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Abstract— We present an approach for deployment-time se-
lection of best-performing prompts and LLMs for LLM-informed
object search in partially-known environments. Leveraging
recent progress in both LLM-informed model-based planning
and deployment-time behavior selection, we enable fast bandit-
like selection of best-performing prompts and LLMs and
demonstrate improved deployment-time performance in object
search tasks. Experiments in simulated ProcTHOR household
environments show that our bandit-like selection approach
results in 6.1% lower average cost and 40.6% lower average
cumulative regret over baseline UCB bandit selection.

I. INTRODUCTION

We consider the problem of selecting best prompts and
large language models (LLMs) during deployment when a
robot is deployed for LLM-informed object search tasks in
partially-known environments. LLMs have been increasingly
used in many robotics applications because of the common-
sense knowledge about the world—e.g., where might a fork
be typically found in a house—that can be obtained from
them via prompting to guide robot behavior. Yet, the process
of obtaining such knowledge from LLMs is often sensitive
to prompts used to query LLMs, and hence requires trial
and error to find the best of a set of candidate prompts—
a procedure that is costly for robot navigation tasks.

In such scenarios, the agent’s performance in object search
tasks depends on the choice of prompting strategy and LLM
model, since choosing different prompts or LLMs can result
in varied performance when deployed, particularly when the
deployment-time environments differ from those that were
considered when designing such prompts. As such, selecting
only a single prompting strategy or LLM in advance will not
always elicit the best deployment-time performance. Instead,
the robot should be able to choose from more than one
prompting strategy or LLM and evaluate each of these to
pick the best during deployment. However, the process of
deploying and repeatedly trying out prompting strategies or
LLMs until a clear winner emerges can be problematically
time consuming in general, requiring many trials to choose
between them. Recent work in the space of point-goal
navigation [1] presents offline alt-policy replay, in which
model-based counterfactual reasoning can be used to afford
choosing the best of a family of learning-informed navigation
policies, a strategy we seek to leverage for the purpose of
prompt and LLM selection in this work.

To achieve effective object search performance by se-
lecting the best-performing prompts during deployment, we
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Fig. 1. Deployment-time Selection of Prompts and LLMs: Information
collected during trial (e.g. objects found in explored containers) and the
map are used to replay the robot behavior informed by all other alternative
prompts and LLMs, the outcomes of which are used for selection of best
prompts and LLMs.

require an approach that both informs and is informed by an
LLM: with which we can plan using the commonsense world
knowledge of LLMs and also introspect during deployment so
as to quickly allow the system to select the best-performing
prompting strategy or LLM. It is a key insight of this work
that the model-based planning framework for LLM-informed
object search in partially-known environments by Hossain
et al. [2] is amenable for such introspection while being
suitable for effective LLM-informed object search tasks. Their
model-based planning framework uses a high-level action
abstraction and hence affords offline replay [1], facilitating
deployment-time evaluation of prompts and LLMs for object
search tasks—the outcomes of which can then be used to
quickly select the best-performing prompts and LLMs.

In this work, we present an approach for deployment-
time selection of the best prompts and LLMs for LLM-guided
object search tasks (Fig. 1). Leveraging the model-based
planning framework by Hossain et al. [2] in which robot’s
actions correspond to revealing unexplored containers to
look for a target object and an LLM informs the statistics
of uncertainty—namely, likelihood of finding an object of
interest in a location—to inform, rather than replace, plan-
ning, our approach enables fast deployment-time selection of
prompts and LLMs, a capability unique in this domain, via
the offline replay approach of Paudel and Stein [1].

Experiments in simulated ProcTHOR environments demon-
strate that our prompt selection approach enables quick selec-
tion of best-performing prompts and LLMs from a family of
prompts and LLMs, resulting in 6.1% lower average cost and
40.6% lower average cumulative regret over baseline upper
confidence bound (UCB) bandit selection.



II. RELATED WORK

LLMs and VLMs for Object Search Many recent works
have explored the use of LLMs and vision language models
(VLMs) and for object search tasks [2]–[8]. These works use
LLMs or VLMs for their commonsense world knowledge to
decide where to search [3]–[5]. These works generally design
prompts for LLM/VLM as a part of development phase, and
are not concerned with identifying the best prompts during
deployment of such systems.

Prompt Selection Prompt selection, which falls under a
broader area of prompt engineering [9], [10], deals with se-
lecting the prompts that achieve the best LLM performance on
downstream tasks [11]. While there are approaches that aim
to select the best prompts from predesigned templates [10]–
[13], these approaches focus selecting prompts that gets the
best responses from LLMs on various benchmarks and hence
are not suitable for deployment-time selection of prompts in
LLM-informed object search tasks—the focus of this work.

III. PROBLEM FORMULATION

Object Search in Partially-Known Environments Our
robot is tasked find a target object g in a household en-
vironment in minimum expected cost, measured in terms
of distance traveled. The environment consists of rooms,
containers and objects. Containers are entities in the environ-
ment that can contain other objects: bed, dresser, countertop,
etc. The containers are located in different rooms in the
household environment. The belief state bt = {mt, qt}
consists of the map mt—with a priori known locations of
rooms and containers but what objects exist in the containers
are not known—and the robot pose qt, both at time t. The
robot must navigate to containers and search them to look
for the target object. Unexplored containers form the robot’s
action space A and the robot’s policy π maps the belief
state bt to a container search action at ∈ A(bt). Our search
policies are informed by LLMs and so depend upon the
choice of LLMs and prompts used to query the LLMs.

We presume that the robot has access to a low-level
navigation planner and controller that can be used to move
about and interact with the environment. As such, the aim of
our planner is to determine the sequence of container search
actions that minimizes the expected cost of finding the target
object. The performance of the robot during deployment is
measured as the average distance traveled by the robot to find
the target object across a sequence of trials, where each trial
is held in a distinct map to find an object sampled uniformly
at random from the environment.

Prompt Selection We consider that the robot’s policy
has access to multiple prompt templates and LLMs each
represented as θ = (P,N ) where P denotes prompt template
and N denotes LLM. As such, the robot has access to a
family of search policies Π = {πθ1 , πθ2 , · · · , πθN } each with
a unique prompt-LLM pair. The objective of prompt selection
is to pick the policy with a prompt-LLM pair θ whose
corresponding search actions result in minimum expected

cost of finding target objects during deployment in partially-
known environments:

π∗
θ = argmin

πθ∈Π
E[C(πθ)] (1)

where E[C(πθ)] is the expected cost incurred by the robot
upon using policy πθ with a prompt-LLM pair θ during
deployment. This problem can be formulated as a multi-
armed bandit problem [14], solved via black-box selection
algorithms like UCB [15] using Eq. (2):

π(k+1)
θ = argmin

πθ∈Π

[
C̄k(πθ)− c

√
ln k

nk(πθ)

]
(2)

where C̄k(πθ) is the average cost over trials 1-through-k
in which policy πθ with prompt-LLM pair θ was selected,
nk(πθ) is the number of times policy πθ was selected
until trial k, and c > 0 is a parameter controlling the
balance between exploration and exploitation. However, such
approaches can be slow to converge, requiring the robot to
go through multiple trials of poor performance before the
best policies can be identified. White-box approaches can
accelerate selection [1], [16], but place requirements on the
the types of abstraction for compatibility. It is our insight that
LLM-informed planning strategies can be made compatible
with such approaches and so can afford prompt and LLM
selection in this setting.

IV. PRELIMINARIES: LLM-INFORMED MODEL-BASED
PLANNING FOR OBJECT SEARCH

Here, we discuss LLM-informed model-based planning for
object search by Hossain et al. [2] that is amenable to our
prompt selection approach discussed in Section V.

LLM-informed object search by Hossain et al. [2] presents
a model-based planning framework in which high-level
actions correspond to searching the containers, which are
entities in the environment that contain other objects: bed,
dresser, countertop, etc. A search policy π specifies the
sequence of search actions the robot intends to take to
find the target object. Each such search action at ∈ A(bt)
has an immediate cost of first traveling to the container—
corresponding to a distance D(bt, at) computed via A* from
the occupancy grid—and then searching the container for the
target object, which has a (known) search cost Rsearch(bt, at).
With a probability PS , the container contains the target object
and so the corresponding search action successfully finds
the object. Otherwise, with probability 1 − PS , searching
continues in other containers after picking another container
search action. The expected cost of a search action at under
policy π is computed using a Bellman equation:

Qπ(bt, at ∈ A(bt)) = D(bt, at) +Rsearch(bt, at)

+ (1− PS(at))Qπ(b
′
t, π(b

′
t)) (3)

The robot’s policy π(bt) = argmina Qπ(bt, a ∈ A(bt)) can
be used to compute a search plan: the sequence of actions
that minimizes the expected cost via Eq. (3) to find the
target object. Using an LLM as the knowledge repository of



Fig. 2. Overview of Offline Replay: Using the map and container contents
information (Z) obtained during deployment, we simulate a different plan
corresponding to alternative prompt P ′ and LLM N ′ to get replay cost C rep.

where common household objects might be located, an LLM
is prompted to provide an estimate of the probability PS ,
which is used to compute the expected cost via Eq. (3).

V. PROMPT SELECTION FOR LLM-INFORMED OBJECT
SEARCH

A. Overview of Prompt Selection

When using an LLM to inform planning for object search,
prompts used to query LLMs for object likelihood predictions
would ideally result in effective performance. However,
effectiveness of a plan in the context of object search in
partially-known environments can only be realized after the
robot executes them in the environments. Thus, a poor
prompting strategy may only be identified as such after
the robot deploys and relies upon that LLM and prompt
combination—a costly strategy of trial-and-error for robot
navigation tasks. Instead, if we could identify poor prompts
while limiting the need to deploy them during deployment,
we could rule them out quickly and prioritize selection of
the best prompts to enable improved robot performance.

It is a key insight of this work that offline replay approach
by Paudel and Stein [1] can be used to select between
prompts without the robot having deploy the plans informed
by LLMs using such family of prompts. While used by
Paudel and Stein [1] in the context of point-goal navigation
in partially-mapped environments to replay the behavior of
alternative policies without having to deploy them, we adapt
offline replay to determine what the robot would have done
if it had instead used a different prompt or LLM to guide
its behavior. Costs from offline replay (Fig. 2) of alternative
prompts and LLMs, C̄ rep

k (averaged over trials 1-through-k)
can then be used in UCB bandit-like selection strategy (Fig. 1)
similar to Paudel and Stein [1] to pick the policy πθ with
prompt-LLM pair θ for trial k + 1 as:

π(k+1)
θ = argmin

πθ∈Π

[
max

(
C̄ rep

k (πθ), C̄k(πθ)− c

√
ln k

nk(πθ)

)]
(4)

B. Object Search during a Trial

In each trial k when the robot is deployed in a partially-
known environment to look for a target object g, it uses
Eq. (4) to choose one of the policies π(k)

θ ∈ Π with some
prompt-LLM pair θ = (P,N ), uses the prompt P to query
the LLM N for object likelihood PS and computes the next

action at corresponding to searching one of the unexplored
containers using Eq. (3). The robot searches the container
corresponding to action at to look for the target object g,
repeating planning and search each time the target object is
not found. The total distance traveled by the robot to find
the object is the cost Ck(πθ) for trial k. The robot stores
the information Zk about the contents of all containers it
explored and the known map of the environment to be used
later for offline replay (Section V-C).

C. Prompt Selection with Offline Replay of Alternative
Prompts and LLMs

After a trial k is complete, our robot uses policy πθ′ with
alternative prompt-LLM pair θ′ and computes an alternative
search plan. However, deploying such alternative plans is
expensive in general. Instead, we use the hindsight infor-
mation Zk about the location of the target object found in
trial k and the existing map to replay what the robot would
have done if it had deployed a plan corresponding to an
alternative prompt-LLM pair θ′ = (P ′,N ′) (Fig. 2). Since
we now know in advance which container contained the
target object g based on the information Zk obtained after
completion of trial k and pessimistically assume that all other
containers would not have contained the target object, we can
compute the cost of following a separate policy: the length
of the trajectory the robot would have taken by following the
alternate search policy to find that target object. The average
cost over trials of the offline-replayed plans, C̄ rep

k (πθ′), for
an alternative prompt-LLM pair θ′ and average costs over
trials of the chosen prompt-LLM pairs θ in trial k, C̄k(πθ)
are together used to pick the prompt and LLM in subsequent
trials k + 1 using Eq. (4).

VI. EXPERIMENTS AND RESULTS

A. Experiment Design

We perform prompt selection experiments for LLM-
informed object search simulated household environments
based on ProcTHOR [17] dataset which consists of procedu-
rally generated homes (see the Appendix for samples). Our
robot has access to the underlying occupancy grid of the
environment and what containers exist in what rooms, yet
the contents of the containers are not known to the robot.
The robot must travel to the container locations and search
the containers to find the object of interest. We conduct
experiments with multiple prompts, LLMs and object search
policies which are discussed below. During deployment, our
robot selects the best of these prompts, policies and LLMs.

Policies During deployment, the robot can chose be-
tween different policies as discussed below.
LLM+MODEL This is the LLM-informed model-based plan-

ner [2] that uses an LLM to obtain object likelihood
probabilities and then uses Eq. (3) to select the best
container search action as discussed in Section IV.

LLM-DIRECT This LLM-informed policy directly prompts
the LLM to respond with the container the robot should
search next, instead of asking for probabilities as we
do with LLM+MODEL planner. As such, LLM-DIRECT



policy does not use a planning framework to compute
actions and instead directly executes actions picked by
the LLM from a list of all available container search
actions.

OPTIMISTIC+GREEDY This non-LLM policy optimistically
assumes that all containers could contain the target
object and greedily searches the nearest container, re-
planning until the target object is found.

LLM Variants We experiment with two LLMs, GPT-
4o Mini and Gemini 1.5 Pro, for object search tasks in
ProcTHOR household environments that our selection ap-
proach can choose from during deployment.

Prompt Design We construct multiple prompts the our
selection approach can choose from when querying the
LLMs to guide the robot behavior. The prompt design for
LLM+MODEL policy and LLM-DIRECT policy are slightly
different since for LLM+MODEL we want the LLM to gen-
erate probability values for each container, while for the
LLM-DIRECT policy, the LLM should directly output which
container the agent should search next. While such prompts
might be constructed with variations in language, context
and the role that LLM should play in the interaction, each
prompt includes a question asking the LLM to respond with
either a probability value (for LLM+MODEL policy) or the
name of the container to search (for LLM-DIRECT policy).
We design three prompt templates for LLM+MODEL policy:
P-CONTEXT-A, P-CONTEXT-B and P-MINIMAL, and one
prompt template for LLM-DIRECT policy: P-DIRECT. Further
details of prompt design and samples of these prompts are
available in the Appendix.

B. Prompt Selection Results

We compare our prompt/LLM selection approach based on
offline replay as discussed in Sec. V, referred to as Replay
Selection, against a baseline black-box UCB bandit selection
approach. For these experiments, selection seeks to choose
between all combinations of policies, prompts and LLMs
discussed earlier. These combinations and their individual
object search performances are discussed in the Appendix. To
evaluate the statistical performance of selection, we generate
500 unique deployments by randomly permuting 100 trials
from a set of 150 previously conducted single-trial results,
expecting the robot to perform selection over these strategies
separately for each sequence. While the UCB Selection uses
only the deployment cost of a strategy to pick the policy-
prompt-LLM combination for subsequent trials using Eq. (2),
Replay Selection additionally uses the offline replay costs of
all other policy-prompt-LLM combination to pick the strategy
for next trial via Eq. (4).

In Fig. 3, we report the average navigation cost, which
corresponds to the average of navigation costs incurred in
trials 1-through-k, averaged over all 500 deployments. The
cumulative regret, also shown in Fig. 3, tracks performance
over time as the cumulative difference between the selection-
based policy and a Best Performance oracle that knows in ad-
vance which prompt/LLM is best: LLM+MODEL/P-CONTEXT-
A/Gemini (see Table I in Appendix). Our results demonstrate

Metric Selection
Approach

Num of Trials (k)

k = 20 k = 50 k = 100

Avg.
Cost

UCB Selection 216.58▲ 212.33♦ 208.06■
Replay Selection (ours) 206.63▲ 199.38♦ 195.35■

Cumul.
Regret

UCB Selection 646.6△△△ 1470.5♢♢♢ 2601.5□□□
Replay Selection (ours) 572.1△△△ 1042.3♢♢♢ 1544.7□□□

Fig. 3. Prompt-LLM Selection Results: Leveraging offline replay for
prompt/model selection allows faster selection of the best prompting strategy
compared to the UCB selection strategy, resulting in lower average cost and
lower cumulative regret.

a reduction of 6.1% in average cost at the end of 100th
trial compared to a standard UCB-bandit selection approach.
In particular, we achieve 40.6% lower cumulative regret at
the end of 100th trial compared to UCB-bandit selection, a
number which would continue to grow with more trials.

Our results highlight the need and benefits of fast
deployment-time selection of prompts and LLMs, since with-
out such selection, the robot risks poor performance if it
uses only one prompt or LLM preselected before deployment.
Our selection approach enables the robot to quickly pick
during deployment the prompts and LLMs that yields better
behavior and hence maximizes long-term performance—a
benefit afforded by model-based planning with high-level
action abstraction amenable to introspection via offline replay
of Paudel and Stein [1].

VII. CONCLUSION

We present an approach for deployment-time selection of
best-performing prompts and LLMs for LLM-informed object
search in partially-known environments. Leveraging LLM-
informed model-based planning [2], we demonstrate that the
offline replay approach developed for model selection for
learning-informed point-goal navigation [1] can be made to
support fast deployment-time prompt and LLM selection, a
capability unique in this domain. In future, we hope to ex-
plore automated prompt generation and refinement strategies
that integrate with selection to allow our agent to adapt to a
wide variety of environments during deployment.
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APPENDIX

A. ProcTHOR Environments

Sample household maps from ProcTHOR simulation envi-
ronments are shown in Fig. 4 for reference.

B. Prompt Design

As mentioned in Section V, we design three prompt tem-
plates for LLM+MODEL policy: P-CONTEXT-A, P-CONTEXT-
B and P-MINIMAL, and one prompt template for LLM-
DIRECT policy: P-DIRECT. We discuss below the design of
these prompts.

Fig. 4. Sample maps from ProcTHOR simulation environments

P-CONTEXT-A, P-CONTEXT-B: These prompts are de-
signed around four main elements: (i) a description
of the setting and the role that the LLM will serve,
(ii) a description of the house including a list of the
rooms present and the containers they contain, (iii) an
example for reference, and (iv) the query asking for the
probability of finding the object of interest in a container
within a particular room. While the semantic meaning
of these prompts are similar (see the Appendix), each
of these differ in terms of the language is used in the
prompt text.

P-MINIMAL: This prompt doesn’t include any of the afore-
mentioned contexts about the LLM’s role, environment
description and reference example, and only includes
the query asking for the probability of finding the target
object in a container within a particular room.

P-DIRECT: This prompt for LLM-DIRECT policy is designed
around five main elements: (i) a description of the
setting and the role that the LLM will serve (ii) an
example interaction for reference (iii) a description of
the house including a list of the rooms present and the
distances between them (iv) list of available containers
that the robot can explore, and (v) the query asking
which container the robot should explore to find the
target object quickly. It should be noted that we include
the distances in the prompt because we expect the LLM
to behave like a planner and so provide all necessary
information needed to plan effectively.

C. Samples of Prompts

We include below the samples of all prompts used in our
experiments.
P-CONTEXT-A:
You are serving as part of a system in which a robot needs
to find objects located around a household. Here is a schema
that describes the connectivity of rooms in the house: The
apartment contains the following rooms: bathroom, bedroom.
The bedroom contains: bed, chair, sidetable. The bathroom
contains: dresser, sidetable, sink, toilet. You will be asked



to estimate the probability (a value between 1% and 100%)
of where objects are located in that house, leveraging your
considerable experience in how human occupied spaces are
located. You must produce a numerical value and nothing
else, as it is important to the overall functioning of the
system. Here is an example exchange for an arbitrary house:
User: What is the likelihood that I find eggs in the refrigerator
in the kitchen?
You: 90%.
The logic here is that there is a high likelihood that a
typical refrigerator in the kitchen contains eggs, but it is not
guaranteed as not all refrigerators have eggs. Here is your
prompt for today:
What is the likelihood that I find book in the sidetable in the
bedroom?
Output: 95%

P-CONTEXT-B:
You are assisting in a robotic system designed to locate items
within a residence. The following is a description of the
layout and connectivity between rooms in the home: The
apartment contains the following rooms: bathroom, bedroom.
The bedroom contains: bed, chair, sidetable. The bathroom
contains: dresser, sidetable, sink, toilet. Your task is to esti-
mate the likelihood (a percentage from 1% to 100%) that a
specified object is in a given location. Base your reasoning on
general patterns of human behavior and usage of household
spaces. Your response must be a single numerical value, with
no additional explanation, as precision is critical to system
operation. Example exchange:
User: What is the probability of finding bread in the pantry
in the kitchen?
You: 85%.
The reasoning here is that bread is commonly stored in
pantries, but exceptions exist, such as if it is refrigerated.
Now, respond to this prompt:
What is the probability of finding pillow in the bed in the
bedroom?
Output: 95%

P-MINIMAL:
What is the probability of finding plate in the dining table
in the kitchen of a typical household? Your response should
only include a numerical percentage value between 1% to
100% and nothing else.
Output: 80%

P-DIRECT:
You are assisting a robot in locating objects within a house-
hold based on a provided map of rooms and their contents.
Your task is to determine the exact location where the
specified object can be found, based on given description
of the household. You will be asked pick a location to visit
where the object could be found quickly. You should only
pick one location from the given list. Here is an example:
User: The apartment contains: bathroom, bedroom, kitchen.
The distance between rooms is as follows: bathroom and
bedroom: 5.95 metres, bedroom and kitchen: 3.25 metres,
bathroom and kitchen: 4.75 metres. The robot is currently

TABLE I
AVERAGE NAVIGATION COSTS WITHOUT SELECTION

Policy / Prompt / LLM Avg. Cost

LLM+MODEL / P-CONTEXT-A / GPT-4o 227.66
LLM+MODEL / P-CONTEXT-B / GPT-4o 192.25
LLM+MODEL / P-MINIMAL / GPT-4o 205.55
LLM-DIRECT / P-DIRECT / GPT-4o 250.42
LLM+MODEL / P-CONTEXT-A / Gemini 186.69
LLM+MODEL / P-CONTEXT-B / Gemini 188.11
LLM+MODEL / P-MINIMAL / Gemini 225.49
LLM-DIRECT / P-DIRECT / Gemini 201.50
OPTIMISTIC+GREEDY / – / – 298.19

located at bathroom and is looking for pillow. Available
locations to search are: sink in bathroom, toilet in bathroom,
bed in bedroom, sidetable in bedroom. Which of the given
search locations should the robot visit to find pillow in the
least time?
You: bed in bedroom.
Now give your answer for another household with the
following layout: The apartment contains the following
rooms: bathroom, bedroom. The distance between rooms
is as follows: bedroom and bathroom: 5.8 meters. The
robot is currently located at bedroom and is looking for
faucet. Available locations to search are: dresser in bathroom,
sidetable in bathroom, sink in bathroom, toilet in bathroom,
bed in bedroom, chair in bedroom, sidetable in bedroom.
Which of the given search locations should the robot visit
to quickly find faucet? Respond with a search location and
nothing else.
Output: sink in bathroom

D. Average Navigation Costs for Each Strategy

As mentioned in Section VI, prompt selection seeks to
choose between all combinations of policies, prompts and
LLMs available. These combinations and their individual ob-
ject search performances over 150 trials in distinct ProcTHOR
maps are shown in Table I. Bold value for LLM+MODEL / P-
CONTEXT-A / Gemini indicates the best-performing strategy.
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