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ABSTRACT

Effective exploration is a crucial challenge in deep reinforcement learning. Behav-
ioral priors have been shown to tackle this problem successfully, at the expense of
reduced generality and restricted transferability. We thus propose temporal priors
as a non-Markovian generalization of behavioral priors for guiding exploration in
reinforcement learning. Critically, we focus on state-independent temporal pri-
ors, which exploit the idea of temporal consistency and are generally applicable
and capable of transferring across a wide range of tasks. We show how dynami-
cally sampling actions from a probabilistic mixture of policy and temporal prior
can accelerate off-policy reinforcement learning in unseen downstream tasks. We
provide empirical evidence that our approach improves upon strong baselines in
long-horizon continuous control tasks under sparse reward settings.

1 INTRODUCTION

Exploration is a fundamental issue in reinforcement learning (RL): in order for an agent to maxi-
mize its reward signal, it needs to adequately cover its state space and observe the outcome of its
actions. This becomes increasingly harder when dealing with large, continuous state and action
spaces, which includes many real world applications. There exists a large and fruitful body of re-
search on exploration (Bellemare et al., 2016; Osband et al., 2016; Tang et al., 2017; Osband et al.,
2018; Azizzadenesheli et al., 2018; Burda et al., 2018; Dabney et al., 2021; Ecoffet et al., 2021),
however most general-purpose algorithms remain based on ε-greedy exploration (Mnih et al., 2015)
or entropy-regularized Gaussian policies (Haarnoja et al., 2018). In the absence of an informative re-
ward signal, both methods rely on uniformly sampling actions from the action space, independently
of the history of the agent. Unfortunately, in sparse reward settings, achieving positive returns by
uncorrelated exploration becomes exponentially less likely as the horizon length increases (Dabney
et al., 2021). Moreover, within this setting, the lack of temporal correlation can result in undesirable
behaviors during exploration, such as reversing recent actions.

A promising approach to achieve efficient exploration is that of using a behavioral prior to guide
the policy (Pertsch et al., 2020; Tirumala et al., 2020; Singh et al., 2021). Typically, this is learned
from expert trajectories as a state-conditional action distribution. Behavioral priors are able to foster
directed and correlated exploration (Singh et al., 2021), by assuming a strong similarity between the
agent and expert tasks. However, an agent should ideally be able to produce efficient explorative
behaviors even in unseen environments and unrelated tasks.

To overcome the shortcomings of behavioral priors, we propose temporal priors, a powerful non-
Markovian generalization which is capable of guiding exploration in challenging settings. In partic-
ular, we put our attention on the family of state-independent temporal priors, which enable accel-
erating reinforcement learning and transferring knowledge to unseen tasks by focusing on temporal
correlation between actions.

In our method, which we dub TEMporal Priors for exploration in Off-policy Reinforcement Learn-
ing (TempoRL), we introduce a temporal action prior π̄(at|st, Ht), where Ht = (si, ai)

t−1
0 is

the history of the agent. In particular, we find that the class of state-independent temporal priors
π̄(at|(ai)t−10 ) is sufficient for capturing desirable properties for exploration, such as directness and
temporal correlation, and advantageous in situations where the prior carries no knowledge about the
current state. Temporal priors can be trained offline from few task-agnostic expert trajectories (see
Figure 1). Furthermore, we propose a principled manner of integrating priors into the Soft Actor
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Figure 1: TempoRL: A temporal prior is trained on task-agnostic trajectories. Actions are then sampled from
a dynamic mixture between a state-independent temporal prior and the policy in downstream learning of more
complex tasks. Our method works with both vector-based and image-based state inputs.

Critic framework (Haarnoja et al., 2018) without breaking the Markovian assumption of the learning
rule. In downstream learning of more complex tasks, our method samples actions from a dynamic
mixture between the policy and the temporal prior. Moreover, the policy is regularized by directly
maximizing the likelihood of sampling from the prior instead of the policy’s entropy. Our approach
is general and can be applied for arbitrarily complex priors.

In our experiments, we first compare the adequacy of behavioral priors and of different families
of temporal priors for accelerating downstream RL. We then focus on state-independent temporal
priors and verify their capability to produce correlated and directed behavior. We provide empirical
evidence that our method can accelerate learning in long-horizon control tasks with sparse rewards.
We demonstrate the effectiveness of our approach by comparing against state-of-the-art baselines.

Our contributions can be organized as follows:

1. We propose learnable non-Markovian action priors conditioned on the history of the agent.
We show that sampling from these prior produces directed and correlated trajectories.

2. We introduce a principled manner of integrating temporal priors into the Soft Actor Critic
framework (Haarnoja et al., 2018).

3. We show how state-independent temporal priors can be learned from few expert trajecto-
ries on simple tasks and used to improve exploration efficiency in new tasks, despite the
presence of massive domain gaps 1 (e.g. from a simple reaching task to opening a window)
and across entirely different settings (e.g., from non-visual to visual RL).

After discussing our method’s novelty and related literature in Section 2, we introduce our setting
in Section 3. The method is described in Section 4, while empirical evidence of its effectiveness is
reported in Section 5. Finally, Section 6 contains a brief closing discussion of our work. We make
our code available for research purposes 2.

2 RELATED WORK

Efforts addressing exploration in deep reinforcement learning have evolved along multiple and var-
ious directions (Bellemare et al., 2016; Osband et al., 2016; Tang et al., 2017; Osband et al., 2018;
Azizzadenesheli et al., 2018; Nair et al., 2018; Burda et al., 2018; Dabney et al., 2021; Ecoffet et al.,
2021). In this section, we focus on ideas that are closely related to our work and allow for a direct
comparison.

Temporally-Extended Exploration Several works have attempted to directly address the inability
of traditional methods, such as ε-greedy or uniform action sampling (Lillicrap et al., 2016; Haarnoja
et al., 2018), to produce correlated trajectories. An interesting study (Dabney et al., 2021) highlights

1We borrow this term from domain adaptation literature to hint at the different nature of the environment
used for collecting expert trajectories and of the environment the RL agent is deployed in.

2https://sites.google.com/view/tempo-rl
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this issue and shows how repeating random actions for multiple steps is sufficient to significantly
accelerate Rainbow (Hessel et al., 2018) on Atari (Bellemare et al., 2013). Similarly, Amin et al.
(2021) propose a non-learned policy inspired by the theory of freely-rotating chains in polymer
physics to collect initial explorative trajectories in continuous control tasks. Both methods pinpoint
a fundamental issue, but rely on scripted policies which are hand-crafted for a particular family of
environments. On the other hand, our method is learned from task-agnostic trajectories and does not
require engineering an explorer, which can be unfeasible for complex tasks.

Hierarchical Reinforcement Learning Another approach to tackle exploration-hard tasks is to
rely on a hierarchical decomposition of the agent into different levels of temporal and functional
abstraction (Parr & Russell, 1998; Dietterich, 2000; Sutton et al., 1999; Dayan & Hinton, 2000).
For instance, the task can be decomposed into high level planning and a set of low-level policies,
often referred to as skills (Konidaris & Barto, 2007; Eysenbach et al., 2018) or options (Sutton
et al., 1999; Bacon et al., 2017). This approach effectively reduces the planning horizon and allows
efficient solving of complex tasks from scratch (Bacon et al., 2017; Vezhnevets et al., 2017; Nachum
et al., 2018; Levy et al., 2019; Christen et al., 2021). Low-level policies can be trained without
supervision to achieve correlated and directed behaviors (Eysenbach et al., 2018), however, the
issue of temporal correlation is merely relocated in the hierarchy, as the high-level planner is not
encouraged to produce correlated sequences of skills. Incidentally, our method is not designed to
achieve temporal abstraction, but can be interpreted in a hierarchical framework (Schäfer et al.,
2021) in which a high-level criterion (the mixing function) governs a probabilistic choice between
an explorer (temporal prior) and an exploiter (policy).

Behavioral Priors Behavioral priors are generally represented by state-conditional action distri-
butions modeling strategies for the current state of the environment. Such priors can be learned
jointly with the policy in the context of KL-regularized RL (Tirumala et al., 2019; 2020), which
in some cases restricts the information available to the prior (Galashov et al., 2019). A second ap-
proach consists in learning behavioral priors from expert policies on related tasks. This is the case
for several works (Peng et al., 2019; Pertsch et al., 2020; 2021; Ajay et al., 2021) which adopt a
Gaussian behavioral prior in a latent skill-space. In particular, Pertsch et al. (2020) report that a
prior is crucial to guiding a high-level actor in an HRL framework. An important contribution to
the field is made by PARROT (Singh et al., 2021), which focuses on a visual setup and introduces
a flow-based transformation of the action space to allow arbitrarily complex prior distributions. We
extend this idea to prior action distributions that are not only conditioned on the current state or a
part thereof, but rather on the history of the agent, and are therefore non-Markovian. Moreover, we
propose a novel and more flexible way of integrating the prior distribution into the learning algo-
rithm. Most importantly, we overcome the reliance of the last two methods on a tight domain gap
between tasks for training the prior and the agent.

3 BACKGROUND

3.1 SETTING

Reinforcement learning (RL) is the problem that an agent faces when learning to interact with a dy-
namic environment. We formalize the environment as a goal-conditioned Markov Decision Process
(gc-MDP) (Nasiriany et al., 2019), that consists of a 6-tuple (S,A,G,R, T , γ), where S is the state
space, A is the action space, G ⊆ S is the goal space, R : S × G → R is a scalar reward function,
T : S × A → Π(S) a probabilistic transition function that maps state-action pairs to distributions
over S and, finally, γ is a discount factor. Assuming goals to be drawn from a distribution pG , the
objective of an RL agent can then be expressed over a time horizon T as finding a probabilistic
policy π? = arg maxπ Eg∼pG

∑t=T
t=0 γ

tR(st, g), with st ∼ T (st−1, at−1) and at−1 ∼ π(st−1, g).
In order to simplify notation, from this point on, we will implicitly include the goal into the state at
each time step: st ← (st, g).

We focus on long-horizon control problems with continuous state and action spaces and sparse re-
wards, i.e., non-zero only after task completion. Although our method can be generally applied to
stochastic off-policy RL methods, we build upon Soft Actor Critic (Haarnoja et al., 2018) with Hind-
sight Experience Replay (Andrychowicz et al., 2017), due to their wide adoption in these settings.
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Finally, in contrast with several behavioral prior approaches (Galashov et al., 2019; Pertsch et al.,
2020; Singh et al., 2021), we adopt a more general and challenging setting. First, we do not assume
that prior information on the structure of the state space is available. Second, while we also assume
access to a collection of expert trajectoriesD = {(si0, ai0, si1, ai1, . . . , siN , aiN )}Li=0, we do not require
high quality trajectories collected on the exact environment and task. From this point on, we refer
to the environment used for collecting data as the training environment, and to the environment in
which the RL agent is deployed as the downstream environment.

3.2 BEHAVIORAL PRIORS

A behavioral prior π̄(a|s) (Pertsch et al., 2020; Singh et al., 2021) is a state-conditional probability
distribution over the action space (cf. Figure 2a). Behavioral priors can be trained to assign high
probability to useful actions with respect to the current state, and hence be used to accelerate RL. A
behavioral prior can only guide the policy effectively as long as prior information on the structure
of the state space is available (Galashov et al., 2019), or the prior has been trained on data collected
on a closely related task and environment (Pertsch et al., 2020; Singh et al., 2021).

In our settings, the structure of observations is unknown and expert trajectories D may be collected
on unrelated tasks. This means that the distribution of training states might not match the distribution
of states produced by downstream environments: behavioral priors will then be evaluated on out-of-
distribution samples and their performance will degrade drastically, as shown in Section 5.1.

4 METHOD

Our method relies on the integration of a learned temporal action prior into an off-policy RL algo-
rithm. Thus, we first define and discuss the class of temporal priors of interest, and later describe
how they can be integrated into existing off-policy algorithms.

4.1 TEMPORAL PRIORS

Within the settings outlined in Section 3.1, it is still possible to extract and transfer knowledge from
the expert dataset D to the agent, despite a significant domain gap. Namely, we can model the
temporal correlation of the expert trajectories and use it to speed up downstream learning.

In order to recover this information, we thus propose to learn a temporal prior. A temporal prior is a
non-Markovian action prior, representing a probability distribution over the action space that is not
conditioned on the current state alone, but also on the past history of the agent: π̄(at|st, Ht) (see
Figure 2b), where Ht = (s0, a0, . . . , st−1, at−1). Temporal priors are a powerful generalization of
behavioral priors, which directly address temporal correlation.

In the challenging settings we describe in Section 3.1, conditioning on the current state is not just
insufficient, but might also be counterproductive, as a state-conditional action prior would receive
out-of-distribution samples as inputs. Hence, we focus on the class of state-independent temporal
priors, which drop their dependence on the environment’s state. This is indeed a viable strategy in
a hard-exploration setting, when no prior information is available on the state space and no reward
is observed: in this case, no information can be extracted from the state in any case. The most
general definition of a state-independent temporal prior is a probability density π̄(at|at−10 ) (see
Figure 2c). Our empirical evidence suggests that its simplest form, i.e., π̄(at|at−1) (see Figure 2d)
is surprisingly competitive with variants conditioned on multiple past actions (cf. Section 5.1) and
is therefore sufficient to capture complex temporal relations.

Independently from the conditioning variables, temporal priors can conveniently be modeled as
parametric or non-parametric conditional generative models and learned through empirical risk min-
imization. For the purpose of this paper, we choose to use the conditional variant of the Real Non
Value Preserving Flow (Dinh et al., 2017; Ardizzone et al., 2019), which has been successfully ap-
plied in similar settings before (Singh et al., 2021) and is well suited for Euclidean action spaces.
Our integration in the SAC framework allows arbitrarily complex prior distributions, which Real
NVP Flows are in principle able to capture.
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Figure 2: Graphical models representing different priors: from left to right, a behavioral prior, a general
temporal prior, a state-independent temporal prior and a single-step state-independent temporal prior. Solid
arrows represent the environment’s transition function T , while dashed arrow indicate conditional modeling.

In the context of NVP Flows, training samples are actions a ∈ A, paired with conditioning variables
(s,H), thus the learned mapping is a = fθ(z; (s,H)), with z ∼ N . Since fθ is invertible, we
analytically compute the likelihood of a single training pair (a, (s,H)) and maximize its expected
value through standard gradient-based optimization techniques. An empirical justification of this
choice is found in Appendix E.1, while implementation details are reported in Appendix D. For a
complete introduction to Real NVP Flows, we refer the reader to Dinh et al. (2017).

One final concern regards the nature of the data for training the temporal prior. The main require-
ments for the training data are two: (1) the environment in which the data is collected needs to share
the same action space of the downstream environment and (2) the training trajectories should display
the desired qualities of correlation and directness. In general, we adopt task-agnostic expert trajec-
tories generated by achieving simple random goals. Such simple trajectories can be learned from
scratch using standard RL or, as we do in practice, produced by a scripted policy. We remark that,
in contrast with existing approaches (Pertsch et al., 2020; Singh et al., 2021), this framework poses
very weak requirements on the similarity between the environments used for data collection and the
target environments. As we show in Section 5.3, this allows our method to bridge the gap between
fundamentally different environments and settings, such as transferring from a simple reaching task
with access to the true state of the system to a door-closing task in a visual RL setting.

4.2 SOFT ACTOR CRITIC WITH TEMPORL

Algorithm 1 SAC with TempoRL

1: Train temporal prior π̄(at|st, Ht)
2: Initialize history H0 = ∅
3: Initialize policy and Q-parameters θ, φ
4: for each iteration do
5: for each environment step do
6: λt = Λ(H(π(·|st))
7: at ∼ (1−λt)π(at|st) +λtπ̄(at|st, Ht)
8: st+1 ∼ T (st, at)
9: D = D ∪ (st, at, r(st, at), st+1)

10: Ht+1 = Ht ∪ (st, at)
11: end for
12: for each gradient step do
13: Update θ, φ
14: end for
15: end for

The main challenge introduced by temporal pri-
ors stems from their non-Markovianity, which
renders existing integrations of priors in RL
unsuitable. Existing methods for accelerating
RL through behavioral priors can only handle
state-conditional distributions, which are mod-
elled as Gaussians in most cases. For this rea-
son, we introduce a novel method for the inte-
gration of an action prior in an off-policy RL
framework. Our method is suitable for both be-
havioral and temporal priors, independently of
their conditioning variables. The key strategy
revolves around sampling actions from a mix-
ture between the policy and a prior distribution,
dynamically weighted through uncertainty es-
timation. We demonstrate it as an integration
into the Soft Actor Critic framework.

SAC’s objective is designed to pursue large rewards while maximizing the entropy of its policy.
When prior knowledge on the structure of the environment or task is available, simply sampling
actions from a maximal entropy policy π may not be optimal. On the other hand, blindly sampling
from a behavioral or temporal prior π̄ prevents exploitation of reward signals as well as any behavior
which is not encoded in the prior. Ideally, it is desirable to control the degree to which actions are
sampled from the prior. We propose to achieve this in a natural way by sampling actions from a
mixture between the policy π and the prior π̄:

at ∼ (1− λt)π(·|st) + λtπ̄(·|st, Ht) with 0 ≤ λt ≤ 1, (1)
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where the mixing parameter λt is computed dynamically at each step.

In principle, the current policy π should be centered upon actions that maximize returns, while π̄’s
sole purpose is to suggest suitable actions according to behavioral or temporal knowledge. When
observing a state st, the agent should then sample directly from its policy π in case a path from such
state to the goal is known, and sample from π̄ in case the state is unknown and further exploration
is needed. For this reason, the mixing weight λt should ideally estimate the probability of failing to
reach the goal while only sampling from the policy π.

We therefore propose to compute the mixing weight directly as a function of the policy’s entropy
H(π(·|st)), which intuitively quantifies the agent’s confidence in its plans. SinceH(π(·|st)) cannot
always be computed in closed form, we can estimate it via Monte Carlo sampling. While the number
of samples can control the variance of the estimator, we simply use the current policy sample:

H(π(·|st)) = E
at∼π

[− log π(at|st)] ≈ − log π(at|st) with at ∼ π(st). (2)

The mixing weight can then be computed at each step as:

λt = Λ
(
H(π(·|st)

)
≈ Λ

(
− log π(at|st)

)
with at ∼ π(st), (3)

where Λ(·) is a monotonically increasing mixing function bounded to the range [0, 1].

We further incorporate this novel action sampling scheme by reformulating the objective to directly
encourage sampling from the prior π̄:

π? = arg max
π

E
τ∼π

[ ∞∑
t=0

γt
(
R(st, at) + αΛ

(
H(π(·|st))

))]
. (4)

Through straightforward derivations (see Appendix A), one can retrieve a modified objective for
training the policy π and a Q-function estimator Qπ in the Soft Actor Critic framework. Given a
distribution D of observed states and actions, the loss functions can be defined as:

Jπ = − E
s∼D

[
Qπ(s, a) + αΛ(− log πθ(a|s))

]
with a ∼ π(·|s), (5)

JQ = E
(s,a)∼D

[(
Qπ(s, a)− yt(s, a)

)2]
, (6)

where the target for the Q-value is computed as

yt(s, a) = R(s, a) + γ

(
Qπ(s′, a′) +αΛ

(
− log πθ(a

′|s′)
))

with s′ ∼ T (·|s), a′ ∼ π(·|s′). (7)

The two objectives can be empirically estimated and minimized through standard procedures, as
reported in Haarnoja et al. (2018) and in Appendix A.

Algorithm 1 summarizes (in blue) the modifications to be applied in order to integrate our prior into
the SAC framework. Namely, actions are sampled from a mixture (line 7) weighted according to
the output of a mixing function (line 6). Finally, the history of the agent needs to be initialized (line
1) and updated at each step (line 10). Update rules for θ and ψ are modified and computed from
Equations 5 and 6.

We finally note that the modified learning objective remains aligned with the original formulation.
As a consequence, while our method is superior on more complex tasks (cf. Section 5.3), leaving
SAC’s objective unchanged can perform on-par on some tasks, with reduced sensitivity to hyperpa-
rameter tuning. We refer the reader to Appendix B for more details.

Mixing Function The output of the mixing function Λ should be constrained to the range [0, 1] and
monotonically increasing with respect to its input. Intuitively, if the entropy of the policy increases
(i.e. in the absence of a strong reward signal), the mixing weight should also increase, as sampling
from the prior becomes more desirable. A natural choice is to simply apply a sigmoid function after
scaling and translating the entropy via parameters βt, βs. These parameters are estimated empirically
and kept fixed across all experiments. The resulting function for computing the mixing weights is:

Λ
(
H(π(·|st)

)
= σ

(
βsH(π(·|st))− βt

)
. (8)
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Figure 3: Overview of environments used in our experimental validation.

5 EXPERIMENTS

We evaluate our method in a series of experiments to empirically validate our contributions. First,
in Section 5.1, we compare the effectiveness of behavioral and temporal priors to justify our choice
of state-independent conditioning. In Section 5.2, we verify that sampling from our temporal prior
produces correlated and state-covering behavior, without the need to hand-craft an exploration pol-
icy. Next, we show how our method can improve exploration efficiency in unseen long-horizon tasks
by comparing against various baselines in state-based RL (Section 5.3). Furthermore, we demon-
strate that our prior enables transfer to different settings, i.e., from non-visual to visual state space,
whilst retaining the aforementioned benefits in exploration. An ablation of the generative model is
provided in Appendix E.1.

Baselines We now present the baselines. Implementation details are provided in Appendix D.3.

• SAC: vanilla Soft Actor Critic (Haarnoja et al., 2018)
• SAC+AR(n): SAC with a non-learning based prior that repeats an action n times to enforce

more directed behavior. We choose n = 2 for our experiments.
• SAC+BC: SAC with warm-started policy through behavior cloning.
• SAC-PolyRL: SAC with locally self-avoiding walks (Amin et al., 2021).
• PARROT-state: flow-based behavioral prior enforced through a transformation of the ac-

tion space (Singh et al., 2021). We benchmark a state-based variant in non-visual settings.

Environments We evaluate our method on two types of domains, namely robotic manipulation
and maze navigation. Specifically, we make use of a subset of robot manipulation tasks from the
publicly available meta-world suite (Yu et al., 2020) and adapt the point-maze implementa-
tion from Pitis et al. (2020). More details can be found in Appendix C, while visual examples of the
environments are provided in Figure 3.

Our temporal priors, as well as prior-based baselines, are learned in relatively simple training en-
vironments that make very weak assumptions about the environment and task structure. To this
end, we train priors for robot manipulation in a reaching task (reach) and for maze navigation
in an empty environment (room-maze), where the task is completed upon reaching a goal that is
sampled uniformly from the whole environment space.

RL agents are then trained and evaluated on a wider range of downstream environments and tasks.
For analyzing how learned priors can improve exploration efficiency, we deploy an RL agent on both
the environment used for training the priors and a set of unseen, more difficult test tasks. The latter
consist of manipulating objects, such as opening a window, or navigating in more complex mazes.

5.1 CONDITIONING VARIABLES FOR BEHAVIORAL AND TEMPORAL PRIORS

The goal of this section is to empirically show how the effectiveness of an action prior depends on
conditioning variables and on the domain gap between the training and the downstream environment.
For this purpose, we train several variants of flow-based action priors on the robotic reaching task
(reach) and train TempoRL from scratch on the same environment, as well as on a different one
(window-open). In particular, we compare temporal priors conditioned on action sequences of
different lengths (1, 2, 5, 10), temporal priors conditioned on the previous state-action pair and a
behavioral prior (conditioned on the state alone).

The results are provided in Figure 4. We observe that both types of priors are capable of guiding
downstream RL as long as the downstream environment matches the training environment. How-
ever, we find that including the state in the conditioning variables can jeopardize the ability to trans-
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Figure 4: Comparison of downstream performance of behavioral and temporal priors when conditioned on
actions, states and combinations thereof.

fer knowledge to a different task, such as window-open. We hypothesize that this is due to a
mismatch between the states used for training the prior and those returned by the downstream en-
vironment. For this reason, behavioral priors π̄(at|st) fail on the unseen task. Even when the prior
is conditioned on state-action pairs π̄(at|st, at−1), it learns to rely on its state input to model the
action distribution, and therefore fails to transfer. Furthermore, we observe that state-conditional
priors suffer when training in the same environment that was used for data collection, which we
argue is due to the limited variance in sampled trajectories at training time (see Appendix D.4).

On the other hand, state-independent temporal priors prove to be a capable alternative across both
settings and are able to transfer knowledge to unseen tasks. While conditioning on longer action
sequences can improve performance, we note that single-action-conditional models π̄(at|at−1) are
sufficient for capturing complex temporal dependencies within our settings. Hence, they will be the
focus of the remaining experiments.

Figure 5: A qualitative comparison of sampled exploration
trajectories in a 2D room. Our method achieves directed
behavior while covering most of the state space. SAC and
SAC+AR(2) fail to cover the full state space, while SAC-
PolyRL fails to reach distant areas consistently.

Table 1: State coverage metrics for our method
and baselines. TempoRL’s trajectories are locally
directed and cover the state space well in both en-
vironments.

U2
g % Coverage

reach

SAC 0.006±0.001 0.137±0.01
SAC+AR(2) 0.010±0.002 0.199±0.02
SAC-PolyRL 0.025±0.001 0.272±0.01
TempoRL (ours) 0.053±0.009 0.357±0.02

maze

SAC 0.005±0.001 0.333±0.02
SAC+AR(2) 0.008±0.001 0.493± 0.08
SAC-PolyRL 0.026±0.002 0.880±0.04
TempoRL (ours) 0.054±0.008 0.963±0.04

5.2 CORRELATION AND STATE COVERAGE

In this experiment, we show how a one-step state-independent temporal prior π̄(at|at−1) produces
correlated and directed behavior, which leads to a more complete coverage of the state space during
exploration. To this end, we sample 20 random trajectories of 500 steps each with our method and
several baselines in the room-maze and reach environment.

As shown in Figure 5, our temporal prior produces directed behavior which covers most of the
state space. As expected, uniform sampling (SAC) and action repeat (SAC+AR(2)) fail to reach
the boundaries of the environment. SAC-PolyRL is capable of producing correlated and directed
behaviors, but only after careful hyperparameter tuning. Equivalent behavior can be observed in
the robot manipulation environment (cf. Appendix E.2). This qualitative assessment is verified
quantitatively in the evaluation presented in Table 1. We report state space coverage and radius
of gyration squared (Amin et al., 2021) (see Appendix D.1 for details). Evidently, our method
outperforms the presented baselines on both metrics.

5.3 TRANSFER LEARNING

Our main results are obtained by comparing our method against several baselines in downstream
learning tasks with a vectorized state space, as presented in Figure 6. As expected, we observe
that the performance of behavioral priors depends on the similarity of the downstream task with the
expert dataset. This is the case for PARROT-state, which solves reach and room-maze easily, as
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Figure 6: Accelerating downstream RL. While other methods are mostly competitive on training tasks
(reach and room-maze), TempoRL is able to accelerate RL for unseen tasks (door-close, door-open,
window-close, window-open, u-maze).

its behavioral prior already represents a strong policy. PARROT-state also offers good performance
in door-close, as the act of reaching for the goal, which is the final position of the door, is
sufficient to swing it closed. On tasks which are significantly different from the training task, namely
window-open, window-close and u-maze, PARROT-state is unable to guide the policy, as
it receives out-of-distribution states (cfr. Appendix C). On the other hand, TempoRL is capable of
transferring to unseen tasks, while rapidly catching up with PARROT-state in the training tasks.

Other baselines are in general less effective across the benchmarks: Vanilla SAC only makes
progress in the reaching task, due to the presence of easily reachable goals that can be achieved
even with weak exploration. Enabling action repeat (SAC+AR(2)) can effectively speed up explo-
ration, but only on tasks that are slightly out of reach when the heuristic is not enabled. SAC-PolyRL
is able to produce good explorative trajectories through its hand-crafted policy, but its performance
is strongly dependent on the task. As previously reported by Singh et al. (2021), initializing SAC
through behavioral cloning (SAC+BC) can help guide exploration, but it fails to generalize across
tasks and is regularly outperformed by stronger methods.
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Figure 7: Transfer of a one-step
state-independent temporal prior
to Visual RL. TempoRL (red)
compared with SAC (brown) and
PARROT (orange).

Visual RL We finally demonstrate the benefits of temporal priors
in more complex settings. In particular, state-independent tempo-
ral priors allow the state space of the downstream environment to
be defined arbitrarily. Hence, they also allow transfer to the visual
RL setting, which avoids reliance on a low-dimensional vectorized
state space and is purely based on RGB observations. To this end,
we compare TempoRL with Vanilla SAC in Figure 7 and with PAR-
ROT in its original, visual setup, i.e., by conditioning its behavioral
prior on images. We report that our findings hold in visual settings:
temporal priors are capable of generalizing to unseen tasks, even
when transferred to fundamentally different state spaces. More re-
sults are presented in Appendix E.3.

6 CONCLUSION

In this paper, we propose a method for improved exploration efficiency in off-policy reinforcement
learning. In particular, we introduce a non-Markovian, flow-based temporal prior and show how
it can be integrated into an off-policy reinforcement learning framework. Crucially, we argue that
state-conditioned priors struggle with transferring knowledge across domain gaps and provide em-
pirical evidence on how a state-independent temporal prior can accelerate learning in unseen long-
horizon control tasks with sparse rewards. As our method shows promising results, there are exciting
directions for future work. State-independent temporal priors demonstrated their usefulness in un-
seen tasks, to which behavioral priors often cannot extrapolate. On the other hand, state-conditioned
prior can directly transfer knowledge in the absence of a domain gap. Since both families of meth-
ods remain strong in complementary settings, we hope to explore the direction of a flexible prior,
capable of both general and task-specific exploration.
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7 ETHICS STATEMENT

Our main contribution revolves on accelerating and enabling reinforcement learning in environments
with a strong exploration component. As a consequence, we believe that concerns with respect to
our method are for the most part aligned with general RL research. For instance, improved sample
efficiency could on one hand accelerate the process of automation, which might have a negative
impact on societal equality, and on the other hand democratize access to powerful RL methods by
lowering the amount of required resources. Due to the general nature of our method, we believe that
we do not introduce fundamentally new risks.

8 REPRODUCIBILITY STATEMENT

We aim to achieve full reproducibility in our experiments. In practice, we extensively describe
implementation details in Appendix ?? and, most importantly, we make our codebase public for
research purposes (see URL in Footnote 2).
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