + ε+ w2
low

and ε̃i = 1− w̃i. (3.1)

These quantities reflect that each set T in the inner stage contains at most one inlier cluster and a
small (≲ w2

low) fraction of points from other inlier clusters. We now present a simplified version
of our main result in Theorem 3.3 (see Theorem C.1 for the detailed result) that allows for a more
streamlined presentation of the results using the following ‘well-behavedness’ of f and g.
Assumption 3.2. Let f , g be as defined in Assumption 3.1. For some C > 0, we assume (i) εRME ⩾
0.01, (ii) ∀x ∈ (0, 1/3], f(x/2) ⩽ Cf(x), and (iii) ∀x ∈ [0.99, 1], g(x− (1− x)2) ⩽ Cg(x).

We are now ready to state the main result of the paper.
Theorem 3.3. Let d, k ∈ N+, wlow ∈ (0, 1/2], and t be an even integer. Let X be a d-dimensional
mixture distribution following Eq. (2.1). Let AkLD and AR satisfy Assumptions 3.1 and 3.2 for some
even t. Further, suppose that ∥µi − µj∥ ≳

√
t(1/wlow)

4/t + f(wlow) for all i ̸= j ∈ [k].

Then there exists an algorithm that, given poly(d, 1/wlow) · (NLD(wlow) +NR(wlow)) i.i.d. sam-
ples from X as well as d, k, wlow, and t, runs in time poly(d, 1/wlow) · (TLD(wlow) + TR(wlow))

and with probability at least 1−wO(1)
low outputs a list L of size |L| ⩽ k +O(ε/wlow) where, for each

i ∈ [k], there exists µ̂ ∈ L such that

∥µ̂− µi∥ = O

(
min

1⩽t′⩽t

√
t′(1/w̃i)

1/t′ + f(min(w̃i, 1/3))

)
.

If the relative weight of the i-th cluster is large, i.e., ε̃i ⩽ 0.001, then the error is further bounded by

∥µ̂− µi∥ = O (g(w̃i)) .

The proof together with a more general statement, Theorem C.1, can be found in Appendix C.

Note that for a mixture setting with k ⩾ 2, the assumption wlow ⩽ 1/k ⩽ 1/2 is automatically
fulfilled. Also, for large weights w̃i such that log(1/w̃i)≪ t, the t′ that minimizes

√
t′(1/w̃i)

1/t′ is
smaller than t, and for small weights the minimizer is t′ = t.

5



Gaussian case For Gaussian inlier distributions, LD-ME and RME base learners with guarantees
for Assumption 3.1 have already been developed in prior work. We can thus readily use them in the
meta-algorithm to arrive at the following statement with the relative proportions defined in Eq. (3.1).
Corollary 3.4 (Gaussian case). Let d, k, wlow and t be as in Theorem 3.3. Let X be as in Eq. (2.1) with
Di(µi) = N(µi, Id) with µi’s satisfying ∥µi − µj∥ ≳

√
log 1/wlow for all i ̸= j ∈ [k]. There exists

an algorithm that for t = O(log 1/wlow), given N = poly(dt, (1/wlow)
t) i.i.d. samples from X and

wlow, runs in poly(N) time and outputs a list L such that with high probability |L| = k+O(ε/wlow)
and, for all i ∈ [k], there exists µ̂ ∈ L such that

∥µ̂− µi∥ = O
(√

log 1/w̃i

)
.

If the relative weight of the i-th cluster is large, i.e. ε̃i ⩽ 0.001, then the error is further bounded by

∥µ̂− µi∥ = O
(
ε̃i
√

log 1/ε̃i

)
.

Proof. Theorem 6.12 from [5] provides an LD-ME algorithm AkLD achieving error f(α) ⩽
O(
√
t′(1/α)1/t

′
) for all t′ ⩽ t. The sample and time complexity scale as poly(dt, (1/α)t). Also,

Theorem 5.1 from [10] provides a robust mean estimation algorithm AR such that for a small enough
constant fraction of outliers ε = 1 − α it achieves error g(α) = O((1 − α)

√
log 1/(1− α)) with

sample complexity Ω̃(d/ε2). Using these AkLD and AR, we recover the desired bounds.

Comparison with prior work We now compare our result with the only previous method that
can achieve guarantees in the LD-ML setting with unknown wi. As discussed in [3], algorithms for
the simple list-decoding model with α = wlow can be used for LD-ML by viewing a single mixture
component as the “ground truth” distribution and effectively treating all other inlier components and
original outliers as outliers. Besides requiring a much larger list size ofO(1/wlow)≫ k+O(ε/wlow)

and error O(
√
log 1/wlow), this approach has two drawbacks that manifest in the suboptimal guar-

antees: 1) For larger clusters i with wi ≫ wlow, LD-ME only achieves an error O
(√

log 1/wlow

)
.

Our result, even without separation assumption, achieves a sharper error bound O
(√

log 1/wi

)
. 2)

When the mixture is separated, LD-ME cannot exploit the structure since it still models the data
as wlowN(µi, Id) + (1 − wlow)Q for each i, so that the algorithm inevitably treats all other true
components as outliers. This results in the error O

(√
log 1/wlow

)
≫ O

(√
log 1/w̃i

)
= O(1)

(when ε ∼ wi ≪ 1). We refer to Appendix A for further illustrative examples. As a simple example,
consider the uniform inlier mixture with ε = wi = 1/(k+ 1), where k is large. In this case, previous
results have error guarantees O(

√
log k), while we obtain error O(1).

Separation assumption For the problem of learning mixture models, a separation assumption is
common in the literature [3, 9, 11, 12]. We require separation ∥µi − µj∥ ≳

√
t(1/wlow)

4/t, which
we believe to be sub-optimal for the case of finite t. In cases when ε is small (namely ε ≲ wlow),
there exist prior works on clustering allowing smaller separation. Specifically, when t = 2, a recent
work [13] only requires ∥µi − µj∥ ≳ 1/

√
wlow. For a general t ⩾ 4, [9] succeeds under separation

(1/wlow)
2/t. We leave the possible relaxation of the separation requirement in the case of general t

and large ε for the future work.

In the Gaussian case we require separation ∥µi − µj∥ ≳
√

log 1/wlow, which is optimal in the
uniform (wi = 1/k) case. Indeed, without the separation assumption, even in the noiseless uniform
Gaussian case, [6] shows that no efficient algorithm can obtain error asymptotically better than
Ω(
√
log 1/wi). In Corollary B.5, we prove that the inner stage (Algorithm 3) of our algorithm,

without knowledge of wi and separation assumption, achieves with high probability matching error
guarantees O(

√
log 1/wi) with list size bounded by O(1/wlow).

3.2 Information-theoretical lower bounds and optimality

Next, we present information-theoretical lower bounds for list-decodable mixture learning on well-
separated distributions X as defined in Eq. (2.1). We show that our error is optimal as long as the list
size is required to be small. Our proof uses a simple reduction technique and leverages established
lower bounds in [3] for the list-decodable mean estimation model (sLD in Section 2).
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Algorithm 1 Outer stage, informal (see Algorithm 6)

Input: X , wlow, ∆, and sLD algorithm AsLD.
Output: Collection of sets T.

1: L← (µ̂1, . . . , µ̂M ) := AsLD(X) with wlow;
2: while L ̸= ∅ do
3: for µ̂ ∈ L do
4: compute for an appropriate distance function d

S
(1)
µ̂ = {x ∈ X | d(x, µ̂) ⩽ ∆} , S

(2)
µ̂ = {x ∈ X | d(x, µ̂) ⩽ 3∆}

5: if for all µ̂, |S(2)
µ̂ | > 2|S(1)

µ̂ | then add X to T and update L← ∅
6: else
7: µ̃← argmax|S(2)

µ̂ |⩽2|S(1)
µ̂ ||S

(1)
µ̂ |

8: add S(2)
µ̃ to T

9: X ← X \ S(1)
µ̃

10: return T

Proposition 3.5 (Information-theoretic lower bounds). Let A be an algorithm that, given access to
X, outputs a list L that, with probability ⩾ 1/2, for each i ∈ [k] contains µ̂ ∈ L with ∥µ̂− µi∥ ⩽ βi.

(a) Consider the case with ∥µi − µj∥ ≳ (1/wlow)
4/t for i ̸= j ∈ [k], Di(µi) having t-th bounded

sub-Gaussian central moments and βi ⩽ C(1/wlow)
1/t for each i ∈ [k]. If for some s ∈ [k] it holds

that ws ⩽ ε, then algorithm A must either have error bound βs = Ω((1/w̃i)
1/t) or |L| ⩾ k + d− 1.

(b) Consider the case with ∥µi − µj∥ ≳
√

log 1/wlow for i ̸= j ∈ [k], Di(µi) = N(µi, Id) and
βi ⩽ C

√
log 1/wlow for each i ∈ [k]. If for some s ∈ [k] it holds that ws ⩽ ε, then algorithm A

must either have error bound βs = Ω(
√
log 1/w̃i) or |L| ⩾ k +min{2Ω(d), (1/w̃i)

ω(1)}.

In the Gaussian inlier case, Corollary 3.4 together with Proposition 3.5 imply optimality of our
meta-algorithm. Indeed, if one plugs in optimal base learners (as in the proof of Corollary 3.4),
we obtain error guarantee that matches lower bound. In particular, “exponentially” larger list size
is necessary for asymptotically smaller error. For inlier components with bounded sub-Gaussian
moments, [3] obtains information-theoretically (nearly-)optimal LD-ME base learners.

Furthermore, in [3], formal evidence of computational hardness was obtained (see their Theorem 5.7,
which gives a lower bound in the statistical query model introduced by [14]) that suggests obtaining
error Ωt((1/w̃s)

1/t) requires running time at least dΩ(t). This was proved for Gaussian inliers and
the running time matches ours up to a constant in the exponent.

4 Algorithm sketch
We now sketch our meta-algorithm specialized to the case of separated Gaussian components
N(µi, Id) and provide intuition for how it achieves the guarantees in Corollary 3.4. In this section,
we only discuss how to obtain an error of O(

√
log 1/w̃i) for each mean when ε ≳ mini wi. We refer

to Appendix D for how to achieve the refined error guarantee of O(ε̃i
√
log 1/ε̃i) when ε̃i is small.

As discussed in Section 3.1, running an out-of-the-box LD-ME algorithm for the sLD problem
on our input with parameter α = wlow would give sub-optimal guarantees. In contrast, our two-
stage Algorithm 2, equipped with the appropriate cor-kLD and RME base learners as depicted in
Figure 1, obtains for each component an error guarantee that is as good as if we had access to the
samples only from this component and from the outliers. We now give more details about the outer
stage, Algorithm 1, and inner stage, Algorithm 3, and describe on a high-level how they contribute to
a short output list with optimal error bound in Corollary 3.4 for large outlier fractions.

4.1 Inner stage: list-decodable mean estimation with unknown inlier fraction

We now describe how to use a black-box cor-kLD algorithm to obtain a list-decoding algorithm
AaLD for the cor-aLD mean-estimation setting with access only to αlow ⩽ α. AaLD is used
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in the proof of Corollary B.5 and plays a crucial role (see Figure 1) in our meta-algorithm. In
particular, it deals with the unknown weight of the inlier distribution in each set returned by the outer
stage. Note that estimating α from the input samples is impossible by nature. Indeed, we cannot
distinguish between potential outlier clusters of arbitrary proportion ⩽ 1−α and the inlier component.
Underestimating the size of a large component would inevitably lead to a suboptimal error guarantee.
We now show how to overcome this challenge and achieve an error guarantee O(

√
log 1/α) for a

list size 1 +O((1− α)/αlow) for the cor-aLD setting. Here we only outline our algorithm and refer
to Appendix D for the details.

Algorithm 3 first produces a large list of estimates corresponding to many potential values of α
and then prunes it while maintaining a good estimate in the list. In particular, for each α̂ ∈ A :=
{αlow, 2αlow, . . . , ⌊1/(3αlow)⌋αlow}, we run AkLD with parameter α̂ to obtain a list of means. We
append α̂ to each mean in the list and obtain a list of pairs (µ̂, α̂). We concatenate these lists of pairs
for all α̂ and obtain a list L of size O(1/α2

low). By design, one element of A is close to the true α, so
the list L contains at least one µ̂ that is O(

√
log 1/α)-close — the error guarantee that we aim for —

and there is indeed at least an α-fraction of samples near µ̂. We call such a hypothesis “nearby".

Finally, we prune this concatenated list by verifying for each µ̂ whether there is indeed an α̂-fraction
of samples “not too far" from it. This is similar to pruning procedures with known α proposed in
prior work (see Proposition B.1 in [3]). Our procedure (i) never discards a “nearby" hypothesis, and
outputs a list where (ii) every hypothesis contains a sufficient number of points close to it and (iii) all
hypotheses are separated. Property (i) implies that the final error is O(

√
log 1/α) and properties (ii)

and (iii) imply list size bound 1 +O((1− α)/αlow). Note that when α < αlow, the list size can be
simply upper bounded by O(1/αlow), see Remark B.4.

4.2 Two-stage meta-algorithm

Even though we could run AaLD on the entire dataset with αlow = wlow, we would only achieve an
error for the ith inlier cluster mean ofO(

√
log 1/wi) – which can be much larger thanO(

√
log 1/w̃i)

– for a list of size O(1/wlow). While AaLD takes into account the unknown weight of the clusters,
it still treats other inlier clusters as outliers. We now show that if the outer stage Algorithm 1 of
our meta-algorithm Algorithm 2 separates the samples into a not-too-large collection T of sets with
certain properties, running AaLD separately on each of the sets can lead to the desired guarantees. In
particular, let us assume that T consists of potentially overlapping sets such that:

(1) For each inlier cluster C∗, there exists one set T ∈ T such that T contains (almost) all points
from C∗ and at most O(εn) other points,

(2) It holds that
∑

T∈T |T | ⩽ n+O(εn).

By (1), for every inlier cluster C∗ with a corresponding true weight w∗, there exists a set T such that
the points from C∗ constitute at least an w̃-fraction of T with w̃ := Ω(w∗/(w∗ + ε)). By Section 4.1,
applying AaLD with αlow = wlow · n/ |T | on such a T then yields a list of size 1+O((1− w̃)/wlow)

with an estimation error at most O(
√

log 1/w̃). If T contains (almost) no inliers, that is, there is no
inlier component that should recovered, then AkLD returns a list of size O(|T |/(wlown)).

Now, by the two properties, (almost) all inlier points lie in at most k sets of T, and all other sets of T
contain in total at most O(εn) points. Hence, concatenating all lists outputted by AaLD applied to all
T ∈ T leads to a final list size bounded by k +O(ε/wlow).

4.3 Outer stage: separating inlier clusters

We now informally describe the outer stage that produces the collection of sets T with the desiderata
described in Section 4.2, leaving the details to Appendix E. The main steps are outlined in pseudocode
in Algorithm 1.

Given a set X of N = poly(dt, 1/wlow) i.i.d. input samples from the distribution Eq. (2.1) with
Gaussian inlier components, the first step of the meta-algorithm is to run Algorithm 1 on X and wlow

with ∆ = O(
√
log 1/wlow). Algorithm 1 runs an sLD algorithm on the samples and produces a

(large) list of estimates L such that, for each mean, at least one estimate is O(
√
log 1/wlow)-close to

it. It then add sets to T that correspond to these estimates via a dynamic “two-scale" process.
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Specifically, for each µ̂ ∈ L, we construct two sets S(1)
µ̂ ⊆ S(2)

µ̂ consisting of samples close to µ̂. By

construction, we guarantee that if S(1)
µ̂ contains a non-negligible fraction of samples from any inlier

cluster C∗, then S(2)
µ̂ contains (almost) all samples from C∗ (see Theorem B.7 (ii)).

Now we very briefly illustrate how this process could be helpful in proving properties (1) and (2).
Observe that, as long as there exists some µ̂ with |S(2)

µ̂ | ⩽ 2|S(1)
µ̂ |, we add S(2)

µ̂ to T and remove the

samples from S
(1)
µ̂ . Consider one such µ̂. For property (1), we merely note that if S(1)

µ̂ contains a

part of an inlier cluster C∗, then S(2)
µ̂ contains (almost) all of C∗, so we add to T a set that contains

(almost) all of C∗; otherwise, when we remove S(1)
µ̂ we remove (almost) no points from C∗, so

(almost) all the points from C∗ remain in play. For property (2), we merely note that whenever we
add S(2)

µ̂ to T, increasing the number of points in it by |S(2)
µ̂ |, we also remove the samples from

S
(1)
µ̂ , reducing the number of samples by |S(1)

µ̂ | ⩾ |S
(2)
µ̂ |/2. The proof of the properties uses some

additional arguments of a similar flavor, and we defer it to Appendix E.

5 Related work
List-decodable mean estimation Inspired by the list-decoding paradigm that was first introduced
for error-correcting codes for large error rates [15], list-decodable mean estimation has become a
popular approach for robustly learning the mean of a distribution when the majority of the samples
are outliers. A long line of work has proposed efficient algorithms with theoretical guarantees.
These algorithms are either based on convex optimization [9, 16], a filtering approach [3, 17], or
low-dimensional projections [18]. Near-linear time algorithms were obtained in [19] and [8]. The
list-decoding paradigm is not only used for mean estimation but also other statistical inference
problems. Examples include sparse mean estimation [20, 21], linear regression [22–24], subspace
recovery [25, 26], clustering [27], stochastic block models and crowd sourcing [16, 28].

Robust mean estimation and mixture learning When the outliers constitute a minority, algorithms
typically achieve significantly better error guarantees than in the list-decodable setting. Robust mean
estimation algorithms output a single vector close to the mean of the inliers. In a variety of corruption
models, efficient algorithms are known to achieve (nearly) optimal error

Robust mixture learning tackles the model in Eq. (2.1) with ε≪ mini wi and aims to output exactly k
vectors with an accurate estimate for the population mean of each component [3, 4, 7, 9, 11, 13, 29, 30].
These algorithms do not enjoy error guarantees for clusters with weights wi < ε. To the best of our
knowledge, our algorithm is the first to achieve non-trivial guarantees in this larger noise regime.

Robust clustering Robust clustering [31] also addresses the presence of small fractions of outliers
in a similar spirit to robust mixture learning, conceptually implemented in the celebrated DBScan
algorithm [32]. Assuming the output list size is large enough to capture possible outlier clusters, these
methods may also be used to tackle list-decodable mixture learning - however, they do not come with
an inherent procedure to determine the right choice of hyperparameters that ultimately output a list
size that adapts to the problem.

6 Discussion and future work
In this work, we prove that even when small groups are outnumbered by adversarial data points,
efficient list-decodable algorithms can provide an accurate estimation of all means with minimal list
size. The proof for the upper bound is constructive and analyzes a plug-and-play meta-algorithm
(cf. Figure 1) that inherits guarantees of the black-box cor-kLD algorithm AkLD and RME algorithm
AR, which it uses as base learners. Notably, when the inlier mixture is a mixture of Gaussians with
identity covariance, we achieve optimality. Furthermore, any new development for the base learners
automatically translates to improvements in our bounds.

We would like to end by discussing the possible practical impact of this result. Since an extensive
empirical study is out of the scope of this paper, besides the fact that ground-truth means for unsu-
pervised real-world data are hard to come by, we provide preliminary experiments on synthetic data.
Specifically, we generate data from a separated k−Gaussian mixture with additive contaminations as
in Eq. (2.1) and different types of adversarial distributions (see detailed description in Appendix I).
We focus on the regime ε ∼ wi where our algorithms shows the largest theoretical improvements.
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Figure 2: Comparison of five algorithms with two adversarial noise models. The attack distributions
and further experimental details are given in Appendix I. On the left we show worst estimation error
for constrained list size and on the right the smallest list size for constrained error guarantee. We plot
the median of the metrics with the error bars showing 25th and 75th percentile.
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Figure 3: Comparison of list size and estimation error for large inlier cluster for varying wlow inputs.
The experimental setup is illustrated in Appendix I. We plot the median values with error bars showing
25th and 75th quantiles. As wlow decreases, we observe a roughly constant estimation error for our
algorithm while the error for LD-ME increases. Further, the decrease in list size is much more severe
for LD-ME than for our algorithm.

We then compare the output of our algorithm with the vanilla LD-ME algorithm from [8] with
wlow = 0.02 and (suboptimal) LD-ML guarantees as well as well-known (robust) clustering heuristics
without LD-ML guarantees, such as the k-means [33], Robust k-means [34], and DBSCAN [32].
Even though none of these heuristics have LD-ML guarantees, they are commonly used and known
to also perform well in practice in noisy settings. In Figure 2 (left), we fix the list size to 10 and
plot the errors for the worst inlier cluster, typically the smallest. We compare the performance
of the algorithms by plotting the worst-case estimation errors for a given list size and list sizes
that algorithms require to achieve a given worst-case estimation error. In Figure 2 (right), we fix
the error and plot the minimal list size at which competing algorithms reach the same or smaller
worst estimation error. Further details on the experiments are provided in Appendix I. In a different
experiment (see Figure 3 and Appendix I.1 for details), we observe that our approach outperforms
LD-ME when wlow varies, both in achieving smaller list size and smaller estimation error.

Overall, in line with our theory, our method significantly outperforms the LD-ME algorithm, and
performs better or on par with the heuristic approaches. Additional experimental comparison and
implementation details can be found in Appendix I. Even though these experiments do not allow
conclusive statements about the improvement of our algorithm for mixture learning for real-world
data, they do provide encouraging evidence that effort could be well-spent on follow-up empirical
and theoretical work building on our results. For example, it would be interesting to conduct a more
extensive empirical study comparing our algorithm with a variety of robust clustering algorithms.
Additionally, practical data often contains components with varying scales. An interesting direction
for future work could be to extend our algorithm to handle differently scaled covariances in an
agnostic manner.
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A Examples

k inlier cluster, c outlier clusters. One tricky adversarial distribution is the Gaussian mixture
model itself. In particular, we consider

Xc =
k

k + c

k∑
i=1

1

k
N(µi, I) +

c

k + c

c∑
i=1

1

c
N(µ̃i, I), (A.1)

where the first k Gaussian components are inliers and Q is a GMM with c components, which we call
fake clusters. Since all inlier cluster weights are identical, we denote w := wi = 1/(k + c). Assume
that 1 ≪ c ≪ k, which corresponds to ε ≫ w. Then, relative weights are w̃ = 1/(c + 1) ≈ 1/c.
Due to large adversary, previous results on learning GMMs cannot be applied, leaving vanilla list-
decodable learning. However, the latter also cannot guarantee anything better that Ω(

√
tk1/t) even

with the knowledge of k, as long as list size isO(k+c), which can be much worse than our guarantees
of O(

√
tc1/t) for the same list size.

Their drawback is that they do not utilize separation between true clusters, i.e., for each i, they model
the data as

X =
1

k + c
N(µi, I) +

(
1− 1

k + c

)
Q.

where Q can be “arbitratily adversarial” for recovering µi.

Big + small inlier clusters Consider the mixture

Xb = (1− w − ε)N(µ1, Id) + wN(µ2, Id) + εQ, (A.2)

where ∥µ1 − µ2∥ = Ω(
√
log 1/w), w ≪ ε≪ 1, and Q is chosen adversarially. In this example we

have two inlier clusters, one with large weight ≈ 1 and another with small weight w. Adversarial
distribution Q has large weight relative to the small cluster, but still negligible weight compared to
the large one.

Previous methods would either (i) recover large cluster with optimal error O(ε) (see, e.g., [35])
but miss out small cluster or (ii) recover both clusters using list-decodable mean estimation with
known α = w, but with suboptimal errors O(

√
log 1/w) and list size O(1/w). In contrast, Corol-

lary 3.4 guarantees list size at most 1 +O(ε/w), error O(
√
log ε/w) for the small cluster, and error

O(ε
√
log 1/ε) for the larger. In general, we achieve (i) optimal errors for both clusters and (ii)

optimal (up to constants) list size.

B Inner and outer stage algorithms and guarantees

Our meta-algorithm Algorithm 2 assumes black-box access to a list-decodable mean estimation algo-
rithm and a robust mean estimation algorithm for sub-Gaussian (up to the tth moment) distributions.
From these we obtain stronger mean estimation algorithms when the fraction of outliers is unknown,
and finally stronger algorithms for learning separated mixtures when the fraction of outliers can be
arbitrarily large. Our algorithm achieves guarantees with polynomial runtime and sample complexity
if the black-box learners achieve the guarantees for their corresponding mean estimation setting. In
this section we discuss the corruption model and inner and out stage of the meta-algorithm in detail
and prove properties needed for the proof of the main Theorem 3.3.

B.1 Detailed setting

In order to achieve these guarantees, our black-box algorithms need to work under a model in which
an adversary is allowed to remove a small fraction of the inliers and to add arbitrarily many outliers. In
our proofs, for simplicity of exposition, we require the algorithms to have mean estimation guarantees
for a small adversarially removed fraction of w2

low. Formally, the corruption model as defined as
follows.

Definition B.1 (Corruption model). Let d ∈ N+, and α ∈ [wlow, 1]. Let D be a d-dimensional
distribution. An input of size n according to our corruption model is generated as follows:
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Algorithm 2 FullAlgorithm

Input: Samples S = {x1, . . . , xn}, wlow, algorithms AkLD, and AR.
Output: List L.

1: Run OuterStage (Algorithm 6) on S and let T be the returned list.
2: L← ∅.
3: for T ∈ T do
4: Run InnerStage (Algorithm 3) on T with αlow = wlow · n

|T | .
5: Add the elements of the returned list to L.
6: return L.

Algorithm 3 InnerStage

Input: Samples S = {x1, . . . , xn} , αlow ∈ [wlow, 1], AkLD, and AR.
Output: List L.

1: αlow ← min(1/100, αlow)
2: M ← ∅
3: for α̂ ∈ {αlow, 2αlow, . . . , ⌊1/(3αlow)⌋αlow} do
4: run AkLD on S with fraction of inliers set to α̂
5: add the pair (µ̂, α̂) to M for each output µ̂
6: Let L be the output of ListFilter (Algorithm 4) run on S, αlow, and M
7: for (µ̂, α̂) ∈ L do
8: replace µ̂ by the output of ImproveWithRME (Algorithm 5) run on S, µ̂, τ = 40ψt(α̂) +

4f(α̂), and AR

9: return L

• Draw a set C∗ of n1 = ⌈αn⌉ i.i.d. samples from the distribution D.

• An adversary is allowed to arbitrarily remove ⌊w2
lown1⌋ samples from C∗. We refer to the

resulting set as S∗ with size n2 = |S∗|.

• An adversary is allowed to add n− n2 arbitrary points to S∗. We refer to the resulting set as
Sadv with size n3 = |Sadv|.

• If n3 < n, pad Sadv with n− n3 arbitrary points and call the resulting set S.

• Return S.

We call cor-kLD the model when wlow and α are given to the algorithm and cor-aLD the model
when wlow and lower bound αlow ⩾ wlow are given to the algorithm, such that α ⩾ αlow. Note that
α is not provided in cor-aLD model.

Note that in Definition B.1 |S| = n and S∗ constitutes at least an α(1− w2
low)-fraction of S.

B.2 Inner stage algorithm and guarantees

The algorithm consists of three steps: (1) Constructing a list of hypotheses, (2) Filtering the hypothe-
ses, and (3) Improving the hypotheses if α ⩾ 1− εRME. For convenience, we restate the InnerStage
algorithm introduced in the main text.

Theorem B.2 (Inner stage guarantees). Let d ∈ N+, wlow ∈ (0, 10−4], wlow ⩽ αlow ⩽ α ⩽ 1, and t
be an even integer. Let D(µ∗) be a d-dimensional distribution with mean µ∗ ∈ Rd and sub-Gaussian
t-th central moments.

Consider the cor-aLD corruption model in Definition B.1 with parameters d, wlow, α and dis-
tribution D = D(µ∗). Let AkLD and AR satisfy Assumption 3.1 with high success probability
(see Remark B.3).

Then InnerStage (Algorithm 3), given an input of poly(d, 1/wlow) · (NLD(wlow) +NR(wlow))
samples from the cor-aLD corruption model, and access to the parameters d, wlow, αlow,
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Algorithm 4 ListFilter

Input: Samples S = {x1, . . . , xn} , αlow ∈ [wlow, 1/100], and M = {(µ̂1, α̂1), . . . , (µ̂m, α̂m)}
Output: List L

1: define β(α) = 10ψt(α) + f(α)
2: let vij be a unit vector in the direction of µ̂i − µ̂j for µ̂i ̸= µ̂j ∈ {µ̂, for (µ̂, α̂) ∈M}
3: J ← ∅
4: for (µ̂i, α̂i) ∈M in decreasing order of α̂i do
5: if exists j ∈ J , such that ∥µ̂i − µ̂j∥ ⩽ 4β(α̂i) then continue
6: Ti ←

⋂
j∈J{x ∈ S, s.t. |v⊤ij(x− µ̂i)| ⩽ β(α̂i)}.

7: if |Ti| < 0.9α̂in then remove (µ̂i, α̂i) from M and continue
8: add i to J
9: for j ∈ J \ {i} do

10: Tj ← Tj
⋂{

x ∈ S, s.t. |v⊤ij(x− µ̂j)| ⩽ β(α̂i)
}

11: if |Tj | < 0.9α̂jn then:
12: remove (µ̂j , α̂j) from M
13: rerun ListFilter (Algorithm 4) with the new M

14: return {(µ̂i, α̂i), for i ∈ J}

Algorithm 5 ImproveWithRME

Input: Samples S = {x1, . . . , xn}, vector µ̂, threshold τ , and AR

Output: A vector µ̃ ∈ Rd

1: β̃ ← τ
2: let α̃ be the smallest value in [1− εRME, 1] that satisfies g(α̃) ⩽ β̃/2. If none exists, return µ̂
3: µ̃← µ̂ and let µRME be the output of AR run on S with inlier fraction set to α̃.
4: while ∥µ̃− µRME∥ ⩽ 3β̃/2 do
5: µ̃← µRME

6: β̃ ← g(α̃)

7: let α̃′ be the smallest in [α̃+ w2
low, 1] such that g(α̃′) ⩽ β̃/2. If none exists, break

8: α̃← α̃′

9: let µRME be the output of AR on S with inlier fraction set to α̃
10: return µ̃

and t, runs in time poly(d, 1/wlow) · (TLD(wlow) + TR(wlow)) and outputs a list L of size
|L| ⩽ 1 +O((1− α)/αlow) such that, with probability 1− wO(1)

low ,

1. There exists µ̂ ∈ L such that

∥µ̂− µ∗∥ ⩽ O(ψt(α/4) + f(α/4)).

2. If α ⩾ 1− εRME, then there exists µ̂ ∈ L such that

∥µ̂− µ∗∥ ⩽ O(g(α− w2
low)).

Proof of Theorem B.2 can be found in Appendix D.

Remark B.3. For any r ∈ N, we can increase probabilities of success of AkLD and AR from 1/2
to 1− 2−r in the following way: we increase number of samples by a factor of r, randomly split S
into r subsets of equal size, apply AkLD and AR to these subsets and concatenate their outputs. In
the proofs we assume that the success probabilities are 1− wC

low for large enough constant C. This
increases the size of the list returned by AkLD, the number of samples, and the running time by a
factor O(log(1/wlow)). In particular, we assume that the size of the list returned by AkLD is much
smaller than the inverse failure probability.

Remark B.4. In the execution of the meta-algorithm, it may happen that Algorithm 3 is run on set
T with almost no inliers, i.e., α < αlow. We note that from the analysis (see Appendix D, or [3],
Proposition B.1), we always have upper bound |L| = O(1/αlow).
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An immediate consequence of Theorem B.2 are the following guarantees of directly applying Algo-
rithm 3 to the mixture learning case with no separation. Here we present upper bounds for Algorithm 3,
when no separation assumptions are imposed.
Corollary B.5. Let d, k ∈ N+, wlow ∈ (0, 10−4], and t be an even integer. For all i = 1, . . . , k, let
Di(µi) be a d-dimensional distribution with mean µi ∈ Rd and sub-Gaussian t-th central moments.
Let ε > 0 and, for all i = 1, . . . , k, let wi ∈ [wlow, 1], such that

∑k
i=1 wi + ε = 1. Let X be the

d-dimensional mixture distribution

X =

k∑
i=1

wiDi(µi) + εQ,

where Q is an unknown adversarial distribution that can depend on all the other parameters. Let
AkLD and AR satisfy Assumption 3.1.

Then there exists an algorithm that, given poly(d, 1/wlow) · (NLD(wlow) +NR(wlow))
i.i.d. samples from X, and given also d, k, wlow, and t, runs in time
poly(d, 1/wlow) · (TLD(wlow) + TR(wlow)) and outputs a list L of size |L| = O(1/wlow),
such that, with probability at least 1− wO(1)

low :

1. For each i ∈ [k], there exists µ̂ ∈ L such that

∥µ̂− µi∥ ⩽ O(ψt(wi/4) + f(wi/4)).

2. For each i ∈ [k], if wi ⩾ 1− εRME, then there exists µ̂ ∈ L such that

∥µ̂− µi∥ ⩽ O(g(wi − w2
low)).

Proof. Proof follows by applying Theorem B.2 to X with αlow = wlow and treating each component
as a corresponding inlier distribution with α = wi. This gives error upper bound for all inlier
components, furthermore, since αlow = wlow, list size can be bounded as |L| ⩽ 1 + O((1 −
α)/αlow) = O(1/wlow).

B.3 Outer stage algorithm and guarantees

In the outer stage, presented in Algorithm 6, we make use of the list-decodable mean estimation
algorithm in Theorem B.2 in order to solve list-decodable mixture estimation with separated means.
We now present results on the outer stage algorithm. For ease of notation, when it’s clear from
the context, we drop the indices and refer to elements µj ∈ M for some j ∈ [|M |] as µ and their
corresponding sets S(1)

j , S
(2)
j , as defined in lines 6–7 in Algorithm 6, as S(1), S(2). Further, for

i ∈ [k], let C∗
i denote the set of points corresponding to the i-th inlier component, also called the i-th

inlier cluster.
Theorem B.6 (Outer stage guarantees, beginning of execution). Let S consist of n i.i.d. samples
from X as in the statement of Theorem C.1. Run OuterStage (Algorithm 6) on S and consider the
first iteration of the while-loop and for each µ ∈ M , denote the corresponding sets as S(1), S(2).
Then, with probability at least 1− wO(1)

low , we have that

(i) the list M that AsLD outputs has size |M | ⩽ 2/wlow,

(ii) for each i ∈ [k], there exists mi ∈ [|M |] such that
∣∣∣S(1)

mi ∩ C∗
i

∣∣∣ ⩾ (1− w2
low

2 ) |C∗
i |,

(iii) for each i ∈ [k] and µ ∈ M , we have
∣∣S(1) ∩ C∗

i

∣∣ < w4
low |C∗

i | or
∣∣S(2) ∩ C∗

i

∣∣ ⩾ (1 −
w2

low

2 ) |C∗
i |,

(iv) for each i ∈ [k] and µ ∈ M such that
∣∣S(2) ∩ C∗

i

∣∣ ⩾ w4
low |C∗

i |, we have∑
i′∈[k]\{i}

∣∣S(2) ∩ C∗
i′

∣∣ ⩽ w4
lown,

(v) for i ̸= i′ ∈ [k] and for j, j′ ∈ [|M |], if |S(2)
j ∩C∗

i | ⩾ w4
low|C∗

i | and |S(2)
j′ ∩C∗

i′ | ⩾ w4
low|C∗

i′ |,
then S(2)

j ∩ S(2)
j′ = ∅.
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Algorithm 6 OuterStage

Input: Samples S = {x1, . . . , xn}, wlow, AsLD

Output: Collection of sets T
1: run AsLD on S with α = wlow and let M = {µ1, . . . , µ|M |} be the returned list
2: let vij be a unit vector in the direction of µi − µj for i ̸= j ∈ [|M |]
3: T ← ∅ and R← {1, . . . , |M |}
4: while R ̸= ∅ do
5: for all i ∈ R do
6: S

(1)
i ←

⋂
j∈[|M |],j ̸=i

{
x ∈ S, s.t. |v⊤ij(x− µi)| ⩽ γ + γ′

}
7: S

(2)
i ←

⋂
j∈[|M |],j ̸=i

{
x ∈ S, s.t. |v⊤ij(x− µi)| ⩽ 3γ + 3γ′

}
8: remove all i ∈ R for which |S(1)

i | ⩽ 100w4
lown

9: if R = ∅ then break
10: if there exists i ∈ R such that |S(2)

i | ⩽ 2|S(1)
i | then

11: select the i ∈ R with |S(2)
i | ⩽ 2|S(1)

i | for which |S(1)
i | is largest

12: T ← T ∪
{
S
(2)
i

}
13: S ← S \ S(1)

i
14: R← R \ {i}
15: else
16: T ← T ∪ {S}
17: break
18: return T

In words, Theorem B.6 (ii) states that at initialization, OuterStage represents each inlier cluster well,
i.e., for each i, the i-th cluster is almost entirely contained in some set S(1)

j for some j ∈ [|M |]. Next,

(iii) states that either S(1)
j intersects negligibly some true component, or S(2)

j contains almost entirely
the same component. Further, (iv) and (v) state that sets that sufficiently intersect with some true
component must be separated from other components and each other.

We now introduce some notation to present the next theorem that establishes further guarantees for
the algorithm output during execution. For T, a collection of sets that is the output of Algorithm 6,
we define

G :=
{
i ∈ [k], such that there exists T = S

(2)
j ∈ T with

∣∣∣S(1)
j ∩ C∗

i

∣∣∣ ⩾ w4
low |C∗

i | , for some j
}
.

(B.1)
In words, it is the set of inlier components for which a corresponding set with "sufficiently many"
points from the i-th component was added to T. It may happen that for a given index i ∈ G, several
j ∈ [|M |] satisfy S(2)

j ∈ T and
∣∣∣S(1)

j ∩ C∗
i

∣∣∣ ⩾ w4
low |C∗

i |. We define gi ∈ [|M |] to denote the index

of the first such set S(2)
gi added to T.

Further, we define Ui := (C∗
i ∩ S

(2)
gi ) \ S(1)

gi to be the set of inlier points from the i-th component,
which were not removed from S at the iteration corresponding to gi. Let U := ∪i∈GUi denote the
union of such ‘left-over’ inlier points.
Theorem B.7 (Outer stage guarantees, during execution). Let S consist of n i.i.d. samples from X as
in the statement of Theorem C.1. Run OuterStage (Algorithm 6) on S and consider the moment when
the sets S(2)

i are added to T. We have that, with probability at least 1− wO(1)
low , all of the following

are true:

(i) |U | ⩽ (2ε+O(w2
low))n,

(ii) for i ∈ G, we have that
∣∣∣S(2)

gi ∩ C∗
i

∣∣∣ ⩾ (1− w2
low

2 −O(w3
low)) |C∗

i | ⩾ (1− w2
low)win,

(iii) for j ∈ [|M |] \ {gi | i ∈ G} , either
∣∣∣S(2)

j

∣∣∣ ⩽ O(w2
low)n, or at least half of the samples in

S
(1)
j are either adversarial samples or lie in U ,
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(iv) if when the else statement is triggered, |S| ⩾ 0.1wlown, then at least a 0.4-fraction of the
samples in S are adversarial, or equivalently, |S| ⩽ 2.5εn.

Note that the else statement of OuterStage can only be triggered once, at the end of the execution. In
words, Theorem B.7 (i) states that, for i ∈ G, samples from i-th cluster that remained in S after S(1)

gi

was removed, constitute a small (comparable with ε) fraction. Further, (ii) states that the sets added
to T, corresponding to i ∈ G, almost entirely contain C∗

i . Finally, (iii) describes the sets that do
not correspond to any gi, i ∈ G. These sets must either be small, or contain a significant amount of
outlier points in the neighborhood. The proofs of Theorems B.6 and B.7 can be found in Appendix E.

C Proof of Theorem 3.3

In this section, we state and prove a refined version of our main result, Theorem C.1, from which the
statement of Theorem 3.3 directly follows.

C.1 General theorem statement

We define

ψt(α) =

{√
t(1/α)1/t if t ⩽ 2 log 1/α,√
2e log 1/α else,

(C.1)

which captures a tail decay of a distribution with sub-Gaussian t-th central moments:
Px∼D

(
⟨x− µ, v⟩t ⩾ ψt(α)

)
≲ α.

We now state our main result for list-decodable mixture learning. Recall that εRME is defined
in Assumption 3.1.
Theorem C.1 (Main mixture model result). Let d, k ∈ N+, wlow ∈ (0, 10−4], and t be an even
integer. For all i = 1, . . . , k, let Di(µi) be a d-dimensional distribution with mean µi ∈ Rd and
sub-Gaussian t-th central moments. Let ε > 0 and, for all i = 1, . . . , k, let wi ∈ [wlow, 1], such that∑k

i=1 wi + ε = 1. Let X be the d-dimensional mixture distribution

X =

k∑
i=1

wiDi(µi) + εQ,

where Q is an unknown adversarial distribution that can depend on all the other parameters. Let
AkLD and AR satisfy Assumption 3.1. Further, suppose that ∥µi−µj∥ ⩾ 200ψt(w

4
low)+200f(wlow)

for all i ̸= j ∈ [k].

Then there exists an algorithm (Algorithm 2) that, given
poly(d, 1/wlow) · (NLD(wlow) +NR(wlow)) i.i.d. samples from X, and given also d, k,
wlow, and t, runs in time poly(d, 1/wlow) · (TLD(wlow) + TR(wlow)) and with probability at least
1 − wO(1)

low outputs a list L of size |L| ⩽ k +O(ε/wlow) such that, for each i ∈ [k], there exists
µ̂ ∈ L such that:

∥µ̂− µi∥ ⩽ O(ψt(w̃i/10) + f(w̃i/10)), where w̃i = wi/(wi + ε+ w2
low).

If the relative weight of the i-th inlier cluster is large, i.e., w̃i ⩾ 1− εRME + 2w2
low, then there exists

µ̂ ∈ L such that
∥µ̂− µi∥ ⩽ O(g(w̃i − 3w2

low)).

Further, we assume wlow ∈ (0, 1/10000], since this simplifies some of the proofs. We note that
in a mixture with k components we necessarily have wlow ⩽ 1/k. Furthermore, when wlow ∈
(1/10000, 1/2], then we obtain the same result by replacing wlow with wlow/5000 throughout the
statements and the proof. This would only affect both list size and error guarantees by at most a
multiplicative constant, which is absorbed in the Big-O notation.

Proof of Theorem 3.3. Proof follows directly from Theorem C.1, by noticing that Assumption 3.2
allows to replace f(w̃i/10) by Cf(w̃i) and g(w̃i − 3w2

low) by Cg(w̃i) for some constant C > 0
large enough.
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C.2 Proof of Theorem C.1

We now show how to use the results on the inner and outer stage, Theorem B.2 and Theorem B.7
respectively, to arrive at the guarantees for the full algorithm Algorithm 2 in Theorem C.1. For
simplicity of the exposition, we split the proof of Theorem C.1 into two separate parts, proving that
(i) the output list contains an estimate with small error and that (ii) the size of the output list is small.
In what follows we condition on the event E′ from the proof of Theorem B.7.

(i) Proof of error statement We now prove that, conditioned on the event E, the list L output
by Algorithm 2 for each i ∈ [k] contains an estimate µ̂ ∈ L, such that,

(1) ∥µ̂− µi∥ ⩽ O(ψt(w̃i/10) + f(w̃i/10)),
(2) if w̃i ⩾ 1− εRME + 2w2

low, then ∥µ̂− µi∥ ⩽ O(g(w̃i − 3w2
low)).

We start by showing that list-decoding error guarantees as in (1) are achievable for all inlier clusters
and proceed by improving the error to (2) with RME base learner. Recall that G is as defined
in Eq. (B.1).

Proof of (1) We now show how the output of the base learner and filtering procedure lead to the error
in (1). Fix i ∈ [k]. Recall that Ci denotes the set of win points from i-th inlier component with mean
µi.

If i ∈ G, then on event E, we have
∣∣∣S(2)

gi ∩ C∗
i

∣∣∣ ⩾ (1 − w2
low)win by Theorem B.7 (ii),∑

j ̸=i

∣∣∣S(2)
gi ∩ C∗

j

∣∣∣ ⩽ w4
lown by Theorem B.6 (iv), and that the total number of adversarial points is

at most (ε+ w4
low)n.

Therefore, the fraction of points from C∗
i in S(2)

gi is at least (1−w2
low)wi

wi+ε+w3
low
, which implies α ⩾ w̃i as

in Definition B.1. Then, by Theorem B.2, the InnerStage algorithm applied to T leads to error
∥µ̂− µi∥ ⩽ O(ψt(w̃i/4) + f(w̃i/4)). Otherwise, if i ̸∈ G, when the OuterStage algorithm reaches
the else statement, S contains at least (1 − O(w3

low))|C∗
i | samples from C∗

i . Indeed, since i /∈ G,
each time we remove points from S, we remove at most w4

lown points from C∗
i . By Theorem B.6 (i),

we do at most O(1/wlow) removals, so when the OuterStage algorithm reaches the else statement,
S contains at least (1−O(w3

low)) |C∗
i | samples from C∗

i .

We showed that samples from C∗
i make up at least a (1 − w2

low)win/|S| fraction of S. Based
on this fact we can then use Theorem B.7 (iv) and the assumption on the range of wlow to
conclude that |S| ⩽ 2.5εn and that the fraction of inliers is at least (1 − w2

low)wi/(2.5ε).
Therefore, S can be seen as containing samples from the corruption model cor-aLD with α at least
wi/(2.5ε) ⩾ wi/(2.5(wi + ε)). Since S is added to T in the else statement, applying InnerStage
yields the error bound as in (1).

Proof of (2): Next, we prove that for all inlier components i with large weight, i.e., such that
wi/(wi+ε) ⩾ 1−εRME, there exists a set T ∈ T that consists of samples from the corruption model
cor-aLD with α ⩾ wi/(wi + ε) − 2w2

low. Then, running InnerStage, in particular the RME base
learner, results in the error bound as in (2) by Theorem B.2 (ii). If i ∈ G, in the previous paragraph we
showed that there exists T ∈ T, such that the corresponding α ⩾ wi

wi+ε+w3
low

⩾ wi

wi+ε − 2w2
low. We

now prove by contradiction that the case i /∈ G does not occur. Now assume i /∈ G so that as we argued
before when the else statement is triggered, S contains at least (1−O(w3

low))|C∗
i | samples from C∗

i .
By Theorem B.6 (ii), for some mi ∈ [|M |], we have that |S(1)

mi ∩C∗
i | ⩾ (1−w2

low/2−O(w3
low))|C∗

i |
and by Theorem B.6 (iv), S(2)

mi contains at most w4
lown samples from other true clusters. Then, since

|S(2)
mi | > 2|S(1)

mi |, we have that |S(2)
mi | contains at least

(1− w2
low −O(w3

low))|C∗
i | − w4

lown ⩾ (1− 1.5w2
low)|C∗

i |

adversarial samples. Therefore, ε ⩾ (1 − 1.5w2
low)|C∗

i |/n, and using that |C∗
i | ⩾ win − w10

lown,
we have ε ⩾ (1− 1.5w2

low)wi − w10
low. However, this contradicts wi/(wi + ε) ⩾ 1− εRME unless

εRME ⩾ 1/2− 2w2
low, which is prohibited by the assumptions in Theorem C.1. Therefore whenever

wi/(wi + ε) ⩾ 1− εRME we are in the case i ∈ G.
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(ii) Proof of small list size We now prove that on the set E, we have that |L| ⩽ k +O(ε/wlow).
Here, we need to carefully analyze iterations in the while loop where an inlier component is
"selected" for the first time in order to obtain a tight list size bound. Recall that gi corresponds to the
index in R that is first selected for the i-th inlier cluster.

First selection of a component: For any i ∈ [k], if i ∈ G, then Theorem B.7 (ii) implies that
running InnerStage on S(2)

gi produces a list of size at most 1+O((|S(2)
gi \C∗

i |)/(wlown)). Then, over

all i ∈ G, these sets S(2)
gi contribute to the list size |L| at most k +O

(∑k
i=1 |S

(2)
gi \ C∗

i |/(wlown)
)

.

Furthermore, by Theorem B.6 (v), all these sets S(2)
gi are disjoint and each of them contains at most

w4
lown samples from other true clusters. Therefore

∑k
i=1 |S

(2)
gi \ C∗

i | ⩽ εn+O(w3
low)n. Then the

contribution to |L| of all these Si’s corresponding to true clusters is at most k+O
(
(ε+ w3

low)/wlow

)
.

Note that if ε ⩽ w3
low and wlow is small enough, Algorithm 3 actually produces a list of size 1 in

each run considered above, so the contribution is exactly k; otherwise we can bound the contribution
by k +O(ε/wlow).

Samples left over from a component: Next, all inlier samples that were not removed, i.e., constituting
U , can be considered outlier points for the future iterations, which, by Theorem B.7 (i), only
increases the outlier fraction to ε̃ = 3ε + O(w2

low). For the same reason as above, without loss of
generality, we can consider ε > w2

low since otherwise, the corresponding list size overhead (for small
enough w2

low) would again amount to zero.

Clusters of adversarial samples: For iterations where a set S(2)
j was added to the final list, which

does not correspond to some gi, i ∈ G, Theorem B.7 (iii), states that either (i) at least half
of the samples in S(2)

j were adversarial, or (ii) the cardinality of the set on which Algorithm 3

was executed is small. In both cases the set S(2)
j contributes at mostO(ε/wlow) to the final list size |L|.

List size in the else statement: Finally, when the algorithm reaches the else statement, as argued in
the first part, by Theorem B.7 (iv), at that iteration |S| ⩽ O(ε)n. Since Algorithm 3 always produces
a list of size bounded by O(|S| /(wlown)) (see Remark B.4), the contribution to |L| at this iteration
is bounded by O(ε/wlow).

Overall, we obtain the desired bound on |L| of k +O(ε/wlow).

D Proof of Theorem B.2

(i) Proof of error statement We now prove that, with probability 1− wO(1)
low , for the output list L

of Algorithm 6,

1. there exists µ̂ ∈ L such that

∥µ̂− µ∗∥ ⩽ O(ψt(α/4) + f(α/4)),

2. if α ⩾ 1− εRME, then there exists µ̂ ∈ L such that

∥µ̂− µ∗∥ ⩽ O(g(α− w2
low)).

By Lemma D.1 we have |M | ⩽ 1/w
O(1)
low and, with probability at least 1 − w

O(1)
low , there exists

(µ̂, α̂) ∈ M such that α̂ ⩾ α/4 and ∥µ̂ − µ∗∥ ⩽ f(α̂). Then Lemma D.2 implies that, with
probability at least 1−|M |2wO(1)

low , (µ̂, α̂) will not be removed from M . Therefore, either (µ̂, α̂) ∈ L,
or there exists (µ̃, α̃) ∈ L such that (i) α̃ ⩾ α̂ and (ii) ∥µ̃− µ̂∥ ⩽ 4β(α̂). The latter case implies that
∥µ̃− µ∗∥ ⩽ 40ψt(α/4) + 4f(α/4).

For the second part, set first µ̃ = µ̂. Then, in the ith iteration, µ̃ moves away by at most (3τ/2)/2i−1.
Since

∑∞
i=1 1/2

i ⩽ 1, the distance between µ̃ and µ̂ is always bounded by 3τ . Now, assume that
indeed α ⩾ 1 − εRME and ∥µ̂ − µ∗∥ ⩽ τ . Whenever α̃ ⩽ α, with high probability AR produces
some µRME such that ∥µRME − µ∗∥ ⩽ g(α̃) ⩽ β̃/2. Furthermore, as long as α̃ ⩽ α, at the moment
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of the while statement check we have ∥µ̃− µ∗∥ ⩽ β̃: in the first iteration this is by assumption, and
in later iterations it follows because µ̃ is the former µRME. Therefore the while statement check
passes as long as α̃ ⩽ α.

There exists the possibility that the algorithm returns or breaks even though α̃ ⩽ α. If the algorithm
returns early, then the error τ achieved by µ̂ is already within a factor of two of the optimal. If the
algorithm breaks, either α̃+ w2

low > 1, case in which µ̃ already satisfies ∥µ̃− µ∗∥ ⩽ g(1− w2
low),

or else ∥µ̃− µ∗∥ is already within a factor of two of the optimal. Therefore these cases do not affect
the error negatively.

Finally, let us consider what happens when α̃ > α and the while statement check continues to pass.
The first time we reach some α̃ > α, we must have ∥µ̃− µ∗∥ ⩽ β̃ ⩽ 2g(α− w2

low). Then, in later
iterations, µ̃ can move from this estimate by a distance of most 3β̃ ⩽ 6g(α − w2

low), by the same
argument as the argument that ∥µ̃− µ̂∥ ⩽ 3τ . Overall, at the end we have

∥µ̃− µ̂∥ ⩽ max(2g(1), g(1− w2
low), 8g(α)) ⩽ 8g(α− w2

low).

The number of runs is at most 1/w2
low, so with probability 1− wO(1)

low all runs of AR succeed.

We showed that there exists (µ̂, α̂) ∈ L such that α̂ ⩾ α/4 and ∥µ̂− µ∗∥ ⩽ 40ψt(α̂) + 4f(α̂). This
error can increase by running ImproveWithRME with τ = 40ψt(α̂) + 4f(α̂) to at most

∥µ̂− µ∗∥ ⩽ 160ψt(α̂) + 16f(α̂) = O(ψt(α) + f(α)).

Furthermore, if α ⩾ 1 − τmin, this (µ̂, α̂) ∈ L satisfies the conditions of ImproveWithRME, so
with high probability the error is reduced by running ImproveWithRME with τ = 40ψt(α̂)+4f(α̂)
to ∥µ̂− µ∗∥ ⩽ 8g(α− w2

low).

(ii) Proof of list size We now prove that |L| ⩽ 1 +O((1− α)/αlow).

First, assume that α ⩽ 9/10. Since all α̂s ⩾ αlow, we have that |L| ⩽ 10/(9αlow) ⩽ 12(1−α)/αlow.

For the rest of the proof we assume that α > 9/10. We analyze sets J and Ti for i ∈ J at the
end of execution of ListFilter. In particular, recall that L = {(µ̂i, α̂i), i ∈ J}. Also, at the end
of Algorithm 4 we have the following expression for Ti:

Ti =
⋂

j∈J\{i}

{x ∈ S, s.t. |v⊤ij(x− µ̂i)| ⩽ max(β(α̂i), β(α̂j))},

where vij are unit vectors in direction µ̂i − µ̂j . Select the s ∈ J for which α̂s is maximized. By (i),
with probability at least 1− w60

low, there exists a hypothesis in J with α̂ ⩾ α/4 ⩾ 0.2. Then we have
that α̂s ⩾ 0.2. In addition, for all hypotheses, α̂s ⩽ 1/3. Let j ∈ J be such that j ̸= s. We will show
that at least half of the points in Tj are adversarial, i.e., |Tj | ⩾ 2 |Tj ∩ C∗|. If this is indeed the case,
we can treat all inlier points in all Tj as outliers, as it would at most double total number of outlier
points in S.

Now, assume that for some j ̸= s, |Tj | < 2 |Tj ∩ C∗|. Note that, because |Ts| ⩾ 0.9 · 0.2n = 0.18n
and |C∗| ⩾ 0.9n, |Ts ∩ C∗| ⩾ 0.18n− 0.1n ⩾ 0.08n. Therefore∣∣{x ∈ C∗, s.t. |v⊤sj(x− µ̂s)| ⩽ β(α̂s)

}∣∣ ⩾ 0.08 |C∗| .
Also note that Lemma H.2 for radius 10ψt(1/2) ⩽ 10ψt(α̂s) implies that, with exponentially small
failure probability, ∣∣{x ∈ C∗, s.t. |v⊤sj(x− µ∗)| ⩽ β(α̂s)

}∣∣ ⩾ 0.99 |C∗| .
Since these two sets necessarily intersect, we can bound |v⊤sj(µ̂s − µ∗)| ⩽ 2β(α̂s), implying that
|v⊤sj(µ̂j − µ∗)| ⩾ 2β(α̂j), since ∥µ̂s − µ̂j∥ ⩾ 4β(α̂j). Thus, if |v⊤sj(x − µ̂j)| ⩽ β(α̂j), then
|v⊤sj(x− µ∗)| > β(α̂j), implying that

(Tj ∩ C∗) ⊆
{
x ∈ C∗, s.t. |v⊤sj(x− µ∗)| > β(α̂j)

}
. (D.1)

However, Lemma H.2 tells us that with high probability only a small fraction of points in C∗ satisfies
|v⊤sj(x − µ∗)| > β(α̂j). In particular, applying the lemma with radius 10ψt(α̂j), we get that with
exponentially small failure probability,∣∣{x ∈ C∗, s.t. |v⊤sj(x− µ∗)| ⩽ β(α̂j)

}∣∣ ⩾ (1− α̂j

50

)
|C∗| . (D.2)
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From eqs. (D.1) and (D.2) it follows that |Tj ∩ C∗| ⩽ α̂j |C∗| /50. Using that |Tj | ⩾ 9α̂jn/10 ⩾
9α̂j |C∗| /10 by the properties of ListFilter, we obtain

9α̂j |C∗| /10 ⩽ |Tj | ⩽ 2 |Tj ∩ C∗| ⩽ α̂j |C∗| /25,

which is a contradiction.

Therefore, for all j ∈ J such that j ̸= s, we have that |Tj | ⩾ 2 |Tj ∩ C∗|. As we said in the beginning,
by treating all inlier points in those Tj as outliers we at most double total number of outlier points.
Since there are at most (1 − α + αw2

low)n outlier points and the sets Tj are non-intersecting, we
get
∑

j∈J\{s} |Tj | ⩽ 2(1− α+ αw2
low)n. The lower bound on the size |Tj | ⩾ 9αlown/10 implies

|J/ {s}| ⩽ 2(1−α+αw2
low)n·10

9αlown and thus |L| = |J | ⩽ 1 + 3(1− α)/αlow.

Note that in InnerStage we set αlow = min(αlow, 1/100). Therefore, for the original αlow, the list
size is bounded by 1 + 240(1− α)/αlow.

Conclusion Combining the probabilities of success of all steps, we get that the algorithm succeeds
with probability at least 1− wO(1)

low for some large constant in the exponent. Our algorithm, ignoring
the calls to AkLD and AR, has sample complexity and time complexity bounded by poly(d, 1/wlow),
which gives the desired sample and time complexity when taking AkLD and AR into consideration.
This completes the proof of the theorem.

D.1 Auxiliary lemmas and proofs

Lemma D.1 (List initialization). Let S, αlow and α be as in cor-aLD model. If InnerStage (Algo-
rithm 3) is run with S and αlow, the size of M is at most 1/wO(1)

low , all (µ̂, α̂) ∈M satisfy α̂ ⩽ 1/3,
and with probability at least 1− wO(1)

low there exists (µ̂, α̂) ∈M such that α/4 ⩽ α̂ ⩽ min(α, 1/3)
and ∥µ̂− µ∗∥ ⩽ f(α̂).

Proof. There are at most 1/αlow choices for α̂, and for each of them the output of AkLD has size at
most 1/wO(1)

low , so |M | ⩽ 1/w
O(1)
low . With probability 1− wO(1)

low , AkLD succeeds in all up to 1/αlow

runs. Then we are guaranteed to produce one α̂ with α/4 ⩽ α̂ ⩽ min(α, 1/3), and then AkLD is
guaranteed to produce one corresponding µ̂ with ∥µ̂− µ∗∥ ⩽ f(α̂).

Lemma D.2 (Good hypotheses are not removed). Let S, αlow and α be as in cor-aLD model.
Run ListFilter (Algorithm 4) on S and αlow with M obtained from InnerStage (Algorithm 3) and
call a hypothesis (µ̂, α̂) ∈ M good if α̂ ⩾ α/4 and ∥µ̂ − µ∗∥ ⩽ f(α̂). Then, with probability at
least |M |2wO(1)

low , no good hypothesis is removed from M (including in any of the reruns triggered by
the algorithm).

Proof. Let ℓ be an arbitrary iteration of the outer for loop. Then, at the beginning of the ℓth iteration,

1. Tj ∩ Ts = ∅ for any j < s ∈ J ,

2. |Tj | ⩾ 0.9α̂jn for any j ∈ J ,

3. |J | ⩽ 10/(9α̂ℓ).

Indeed, the second property follows directly from the algorithm.

For the first property, assume that for j < s ∈ J , there exists x ∈ S, such that x ∈ Tj ∩ Ts. This
would imply that |v⊤js(µ̂j − µ̂s)| ⩽ 2β(α̂s), so ∥µ̂j − µ̂s∥ ⩽ 2β(α̂s). However, in this case the first
’if’ condition would pass and we would not add s to J . Thus, Tj ∩ Ts = ∅.
For the third property, note that

n ⩾
∑
j∈J

|Tj | ⩾
∑
j∈J

0.9α̂jn ⩾ 0.9 |J | α̂ℓn,

which implies |J | ⩽ 10/(9α̂ℓ).
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Now, let s be the index of a hypothesis with α̂s ⩾ α/4 and ∥µ̂s − µ∗∥ ⩽ f(α̂s). If s was skipped in
the sth iteration (i.e., there exists j ∈ J with µ̂j close to µ̂s), then (µ̂s, α̂s) is trivially not removed
from M . For the rest of the proof we assume that s is not skipped.

For the sake of the analysis, we introduce the analogue of the sets Ts, which we call T̃s, defined for
points in the set C∗ (i.e., all inlier points before the adversarial removal), and show that (i)

∣∣∣T̃s∣∣∣ is

large and (ii)
∣∣∣T̃s \ Ts∣∣∣ is small. In particular, let

T̃s =
⋂
j∈J

{
x ∈ C∗, s.t. |v⊤js(x− µ̂s)| ⩽ β(α̂s)

}
,

where we recall β(α̂s) = 10ψt(α̂s) + f(α̂s). Note that |Ts| ⩾
∣∣∣T̃s∣∣∣− |C∗ \ S∗| ⩾

∣∣∣T̃s∣∣∣−w2
low |C∗|.

Also, for any α′ ⩽ α̂s, applying Lemma H.2 with radius 10ψt(α
′), using that ∥µ̂s − µ∗∥ ⩽ f(α̂s) ⩽

f(α′) and t ⩾ 2, we get that with exponentially small failure probability,∣∣{x ∈ C∗, s.t. |v⊤(x− µ̂s)| > β(α′)
}∣∣ ⩽ α′

50
|C∗| . (D.3)

Consider the sth iteration. Using a union bound over |J | ⩽ 2/αlow directions, and since all
α̂s ⩾ αlow, we get that with exponentially small failure probability∣∣∣T̃s∣∣∣ ⩾ |C∗| −

∑
i∈J

∣∣{x ∈ C∗, s.t. |v⊤is(x− µs)| > β(α̂s)
}∣∣ ⩾ (1− α̂s

50
|J |
)
|C∗| ⩾ 0.95 |C∗| ,

where we used that and |J | ⩽ 10/(9α̂s). This implies that

|Ts| ⩾
∣∣∣T̃s∣∣∣− w2

low |C∗| ⩾ (0.95− w2
low) |C∗| ⩾ 0.92 |C∗| ⩾ 0.9αn ⩾ 0.9α̂sn,

i.e., (µ̂s, α̂s) is not removed from M during sth iteration.

The pair (µ̂s, α̂s) could also be removed during later iterations, when we recalculate Ts by removing
points along new directions. However, following a similar argument, we show that still, with high
probability, |Ts| ⩾ 0.9α̂sn. Assume that we are now in the kth iteration of the outer cycle, where
k > s. We define again T̃s and sets A,B:

T̃s :=
⋂

i∈J\{s}

{
x ∈ C∗, s.t. |v⊤is(x− µ̂s)| ⩽ max(β(α̂s), β(α̂i))

}
,

A :=
⋂

i<s,i∈J

Ai, for Ai :=
{
x ∈ C∗, s.t. |v⊤is(x− µ̂s)| ⩽ β(α̂s)

}
,

B :=
⋂

i>s,i∈J

Bi, for Bi :=
{
x ∈ C∗, s.t. |v⊤is(x− µ̂s)| ⩽ β(α̂i)

}
,

so that T̃s = A ∩B and again |Ts| ⩾
∣∣∣T̃s∣∣∣−w2

low |C∗|. It is crucial that we have different right hand
sides in the definitions of Ai and Bi (we wrote them in boldface to emphasize this).

Using a union bound again, we write∣∣∣T̃s∣∣∣ ⩾ |C∗| −
∑

i<s,i∈J

|C∗ \Ai| −
∑

i>s,i∈J

|C∗ \Bi| .

Using eq. (D.3), with exponentially small failure probability, for all i ∈ J ,

|C∗ \Ai| ⩽ (α̂s/50) |C∗| (for i < s) and |C∗ \Bi| ⩽ (α̂i/50) |C∗| (for i > s).

Next, note that before the last element was added, we had that (i) Ti
⋂
Tj = ∅ for any i ̸= j ∈ J

and (ii) |Ti| ⩾ 0.9α̂in for any i ∈ J . This implies that
∑

i∈J α̂i < 10/9 + α̂last < 19/9, where
α̂last corresponds to the element which was added last (it might happen that after addition of the last
element, we have |Ti| < 0.9α̂in for several i ∈ J). Therefore, as before, we obtain that∣∣∣T̃s∣∣∣ ⩾

1−
∑

i<s,i∈J

(α̂s/50)−
∑

i>s,i∈J

(α̂i/50)

 |C∗| ⩾ (1−10/(9·50)−19/(9·50)) |C∗| ⩾ 0.93 |C∗| ,
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therefore |Ts| ⩾
∣∣∣T̃s∣∣∣− w2

low |C∗| ⩾ 0.92 |C∗| ⩾ 0.9α̂sn and (µ̂s, α̂s) will not be removed from M .

We established that in a single run of the algorithm a good hypothesis is removed with exponentially
small probability. The number of good hypotheses is bounded by |M |. Furthermore, the number of
runs of the algorithm is also bounded by |M |, since whenever the algorithm is rerun a hypothesis is
removed from M . Then, by a union bound, we can bound the probability that any good hypothesis is
removed in any run of the algorithm by |M |2 wO(1)

low .

E Proof of outer stage algorithm guarantees in Appendix B.3

Recall that γ = 4ψt(w
4
low) and γ′ = 160ψt(wlow/4) + 16f(wlow/4).

E.1 Proof of Theorem B.6

In what follows we condition on the event E that the events under which the conclusions in Lem-
mas H.2 and H.3 hold and that AsLD succeeds. This event holds with probability 1 − w

O(1)
low

by Assumption 3.1, Remark B.3 and union bound (also see Appendix G).

Proof of Theorem B.6 (i) The list size bound follows from the standard results on AsLD (see [3],
Proposition B.1).

Proof of Theorem B.6 (ii) Guarantees of AsLD imply that there exists µi ∈ M such that ∥µi −
µ∗∥ ⩽ γ′. By Lemma H.3, a (1−w2

low/2)-fraction of the samples in C∗ are γ-close to µ∗ along each
direction vij with i ̸= j ∈ [|M |]. Then, the same (1−w2

low/2)-fraction of samples are (γ+γ′)-close
to µi along each direction vij , so they are included in S(1)

i .

Proof of Theorem B.6 (iii) Suppose |S(1)
i ∩ C∗| ⩾ w4

low|C∗|. Previous point implies that there
exists µj ∈M be such that ∥µj − µ∗∥ ⩽ γ′. Then at least an w4

low-fraction of the samples in C∗ are
(γ + γ′)-close to µi in direction µi − µj . By Lemma H.2, µ∗ is also γ-close in direction µi − µj

to more than a (1 − w4
low)-fraction of the samples in C∗, so it is γ-close to at least one sample in

any w4
low-fraction of samples in C∗. Therefore µ∗ is also (2γ + γ′)-close to µi in direction µi − µj .

Then ∥µi − µj∥ ⩽ 2γ + 2γ′ and ∥µi − µ∗∥ ⩽ 2γ + 3γ′. Again, using Lemma H.3 we obtain that
there exists a (1− w2

low/2)-fraction of the samples in C∗, which is included in S(2)
i .

Proof of Theorem B.6 (iv) Similarly, if |S(2)
i ∩ C∗| ⩾ w4

low|C∗|, then there exists µj ∈ M ,
such that at least an w4

low-fraction of the samples in C∗ are (3γ + 3γ′)-close to µi in direction
µi − µj . By the same arguments as in previous paragraph, we obtain that ∥µi − µj∥ ⩽ 4γ + 4γ′ and
∥µi − µ∗∥ ⩽ 4γ + 5γ′.

Then any other true cluster with mean (µ∗)′ and set of samples (C∗)′ satisfies ∥µ∗ − (µ∗)′∥ ⩾
16γ + 16γ′, so ∥µi − (µ∗)′∥ ⩾ 12γ + 11γ′. From guarantees of AsLD, there exists µ′

j ∈ M such
that ∥µ′

j − (µ∗)′∥ ⩽ γ′. Then ∥µi− µ′
j∥ ⩾ 12γ +10γ′. By Lemma H.2, more than an w4

low-fraction
of the samples from (C∗)′ are γ-close to (µ∗)′ in direction µi − µ′

j , so also (γ + γ′)-close to µ′
j in

direction µi − µ′
j , so also (11γ + 9γ′)-far from µi in direction µi − µ′

j . Then S(2)
i selects at most a

w4
low-fraction of the samples from (C∗)′. Overall, S(2)

i selects from all other true clusters at most
w4

lown samples.

Proof of Theorem B.6 (v) Note that by the same argument, ∥µi − µ∗∥ ⩽ 4γ + 5γ′ and ∥µi′ −
(µ∗)′∥ ⩽ 4γ + 5γ′. However, ∥µ∗ − (µ∗)′∥ ⩾ 16γ + 16γ′, so also ∥µi − µi′∥ ⩾ 8γ + 6γ′, so S(2)

i

and S(2)
i′ are disjoint by the condition that each selects only samples that are (3γ + 3γ′)-close along

direction µi − µi′ to the respective means µi and µi′ .
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E.2 Proof of Theorem B.7

In the sequel, for any i ∈ G, let mi be the index in R after initialization that satisfies Theorem B.6 (ii).
We condition on the event E′ that event E from the proof of Theorem B.6 holds and that both
||C∗

i |−win| ⩽ w10
lown for all i ∈ [k] and the number of adversarial points lies in the range εn±w10

lown.
By Hoeffding’s inequality and the union bound, the probability of E′ is at least 1− wO(1)

low .

Proof of Theorem B.7 (i) Let i ∈ G, and consider the beginning of the iteration when µgi is
selected. Then, using that all previous iterations could have removed at most O(w3

low)|C∗
i | samples

from C∗
i , we have that

|S(1)
mi
∩ C∗

i | ⩾ (1− w2
low/2−O(w3

low))|C∗
i |.

Therefore at the iteration in which µgi is selected, we still have mi ∈ R. We now discuss two cases:
First, consider the case that |S(2)

mi | ⩽ 2|S(1)
mi |. Then, because we selected µgi ∈M and not µmi

∈M
it means that |S(1)

gi | ⩾ |S
(1)
mi | ⩾ (1− w2

low/2− O(w3
low))|C∗

i |. Note also by Theorem B.6 (iv), the
number of samples from other true clusters in S(2)

gi is at most w4
lown. Then the number of adversarial

samples in S(2)
gi is at least

|S(2)
gi | − |C

∗
i | − w4

lown ⩾ |S(2)
gi \ S

(1)
gi | −O(w2

low)|C∗
i | − w4

lown ⩾ |S(2)
gi \ S

(1)
gi | −O(w2

low)|C∗
i |.

Then, either
∣∣∣S(2)

gi \ S
(1)
gi

∣∣∣ = O(w2
low)|C∗

i | and |Ui| ⩽
∣∣∣S(2)

gi \ S
(1)
gi

∣∣∣ = O(w2
low)|C∗

i |, or∣∣∣S(2)
gi \ S

(1)
gi

∣∣∣ ≫ w2
low|C∗

i |. In the latter case, even if S(2)
gi \ S

(1)
gi consists of adversarial examples

only, then, since |S(2)
gi | ⩽ 2|S(1)

gi |, Ui contains at most double the number of adversarial examples in
S
(1)
gi , i.e. |Ui| ⩽ 2Vi where Vi denotes the number of adversarial examples in S(1)

gi .

Now consider the case that |S(2)
mi | > 2|S(1)

mi |. By Theorem B.6 (iv), the number of samples from true
clusters in S(2)

mi is at most |C∗
i |+w4

lown ⩽ 1.02|S(1)
mi |, so the numberWi of adversarial samples in S(2)

mi

is at least Wi ⩾ |S(2)
mi | − 1.02|S(1)

mi | ⩾ 0.98|S(1)
mi | ⩾ 0.96|C∗

i |. Then, |Ui| =
∣∣∣(C∗

i ∩ S
(2)
gi ) \ S(1)

gi

∣∣∣ ⩽
|C∗

i | ⩽ 2Wi.

Finally note that by Theorem B.6 (v), the sets S(2)
gi and S(2)

mi are disjoint from any other sets S(2)
gj and

S
(2)
mj that correspond to another component C∗

j . Therefore, the number of adversarial examples in

the S(2)
mi in the second case and S(2)

gi in the first case is smaller than the total number of adversarial
examples, i.e. ∑

i∈G

|S(2)
mi
|⩽2|S(1)

mi
|

Vi +
∑
i∈G

|S(2)
mi
|>2|S(1)

mi
|

Wi ⩽ (ε+ w10
low)n.

Therefore, we directly obtain

|U | ⩽
∑
i∈G

∣∣∣(C∗
i ∩ S(2)

gi ) \ S(1)
gi

∣∣∣ = ∑
i∈G

|S(2)
mi
|⩽2|S(1)

mi
|

∣∣∣(C∗
i ∩ S(2)

gi ) \ S(1)
gi

∣∣∣+ ∑
i∈G

|S(2)
mi
|>2|S(1)

mi
|

∣∣∣(C∗
i ∩ S(2)

gi ) \ S(1)
gi

∣∣∣
⩽

∑
i∈G

|S(2)
mi
|⩽2|S(1)

mi
|

2Vi +
∑
i∈G

|S(2)
mi
|>2|S(1)

mi
|

2Wi +O(w2
low)n ⩽ (2ε+O(w2

low))n.

Proof of Theorem B.7 (ii) Each iteration before gi was selected, removed at most w4
low|C∗

i |
samples from C∗

i , so all previous iterations removed at most O(w3
low)|C∗

i | samples from C∗
i . Then,

by Lemma B.6 (iii), S(2)
gi contains at least (1 − w2

low/2 − O(w3
low))|C∗

i | samples from C∗
i . The

statement follows then since on the event E′, we have w∗n− w10
lown ⩽ |C∗| ⩽ w∗n+ w10

lown.
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Proof of Theorem B.7 (iii) Here, either for all i ∈ [k], |S(1)
j ∩ C∗

i | < w4
low|C∗

i | or i ∈ G and

the algorithm had already selected in a previous iteration µgi ∈ M with |S(1)
gi ∩ C∗

i | ⩾ w4
low|C∗

i |.
Consider a first case, in which |S(1)

j ∩ C∗
i | < w4

low|C∗
i | for all i ∈ [k]. Then the total number of

samples from true clusters in S(1)
j is at most w4

lown. Using that |S(1)
j | > 100w4

lown, it follows that

more than half of the samples in S(1)
j are adversarial.

The second case is that |S(1)
j ∩ C∗

i | ⩾ w4
low|C∗

i | for some i ∈ G for which in a previous iteration gi
we had that |S(1)

gi ∩C∗
i | ⩾ w4

low|C∗
i |. Note that at most w2

low|C∗
i |/2 of the samples in S ∩C∗

i are not
considered adversarial at this point (the ones that were outside S(2)

gi ). Also, by Theorem B.6 (iv),
S
(1)
j contains at most w4

lown samples from other true clusters. Therefore either more than half of the

samples in S(1)
j are considered adversarial or

|S(1)
j | ⩽ w2

low|C∗
i |+ 2w4

lown ⩽ O(w2
low)n.

Proof of Theorem B.7 (iv) Suppose that when the algorithm reaches the else statement we have
for some i ∈ [k] that i ∈ R and |S(1)

mi ∩ C∗
i | ⩾ 20w2

low|C∗
i |. We have that |S(2)

mi ∩ C∗
i | is at most

|S(1)
mi ∩ C∗

i |+ w2
low|C∗

i |/2, where we use that by Theorem B.6 (ii), at most w2
low|C∗

i |/2 samples can
fail to be captured by S(1)

mi . By Theorem B.6 (iv), furthermore, the number of samples from other true
clusters in S(2)

mi is at most w4
lown. Therefore, using that |S(2)

mi | > 2|S(1)
mi |, the number of adversarial

samples in S(2)
mi is at least

|S(2)
mi
| − |S(1)

mi
∩ C∗

i | − w2
low|C∗

i |/2− w4
lown ⩾ 0.45|S(2)

mi
| − w4

lown ⩾ 0.44|S(2)
mi
| ,

where in the last inequality we used that |S(2)
mi | > 100w4

lown. Let V be the union, over all i ∈ [k], of
all sets S(2)

mi such that i ∈ R and |S(1)
mi ∩C∗

i | ⩾ 20w2
low|C∗

i |. Theorem B.6 (v) gives that all such sets
S
(2)
mi are disjoint. Therefore at least a 0.44-fraction of the samples in V are adversarial.

Consider now for some i ∈ [k] how many samples from S ∩C∗
i can be outside V when the algorithm

reaches the else statement. By Theorem B.6 (ii), S(1)
mi can fail to capture at most w2

low|C∗
i |/2 samples

from C∗
i , and we have no guarantee that these samples are in V . Consider now the samples in

S
(1)
mi ∩ C∗

i . If i ∈ R, we may miss up to 20w2
low|C∗

i | of these samples if |S(1)
mi ∩ C∗

i | < 20w2
low|C∗

i |,
because in this case we do not include S(2)

mi in V . On the other hand, if i ̸∈ R, there are at most
100w4

lown samples in S(1)
mi ∩C∗

i . Then the total number of samples from S ∩C∗
i outside V is at most

w2
low|C∗

i |/2 + 20w2
low|C∗

i |+ 100w4
lown. Summed across all i ∈ [k], this makes up at most 21w2

lown
samples.

Overall, the number of adversarial samples in S when the algorithm reaches the else statement is at
least
0.44|V |+ (|S| − |V | − 21w2

lown) = |S| − 0.56|V | − 21w2
lown ⩾ 0.44|S| − 21w2

lown ⩾ 0.4|S|
where in the last inequality we also used that |S| ⩾ 0.1wlown.

F Proof of Proposition 3.5

We now prove lower bounds for the case of Gaussian distributions and distributions with t-th sub-
Gaussian moments.

F.1 Case b): For the Gaussian inliers

We first focus on the case when Di(µi) = N(µi, I). The proof goes through an efficient reduction
from the problem considered by Proposition F.1 to the problem solved by algorithm A.
Proposition F.1 ([5], Proposition 5.11). Let D be the class of identity covariance Gaussians on Rd

and let 0 < α ⩽ 1/2. Then any list-decoding algorithm that learns the mean of an element of D with
failure probability at most 1/2, given access to (1− α)-additively corrupted samples, must either
have error bound β = Ω(

√
log 1/α) or return min(2Ω(d), (1/α)w(1)) many hypotheses.
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First, we describe the means of the components in the input distribution to algorithm A. Let
µ̄1, . . . , µ̄k−1 ∈ Rd be any set of k − 1 points with pairwise separation larger than 2C

√
log 1/wlow.

Then let µk = (µ̄, 0) ∈ Rd+1 and µi = (µ̄i, 2C
√

log 1/wlow + 1) ∈ Rd+1 for all i ∈ [k − 1]. Then
µ1, . . . , µk also have pairwise separation larger than 2C

√
log 1/wlow.

Then, given n points y1, . . . , yn ∈ Rd as in the input to the problem in Proposition F.1 (i.e. (1− α)-
additively corrupted samples), we generate n points that we give as input to algorithm A as follows:
let S = {1, . . . , n}, and then for each of the n points, draw i ∼ Unif{1, . . . , k} and generate the
point as follows:

1. if i ∈ [k − 1], sample the point from N(µi, Id+1),

2. if i = k, sample j ∼ S uniformly at random, remove j from S, sample g ∼ N(0, 1), and
let the point be (yj , g) ∈ Rd+1.

We note that this construction simulates an input sampled i.i.d. according to the mixture
1
kN(µ1, Id+1)+ . . .+ 1

kN(µk−1, Id+1)+
α
kN(µk, Id+1)+

1−α
k Q′ for some Q′. Then with success

probability at least 1/2 running A on this input with wlow = α
k returns a list L such that there exists

µ̂ ∈ L with ∥µ̂ − µk∥ ⩽ βk. Note that this implies that ∥(µ̂)1:d − µ̄∥ ⩽ βk. Finally, we create
a pruned list L′ as follows: initialize L′ = L and then for each i ∈ [k − 1] remove all µ̂ ∈ L′

such that ∥µ̂ − µi∥ ⩽ C
√
log 1/wlow. Then we return L′ as the output for the original problem

in Proposition F.1.

Let us analyze now this output. The separation between the means ensures that any hypothesis
µ̂ ∈ L that is C

√
log 1/wlow-close to µk is not removed in the pruning. Therefore L′ contin-

ues to contain a hypothesis µ̂ such that ∥(µ̂)1:d − µ̄∥ ⩽ βk. Then, if βk ̸= Ω(
√
log 1/α) and

|L′| < min{2Ω(d), ((wk + ε)/wk)
ω(1)}, this reduction violates the lower bound of Proposition F.1.

Therefore we must have either βk = Ω(
√
log 1/α) or |L′| ⩾ min{2Ω(d), (1/w̃k)

ω(1)}.
Finally, we show that these lower bounds on βk and |L′| imply the desired lower bound for A.
Consider first the case: βk = Ω(

√
log 1/α). Note that in the input to algorithm A we have w̃k = α.

Therefore βk = Ω(
√

log 1/α) corresponds to the desired lower bound in the lemma statement.
Consider second the case: |L′| ⩾ min{2Ω(d), (1/w̃k)

ω(1)}. We note that, for each i ∈ [k − 1], the
original list L must contain some µ̂ ∈ L such that ∥µ̂−µi∥ ⩽ C

√
log 1/wlow. Furthermore, because

the means µi have pairwise separation larger than 2C
√

log 1/wlow, the original list L must contain
at least k − 1 means of this kind. However, all of these means are removed in the pruning procedure,
so |L| ⩾ k − 1 + |L′|, so |L| ⩾ k − 1 + min{2Ω(d), (1/w̃k)

ω(1)}. This matches the desired lower
bound in the lemma statement. (The choice to make the hidden mean the k-th mean was without loss
of generality, as the distribution is invariant to permutations of the components.)

F.2 Case a): For distributions with t-th sub-Gaussian moments

The proof for the case when Di(µi) has sub-Gaussian t-th central moments employs the same
reduction scheme, but reduces from Proposition F.2.

Proposition F.2 ([5], Proposition 5.12). Let D be the class of distributions on Rd with bounded t-th
central moments for some positive even integer t, and let 0 < α < 2−t−1. Then any list-decoding
algorithm that learns the mean of an element of D with failure probability at most 1/2, given access
to (1−α)-additively corrupted samples, must either have error bound β = Ω(α−1/t) or return a list
of at least d hypotheses.

Furthermore, in [3], formal evidence of computational hardness was obtained (see their Theorem 5.7,
which gives a lower bound in the statistical query model introduced by [14]) that suggests obtaining
error Ωt((1/w̃s)

1/t) requires running time at least dΩ(t). This was proved for Gaussian inliers and
the running time matches ours up to a constant in the exponent.
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G Stability of list-decoding algorithms

In this section we discuss two of the existing list-decodable mean estimation algorithms for identity-
covariance Gaussian distributions and show that they also work when a w2

low-fraction of the inliers is
adversarially removed.

First, we consider the algorithm in Theorem 3.1 in [3]. A central object in their analysis is an
“α-good multiset", which is a multiset of samples such that all are within distance O(

√
d) of each

other and at least an α-fraction of them come from a (1− Ω(α))-fraction of an i.i.d. set of samples
from a Gaussian distribution N(µ, Id). Then their algorithm essentially works as long as the input
contains an α-good multiset. For our case, after the removal of a w2

low-fraction of inliers, the input
essentially continues to contain a (1− w2

low)α-good multiset, so the algorithm continues to work in
our corruption model.

Second, we consider the algorithm in Theorem 6.12 in [5]. The main distributional requirement
of their algorithm is that Ex,y∼S∗ [p2(x − y)] ⩽ 2Eg,h∼N(0,Id)[p

2(g − h)] for all degree-(t/2)
polynomials p, where S∗ is the set of inliers. Concentration arguments give with high probability that
Ex,y∼C∗ [p2(x − y)] ⩽ 1.5Eg,h∼N(0,Id)[p

2(g − h)]. Furthermore, the distribution over x, y ∼ S∗

can be seen as a (1 − w2
low)

2-fraction of the distribution over x, y ∼ C∗. Then Fact G.1, which
follows by standard probability calculations, also gives that any event under the former distribution
can be bounded in terms of the second distribution:
Fact G.1. For any event A,

P
x,y∼S∗

(A) ⩽ P
x,y∼C∗

(A)/(1− w2
low)

2, (G.1)

where probabilities are taken over a uniform sample from S∗ and C∗ respectively.

Overall we obtain

Ex,y∼S∗ [p2(x− y)] ⩽ 1.5/(1− w2
low)

2Eg,h∼N(0,Id)[p
2(g − h)],

so forwlow small enough we have Ex,y∼S∗ [p2(x−y)] ⩽ 2Eg,h∼N(0,Id)[p
2(g−h)] and their algorithm

continues to work in our corruption model.

H Concentration bounds

In this section we prove some concentration bounds essential to our analysis.
Lemma H.1. Let D be a d-dimensional distribution with mean µ∗ ∈ Rd and sub-Gaussian t-th
central moments with parameter 1. Fix a unit vector v ∈ Rd. Then

P
x∼D

[|⟨x− µ∗, v⟩| ⩽ R] ⩾ 1−
(√

t

R

)t

.

Proof. We have that

P
x∼D

[|⟨x− µ∗, v⟩| > R] ⩽
Ex∼D⟨x− µ∗, v⟩t

Rt
⩽

(t− 1)!!

Rt
⩽

(√
t

R

)t

,

where we used that (t− 1)!! ⩽ tt/2 =
√
t
t
.

Lemma H.2. Let D be a d-dimensional distribution with mean µ∗ ∈ Rd and sub-Gaussian t-th
central moments with parameter 1. Let C∗ be a set of i.i.d. samples drawn from D. Fix a unit vector

v ∈ Rd. Then with probability at least 1− exp

(
−2|C∗|

(√
t

R

)2t)
,

|{x ∈ C∗, s.t. |⟨x− µ∗, v⟩| ⩽ R}| ⩾

(
1− 2

(√
t

R

)t
)
|C∗| .

Proof. The result follows by Lemma H.1 and a Binomial tail bound.
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Lemma H.3. Let D be a d-dimensional distribution with mean µ∗ ∈ Rd and sub-Gaussian t-th
central moments with parameter 1. Let C∗ be a set of i.i.d. samples drawn from D. Fix m unit

vectors v1, . . . , vm ∈ Rd. Then with probability at least 1− exp

(
−2|S∗|m2

(√
t

R

)2t)
,

∣∣∣ ⋂
i∈[m]

{x ∈ S∗, s.t. |⟨x− µ∗, vi⟩| ⩽ R}
∣∣∣ ⩾ (1− 2m

(√
t

R

)t
)
|S∗| .

Proof. By Lemma H.1 and a union bound over the m directions, we get

P
x∼D

[|⟨x− µ∗, vi⟩| ⩽ R,∀i ∈ [m]] ⩾ 1−m
(√

t

R

)t

.

Then the result follows by a Binomial tail bound.

I Experimental details

Adversarial line and adversarial clusters The following figure illustrates the adversarial distribu-
tions used in Figure 2 and further in this section.

True Cluster

Fake Cluster

Figure 4: Two variants of adversarial distribution: adversarial line (left) and adversarial clusters
(right).

Data Distribution We consider a mixture of k = 7 well-separated (∥µi − µj∥ ⩾ 40) d = 100
dimensional inlier clusters whose subgroup sizes range from 0.3 to 0.02. The experiments are
conducted once using a Gaussian distribution and once using a heavy-tailed t-distribution with five
degrees of freedom for both inlier and adversarial clusters. In Figure 6 the latter suggests that
our algorithm works comparatively well even for mixture distributions which do not fulfill our
assumptions. We set wlow = 0.02 and ε = 0.12 so that it is larger than the smallest clusters but
smaller than the largest ones and set the total number of data points to 10000. The Gaussian noise
model simply computes the empirical mean and covariance matrix of the clean data and samples
1200 noisy samples from a Gaussian distribution with this mean and covariance. The adversarial
cluster model and the adversarial model are as depicted in Figure 4.

Attack distributions We consider three distinct adversarial models (see Figure 4 for reference).

1. Adversarial clusters: After sampling the inlier cluster means, we choose the cluster with
the smallest weight. Let µs denote its mean. Then, we sample a random direction vc with
∥vc∥ = 10. After that, we sample three directions v1, v2 and v3 with ∥vi∥ = 10. Then we
put three additional (outlier) clusters with means at µs + vc + vi. This roughly corresponds
to the right picture in Figure 4. The samples for each adversarial cluster are drawn from a
distribution that matches the covariance of the inlier clusters, with the sample size being
twice as large as of the affected inlier cluster.

2. Adversarial line: After sampling the inlier cluster means, we again choose the cluster with
the smallest weight. Let µs denote its mean. Then, we sample a random direction vc with
∥vc∥ = 10. We put three additional (outlier) clusters with means at µs + vc, µs + 2vc and
µs + 3vc, which form a line as shown in Figure 4. The samples are drawn similarly to the
adversarial clusters, with the difference that the covariance is scaled by a factor of 5 in the
direction of the line.
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Figure 5: Comparison of five algorithms with three adversarial noise models. On the left we show
worst estimation error of algorithms with constrained list size and on the right the smallest list size
with constrained error guarantee. We plot the median of the metrics with the error bars showing 25th
and 75th percentile. We observe that our method consistently outperforms prior works in terms of list
size and worst estimation error, with the exception of DBSCAN, which performs at a similiar level.
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Figure 6: Worst estimation error and list size comparison for the case where inlier distributions are
heavy-tailed. We can observe numerical stability of our approach.

3. Gaussian adversary: Here we simply introduce noise matching the empirical mean and
covariance of all inlier data (i.e., as if all inlier clusters are generated from the same Gaussian
distribution).

Note that in the first and second attack, the adversary creates clusters that do not respect the separation
assumption of the true inlier clusters: either adversarial clusters are placed around the smallest inlier
cluster (Adversarial Cluster), or the adversarial clusters form a line, pointing out in some fixed
direction (Adversarial Line).

Implementation details We implement the list-decodable mean estimation base learner in our
InnerStage algorithm (Algorithm 3) based on [8]. It leverages an iterative multi-filtering strategy and
one-dimensional projections. In particular, we use the simplified gaussian version of the algorithm.
It is designed for distributions sampled from a Gaussian but also shows promising results for the
experiments involving a heavy-tailed t-distribution as depicted in Figure 6. The robust mean estimator
used to improve the mean hypotheses for large clusters is omitted in our implementation.

Hyper-parameter search and experiment execution The hyper-parameters of our algorithm are
tuned beforehand based on the experimental setup. For the comparative algorithms, hyper-parameter
searches are conducted within each experiment after initial tuning. For our algorithm, key parameters
include the pruning radius γ used in the OuterStage routine (Algorithm 6) and β used in the InnerStage
(Algorithm 4). In addition, parameters for the LD-ME base learner, such as the cluster concentration
threshold, also require careful selection, resulting in a total of 7 parameters. The tuning for these
was performed using a grid search comparing about 250 different configurations. Similarly, we
independently tune the vanilla LD-ME algorithm, which we run with wlow as weight parameter. For
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Figure 7: Scatter plot of all results for one iteration of the experiment using three adversarial noise
models.

DBSCAN, we optimize the list size and error metrics by searching over a range of 100 values for ε,
which controls the maximum distance between samples considered in the same neighbourhood. The
minimum samples threshold, which validates the density based clusters, is pretuned beforehand and
adjusted based on wlow. For k-means and its robust version, utilizing a median-of-means weighting
scheme, we explore 21 values for k, including the true number of clusters. Each parameter setting
is executed 100 times to account for stochastic variations in the algorithmic procedures, such as
k-means initialization. The list size and worst estimation error for each list of clusters obtained is
visualized exemplarily for one iteration of the experiment in Figure 7. The plot provides insight into
how the different algorithms perform and vary with different list sizes.

Evaluation details Note that we have two sources of randomness: the data is random and also the
algorithms themselves are random (except DBSCAN). For a clear comparison, we sample and fix
one dataset for each attack model. we plot the performance of 100 runs of each algorithm for each
parameter setting, each time recording the returned list size together with the worst estimation error
maxi∈[k] minµ̂∈L∥µi − µ̂∥. Then we either (i) report the worst estimation error for all runs with
constrained list size (we pick the list size most frequently returned by our algorithm, specifically 7
or 10 in our experiments) (see Figure 5, left), or (ii) report the smallest list size required to achieve
the same or smaller worst estimation error (we pick the 75th quantile of errors of our algorithm for
a threshold) (see Figure 5, right). Under size constraint (i), the bar plots correspond to the median
over the runs, with error bars indicating the 25th and 75th quantiles. Under error constraint (ii),
the bar plots represent the minimum list size for which the median over the runs falls below the
threshold, while the error bars show the minimum list size for which the 25th and 75th quantiles meet
the constraint. Note that ’n/a’ indicates that, within the scope of our parameter search, no list size
achieves an error below the specified constraint.

In Figure 6 we study the numerical stability of our approach. In particular, whether the performance
degrades when inlier distribution does not satisfy required assumptions. We observe that if one uses
our meta-algorithm with base learner designed for Gaussian inliers, we still obtain stable results even
in the case of heavy-tailed inlier distribution.

I.1 Variation of wlow

To study the effect of varying wlow input on the performance of our approach and LD-ME, we
introduce a new noise model. As illustrated in Figure 8, we consider a mixture of k = 3 well-
separated clusters: one small cluster with a weight of 0.045 and two large clusters, each with a weight
of 0.2. We place two adversarial clusters (see paragraph on attack distributions for details): one near
the small cluster and another near one of the large clusters. Furthermore, uniform noise is introduced,
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True Cluster

Fake Cluster

Uniform noise

Figure 8: Setup for wlow variation experiment with clusters contaminated by an adversarial cluster
and uniform noise. Lower color intensities indicate smaller cluster weights.
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Figure 9: Comparison of list size and estimation error for small and large inlier clusters for varying
wlow inputs. The experimental setup is illustrated in Figure 8. The plot on the top left shows the
estimation error for the small cluster and the plot on the top right shows the error for the large cluster.
We plot the median values with error bars indicating 25th and 75th quantiles. As wlow decreases,
our algorithm maintains a roughly constant estimation error for the large cluster, while the error for
LD-ME increases.

spanning the range of the data generated by the inlier and its nearby outlier cluster and accounting
for 10% of the data in this region. Overall, ε = 0.56 and we draw 22650 samples from this mixture
distribution.

For both algorithms we run 100 seeds for each wlow ranging from 0.02 to 0.2, which corresponds to
the weight of the largest inlier cluster. In Figure 9, we plot the median estimation error with error
bars showing the 25th and 75th quantiles for the small cluster (top left) and the large cluster near the
outlier cluster (top right). As expected from our theoretical results, we observe that our algorithm
performs roughly constant in estimating the mean of the large cluster, regardless of the initial wlow.
Meanwhile, the estimation error of LD-ME increases as wlow decreases further below the true cluster
weight. Furthermore, the plots show that our approach does consistently outperform LD-ME in
terms of both worst estimation error and list size. Figure 10 also compares the performance of
the clustering algorithms in this experimental setup with results similar to the ones obtained in the
previous experimental settings.

I.2 Computational resources

Our implementation of the algorithm and experiments leverages multi-threading. It utilizes CPU
resources of an internal cluster with 128 cores, which results in a execution time of about 5 minutes
for a single run of the experiment for one noise model with 10000 samples. We remark that classic
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Figure 10: Worst estimation error and list size comparison for the setup used in the wlow variation
experiment.

approaches like k-means and DBSCAN perform fast and the most time-consuming part is the
execution of the LD-ME base learner. Given our experimental setup with three noise models, it takes
about 15 minutes to reproduce all our results for one data distribution.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We summarized our contributions in Table 1 in the introduction, and all the
claims made there (including more general results) appear in Section 3 and Appendix C.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our theoretical results in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Our assumptions are stated in Sections 2 and 3, in particular Assumption 3.1.
The complete proof is given in Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experimental details, including explanation of the adversarial noise
distribution in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We uploaded zip archive containing the code together with instructions on how
to reproduce the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide short version of experimental details in Section 6 and more detailed
one in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As described in Appendix I, we plot the median of the metric (error or list
size) accompanied by the 25% and 75% percentiles, acting as error bars. The statistics was
collected over 100 reruns of all algorithms under comparison.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide experimental details, including computational resources, in Ap-
pendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics and confirm that our paper respects
it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Main focus of our result is to deepen our theoretical understanding of funda-
mental problems in statistics, such as mixture learning.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of our judgement, our paper does not pose misuse risks, as it has
theoretical focus.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our work does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not use release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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