
Block-local learning with probabilistic latent
representations

Anonymous Author(s)
Affiliation
Address
email

Abstract

The ubiquitous backpropagation algorithm requires sequential updates across1

blocks of a network, introducing a locking problem. Moreover, backpropaga-2

tion relies on the transpose of weight matrices to calculate updates, introducing a3

weight transport problem across blocks. Both these issues prevent efficient par-4

allelisation and horizontal scaling of models across devices. We propose a new5

method that introduces a twin network that propagates information backwards from6

the targets to the input to provide auxiliary local losses. Forward and backward7

propagation can work in parallel and with different sets of weights, addressing the8

problems of weight transport and locking. Our approach derives from a statistical9

interpretation of end-to-end training which treats activations of network layers as10

parameters of probability distributions. The resulting learning framework uses11

these parameters locally to assess the matching between forward and backward12

information. Error backpropagation is then performed locally within each block,13

leading to “block-local” learning. Several previously proposed alternatives to error14

backpropagation emerge as special cases of our model. We present results on vari-15

ous tasks and architectures, including transformers, demonstrating state-of-the-art16

performance using block-local learning. These results provide a new principled17

framework to train very large networks in a distributed setting and can also be18

applied in neuromorphic systems.19

1 Introduction20

Recent developments in machine learning have seen deep neural network architectures scaling to21

billions of parameters [Touvron et al., 2023, Brown et al., 2020]. This development has boosted22

the capabilities of these models to unprecedented levels but simultaneously pushed the computing23

hardware on which large network models are running to its limits. It is therefore becoming increas-24

ingly important to distribute learning algorithms over a large number of independent compute nodes.25

However, today’s machine learning algorithms are ill-suited for distributed computing. The error26

backpropagation (backprop) algorithm requires an alternation of inter-depended forward and back-27

ward phases, introducing a locking problem (the two phases have to wait for each other) [Jaderberg28

et al., 2016a]. Furthermore, the two phases rely on the same weight matrices to calculate updates,29

introducing a weight transport problem across blocks [Grossberg, 1987, Lillicrap et al., 2014a]. These30

two issues make efficient parallelisation and horizontal scaling of large machine learning models31

across compute nodes extremely difficult.32

We propose a new method to address these problems by distributing a globally defined optimisation33

algorithm across a large network of nodes that use only local learning. Our approach uses a message-34

passing approach that uses results from probabilistic models and communicates uncertainty messages35

forward and backwards between compute nodes in parallel. To do so, we augment a network36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

architecture with a twin network that propagates information backwards from the targets to the37

input to provide uncertainty measures and auxiliary targets for local losses. Forward and backward38

messages comprise information about extracted features and feature uncertainties and are matched39

against each other using local probabilistic losses. Importantly, forward and backward propagation can40

work in parallel, reducing the locking problem. Inside each block, conventional error backpropagation41

is performed locally (“block-local”). These local updates can be used in the forward network and its42

backward twin for adapting parameters during training. The developed theoretical learning provides a43

new principled method to distribute very large networks over multiple compute nodes. The solutions44

emerging from this framework show striking similarities to earlier models that used random feedback45

weights as local targets [Lillicrap et al., 2020, Frenkel et al., 2021] but also provide a principled way46

to train these feedback weights.47

In summary, the contribution of this paper is threefold:48

1. We provide a theoretical framework on how interpreting the representations of deep neural49

networks as probability distributions provides a principled approach for block-local training50

of these networks. This can be used to distribute learning and inference over many interacting51

neural network blocks for various neural network architectures.52

2. We demonstrate an instance of this probabilistic learning model on several benchmark53

classification tasks, where classifiers are split into multiple blocks and trained without54

end-to-end gradient computation.55

3. We demonstrate how this framework can be used to allow deep networks to produce56

uncertainty estimates over their predictions. This principle is showcased on an autoencoder57

network that automatically predicts uncertainties alongside pixel intensity values after58

training.59

2 Related work60

A number of methods for using local learning in DNNs had been introduced previously. Lomnitz et al.61

[2022] introduced Target Projection Stochastic Gradient Descent (tpSGD), which uses layer-wise62

SGD and local targets generated via random projections of the labels, but does not adapt the backward63

weights. LocoProp [Amid et al., 2022] uses a layer-wise loss that consists of a target term and a64

regularizer, which is used however to enable 2nd order learning and does not focus on distributing65

the gradient optimization. Jimenez Rezende et al. [2016] used a generative model and a KL-loss for66

local unsupervised learning of 3D structures.67

Some previous methods are based on probabilistic or energy-based cost functions and use a contrastive68

approach with positive and negative data samples. Contrastive learning Chen et al. [2020], Oord69

et al. [2019] can be used to construct block-local losses Xiong et al. [2020], Illing et al. [2021].70

Equilibrium propagation replaces target clamping with a target nudging phase [Scellier and Bengio,71

2017]. Another interesting contrastive approach was recently introduced [Hinton, 2022, Ororbia and72

Mali, 2023, Zhao et al., 2023]. However, it needs task-specific negative examples. [Han et al., 2018]73

uses a local predictive loss to improve recurrent networks’ performance. In contrast to these methods,74

our approach does not need separate positive and negative data samples and focuses on block-local75

learning.76

Feedback alignment [Lillicrap et al., 2020, Sanfiz and Akrout, 2021] uses random projections to77

propagate gradient information backwards. Jaderberg et al. [2016b] used pseudo-reward functions78

which are optimized simultaneously by reinforcement learning to improve performance. Random79

feedback alignment [Amid et al., 2022, Refinetti et al., 2021] and related approaches [Clark et al., 2021,80

Nøkland, 2016, Launay et al., 2020], use fixed random feedback weights to back-propagate errors.81

[Jaderberg et al., 2017] used decoupled synthetic gradients for local training. Target propagation82

demonstrates non-trivial performance with random projections for target labels instead of errors83

[Frenkel et al., 2021]. In contrast to these methods, we provide a principled way to adapt feedback84

weights.85

Other methods [Belilovsky et al., 2019, Löwe et al., 2019] used greedy local, block- or layer-wise86

optimization. Notably, Nøkland and Eidnes [2019] achieved good results by combining a matching87

and a local cross-entropy loss. [Siddiqui et al., 2023] recently used block-local learning based on a88

cross-correlation metric over feature embeddings [Zbontar et al., 2021], demonstrating promising89

2

Figure 1: Illustration of use of block-local representations as learning signals on intermediate network
layers. A deep neural network architecture NA is split into multiple blocks (forward blocks) and
trained on an auxiliary local loss. Targets for local losses are provided by a twin backward network
NB .

performance. [Wu et al., 2021] used greedy layer-wise optimization of hierarchical autoencoders for90

video prediction. [Wu et al., 2022] used an encoder-decoder stage for pretraining. In contrast to these91

methods, we do not rely solely on local greedy optimization but provide a principled way to combine92

local losses with feedback information without locking and weight transport across blocks.93

3 A probabilistic formulation of distributed learning94

At a high level, our method interprets the activations of a neural network as the parameters of95

probability distributions of latent variables. We use these intermediate representations at each block96

to derive block local losses. These latent variables over multiple blocks implicitly define a Markov97

chain, which allows us to tractably minimize the block’s local loss. We show that the derived block98

local losses and the resulting block local learning (BLL) are a general form of various existing local99

losses and provide an upper bound to a global loss.100

3.1 Using latent representations to construct probabilistic block-local losses101

Learning in deep neural networks can be formulated probabilistically [Ghahramani, 2015] in102

terms of maximum likelihood, i.e. the problem is to minimize the negative log-likelihood103

L = − log p (x,y) = − log p (y |x) − log p (x) with respect to the network parameters θ.104

For many practical cases where we may not be interested in the prior distribution p (x), we would105

like to directly minimize L = − log p (y |x).106

This probabilistic interpretation of deep learning can be used to define block-local losses and distribute107

the learning over multiple blocks of networks by introducing intermediate latent representations. The108

idea is illustrated in Fig. 1. A neural network that computes the distribution log p (y |x) takes x as109

input and outputs the statistical parameters to the conditional distribution. The deep neural network110

is split at an intermediate layer k (in Fig. 1 we used k ∈ (1, 2)) and end-to-end estimation of the111

gradient is replaced by two estimators that optimize the sub-networks x → zk and zk → y separately.112

To do this, consider the gradient of the log-likelihood loss function113

− ∂

∂θ
L =

∂

∂θ
log p (y |x) . (1)

3

For any deep network, it is possible to choose any intermediate activation at layer k as latent114

representations zk, such that log p (y |x) =
〈
p (y | zk) p (zk |x)

〉
p(zk |x,y)

, where
〈 〉

p
denotes115

expectation with respect to p. Therefore, the representations of y depend on x only through zk as116

expected for a feed-forward network. Using this conditional independence property, the log-likelihood117

(1) expands to118

− ∂

∂θ
L =

∂

∂θ
log p (y |x) =

〈
∂

∂θ
log p (y | zk) +

∂

∂θ
log p (zk |x)

〉
p(zk |x,y)

. (2)

This well-known result is the foundation of the Expectation-Maximization (EM) algorithm [Dempster119

et al., 1977]. Computing the marginal with respect to p (zk |x,y) corresponds to the E-step and120

calculating the gradients corresponds to the M-step. The sum inside the expectation separates the121

gradient estimators into two parts: x → zk and zk → y.122

However, the E-step is impractical to compute for most interesting applications because of the123

combinatorial explosion in the state space of zk. To get around this, we use a variational lower bound124

to EM, based on the ELBO loss LV = − log p (y |x) +DKL (q | p) [Mnih and Gregor, 2014] and125

demonstrate that this yields a practical solution to split gradients in a similar fashion to Eq. (2). In the126

next section, we describe how we construct the variational distribution q.127

3.2 Auxiliary latent representations128

As described earlier, the output of any layer of a DNN can be interpreted as parameters to a distribution129

over latent random variable zk. The sequence of blocks across a network therefore implicitly defines130

a Markov chain x → z1 → z2 → . . . (see Fig. 2A). This probabilistic interpretation of hidden layer131

activity is valid under relatively mild assumptions, studied in more detail in the Supplement. It is132

important to note that the network at no point produces samples from the implicit random variables133

zk, but they are introduced here only to conceptualize the mathematical framework. Instead the134

network outputs the parameters to αk(zk) which is the probability distribution over zk (e.g. means135

and variances if αk is Gaussian). The network thus translates αk−1 → αk → . . . by outputting the136

statistical parameters of the conditional distribution αk(zk) and taking αk(zk−1) parameters as input.137

More precisely, the network implicitly computes a marginal distribution138

αk (zk) = p (zk |x) =
〈
pk (zk | zk−1)

〉
p(zk−1 |x)

=
〈
pk (zk | zk−1)

〉
αk−1(zk−1)

, (3)

where
〈 〉

p
denotes expectation with respect to the probability distribution p. Consequently, the139

network realizes a conditional probability distribution p (y |x) (where x and y are network inputs140

and outputs, respectively). And by the universal approximator property of deep neural networks,141

an accurate representation of this distribution can be learnt in the network weights through error142

back-propagation (as demonstrated for the example in Fig. 2). Eq. (3) is an instance of the belief143

propagation algorithm to efficiently compute conditional probability distributions.144

To construct the variational distribution q we introduce the backward network NB that propagates145

messages βk backwards according to Eq. 4 (see Fig. 1 for an illustration). Inference over the posterior146

distribution p (zk |x,y) for any latent variable zk can be made using the belief propagation algorithm,147

propagating messages αk (zk) forward through the network using Eq. (3). In addition messages148

βk (zk) need to be propagated backward according to149

βk (zk) = p (y | zk) =
〈
p (y | zk+1)

〉
pk(zk+1 | zk)

=
〈
βk+1 (zk+1)

〉
pk(zk+1 | zk)

, (4)

such that the posterior p (zk |x,y) can be computed up to normalization150

ρk (zk) = p (zk |x,y) ∝ p (zk |x) p (y | zk) = αk (zk) βk (zk) . (5)

We make use of the fact that, through Eq. (3), the parameters of a probability distribution p (zk |x)151

are a function of the parameters to p (zi |x), for 0 < i < k, e.g. if α is assumed to be Gaussian152

we have
(
µ (αk) , σ

2 (αk)
)
= f

(
µ (αi) , σ

2 (αi)
)
, where µ (.) and σ2 (.) are the mean and vari-153

ance of the distribution respectively. Thus, if a network outputs
(
µ (αi) , σ

2 (αi)
)

on layer i and154 (
µ (αk) , σ

2 (αk)
)

on layer k, a suitable probabilistic loss function will allow the network to learn155

4

Figure 2: Zero shot learning of predicted uncertainties. A: Gaussian convolutional autoencoder
network. Variance inputs and outputs are set to a constant during the whole training process. The
network implements an implicit Markov chain. B: Example images showing self-prediction of
uncertainties. C: Uncertainty mismatch metrics throughout learning. D: The network in (A) can be
‘folded’ to provide targets for local losses L0,L1, . . .

f from examples. Therefore, the conditional distributions pk (zk | zk−1) and the expectation in156

Eq. (3) are only implicitly encoded in the network weights. We will study the exponential family of157

probability distributions for which this observation can be formalized more thoroughly.158

Exponential family distributions: To derive concrete losses and update rules for the forward159

and backward networks, we assume that αk are from the exponential family (EF) of probability160

distributions, given by161

αk (zk) =
∏
j

αkj (zkj) =
∏
j

h(zkj) exp (T (zkj)ϕkj −A (ϕkj)) , (6)

with base measure h, sufficient statistics T , log-partition function A, and natural parameters ϕkj .162

This rich class contains the most common distributions, such as Gaussian, Poisson or Bernoulli, as163

special cases. For the example of a Bernoulli random variable we have zkj ∈ {0, 1}, T (zkj) = zkj164

and A (ϕkj) = log
(
1 + eϕkj

)
[Koller and Friedman, 2009]. A network directly implements an EF165

distribution if the activations akj encode the natural parameters, akj = ϕkj . Using this result, a166

feed-forward DNN NA : x → y, can be split into N blocks by introducing implicit latent variables167

zk : x → zk → y, and generating the respective natural parameters. In principle, blocks can be168

separated after any arbitrary layer, but some splits may turn out more natural for a particular network169

architecture.170

Conveniently, if both αkj and βkj are members of the EF with natural parameters akj and bkj , then171

ρkj is also EF with parameters akj + bkj . We will use this property to deconstruct a single global172

loss into multiple block-local losses.173

5

3.3 Illustrative example: forward-backward networks as an autoencoder174

Probability representations in DNNs are useful since they provide a principled way to represent175

uncertainties in the network. Before we establish our main result to show how a DNN can be176

deconstructed into local blocks, we first demonstrate how representations of Bayesian uncertainty177

can emerge in DNNs by using appropriate probabilistic losses. We consider the autoencoder network178

illustrated in Fig. 2A and use it to learn representations for the Fashion-MNIST dataset [Xiao179

et al., 2017]. The CNN comprises a bottleneck layer y that implicitly splits the architecture into a180

decoder and encoder part (Fig. 2A). It is well known that such a network is able to learn compact181

representations and features that allow it to reconstruct the gray scale pixel intensities of a given182

input [Kingma and Welling, 2013]. Here we demonstrate that autoencoders are also able to learn183

representations of uncertainties, i.e. to automatically output high uncertainties for pixel values that184

are poorly represented in the learnt features.185

To show this, we augmented the pixel representations on the inputs and outputs with additional186

channels that represented the logarithms of the variances of a Gaussian distribution (see Supplement187

for details). The input and outputs now represent the parameters of probability distributions, where188

the variances are proxies for the uncertainties. An appropriate loss function for this architecture is189

one that measures the distance between probability distributions. We used the Kullback-Leibler (KL)190

divergence between Gaussian distributions. This augmentation to conventional deep auto-encoders191

requires us to also provide uncertainty values for training data samples. Since the Fashion-MNIST192

dataset does not contain this information, we set the variances of pixels for all training samples to the193

same small constant values, reflecting high confidence (low variance) in the training set. Thus, during194

training, the network has only seen the same constant inputs (and outputs) for the variance channels.195

Fig. 2B shows representative sample outputs for the test dataset after training. As expected, the196

network is able to represent the means of gray scale values in the dataset well and generalize to197

new images. Interestingly, the network also learned meaningful representations of the variances.198

Although the network has only seen constant values for the variances during training, it is able to199

infer information about its own uncertainty during testing. The true MSE errors between inputs and200

predictions qualitatively match the pixel-level variance predictions across a wide variety of inputs.201

For example, the network poorly represents the logo on the shirt (leftmost example) and predicts202

high variance in the output for these pixels. Other samples like the trousers (second from left) that203

are well represented correctly predict low variance. To further quantify this result, we developed204

additional metrics that measure the mismatch between estimated and true prediction errors (Fig. 2C,205

see Supplement for details). These metrics consistently decrease throughout training even though206

they were not directly minimized. These results suggest that DNNs are able to represent uncertainties207

well enough that they show zero-shot generalizations to unseen data from very limited training data.208

3.4 Modularized learning using local variational losses209

The autoencoder example described in Section 3.3 shows that DNNs can represent probability210

distributions well in principle, and also provides an idea of how probabilistic losses could be211

constructed locally at any layer. By ‘folding’ the network along the bottleneck layer y we are able212

to construct a sequence of pairs of auxiliary targets (z1, z′1), (z2, z
′
2), . . . (see Fig. 2D). Finally, by213

introducing suitable loss functions L0,L1, . . . , the mismatch between the encoder and decoder parts214

of the network can be minimized on a per-layer basis.215

The forward and backward networks NA and NB can be used to construct local loss functions L(k)
V at216

blocks k. In the Supplement, we show in detail that minimizing L(k)
V locally and in parallel optimizes217

a lower bound to the log-likelihood loss L (Eq. 1), without propagating gradients end-to-end. To218

arrive at this result, we take the forward αk and posterior messages ρk to be given by EF distributions219

with natural parameters ϕkj and γkj . Using this we show in the Supplement that the local loss can be220

optimized using the modularized gradient estimator221

− ∂

∂θ
L(k)
V =

∑
j

(
µ (ρkj)− µ (αkj)

)︸ ︷︷ ︸
forward weight

∂

∂θ
ϕkj + σ2 (ρkj) (ϕkj − γkj)︸ ︷︷ ︸

posterior weight

∂

∂θ
γkj , (7)

where µ(·) and σ2(·) are means and variances of EF distribution. Note that the gradients of the natural222

parameters ϕkj and γkj are computed independently and modulated by the forward and posterior223

weight, respectively.224

6

The result in Eq. (7) holds for general EF distributions. For the special case of Bernoulli random225

variables we get226

− ∂

∂θ
L(k)
V =

∑
k,j

(ρkj − αkj)
∂

∂θ
akj − ρkj (1− ρkj) bkj

(
∂

∂θ
akj +

∂

∂θ
bkj

)
, (8)

where akj = fj(ak−1) and bkj = gj(bk+1), are the outputs of the forward and backward network at227

block k,228

ρkj = S (akj +mbkj) and αkj = S (akj) , (9)
where m is a mixing parameter described below and S(x) = 1/1 + e−x is the sigmoid/logistic229

function.230

The Bernoulli solution in Eq. (8) is convenient because it is a single parameter distribution (mean231

and variance share one parameter) such that all channels in z can be treated independently. Also the232

structure of Eq. 9 is well suited for a DNN implementation. In our experiments, we focus on this233

Bernoulli variant of the general result in Eq. (7). In the Supplement, we study a number of other234

relevant members of the EF. Furthermore, it is interesting to study the structure of Eq. (8) more235

carefully. The first term minimizes the mismatch between the forward and the posterior distribution236

with respect to the forward blocks. The second term is the uncertainty-weighted backward activation237

bkj which modulates local gradients (see Supplement). Therefore, the backward activations bkj238

act directly as learning signals for local updates. The BLL method is therefore related to feedback239

alignment [Lillicrap et al., 2020] and target propagation [Frenkel et al., 2021] where backward240

information is provided through random weights. However, since the gradients of the backward241

blocks appear in the second term, our model also provides a principled way to optimize the backward242

flow of information from the targets.243

Data mixing schedule: The equation for the posterior distribution Eq. 9 contains a data mixing244

parameter m, with 0 ≤ m ≤ 1, that scales the influence of the backward messages in the posterior245

distribution. This parameter serves two important functions, (1) It scales the balance between forward246

and backward messages in the posterior distribution ρ and (2) it scales the first term in the parameter247

updates Eq. 8. We found that a annealing schedule for this parameter that decreases m slowly248

during learning works well in practice. If not stated otherwise, we used m = (1 + τ M)
−1 in249

our experiments, where M is the index of the current epoch and τ is a scaling parameter (see the250

Supplement for further details).251

4 Experimental results252

We evaluated the BLL model on a number of vision and sequence learning tasks. All models used the253

Bernoulli BLL gradients described in Eq. (8) for local optimization. Additional details of the network254

models can be found in the Supplement.255

4.1 Block-local learning of vision benchmark tasks256

We compare the performance of our block local learning (BLL) algorithm with that of end-to-end257

backprop (BP) and Feedback Alignment (FA) Lillicrap et al. [2014b]. Three datasets are considered:258

MNIST, Fashion MNIST and CIFAR10 together with two residual network architectures [He et al.,259

2016]: ResNet-18 and ResNet-50, each trained with one of the three methods (BP, FA, BLL).260

The BLL architectures were split into 4 blocks that were trained locally using the Bernoulli loss261

in Eq. (8). Splits were introduced after residual layers of the ResNet architecture by grouping262

subsequent layers into blocks. Group sizes were (4,5,4,5) for ResNet-18 and (12,13,12,13) for263

ResNet-50. Backward twin networks were here constructed simply by using the same network264

architecture (ResNet-18 or ResNet-50) in reverse order, introducing appropriate splits to provide265

intermediate targets. For CIFAR-10 gradients were propagated between two neighboring blocks266

(see Supplement for details and a comparison with purely local gradients). The kernels of ResNet-267

18/ResNet-50 + FA architectures used during backpropagation are fixed and uniformly initialised268

following the Kaiming He et al. [2015] initialisation method. The bias is set to one.269

The results are summarized in Table 1. Test top-1, top-3 and train top-1 accuracies are shown. Top-3270

accuracies count the number of test samples for which the correct class was among the network’s271

7

MNIST Fahion-MNIST CIFAR-10
test-1 test-3 train-1 test-1 test-3 train-1 test-1 test-3 train-1

ResNet-18 + BP 99.5 100 99.7 92.7 99.3 96.0 95.2 99.3 100
ResNet-50 + BP 99.5 99.9 100 89.0 98.9 92.7 94.0 99.2 99.8
ResNet-18 + FA 99.0 99.9 100 87.9 98.6 92.1 70.4 92.5 80.9
ResNet-50 + FA 98.9 99.9 100 83.1 97.9 83.7 70.3 92.0 79.3

ResNet-18 + BLL 99.4 100 99.6 91.2 98.8 91.0 72.2 93.0 98.8
ResNet-50 + BLL 99.4 99.8 99.2 88.7 99.0 85.9 73.4 92.7 99.7

Table 1: Classification accuracy (% correct) on vision tasks. BP: end-to-end backprop, FA: feedback
alignment, BLL: block local learning. Test-1, test-3 and train-1 represent the top-1, top-3 test accuracy
and top-1 training accuracy respectively.

Figure 3: Block local learning of transformer architecture. A: Illustration of the transformer twin
network. B: Learning curves of block local (BLL) and backprop (BP) training. C: Test accuracy vs.
number of blocks in the transformer model. Error bars show standard deviations over 5 independent
runs.

3 highest output activations. See Supplement for results over multiple runs. BLL achieved good272

performance on MNIST and Fashion-MNIST, closely matching end-to-end training and outperforming273

FA networks. Note that in contrast to FA and BP, BLL does not need to compute error gradients at274

the output but can work directly with the target labels. Performance on CIFAR-10 was significantly275

lower than BP but outperformed FA. Interestingly the performance on the training set was close to276

perfect for ResNet-50 suggesting over-fitting the task.277

4.2 Block-local transformer architecture for sequence-to-sequence learning278

Transformer architectures are in principle well suited for distributed computing due to their modular279

network structure that comprises a repetition of homogeneous blocks. We demonstrate a proof-of-280

concept result on training a transformer with BLL. We used a transformer model with 20 self-attention281

blocks with a single attention head each. Block local losses were added after each layer and blocks282

were trained locally. A backward twin network was constructed by projecting targets through dense283

layers and used the Bernoulli loss Eq. (8) for local training (see Fig. 3 A for an illustration). The284

transformer was trained on a sequence-to-sequence task, where a random permutation of numbers285

0..9 was presented on the input and had to be re-generated at the output in reverse order. We trained286

the network for 5 epochs.287

BLL achieves convergence speed that is comparable to that of end-to-end BP on this task. Fig. 3 B288

shows learning curves of BLL and BP. Both algorithms converge after around 3 epochs to nearly289

perfect performance. BLL also achieved good performance for a wide range of network depths.290

Fig. 3 C shows the performance after 5 epochs for different transformer architectures. Using only 5291

transformer blocks yields performance of around 99.9% (average over five independent runs). The292

8

test accuracy on this task for the 20 block transformer was 99.6%. These results suggest that the BLL293

method is equally applicable to transformer architectures.294

5 Discussion295

In this work, we have demonstrated a general purpose probabilistic framework for rigorously defining296

block-local losses for deep architectures. This not only provides a novel way of performing distributed297

training of large models but also hints at new paradigms of self-supervised training that are biologically298

plausible. We have also shown that our block-local training approach outperforms existing local299

training approaches while still getting around the locking and weight transport problems. Our method300

introduces a twin network that propagates information backwards from the targets to the input301

and automatically estimates uncertainties on intermediate layers. This is achieved by representing302

probability distributions in the network activations. The forward network and its backward twin can303

work in parallel and with different sets of weights.304

The proposed method may also help further blur the boundary between deep learning and probabilistic305

models. A number of previous models have shown that DNNs are capable of representing probability306

distribution [Abdar et al., 2021, Pawlowski et al., 2017, Tran et al., 2019, Malinin and Gales, 2019].307

Unlike these previous methods, our method does not require Monte Carlo sampling or contrastive308

training, but instead exploits the log-linear structure of exponential family distributions to efficiently309

propagate uncertainty-aware messages through a network using a belief-propagation strategy. We310

have demonstrated that implicit uncertainty messages can be learnt from sparse data and accurately311

represent the network’s performance.312

Greedy block-local learning has recently shown compelling performance on a number of tasks313

[Nøkland and Eidnes, 2019, Siddiqui et al., 2023]. These methods use local losses with an information-314

theoretic motivation but are agnostic to global back-propagating information. In future work, it may315

be interesting to combine these approaches with the proposed model to get the best of both worlds.316

Being able to produce block-level uncertainty predictions can also be useful for enhancing the sparsity317

of the network and using optimal amount of compute for predictions. The uncertainty predictions318

can also be used to handle missing labels, and for evaluating the model’s confidence about its319

predictions. Since the framework is flexible enough to apply to self-supervised training, it can be320

used on unlabelled and multi-modal datasets as well. Due to the local nature of the training process,321

our method is particularly attractive for application on neuromorphic systems that co-locate memory322

and compute and use orders of magnitude less energy if the computation is local.323

This work addresses potential problems of modern ML: The estimation of uncertainties in neural324

networks is an important open problem and understanding the underlying mechanisms better will325

likely help to make ML models safer and more reliable. Also the main focus of this work, which is on326

distributing large ML models over many compute nodes may make these model more energy efficient327

in the future. The energy consumption and resulting carbon footprint of ML is a major concern and328

the proposed model may provide a new direction to approach this problem. This method may enable329

training of larger models which also come with associated risks in terms of biases and inappropriate330

use in the real world. It is also not known what biases using this method itself and extensions with331

sparsity may introduce in the models predictions.332

References333

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad334

Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A335

review of uncertainty quantification in deep learning: Techniques, applications and challenges.336

Information Fusion, 76:243–297, 2021.337

Ehsan Amid, Rohan Anil, and Manfred Warmuth. LocoProp: Enhancing BackProp via local loss338

optimization. In Proceedings of The 25th International Conference on Artificial Intelligence and339

Statistics, pages 9626–9642. PMLR, 2022. URL https://proceedings.mlr.press/v151/340

amid22a.html.341

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale342

to ImageNet. In Proceedings of the 36th International Conference on Machine Learning, pages 583–343

593. PMLR, 2019. URL https://proceedings.mlr.press/v97/belilovsky19a.html.344

9

https://proceedings.mlr.press/v151/amid22a.html
https://proceedings.mlr.press/v151/amid22a.html
https://proceedings.mlr.press/v151/amid22a.html
https://proceedings.mlr.press/v97/belilovsky19a.html

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,345

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel346

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,347

Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott348

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya349

Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. arXiv:2005.14165 [cs],350

July 2020. URL http://arxiv.org/abs/2005.14165.351

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for352

contrastive learning of visual representations. In International conference on machine learning,353

pages 1597–1607. PMLR, 2020.354

David Clark, L F Abbott, and Sueyeon Chung. Credit assignment through broadcasting a global error355

vector. In Advances in Neural Information Processing Systems, volume 34, pages 10053–10066.356

Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/357

532b81fa223a1b1ec74139a5b8151d12-Abstract.html.358

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM359

algorithm. 39(1):1–22, 1977. ISSN 00359246. doi: 10.1111/j.2517-6161.1977.tb01600.x. URL360

https://onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1977.tb01600.x.361

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random362

learning signals allow for feedforward training of deep neural networks. 15, 2021. ISSN 1662-363

453X. URL https://www.frontiersin.org/articles/10.3389/fnins.2021.629892.364

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):365

452–459, 2015.366

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cogni-367

tive science, 11(1):23–63, 1987.368

Kuan Han, Haiguang Wen, Yizhen Zhang, Di Fu, Eugenio Culurciello, and Zhongming Liu. Deep369

predictive coding network with local recurrent processing for object recognition, 2018. URL370

http://arxiv.org/abs/1805.07526.371

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing372

human-level performance on imagenet classification, 2015.373

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image374

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,375

pages 770–778, 2016.376

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint377

arXiv:2212.13345, 2022.378

Bernd Illing, Jean Ventura, Guillaume Bellec, and Wulfram Gerstner. Local plasticity379

rules can learn deep representations using self-supervised contrastive predictions. In Ad-380

vances in Neural Information Processing Systems, volume 34, pages 30365–30379. Cur-381

ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/382

feade1d2047977cd0cefdafc40175a99-Abstract.html.383

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David384

Silver, and Koray Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gradients.385

arXiv:1608.05343 [cs], August 2016a. URL http://arxiv.org/abs/1608.05343.386

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David387

Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks, 2016b.388

URL http://arxiv.org/abs/1611.05397.389

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David390

Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In391

Proceedings of the 34th International Conference on Machine Learning, pages 1627–1635. PMLR,392

2017. URL https://proceedings.mlr.press/v70/jaderberg17a.html.393

10

http://arxiv.org/abs/2005.14165
https://proceedings.neurips.cc/paper/2021/hash/532b81fa223a1b1ec74139a5b8151d12-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/532b81fa223a1b1ec74139a5b8151d12-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/532b81fa223a1b1ec74139a5b8151d12-Abstract.html
https://onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1977.tb01600.x
https://www.frontiersin.org/articles/10.3389/fnins.2021.629892
http://arxiv.org/abs/1805.07526
https://proceedings.neurips.cc/paper/2021/hash/feade1d2047977cd0cefdafc40175a99-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/feade1d2047977cd0cefdafc40175a99-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/feade1d2047977cd0cefdafc40175a99-Abstract.html
http://arxiv.org/abs/1608.05343
http://arxiv.org/abs/1611.05397
https://proceedings.mlr.press/v70/jaderberg17a.html

Danilo Jimenez Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg, and394

Nicolas Heess. Unsupervised learning of 3d structure from images. In Advances in Neural Informa-395

tion Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.396

neurips.cc/paper/2016/hash/1d94108e907bb8311d8802b48fd54b4a-Abstract.html.397

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs, stat],398

December 2013. URL http://arxiv.org/abs/1312.6114.399

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT400

press, 2009.401

Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment scales402

to modern deep learning tasks and architectures. In Advances in Neural Information Processing Sys-403

tems, volume 33, pages 9346–9360. Curran Associates, Inc., 2020. URL https://proceedings.404

neurips.cc/paper/2020/hash/69d1fc78dbda242c43ad6590368912d4-Abstract.html.405

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random feedback406

weights support learning in deep neural networks. arXiv:1411.0247 [cs, q-bio], November 2014a.407

URL http://arxiv.org/abs/1411.0247.408

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random feedback409

weights support learning in deep neural networks, 2014b.410

Timothy P. Lillicrap, Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey Hinton. Backprop-411

agation and the brain. 21(6):335–346, 2020. ISSN 1471-0048. doi: 10.1038/s41583-020-0277-3.412

URL https://www.nature.com/articles/s41583-020-0277-3.413

Michael Lomnitz, Zachary Daniels, David Zhang, and Michael Piacentino. Learning with local414

gradients at the edge, 2022. URL http://arxiv.org/abs/2208.08503.415

Sindy Löwe, Peter O’ Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-isolated416

learning of representations. In Advances in Neural Information Processing Systems, volume 32.417

Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/hash/418

851300ee84c2b80ed40f51ed26d866fc-Abstract.html.419

Andrey Malinin and Mark Gales. Reverse kl-divergence training of prior networks: Improved420

uncertainty and adversarial robustness. Advances in Neural Information Processing Systems, 32,421

2019.422

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In423

International Conference on Machine Learning, pages 1791–1799. PMLR, 2014.424

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In425

International conference on machine learning, pages 4839–4850. PMLR, 2019.426

Arild Nøkland. Direct feedback alignment provides learning in deep neural net-427

works. In Advances in Neural Information Processing Systems, volume 29. Curran428

Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/hash/429

d490d7b4576290fa60eb31b5fc917ad1-Abstract.html.430

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive431

coding, 2019. URL http://arxiv.org/abs/1807.03748.432

Alexander Ororbia and Ankur Mali. The predictive forward-forward algorithm. arXiv preprint433

arXiv:2301.01452, 2023.434

Nick Pawlowski, Andrew Brock, Matthew CH Lee, Martin Rajchl, and Ben Glocker. Implicit weight435

uncertainty in neural networks. arXiv preprint arXiv:1711.01297, 2017.436

Maria Refinetti, Stéphane d’Ascoli, Ruben Ohana, and Sebastian Goldt. Align, then memorise:437

the dynamics of learning with feedback alignment, 2021. URL http://arxiv.org/abs/2011.438

12428.439

Albert Jiménez Sanfiz and Mohamed Akrout. Benchmarking the accuracy and robustness of feedback440

alignment algorithms, 2021. URL http://arxiv.org/abs/2108.13446.441

11

https://proceedings.neurips.cc/paper/2016/hash/1d94108e907bb8311d8802b48fd54b4a-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/1d94108e907bb8311d8802b48fd54b4a-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/1d94108e907bb8311d8802b48fd54b4a-Abstract.html
http://arxiv.org/abs/1312.6114
https://proceedings.neurips.cc/paper/2020/hash/69d1fc78dbda242c43ad6590368912d4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/69d1fc78dbda242c43ad6590368912d4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/69d1fc78dbda242c43ad6590368912d4-Abstract.html
http://arxiv.org/abs/1411.0247
https://www.nature.com/articles/s41583-020-0277-3
http://arxiv.org/abs/2208.08503
https://proceedings.neurips.cc/paper/2019/hash/851300ee84c2b80ed40f51ed26d866fc-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/851300ee84c2b80ed40f51ed26d866fc-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/851300ee84c2b80ed40f51ed26d866fc-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d490d7b4576290fa60eb31b5fc917ad1-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d490d7b4576290fa60eb31b5fc917ad1-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d490d7b4576290fa60eb31b5fc917ad1-Abstract.html
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/2011.12428
http://arxiv.org/abs/2011.12428
http://arxiv.org/abs/2011.12428
http://arxiv.org/abs/2108.13446

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-442

based models and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.443

Shoaib Ahmed Siddiqui, David Krueger, Yann LeCun, and Stéphane Deny. Blockwise self-supervised444

learning at scale, 2023. URL http://arxiv.org/abs/2302.01647.445

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée446

Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand447

Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language448

Models, February 2023. URL http://arxiv.org/abs/2302.13971.449

Dustin Tran, Mike Dusenberry, Mark Van Der Wilk, and Danijar Hafner. Bayesian layers: A module450

for neural network uncertainty. Advances in neural information processing systems, 32, 2019.451

Bohan Wu, Suraj Nair, Roberto Martin-Martin, Li Fei-Fei, and Chelsea Finn. Greedy hierarchi-452

cal variational autoencoders for large-scale video prediction. In Proceedings of the IEEE/CVF453

Conference on Computer Vision and Pattern Recognition, pages 2318–2328, 2021.454

Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. TinyViT:455

Fast pretraining distillation for small vision transformers, 2022. URL http://arxiv.org/abs/456

2207.10666.457

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking458

machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.459

Yuwen Xiong, Mengye Ren, and Raquel Urtasun. LoCo: Local contrastive representation learning.460

In Advances in Neural Information Processing Systems, volume 33, pages 11142–11153. Cur-461

ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/462

7fa215c9efebb3811a7ef58409907899-Abstract.html.463

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised464

learning via redundancy reduction, 2021. URL http://arxiv.org/abs/2103.03230.465

Gongpei Zhao, Tao Wang, Yidong Li, Yi Jin, Congyan Lang, and Haibin Ling. The cascaded forward466

algorithm for neural network training. arXiv preprint arXiv:2303.09728, 2023.467

12

http://arxiv.org/abs/2302.01647
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2207.10666
http://arxiv.org/abs/2207.10666
http://arxiv.org/abs/2207.10666
https://proceedings.neurips.cc/paper/2020/hash/7fa215c9efebb3811a7ef58409907899-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/7fa215c9efebb3811a7ef58409907899-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/7fa215c9efebb3811a7ef58409907899-Abstract.html
http://arxiv.org/abs/2103.03230

	Introduction
	Related work
	A probabilistic formulation of distributed learning
	Using latent representations to construct probabilistic block-local losses
	Auxiliary latent representations
	Illustrative example: forward-backward networks as an autoencoder
	Modularized learning using local variational losses

	Experimental results
	Block-local learning of vision benchmark tasks
	Block-local transformer architecture for sequence-to-sequence learning

	Discussion

