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ABSTRACT

Recent advancements in diffusion models have led to significant improvements
in the generation and animation of 4D full-body human-object interactions (HOI).
Nevertheless, existing methods primarily focus on SMPL-based motion generation,
which is limited by the scarcity of realistic large-scale interaction data. This con-
straint affects their ability to create everyday HOI scenes. This paper addresses this
challenge using a zero-shot approach with a pre-trained diffusion model. Despite
this potential, achieving our goals is difficult due to the diffusion model’s lack of
understanding of “where” and “how” objects interact with the human body. To
tackle these issues, we introduce AvatarGO, a novel framework designed to gener-
ate animatable 4D HOI scenes directly from textual inputs. Specifically, 1) for the

“where” challenge, we propose LLM-guided contact retargeting, which employs
Lang-SAM to identify the contact body part from text prompts, ensuring precise
representation of human-object spatial relations. 2) For the “how” challenge, we
introduce correspondence-aware motion optimization that constructs motion
fields for both human and object models using the linear blend skinning function
from SMPL-X. Our framework not only generates coherent compositional mo-
tions, but also exhibits greater robustness in handling penetration issues. Extensive
experiments with existing methods validate AvatarGO’s superior generation and
animation capabilities on a variety of human-object pairs and diverse poses. As the
first attempt to synthesize 4D avatars with object interactions, we hope AvatarGO
could open new doors for human-centric 4D content creation.

1 INTRODUCTION

The creation of 4D human-object interaction (HOI) holds immense significance across a wide range
of industries, including augmented/virtual reality (AR/VR) and game development, as it forms the
foundation of the 4D virtual world. Traditionally, developing such models has required extensive
human effort and specialized engineering expertise. Fortunately, thanks to the collections of HOI
datasets (Li et al., 2023b; Bhatnagar et al., 2022; Jiang et al., 2023a) and the recent advancements in
diffusion models (Saharia et al., 2022; Ramesh et al., 2022; Balaji et al., 2022; Stability.AI, 2022;
2023), existing HOI generative techniques (Zhang et al., 2022; 2023; 2024; Shafir et al., 2023; Kapon
et al., 2024; Chen et al., 2024a) have exhibited promising capabilities by generating 4D human
motions with object interactions from textual inputs. Nonetheless, these methods primarily focus
on SMPL-based (Loper et al., 2015; Pavlakos et al., 2019) motion generation, which struggles to
capture the realistic appearance of subjects encountered in everyday life. Although InterDreamer (Xu
et al., 2024b) has recently proposed to generate text-aligned 4D HOI sequences in a zero-shot manner,
their output is still largely constrained by the SMPL model. This highlights a pressing need for
more realistic and generalizable methods tailored specifically to model 4D human-object interactive
content. We take the initiative and showcase the potential of addressing this challenge by leveraging
the 3D generative methods in a zero-shot manner.

In recent times, 3D generative methods (Poole et al., 2022; Tang et al., 2023; Liu et al., 2023c;
Lin et al., 2023; Wang et al., 2023d; Cao et al., 2023b; Liao et al., 2023) and Large Language
Models (LLMs) (Wu et al., 2023a) have garnered increasing interest. These progressives have
led to the development of text-guided 3D compositional generation techniques that are capable of
comprehending intricate relations and creating complex 3D scenes incorporating multiple subjects.
Notably, GraphDreamer (Gao et al., 2023) utilizes LLMs to construct a graph where nodes represent

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

8 11 13 16 29

Albert Einstein holding
a box in his <hand>

Goku in Dragon Ball Series
holding an AK-47 in his <hand>

Joker holding a box in
his <hand>

Wolfgang Amadeus
Mozart holding a bottle

in his <hand>

Steven Paul Jobs
holding an iPhonein his

<hand>

Wonder woman holding
a dumbbel in his

<hand>

Albert Einstein holding
a box in his <hand>

Bodybuilder carrying a dumbbel in his <hand>

Goku in Dragon Ball Series grasping a torch in his <hand>

Iron Man holding an axe of Thor in his <hand>

Albert Einstein
– box *

Goku in Dragon
Ball Series –
AK-47 *

Joker –
microphone *

Harry Potter –
bear head hat*

Steven Paul
Jobs – iPhone *

Naruto in
Naruto Series–
football *

Figure 1: Examples of 4D animation results obtained via AvatarGO. AvatarGO effectively
produces diverse human-object compositions with correct spatial correlations and contact areas. It
achieves joint animation of humans and objects while avoiding penetration issues.

objects and edges denote their relations. ComboVerse (Chen et al., 2024b) proposes spatial-aware
score distillation sampling to amplify the spatial correlation. Subsequent studies (Epstein et al., 2024;
Zhou et al., 2024) further explore the potential of jointly optimizing layouts to composite different
components.

Despite the promising performance demonstrated by existing methods, they encounter two major
challenges in generating 4D HOI scenes: 1) Incorrect contact area: While LLMs excel at capturing
the relationships, optimization with diffusion models faces difficulties in accurately defining the
contact area between various objects, particularly those with complex articulated structures like
human bodies. Although efforts like InterFusion (Dai et al., 2024) have constructed 2D human-object
interaction datasets to retrieve human poses from text prompts, they still encounter challenges in
defining the optimal contact body parts for cases outside the training distribution. 2) Limitations in
4D compositional animation: While existing techniques like DreamGaussian4D (Ren et al., 2023)
and TC4D (Bahmani et al., 2024) employ video diffusion models (Blattmann et al., 2023; Guo et al.,
2023a) to animate 3D static scenes, they often treat the entire scene as one subject during optimization,
leading to unrealistic animation results. Despite initiatives like Comp4D (Xu et al., 2024a), which
utilize trajectories to animate 3D objects individually, modeling contact between various subjects
remains a challenge.

In this paper, we propose AvatarGO, a novel framework for compositional 4D avatar generation with
object interactions. By taking the text prompts as inputs, we assume that the 3D human and object
models as well as the human motion sequences can be individually generated by adopting existing
generative techniques (Tang et al., 2023; Liu et al., 2023d; Zhang et al., 2023; 2024). Specifically, we
adopt DreamGaussian4D (Ren et al., 2023) as our baseline considering its superior training efficiency
and focus on addressing the challenges associated with human-object interactions. To achieve this
objective, AvatarGO integrates two key innovations to learn “where” and “how” the object should
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interact with the human body: 1) LLM-guided contact retargeting. Given the limited availability
of human-object interaction images in the 2D dataset used for diffusion model training, it’s difficult
to identify the most appropriate contact area between humans and objects. To tackle this issue,
we propose leveraging Lang-SAM (lan, 2023) to identify the contact body part from text prompts,
which serves as the initialization for the optimization procedure. 2) Correspondence-aware motion
optimization. Building upon the observation that penetration is absent in static composited models,
we introduce correspondence-aware motion optimization that leverages SMPL-X as an intermediary
to maintain the correspondence between humans and objects when they are animated to a new pose,
thus demonstrating greater robustness in handling penetration issues.

We thoroughly assess AvatarGO by compositing diverse pairs of 3D humans and objects and animating
them across various motion sequences (see Fig. 1). Our experimental results show that our method
excels at identifying optimal contact areas and exhibits greater robustness in handling penetration
issues during animation, significantly outperforming existing techniques. We will make our code
publicly available.

2 RELATED WORK

3D Content Generation. Leveraging advances in diffusion-based text-to-2D image generation (Sa-
haria et al., 2022; Ramesh et al., 2022; Balaji et al., 2022; Stability.AI, 2022; 2023), DreamFusion
introduced Score Distillation Sampling (SDS) to generate 3D content via pre-trained models, uti-
lizing technologies like NeRF (Mildenhall et al., 2020), DMTET (Shen et al., 2021), 3D Gaussian
Splatting (Kerbl et al., 2023)). Subsequent research has focused on enhancing output quality (Lin
et al., 2023; Chen et al., 2023b; Wang et al., 2023d), controlling generation processes (Metzer et al.,
2022; Seo et al., 2023), improving training efficiency (Wang et al., 2023a; Wu et al., 2024; Tang
et al., 2023), and extending capabilities on 3D texturing (Richardson et al., 2023; Cao et al., 2023a;
Chen et al., 2023a; Tang et al., 2024b). Addressing 3D human body complexity, recent studies (Cao
et al., 2023b;c; Liao et al., 2023; Jiang et al., 2023b; Huang et al., 2023b; Kolotouros et al., 2023;
Zeng et al., 2023; Huang et al., 2023a) have been proposed for creating controllable 3D human
avatars, although these still require significant input-specific training time. The proliferation of large
3D datasets (Deitke et al., 2023; 2024; Wu et al., 2023b) has propelled 3D generation techniques
forward. Notably, Zero-1-to-3 (Liu et al., 2023c), Zero123++ (Shi et al., 2023a), and MVDream (Shi
et al., 2023b) use 2D diffusion models to generate consistent multi-view images, serving as inputs
for efficient 3D model generation tools like SyncDreamer (Liu et al., 2023e), Wonder3D (Long
et al., 2023), One-2-3-45 (Liu et al., 2023b;a), UniDream (Liu et al., 2023f), MVDiffusion++ (Tang
et al., 2024c), and Make-Your-3D (Liu et al., 2024). Additionally, building on transformer (Vaswani
et al., 2017) and image processor advancements (e.g., DINO (Caron et al., 2021; Oquab et al.,
2023)), Large Reconstruction Models (Hong et al., 2023; Wang et al., 2023b; Xu et al., 2023; Li
et al., 2023a) implement transformer-based architectures to derive 3D tri-plane tokens from image
features. 3DTopia (Hong et al., 2024) uses hybrid diffusion priors to produce high-fidelity 3D objects.
Meanwhile, methods like LGM (Tang et al., 2024a), CRM (Wang et al., 2024), and GRM (Yinghao
et al., 2024) explore various 3D representations for improved performance, such as 3D Gaussian
Splatting (Kerbl et al., 2023) and FlexiCube (Shen et al., 2023). Despite these advances, challenges
remain in generating complex compositional 3D scenes.

3D Compositional Generation. To address the compositional nature of 3D content, a few efforts
have been made recently. Epstein et al (Epstein et al., 2024) and GALA3D (Zhou et al., 2024)
propose optimizing component layouts for integrated object scenes. ComboVerse (Chen et al.,
2024b) introduces spatial-aware score distillation sampling (SSDS) to effectively learn object spatial
relations. GraphDreamer (Gao et al., 2023) uses large language models to form graph structures
where nodes and edges represent objects and their relationships, respectively, showing promising
results. Challenges remain in modeling interactions between humans and objects. InterFusion (Dai
et al., 2024) develops a 2D dataset for human-object interactions, enabling text-guided pose retrieval
and scene generation. However, this approach lacks precise control over interaction areas and is not
readily adaptable to 4D scenarios.

4D Content Generation. Recent advances in video diffusion models and score distillation sampling
have spurred a variety of 4D scene generation techniques. Make-A-Video3D (MAV3D) (Singer
et al., 2023) utilizes HexPlane features for 4D representations. 4D-fy (Bahmani et al., 2023) and
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Figure 2: Overview of AvatarGO. AvatarGO takes the text prompts as input to generate 4D avatars
with object interactions. At the core of our network are: 1) Text-driven 3D human and object
composition that employs large language models to retarget the contact areas from texts and spatial-
aware SDS to composite the 3D models. 2) Correspondence-aware motion optimization which jointly
optimizes the animation for humans and objects. It effectively maintains the spatial correspondence
during animation, addressing the penetration issues.

DreamGaussian4D (Ren et al., 2023) employ multi-stage optimization pipelines to transform static
3D into dynamic 4D scenes. Dream-in-4D (Zheng et al., 2023) allows for personalized 4D generation
using image guidance, while Consistent4D (Jiang et al., 2023c) uses video inputs with RIFE (Huang
et al., 2022) and a super-resolution module for scene creation. 4DGen (Yin et al., 2023) and
AnimatableDreamer (Wang et al., 2023c) focus on controllable motion generation via driving videos.
More recently, Comp4D (Xu et al., 2024a) and TC4D (Bahmani et al., 2024) have introduced
trajectory-based approaches for creating 4D compositional scenes. While these technologies show
promise, they often struggle to produce 4D avatars that effectively interact with objects. Although
GAvatar (Yuan et al., 2023) excels in 4D human animation, its object interaction capabilities are
limited.

3 METHODOLOGY

Given a generated 3D avatar and a specific 3D object, AvatarGO generates compositional 4D avatars
with object interactions based on text instructions. In the subsequent sections, we first introduce
the preliminaries (in Sec. 3.1), including static 3D content generation and parametric human model
SMPL-X. Next, we will describe the key components of AvatarGO, including (1) text-driven 3D
human and object composition (in Sec. 3.2), and (2) correspondence-aware motion optimization for
achieving synchronized human and object animation (in Sec. 3.3). The overview of AvatarGO is
shown in Fig. 2.

3.1 PRELIMINARIES

3D Model Generation. Recently, DreamGaussian (Tang et al., 2023) showcases promising results
with largely improved training efficiency by incorporating two major components:

(1) 3D Gaussian Splatting (3DGS). 3DGS (Kerbl et al., 2023) directly defines the 3D space through
a set of Gaussians parameterized by their 3D position µ, opacity α, anisotropic covariance Σ, and
spherical harmonic coefficients sh. The sh term is used to capture the view-dependent appearance of
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the scene and Σ can be decomposed to:

Σ = RSSTRT , (1)

where R is the rotation matrix expressed by a quaternion q ∈ SO(3), and S is the scaling matrix,
represented by a 3D vector s. Essentially, each Gaussian centered at point (mean) µ is defined as:

G(x, µ) = e−
1
2 (x−µ)TΣ−1(x−µ), (2)

where x is the 3D query point.

For rendering the 3D Gaussians onto the 2D image space, 3DGS incorporates a tile-based rasterizer
and point-based α-blend rendering. Specifically, the color C(u) of a pixel u can be calculated as:

C(u) =
∑
i∈N

TiciαiSH(shi, v), Ti = G(x, µi)

i−1∏
j=1

(1− αjG(x, µj)) , (3)

where T represents the transmittance, SH denotes the spherical harmonic function, and v indicates the
viewing direction. By optimizing the Gaussian attributes {G : µ, q, s, σ, c} and dynamically adjusting
the density of 3D Gaussians (i.e., densifying and pruning), DreamGaussian achieves high-quality
generations from either textual or visual inputs.

(2) Score Distillation Sampling (SDS). Starting with the latent feature z extracted from a 3DGS
rendering x, SDS introduces random noise ϵ to z, yielding a noisy latent variable zt. This variable is
then processed by a pre-trained denoising function ϵϕ (zt; y, t) to estimate the added noise. The SDS
loss then calculates the difference between predicted and added noise, with its gradient calculated by:

∇θLSDS(ϕ, g(θ)) = Et,ϵ∼N (0,1)

[
w(t) (ϵϕ (zt; y, t)− ϵ)

∂z

∂x

∂x

∂θ

]
, (4)

where y denotes the text embedding, w(t) weights the loss from noise level t. We do not apply the
mesh extraction and texture optimization proposed in DreamGaussian to obtain the 3D models.

SMPL-X (Loper et al., 2015; Pavlakos et al., 2019). With pose parameter θ, shape parameter β,
and expression parameter ϕ as inputs, SMPL-X maps the canonical model to the observation space:

M(β, θ, ϕ) = LBS(T (β, θ, ϕ), J(β), θ,W), (5a)
T (β, θ, ϕ) = T+Bs(β) +Be(ϕ) +Bp(θ), (5b)

where M denotes the function defining the mesh model of a human body, and T represents the
transformed vertices. W stands for blend weights, Bs, Be, and Bp are functions respectively for
shape, expression, and pose blend shapes. LBS(·) indicates the linear blend skinning function that
poses each body vertex of SMPL-X according to:

vo = G · vc, G =

K∑
k=1

wkGk(θ, jk), (6)

where vc and vo represent SMPL-X vertices under the canonical pose and observation space,
respectively. wk is the skinning weight, Gk(θ, jk) is the affine deformation that maps the k-th joint
jk from the canonical space to observation space, and K denotes the number of neighboring joints.

3.2 TEXT-DRIVEN 3D HUMAN AND OBJECT COMPOSITION

With the help of DreamGaussian (Tang et al., 2023), we efficiently generate the 3D avatar Gh and the
3D object Go individually based on 3DGS and SDS (discussed in Sec. 3.1). We noticed that even
with manual adjustments, such as rescaling and rotating the 3D objects, it’s difficult to directly rig the
generated 3D human and object models accurately (see Appx. F). Therefore, we strive to seamlessly
composite Gh and Go based on the text prompt in this stage. Specifically, the Gaussian attributes of
Gh and Go would be optimized, as well as three trainable global parameters of Go, including rotation
R ∈ R4, scaling factor S ∈ R, and the translation matrix T ∈ R3:

XGo := S · (XGo · R+ T ), (7)

where XGo is the set of static Gaussian points.
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However, solely utilizing SDS for optimization could frequently lead to disproportionate relationships
and erroneous contact areas (see Fig. 3). This issue can be attributed to two potential factors: (1) the
absence of emphasis on words describing human-object interaction, which decreases the model’s
ability to comprehend the relationships between humans and objects; (2) the complexity inherent in
human subjects, posing challenges for the diffusion model to identify the most suitable contact areas
(see Sec. 4.3).

Spatial-aware SDS (SSDS). Following ComboVerse (Chen et al., 2024b), we employ SSDS to
facilitate the compositional 3D generation between the human and the object. Specifically, SSDS
augments the SDS with a spatial relationship between the human and the object by scaling the
attention maps of the designated tokens <token∗> with a constant factor c (where c > 1):

ATT :=

{
c · ATT<token>, if <token> = <token∗>,

ATT<token>, otherwise.
(8)

Here, <token∗> corresponds to the tokens encoding the human-object interaction term, such as
<‘holding’>, which can be identified through Large Language Models (LLMs) or specified by
the user. Consequently, the spatial-aware SDS loss can be written as:

∇θLSSDS(ϕ
∗, g(θ)) = Et,ϵ∼N (0,1)

[
w(t) (ϵϕ∗ (zt; y, t)− ϵ)

∂z

∂x

∂x

∂θ

]
, (9)

where ϕ∗ denotes the pre-trained denoising function with the adjusted attention maps.

LLM-guided Contact Retargeting. While spatial-aware SDS could benefit in understanding spatial
correlations, it still faces difficulties in identifying the most appropriate contact area (See Fig. 3),
which serves as a key component for human-object interaction. According to our studies (see Appx. E
for visualization), the diffusion model struggles to accurately estimate contacts, even in the 2D images
generated for human-object interaction. To tackle this issue, we propose leveraging Lang-SAM (lan,
2023) to identify the contact area from text prompts. Specifically, starting from the 3D human model
Gh, we render it from a frontal viewpoint to produce the image I . This image, alongside textual
inputs, undergoes Lang-SAM model to derive 2D segmentation masks M:

LangSAM(I,<body-part>) → M, (10)

where <body-part> represents the text describing the human body part, such as <‘hand’>.
Subsequently, we back-project the 2D segmentation labels onto the 3D Gaussians via inverse render-
ing (Chen et al., 2023c). Specifically, for each pixel u on the segmentation maps, we update the mask
value (0 or 1) back to the Gaussians via:

wi =
∑
i∈N

oi(u)× Ti(u)×M(u), (11)

where wi represents the weight of the i-th Gaussian, N is the collection of Gaussians that can be
projected onto the pixel u. o(·), T (·), and M(·) respectively denote the opacity, transmittance, and
segmentation mask value. Following the weight updates, we assess whether a Gaussian corresponds
to the segmented region of the human body part by comparing its weight against a pre-defined
threshold a. We then initialize the translation parameter T according to:

T = (wT ∗ µ)/
∑

w, (12)

where w = {w1, ..., wN |wi = 0/1} ∈ RN×1, µ = {µ1, ..., µN} ∈ RN×3, and N is the number of
Gaussain points within the human model Gh.

3.3 CORRESPONDENCE-AWARE MOTION FIELD

Following the compositional integration of 3D humans and objects, animating them synchronously
presents an additional challenge owing to potential penetration issues. This problem stems from the
absence of a well-defined motion field for the object. To this end, we establish the motion fields for
both human and object models using the linear blend skinning function from SMPL-X (as in Eq. 6),
and propose a correspondence-aware motion optimization aimed at optimizing the trainable global
parameters of the object model, i.e., rotation (R) and translation (T ), to improve robustness against
penetration issues between humans and objects.

6
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HumanGaussian GraphDreamer Ours (Var-A) Ours

Joker holding a microphone in his hand

Goku in Dragon Ball Series holding a torch in his hand

Kratos in God of War holding an axe of Thor in his hand

Figure 3: Comparisons on 3D compositional generations.

Human Animation. Given the motion sequence, we first construct a deformation field, which
consists of two components: (1) articulated deformation utilizing the SMPL-X linear blend skinning
function LBS(·), and (2) non-rigid motion learning the offset based on HexPlane features (Cao &
Johnson, 2023), to deform the point xc from the canonical space to xo in the observation space:

xo = G · xc + MLP(F (xc, t)), (13)

where F (·) denotes the HexPlane-based feature extraction network, and t indicates the timestamp.
We derive G from the closet canonical SMPL-X vertex to xc.

Object Animation. Similar to the human animation, we calculate the deformation matrix Gc for each
Gaussian point x within the object model Go based on its closest canonical SMPL-X vertex. Given
our experimental definition of 3D objects as rigid bodies, we then compute their average to establish
the intermediate motion field for the object:

Xo = G
′

c ·Xc, G
′

c =

∑
i∈[1,M ] Gci

M
, (14)

where Xo = {xo1 , ...,xoM }, Xc = {xc1 , ...,xcM }, and M is the total number of Gaussian points
within Go. Although animating the object directly using SMPL-X linear blend skinning may seem
like a simple solution, it can result in penetration issues between the human and the object (see Fig. 5).
This challenge arises primarily from the absence of proper constraints to maintain the correspondence
between these two models.

Correspondence-aware Motion Optimization. Drawing insight from the fact that our method
is robust in handling penetration issues in static composited models across various scenarios, we
propose a correspondence-aware motion optimization to preserve the correspondence between human
and object, thereby addressing the penetration problem. Specifically, we extend the above motion
field (Eq. 14) to include two additional trainable parameters R and T :

Xo := Xo · R+ T . (15)

where Xo is obtained in Eq. 14. Rather than naïvely optimizing the parameters via SDS, we propose a
novel correspondence-aware training objective that leverages SMPL-X as an intermediary to maintain
the correspondence between human and object when they are animated to a new pose:

LCA = MSE(Gc,Go), Gc = {Gc0 , ...,GcM }, Go = {Go0 , ...,GoM } (16)

where Gci and Goi is respectively derived based on xci , xoi and their corresponding SMPL-X models.

7
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DreamGaussian4D HumanGaussian* Ours (Var-B) OursTC4D

Steven Paul Jobs holding an iPhone in his hand

Iron Man holding an axe of Thor in his hand

Hulk holding a golden cudgel in his hand

Bodybuilder holding a dumbbel in his hand

Goku in Dragon Ball Series holding a torch in his hand

DreamGaussian4D HumanGaussian* Ours (Var-B) OursTC4D
Steven Paul Jobs holding an iPhone in his hand

Figure 4: Comparisons on 4D avatar animation with object interactions. ‘∗’ indicates that
HumanGaussian directly employs the SMPL LBS function for animation.

In addition to our correspondence-aware loss, we also incorporate the spatial-aware SDS as in Eq. 9
and the texture-structure joint SDS from HumanGaussian (Liu et al., 2023d) to enhance the overall
quality:

∇θLSDS(ϕ, g(θ)) = λ1 · Et,ϵ∼N (0,1)

[
w(t) (ϵϕ (zxt

; y, t)− ϵx)
∂zx
∂x

∂x

∂θ

]
+ λ2 · Et,ϵ∼N (0,1)

[
w(t) (ϵϕ (zdt

; y, t)− ϵd)
∂zd
∂d

∂d

∂θ

]
,

(17)

where λ1 and λ2 are hyper-parameters to balance the impact of structural and textural losses, while d
denotes the depth renderings.

The overall loss function to optimize the 4D animative scene is then given by:

L = λCA · LCA + λSDS · LSDS + λSSDS · LSSDS, (18)

where λCA, λSDS, and λSSDS represents weights to balance the respective losses.

4 EXPERIMENTS

We now validate the effectiveness and capability of our proposed framework to animate various
3D avatar-object pairs with different poses and provide comparisons with existing 3D and 4D
compositional generation methods.

Implementation Details. We follow DreamGaussian4D (Ren et al., 2023) to implement the 3D
Gaussian Splatting (Kerbl et al., 2023) and the HexPlane (Cao & Johnson, 2023) in our method.
We utilize the pre-trained Texture-Structure joint diffusion model from HumanGaussian (Liu et al.,
2023d) and version 2.1 of Stable Diffusion (Stability.AI, 2022) to respectively calculate the SDS
and spatial-aware SDS in our implementation. Typically, for each 3D avatar-object pair, we train the
3D stage with a batch size of 16 for 400 epochs, and the 4D stage with a batch size of 10 for 400
epochs. The training takes around 10 minutes for the 3D stage and 20 minutes for the 4D stage on a
single NVIDIA A100 GPU. We use Adam (Kingma & Ba, 2015) optimizer for back-propagation.
Additional implementation details can be found in the Appx. B.

Comparison Methods for 3D Static Generation. We first compare the 3D static generation
results with HumanGaussian (Liu et al., 2023d) and GraphDreamer (Gao et al., 2023). Since
ComboVerse (Chen et al., 2024b) lacks an official code release and relies on image inputs, we
compare static AvatarGO with an alternative variant, i.e., “Ours (Var-A)”, by only using the spatial-
aware score distillation sampling (SSDS) in ComboVerse to composite 3D humans and avatars. We
cannot compare with GALA3D as their source code is not publicly accessible.
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Comparison Methods for 4D Animation. Since there are no specific methods tailored for 4D
avatar animation with object interactions, we access AvatarGO’s efficacy against three recent 4D
generation techniques (i.e., DreamGaussian4D (Ren et al., 2023), HumanGaussian (Liu et al., 2023d),
and TC4D (Bahmani et al., 2024)), as well as one alternative variant “Ours (Var-B)”. To implement
Var-B, we utilize human hand motion sequences as trajectories to guide the transformation of
3D objects and follow Comp4D to integrate the video diffusion model to compute SDS. Because
InterDreamer (Xu et al., 2024b) and InterFusion (Dai et al., 2024) have not released their code, we
could not include their results for comparison. See more motivation for designing “Ours (Var-A)”
and “Ours (Var-B)” in Appx. C.

4.1 QUALITATIVE EVALUATIONS

4D Avatar Generation with Object Interaction. In Fig. 1, we present a diverse collection of
avatar-object pairs that are animated to different poses. These renderings consistently showcase
high-fidelity results from various viewpoints. Thanks to our proposed LLM-guided contact retargeting
and correspondence-aware motion optimization, our method can deliver appropriate human-object
interactions and demonstrate superior robustness to the penetration issues.

Comparison on 3D Generation. We provide qualitative comparisons with existing methods on 3D
generation in Fig. 3. We can observe: 1) without the aid of LLMs, HumanGaussian struggles to
determine the spatial correlations between humans and objects; 2) Despite using graphs to establish
relationships, GraphDreamer is confused by the meaningful contact, resulting in unsatisfactory
outcomes. 3) Optimizing R, S , and T with only SSDS is inadequate to move the object to the correct
area. Conversely, AvatarGO consistently outperforms with precise human-object interactions.

Comparisons on 4D Animation. In Fig. 4, we compare our 4D animation results with SOTA
methods. We take the rendering from our 3D compositions stage as the input for DreamGaussian4D.
The following observations can be made: 1) Even with human-object interaction images, Dream-
Gaussian4D, which employs video diffusion models, struggles with animating the composited scene.
2) Direct animation via SMPL LBS function, as in HumanGaussian, tends to yield unsmooth results,
especially for the arms. 3) TC4D faces similar issues as the DreamGaussian4D. Meanwhile, it treats
the entire scene as a single entity, lacking both local and large-scale motions for individual objects. 4)
One may think applying trajectory to objects seems like a simple solution (as in Comp4D). However,
as seen in “Ours (Var-B)”, it can disrupt spatial correlations between humans and objects. These
points further validate the necessity of AvatarGO. Our method can consistently deliver superior
results with correct relationships and better robustness to penetration issues See the Appx. A, H, J, K
for more comparisons.

4.2 QUANTITATIVE EVALUATIONS

Table 1: Quantitative Evaluation.
GraphDreamer TC4D HumanGaussian Ours

(Var-A)
Ours

(Var-B)
Ours

(static) Ours

CLIP-Image ↑ 98.44 89.50 83.93 97.88 92.11 93.45
::::
92.20

CLIP-S ↑ 8.09 19.84 23.69 25.36 30.57
::::
32.27 32.84

CLIP-DS ↑ 1.71 15.28 4.71 0.91 25.90 33.80
::::
28.03

CLIP-based Metrics. We use CLIP-based met-
rics (CLIP-Score (CLIP-S), CLIP image similar-
ity (CLIP-Image), and CLIP Directional Simi-
larity (CLIP-DS) (Brooks et al., 2023; Gal et al.,
2022)) with CLIP-ViT-L/14 model. Among
them, CLIP-S measures the similarity between texts and their corresponding models, CLIP-Image
denotes the similarity between compositional models and human models, and CLIP-DS represents
the alignment between changes in text captions (e.g., “Iron Man” to “Iron Man holding an axe of Thor
in his hand”) and corresponding changes in images. Through Tab. 1, our method maintain the human
identity in the composited scenes (see CLIP-Image). Note that “Ours (Var-A)” and GraphDreamer
is slightly better for this metric as they struggle to do the composition (see Fig. 3). Meanwhile, “Ours”
and “Ours (static)” consistently achieve better results than HumanGaussian and other variants, further
affirming the objective superiority of AvatarGO.

Table 2: User studies.
Dream

Gaussian4D
Human

Gaussian TC4D Ours
(Var-B) Ours

Level of penetration ↑ 1.267 1.084 4.236 1.537 4.872
Accuracy of relative scale ↑ 1.183 1.092 4.308 3.947 4.788
Accuracy of contact ↑ 1.654 1.137 4.412 2.137 4.802
Motion quality ↑ 1.321 2.156 1.947 1.673 4.592
Motion amount ↑ 2.118 3.781 1.517 4.159 4.934
Text alignment ↑ 2.047 1.918 4.515 2.462 4.767
Overall Performance ↑ 3.467 1.633 4.033 2.033 4.869

User Studies We further conduct user studies to
compare with DreamGaussian4D, HumanGaus-
sian, TC4D, and “Ours (Var-A)”. 24 Volun-
teers rated these methods independently based
on seven criteria from 1 (worst) to 5 (best): (1)
Level of penetration; (2) Accuracy of the relative
scale between humans and objects; (3) Accuracy
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w/ SDF distance loss w/ SDF label loss w/o ℛ,	#, ℒ!" w/o ℒ!" OursOurs
Iron Man holding an axe in his hand

Figure 5: Analysis of correspondence-aware motion field.
of contact; (4) Motion quality; (5) Motion amount; (6) Text alignment; (7) Overall performance.
Detailed results have been presented in Tab. 2. Key observations include: 1) Both DreamGaussian4D
and HumanGaussian have difficulty providing satisfactory outcomes for human-object interaction
(HOI) scenes. 2) Although TC4D performs well with HOI generations, it only produces global
motions, leading to less optimal motion quality and quantity compared to our method. Our final
design consistently delivers superior results for all seven criteria, outperforming the other methods
across the board.

4.3 ABLATION STUDIES

Analysis of LLM-guided Contact Retargeting. We first conduct evaluations to validate the efficacy
of employing Lang-SAM for retargeting the accurate contact area. See Fig. 3. By comparing “Ours
(Var-A)” and Ours, we can conclude that without Lang-SAM, the model struggles to produce correct
human-object interaction in the 3D compositional generation.

Analysis of Correspondence-aware Motion Field. In Fig. 5, we first compare our proposed training
objectives LCA with two alternative strategies: 1) “SDF distance loss” which minimizes the change
of signed distance field (SDF) between objects and humans when they are animated to a new pose,
and 2) “SDF label loss” that supervise the label of SDF instead. These comparisons demonstrate
the effectiveness of our proposed method for maintaining spatial correlations during the animations.
Additionally, we validate our model’s design by further comparing it with two variants: 1) “w/o R,
T , LCA” which disables the trainable parameters R, T , Eq. 15, and our proposed loss LCA. This
setting represents the scenario where the object is moved directly with the contact point. and 2) “w/o
LCA” which trains the animation network solely with SDS loss (L∗

SDS , LSDS). These comparisons
underscore the necessity of these components in achieving 4D animation with better robustness to the
penetration issues.

w/o ℒ!"!∗ (static) Ours (static) w/o ℒ!"!∗  (dynamic) Ours

Captain America holding a flute in his hand Woody in Toy Story holding a microphone 
in his hand

Figure 6: Analysis of Spatial-aware SDS.

Analysis of Spatial-aware SDS.
We finally assess the effectiveness
of spatial-aware SDS (SSDS) and
present the results in Fig. 6. Notably,
we observe that SSDS plays a crucial
role in preventing the optimization of
R, S, T from vanishing during 3D
compositional generation. Addition-
ally, there is a drop in the quality of the animated avatars when disabling SSDS.

5 CONCLUSIONS

In this paper, we have introduced AvatarGO, the first attempt for text-guided 4D avatar generation
with object interactions. Within AvatarGO, we proposed to employ large language model for
comprehending the most suitable contact area between humans and objects. We also presented a
novel correspondence-aware motion optimization that utilizes SMPL-X as an intermediary to enhance
the model’s resilience to penetration issues when animating 3D humans and objects into new poses.
Extensive evaluations demonstrated that our method has achieved high-fidelity 4D animations across
diverse 3D avatar-object pairs and poses, surpassing current state-of-the-arts by a large margin.
Limitations. While opening new doors for human-centric 4D content generation, we acknowledge
AvatarGO has certain limitations: 1) Our pipeline operates under the assumption of rigid-body
dynamics for 3D objects, making it unsuitable for animating non-rigid content such as flags; 2) our
method presumes that continuous contact between objects and avatars, making it challenges for
tasks like "Dribbling the basketball," where the human and object inevitably disconnect at certain
points. Nevertheless, our current approach does not cover all possible scenarios, it effectively handles
continuous contact and rigid connections, which are commonly encountered in real-world applications.
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A VIDEO RESULTS

To better visualize the generated results, we offer an improved demonstration of our method through
rotated videos in the supplementary materials. To access this demonstration, please open the file
named “index.html” provided in the supplementary.

B IMPLEMENTATION DETAILS

Our network is built upon the official implementation of DreamGaussian4D (Ren et al., 2023) and
Threestudio (Guo et al., 2023b) (an open-source 3D generative project).

To ensure easy reproducibility, we first include all the hyperparameters for our 3D composition stage
in Tab. 3.

Table 3: Hyper-parameters of AvatarGO - 3D composition stage.

Camera setting

Camera distance range 2.
Radius 2.0
Elevation range (-30, 30)
FoV range 49.1

Render setting
Resolution for 0-120 epochs (128, 128)
Resolution for 120-240 iters (256, 256)
Resolution for 240-400 iters (512, 512)

Diffusion setting

Guidance scale 7.5
t range (0.01, 0.97)
Minimal step percent 0.01
Maximal step percent 0.97
ω(t)

√
αt(1− αt)

Initialization
Rotation R torch.normal(mean=[0.5, 0.5, 0.5, 0.5], std=0.1)
Translation T 0.0
Scale S torch.normal(mean=1.0, std=0.3)

Learning rate
Rotation R 0.005
Translation T 0.005
Scale S 0.005

LLM-guided contact retargeting threshold a 1e-7

Training objectives λ∗
SDS 1.0

Hardware GPU 1 × NVIDIA A100 (80GB)
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Table 4: Hyper-parameters of AvatarGO - 4D animataion stage.

Camera setting

Camera distance range 2.
Radius 2.0
Elevation range (-30, 30)
FoV range 49.1

Render setting
Resolution for 0-120 epochs (128, 128)
Resolution for 120-240 iters (256, 256)
Resolution for 240-400 iters (512, 512)

Diffusion setting to calculate L∗
SDS

Guidance scale 7.5
t range (0.01, 0.97)
Minimal step percent 0.01
Maximal step percent 0.97
ω(t)

√
αt(1− αt)

Diffusion setting to calculate LSDS

Guidance scale 7.5
Guidance rescale 0.75
t range (0.02, 0.98)
Minimal step percent 0.02
Maximal step percent 0.98
gradient clip [0, 1.5, 2.0, 1000]
gradient clip pixel True
gradient clip threshold 1.0
ω(t)

√
αt(1− αt)

Initialization Rotation R [-0.16, -0.16, -0.16, 0.5]
Translation T 0.0

Learning rate Rotation R 0.001
Translation T 0.001

Training objectives
λCA 1e+3
λ∗
SDS 1.0

λSDS 1.0

Hardware GPU 1 × NVIDIA A100 (80GB)

In the 4D animation stage, we apply HexPlane (Cao & Johnson, 2023) to produce features from point
position xc and timestamp t, followed by an MLP to predict the offset for Gaussian attributes, i.e.,
point location x, scaling matrix s, rotation matrix R. Specifically, the HexPlane encoder lifts the
inputs to a higher frequency dimension F ((xc, t)) ∈ R128, while the MLP is set to the default in
DreamGaussian4D with ResNet (He et al., 2016).

To further ensure easy reproducibility, we first include all the hyperparameters for our 4D animation
stage in Tab. 4 The other hyper-parameters are set to be the default of DreamGaussian4D (Guo et al.,
2023b).

C MORE EXPLANATION ON DESIGNING “OURS (VAR-A)” AND “OURS
(VAR-B)”

“Ours (Var-A)”: This is a version where we have disabled the Lang-SAM initialization in our 3D
static compositional generation. Comparing this with our final method shows that without assistance
from Lang-SAM, the diffusion model struggles to accurately interpret human-object images.

“Ours (Var-B)”: While Comp4D (Xu et al., 2024a) separates 3D scenes into two components
and applies trajectories to one component for compositional 4D generation, it leaves the other
component static. This method is not suitable for our scenarios where both humans and objects
are dynamic. Therefore, we design "Ours (Var-B)" by adopting the Comp4D strategy: allowing
the object to follow a trajectory while the human moves independently. Specifically, we replace
our correspondence-aware motion supervision, as defined in Eq. 16, with SDS supervision strategy
via the video diffusion model used in Comp4D. Comparing this approach with our final method
demonstrates that our correspondence-aware motion supervision more effectively preserves the
relationship between humans and objects throughout the animation process.
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D TRAINING COMPLEXITY

In our study, our results, detailed in both the main paper and the Appendix, involve training the 3D
stage for 400 epochs on a single NVIDIA A100 GPU, taking approximately 10 minutes. Similarly,
the 4D stage requires roughly 20 minutes of training on the same GPU. To compare with other
methods: 1) In the experiments for 3D compositional generation, HumanGaussian (Liu et al., 2023d)
demands approximately 2 hours to complete 3600 epochs; GraphDreamer (Gao et al., 2023) adopts
a two-stage training approach, with the coarse stage taking roughly 3 hours for 10000 epochs and
the fine stage requiring around 6 hours for 20000 epochs. 2) Additionally, in our experiments with
4D animation, DreamGaussian4D (Ren et al., 2023) completes training of their 3-stage network in
around 10 minutes; TC4D (Bahmani et al., 2024)demands approximately 1 hour for the first stage
over 10000 epochs, 3 hours for the second stage over 20000 epochs, and roughly 30 hours for the
third stage over 30000 epochs.

E 2D HUMAN-OBJECT INTERACTION IMAGE GENERATION

Because of the limited availability of human-object interaction images within the 2D dataset utilized
for training diffusion models, existing models encounter challenges in accurately capturing the spatial
dynamics and contact between humans and objects. This limitation is evident in Figure 7, where
we noticed that during the process of 2D image generation, the diffusion model would struggle to
create such images. This inadequacy significantly hampers the ability of diffusion models to generate
realistic 3D human-object interactions.

Pose condition
Obama holding hat in

his left hand
Iron Man holding a hat

in his hand
Ultraman holding an

axe in his hand

Figure 7: Example generation of human-object interaction images. Images generated by pose-
conditioned ControlNet Zhang & Agrawala (2023)
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F DIRECT RIGGING OF 3D OBJECT AND HUMAN MODELS

We conducted experiments by directly positioning the 3D objects in a reasonable position relative
to the humans. As shown in Fig. 8, without further adjustments such as rescaling or rotating, the
relationships between humans and objects are not accurately depicted. Penetration issues will also
exist in some examples. Even with manual adjustments, such as rescaling and rotating the 3D objects,
significant human effort is required, and the interactions between humans and objects still lack
accuracy. For instance, Fig. 8 illustrates that humans frequently appear with open hands, which fails
to convincingly "hold" the objects and significantly undermines the user experience.

OursDirect rigging
humans and objects OursDirect rigging

humans and objects

Iron Man holding an axe in his hand Steven Paul Jobs hold an axe in his hand

Iron Man holding an axe in his hand

OursDirect rigging
humans and objects

Steven Paul Jobs hold an axe in his hand

Iron Man holding an axe in his hand

Bodybuilder holding a dumbbel in his hand

OursUsing SMPL-X pose
from contact human part

Figure 8: Evaluation by directly rigging humans and objects

G ANALYSIS BY DETERMINING THE ANIMATION OF OBJECT BY ONLY THE
CONTACT PART

OursDirect rigging
humans and objects OursDirect rigging

humans and objects

Iron Man holding an axe in his hand Steven Paul Jobs hold an axe in his hand

Iron Man holding an axe in his hand Bodybuilder holding a dumbbel in his hand

OursUsing SMPL pose
from contact human part OursUsing SMPL-X pose

from contact human part

Figure 9: Evaluation by using SMPL-X pose from contact human part

We conducted experiments using the contact part of the human body to determine the object’s motion.
The results are shown in Fig. 9. We found that this approach works well when the object is positioned
far from the body, but it can encounter penetration issues when the object is close to the body (see
"Bodybuilder holding a dumbbel in his hand"). We will incorporate this discussion into the updated
paper.
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H COMPARISONS WITH AVATARCRAFT, DREAMWALTZ AND DREAMAVATAR

In Fig. 10, we provide qualitative comparisons with AvatarCraft, DreamWaltz, and DreamAvatar. We
observed that AvatarCraft and DreamAvatar are highly constrained by the SMPL prior model, making
it difficult for them to create human models with effective object interactions. While DreamWaltz can
generate some object interactions, these interactions are often inaccurate. Additionally, DreamWaltz
has trouble maintaining proper interactions throughout the animation, as presented in Fig. 11.

OursDreamAvatarAvatarCraftDreamWaltz
Joker holding a microphone in his hand

Kratos in god of war holding an axe in his hand

Iron Man holding an axe in his hand

Figure 10: Qualitative comparisons with DreamWaltz, AvatarCraft, and DreamAvatar
OursDreamAvatarAvatarCraftDreamWaltz

Joker holding a microphone in his hand

Kratos in god of war holding an axe in his hand

Iron Man holding an axe in his hand

Figure 11: Evaluation on DreamWaltz’s animated results

I SOCIETAL IMPACT.

The progress in 4D avatar generation with object interactions holds promise for numerous AR/VR
applications, yet also raises concerns regarding potential misuse, such as creating misleading or
nonexistent human-object pairings. We advocate for responsible research and deployment, promoting
openness and transparency in practices to mitigate any potential negative consequences.
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J MORE COMPARISONS ON 3D GENERATION

We provide more qualitative comparisons with HumanGaussian (Liu et al., 2023d), Graph-
Dreamer (Gao et al., 2023), and “Ours (Var-A)’ in Fig. 12. These results serve to reinforce
the claims made in Sec. 4 of the main paper, providing further evidence of the superior performance
of AvatarGO in compositing 3D human and object models.

HumanGaussian GraphDreamer Ours (Var-A) Ours

Bodybuilder holding a dumbbel in his hand

Hulk holding a golden cudgel in his hand

Iron Man holding an axe of Thor in his hand

Wolfgang Amadeus Mozart holding a cup in his hand

Naruto in Naruto Series holding an AK-47 in his hand

Wonder Woman holding a dumbbel in his hand

Woody in Toy Story holding a microphone in his hand

Figure 12: Comparisons on 3D compositional generations.
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K MORE COMPARISONS ON 4D ANIMATION

We further provide more qualitative comparisons of 4D animation with DreamGaussian4D (Ren
et al., 2023), HumanGaussian (Liu et al., 2023d), and “Ours (Var-B)’. The results can be found
in Fig. 13. These comparisons further demonstrate the superiority of AvatarGO in maintaining the
spatial correlation during animations and in addressing the penetration issues.

DreamGaussian4D HumanGaussian* Ours (Var-B) Ours

Bodybuilder holding a dumbbel in his hand

Goku in Dragon Ball Series holding a torch in his hand

Joker holding a microphone in his hand

Kratos in God of War hold a Torch in his hand

Wolfgang Amadeus Mozart holding a cup in his hand

Naruto in Naruto Series holding an AK-47 in his hand

Figure 13: Comparisons on 4D animation.
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