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ABSTRACT

Deep Neural Networks (DNNs) are trained, validated, and tested with an example
datasets. Finally, performance of the selected DNN is tested using a test dataset.
This testing method treats the DNN as a black-box and doesn’t attempt to under-
stand its characteristics. On the other hand, many theoretical and empirical studies
have used complexity measures for estimating generalization phenomenon using
training dataset, with rare exceptions. To the best of our knowledge, no method
exists for estimating test-accuracy (not generalization) without any testing dataset.
We propose a method for estimating test accuracy bounds of a given DNN without
any test dataset. Assuming that a DNN is a composition of a feature extractor
and a classifier, we propose and evaluate a method for estimating their qualities.
The first step of the proposed method is generation of one (input) prototype vector
for each class. Then using these seed prototypes, (k− 1) core prototypes are
generated for each class. These prototypes are our data for evaluating qualities of
the feature extractor and classifier as well as estimating test accuracy of the given
DNN. We have empirically evaluated the proposed method for ResNet18 trained
with CIFAR10 and CIFAR100 datasets.

1 INTRODUCTION

Often Machine Learning (ML) models are trained, validated, and tested with example data. A
significant part of the data is used to estimate the parameters of a model, next validation data is used
for hyperparameter and model selection, and finally the test data is used to evaluate performance
of the selected model (Raschka, 2020; Zheng et al., 2019). Deep Neural Networks (DNNs) follow
a similar method, where training examples are used to estimate parameters of a DNN. For a given
example dataset, different model-architectures are trained and using a validation dataset a model
is selected. Modern DNN models have hyper-parameters and their good values are selected using
validation datasets as well. Finally, performance of the selected DNN (network parameters and
hyper-parameters) is tested using a test dataset.

Even when training, validation, and test datasets are coming from the same distribution or created by
partitioning a larger dataset, training accuracy is often much higher than test accuracy. For example,
ResNet18 (He et al., 2015) trained with CIRAR100 (Krizhevsky et al., b) achieves almost 100%
accuracy very quickly, but testing accuracy is between 72 to 75%. This gap between training and
test accuracy is viewed as (partial) memorization of (some) examples rather than learning underlying
features. A fundamental question is how to find what the network has learned. Can this be estimated
without any data?

We propose a method for estimating test accuracy bounds of a given DNN, without test dataset.
Assuming that a DNN is a composition of a feature extractor and a classifier, we propose and evaluate
a method for estimating quality of the feature extractor and the classifier. We propose two metrics for
estimating quality of the feature extractor and one metric for the classifiers. These metrics are then
used to estimate test accuracy bounds of the given DNN. The first step of the proposed method is
generation of one (input) prototype vector for each class (see Algorithm 1). Then using these seed
prototypes, (k−1) core prototypes are generated for each class (see Algorithm 2). These prototypes
are our dataset.

After forward-passing each prototype through the feature extractor, a feature vector is obtained.
Repeating this process with all the prototypes, a total of k2 feature vectors, k for each class, are
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generated and used to estimate mean values of two proposed metrics and their variances, which are
used to produce an estimate of test accuracy of the given DNN. The metric for assessing the classifier,
we use its weight vectors. For concise and precise descriptions we introduce the notions that we use
in the paper.

1.1 NOTATIONS

Let [n] be the set {1,2, · · · ,n}. Given, D = {(xi,yi)|xi ∈ Rp, yi ∈ [k] and i ∈ [n]}, a dataset of n
labeled data coming from k classes C1 to Ck. Let Dl = {(xi, l)|(xi, l) ∈D and l ∈ [k]} be the set of
data in classes Cl . Denoting |Dl |= nl , we have n = ∑

k
i=1 ni.

We consider multiclass classifier functions f : Rp→ Rk that maps an input x ∈ Rp to a class l ∈ [k].
For our purposes, we assume f is a composition of a feature extraction function g : Rp→ Rq and a
feature classification function h : Rq→ Rk. Assume that f is differentiable and after training with a
dataset D , a parametric function f (· ;θ) is obtained. Because f is a composition of g and h, training
of f (· ;θ) produces g(·;θg) and h(·;θh), where θ = θg∪θh and θg∩θh =⊘.

Let v = g(x;θg) and ŷ = h(v;θh), where ŷl = hl(v;θh) represents the probability hl(v;θh) belongs to
class l ∈ [k] such that ∑

k
l=1 ŷl = 1. Correspondingly, for any given x, which possess a true label l, the

classifier could generate k possible class assignments and is correct only when l = argmaxk(ŷ).

Unless stated otherwise, we assume that activation functions at the output layer of the classifier
g(·;θg) are ReLu, and h(·;θh) is a fully connected one layer neural network, where Wi,:, i ∈ [k] be the
ith row of h(·;θh)’s weight matrix W. It receives input from a feature extractor g(·;θg), and h(·;θh)’s
output is using a softmax function (see Eqn.1) to generate one-hot coded outputs.

σl(Wv) =
e(Wl,:·v)

∑
k
i=1 e(Wi,:·v)

(1)

Problem Statement We are given a trained neural network f (·;θ) = h(g(·;θg);θh) for the clas-
sification of input vectors x ∈ Rp to one of the k classes; that is, we are given the architecture of
the network and values of the parameters θ . No training, validation, or testing data is provided.The
network uses a one-hot encoding using softmax function. The problem is to estimate test accuracy
bounds of the network. This is a harder problem, because no data is provided to us.

Our objective is to develop methods for assessing the network’s training quality (accuracy). To be
more specific, we want to develop metrics that can be used to estimate training quality of g(·;θg) and
h(·;θh). We propose and empirically validate two metrics for g and one for h. The metric for h is
based on the weight vector W of h, and metrics for g are based on the features that g outputs when
synthesized vectors are input to g. We propose a method for generating synthesized vectors and call
them prototype vectors (see Sec. 3.1) unless stated otherwise.

We propose a method for evaluating a trained network without knowledge of its training data and
hyperparameters. Our method involves (i) generation of prototype data for each class, (ii) observation
of activations of neurons at the output of the feature extraction function g(·;θg) (which is input to
the classification function h(·;θh)), and (iii) asses quality of the given network using observations
from previous step. The last step, assessment of the quality of a trained network without testing data,
requires one or more metrics, which are developed here.

Related Work: To the best of our knowledge, no work for estimation of testing accuracy of a
trained DNN classifier without dataset exists, except in (Dean & Sarkar, 2023) where it was shown
that test accuracy is correlated to cosine similarity of between class prototypes, but their prediction
was inaccurate. Learning from their limitations, we propose a method for providing lower and upper
bounds of test accuracy.

A related and very important problem, generalization, has been studied theoretical and empirical by
many. A good summary of these efforts can be found in (Jiang et al., 2019). After extensive evaluation
of thousands of trained networks, Jiang et al. (2019) reported that PAC-Bayesian bounds are good
predictive measures of generalization and several optimizations are predictive of generalization, but
regularization methods are not. Their evaluation method, like ours, doesn’t require a dataset, but their
objective is generalization ability prediction and our objective is test accuracy estimation.
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Training Set Reconstruction: Recent work (Buzaglo et al., 2023; Haim et al., 2022) has suc-
cessfully reconstructed training examples by optimizing a reconstruction loss function that requires
only the parameters of the model and no data. An underlying hypothesis of this work is that neural
networks encode specific examples from the training set in their model parameters. We utilize a
similar concept to construct ‘meta’ training examples by optimizing a cross-entropy loss at the
model’s output and requiring significantly lower computation time.

Term Prototype in Other Contexts: We want the reader to be aware that term prototype we use
have no direct relation to the training data and it should not be confused with or associated with
same term has been used in many other contexts (Mensink et al., 2013; Rippel et al., 2015; Snell
et al., 2017; Li et al., 2017; Schwartz et al., 2018; Chen et al., 2018; Guerriero et al., 2018; Mustafa
et al., 2019).

The main contribution of our work are:

• We propose a method for generating a synthetic dataset from a trained DNN with one-hot
coded output. Because each data in the dataset is correctly classified by the DNN with very
high probability values, if the DNN is well trained the data represents an input area from
where the DNN must have received training examples.

• We have defined one metric for estimating training quality of the classifier and two metrics
for estimating training quality of the feature extractor. Recall that we assume that a DNN
is a composition of a feature extractor and a classifier. Using the last two metrics we have
developed a method for estimating lower and upper bounds for test accuracy of a given
DNN and training or testing data.

• We have empirically demonstrated that the proposed method can estimate lower and upper
bounds of actual test accuracy of ResNet18 trained with CIFAR-10, and CIFAR-100.

2 CHARACTERISTICS OF THE FEATURE EXTRACOR h(·;θh)

An optimal representation of training data minimize variance of intra-class features and maximize
inter-class variance (Bengio et al., 2013; Tamaazousti et al., 2020). Inspired by these ideas in these
hypotheses, we define training quality metrics using cosine similarity of features of prototypes
generated from trained DNNs (see Sec 3.1). Let us deal with a much simpler task of defining a metric
for a classifier h(·;θh) defined as the last completely-connected layer.

2.1 TRAINING QUALITY OF THE CLASSIFIER

Let Wi,: be the ith row of h(·;θh)’s weight matrix W. Recall that elements of the input vector v to
h(·;θh) are non-negative, because they are outputs of ReLU functions.
Definition 2.1 (Well trained Classifier h(·;θh)). A one-hot output classifier h(·;θh) with weight matrix
Wk×q is well trained, if for each class l there exists a feature vector v(l) such that

e(Wl,: · v(l)) >> e(Wi,: · v(l)) for all i ̸= l, and (2)

e(Wi,: · v(l)) ≤ 1 for all i ̸= l. (3)

For correct classification, the condition 2 is sufficient. The condition 3 is a stronger requirement but
enhances the quality of the classifier, and it leads us to the following lemma.
Lemma 2.1 (Orthogonality of Weight Vectors of h(·;θh)). Weight vectors Wi,: of a well trained
h(·;θh) are (almost) orthogonal.

Proof. From the condition 3 of the Def. 2.1 we assume, e(Wi,:·v(l)) = 1 for all i ̸= l. This implies that
(Wi,: ·v(l)) = 0 for all i ̸= l, that is, (k−1) weight vectors Wi,: and i ̸= l are orthogonal to v(l).

Now the value of (Wl,: ·v(l)) will determine the angle between Wl,: and v(l). Because of the condi-
tion 2 of the Def. 2.1, it is much higher than zero and a maximum of (Wl,: ·v(l)) = ||(Wl,:|| ||v(l))|| is
obtained, when they are parallel to each other. If maximum is reached then Wl,: is perpendicular to
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all other weight vectors. When this maximum is reached for all l, the weight vectors W are mutually
orthogonal. Otherwise, they are almost orthogonal.

Our empirical studies, reported in Sec. 4, found that weight vectors of ResNet18 trained with
CIFAR10 and CIFAR100 have average angles are 89.99 and 89.99 degrees, respectively. An obvious
consequence of the Lemma 2.1 is that there exists a set of k feature vectors each of which are (almost)
parallel to the corresponding weight vectors, which is stated as a corollary next.

Corollary 2.1.1 (Parallelity of Wl,: and v(l)). If a classifier is well trained, for each weight vector
Wl,: there is one or more feature vectors v(l) that are (almost) parallel to it.

Classifier’s Quality Metric, Hw, postulates that weight vectors of a well trained classifier are
(almost) orthogonal to each other. A method for its estimation is defined next.
Definition 2.2 (Estimation of metric Hw). An estimation of Hw is calculated by consider a pair-wise
combinations of the weight matrix of h, and given by

Ĥw = 1− 2
k(k−1) ∑

j<i≤l

(
Wi,: ·W j,:

||W j,:|| ||W j,:||
.

)
(4)

A well trained classifier will have a value of Ĥw very close to 1.

Note that k weight vectors are projecting a q-dimension feature vector to a k-dimension vector space,
for q > k. If the weight vectors are orthogonal, their directions define an orthogonal basis in the
k-dimension space. Because of the isomorphism of the Euclidean space, once the weight vectors of
classifier h(·;θh) are (almost) orthogonal their updating is unlikely to improve overall performance of
the DNN. We believe, at that point, the focus should be to improve the feature extractor’s parameters.

In the next section, we develop a method for evaluation of training quality of the feature extractor
g(·;θg). It is a much harder task because feature extractors are, in general, much more complex and
directly quantifying its parameters with a few metrics is a near impossible task; we develop a method
for indirectly evaluating the feature extractor without training or testing data.

3 TRAINING QUALITY OF THE FEATURE EXTRACTOR g(·;θg)

We utilize the given DNN to synthesize or generate input data vectors that are used to evaluate
the feature extractor. We use the terms synthetic or generated interchangeably. We refer to these
generated data as prototypes to distinguish them from original data used for developing the DNN.
Our generation methods described next ensures that synthesized data is classified correctly.

A prototype generation starts with an input-data and a target output class. The input (image) is
forward passed to generate an output, the output of the DNN and the target class are used to compute
loss, the obtained loss is back propagated to the input, and the input image is updated until the loss
is below a target threshold. Because the synthesized data is generated utilizing DNN’s parameters,
it reflects trained DNN’s inherent characteristics. Below we describe our proposed data generation
methods.

3.1 METHODS FOR DATA GENERATION

To generate a prototype iteratively we use the loss function defined by Eqn. 5 (but this is not a
limitation because the method can be used with other loss functions as well) and the update rule
Eqn. 6, where t is iteration number, mt is the current input to the network.

Loss Function: L =−
k

∑
j=1

ymt , j log( f j(mt)) (5)

Update Rule: mt+1←mt −η∇mt L /|| ∇mt L || (6)

Let us assume that one-hot encoded output yl , that is, for a given class l ∈ [k], yl = 1 and y j = 0 for
j ̸= l. To create a prototype example m(l) ∈ Rp for class l, we initialize m(l)

0 with a random vector

4



Under review as a conference paper at ICLR 2024

r ∈ Rp and forward pass m(l)
0 to compute cross-entropy loss between the output f (m(l)

0 ;θ) and yl ,

backpropagate the loss, and update the input vector using rule in Eqn. 6 to obtain m(l)
1 . The iterative

process continues until observed loss is below a desired (small) value.

Probabilities for Core Prototypes: A core prototype for a class l ∈ [k] should produce ideal output;
the output probability pl of the intended class is (almost) ‘1’ and zero for others.

pl = 1 and p j = 0 for j ̸= l (7)

First, we use the above probability distribution to generate a set of seed prototypes, which are then
used to generate core prototypes (see description below).

3.2 GENERATION OF PROTOTYPE DATASETS

First we generate a set of k seed prototypes, exactly one seed for each category. The starting input
vector for a seed prototype is a random vector m0 ∈ Rp, a target class label l ∈ [k] and a small
loss-value δloss for termination of iteration (see Sec. 3.2). We use these seed prototypes to generate
(k−1) core prototypes for each category.

Algorithm 1 Generate k Seed Prototypes S
1: procedure GENERATESEEDSPROTOTYPES
2: Input: δloss ▷ Loss for iteration termination
3: Output: S
4: S =⊘
5: for each l ∈ k
6: S(l)

0 = r ∈ Rp, L = ∞, and t = 0
7: while L > δloss

8: L =−∑
k
j=1 y

S(l)t , j
log( f j(S

(l)
t )) ▷ Eqn. equation 5

9: S(l)
t+1 = S(l)

t −η∇
S(l)t

L /|| ∇
S(l)t

L || ▷ Eqn. equation 6
10: t = t +1
11: S = S

⋃
S(l)

t
12: end procedure

Generation of Seed Prototypes: Let S0 = {S(l)
0 |l ∈ [k]} be the set of k random vectors drawn from

Rp. Starting with each S(l)
0 generate one seed prototype for class l by iteratively applying update rule

given by Eqn. 6 and output probability distribution defined by Eqn. 7. Let the seed vector obtained
after termination of iterations that started with initial vector S(l)

0 be denoted by S(l) and let S be the
collection of all such k vectors. A procedure for generating n seed-prototypes is outlined in the
Algorithm 1.

These seed vectors serve two purposes: a preliminary evaluation of inter-class separation and initial
or starting input for generating prototypes to characterize intra-class compactness. We generate
(k−1) prototypes for each class.

Core or Saturating Prototypes: Let S(l)c,i be the prototype for class l generated starting from the

seed S(i) of the class i. We expect that S(l)c,i to be the closest input data that is within the boundary of
the class l and closest to the boundary of the class i. It is important to note that output produced by
prototype S( j) satisfies the Eqn. 7. As shown in the Algorithm 2, the generation process initiates a
prototype with S( j), j ̸= l and iterates using update rule (Eqn. 6) until it produces outputs that satisfy
Eqn. 7 for the class l. Basically, we are starting with a prototype within the polytope of the class j
and iteratively updating it until the updated prototype has moved (deep) inside the class l. We repeat
the process for all l ∈ [k] to generate Sc = {S(1)

c ,S(2)
c , · · · ,S(k)

c }. Since the output produced by these
prototypes create saturated outputs, we call the prototypes in Sc core or saturating prototypes.
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Algorithm 2 Generate k(k−1) Core Prototypes SC

1: procedure GENERATECOREPROTOTYPES
2: Input: δloss and S ▷ Loss for iteration termination and k seed prototypes
3: Output: Sc ▷ Sc will have k(k−1) core prototypes, (k−1) for each class
4: Sc =⊘
5: for each l ∈ k
6: for each ( j ∈ k) and j ̸= l ▷ Find (k−1) prototypes for class l
7: S( j)

c,0 = S( j), L = ∞, and t = 0 ▷ Start from the seed prototype in the class j
8: while L > δloss
9: Compute L using probability distribution given by Eqn. equation 7 for class l

10: S( j)
c,t+1 = S( j)

c,t −η∇
S( j)

c,t
L /|| ∇

S( j)
c,t

L || ▷ Eqn. equation 6

11: t = t +1
12: Sc = Sc

⋃
S( j)

c,l
13: end procedure

The prototypes generated using two algorithms described in this section are used for evaluation of the
quality of the feature extractor.

3.3 METHOD FOR EVALUATION OF THE FEATURE EXTRACTOR

We use g(·;θg) to extract the features of the generated prototypes. Let V (l)
c,i be the feature vector

generated from the seed S(l)c,i , that is, V (l)
c,i = g(S(l)c,i ;θg). Let all feature vectors produced from the seed

vectors of the prototypes of the class l be denoted by V (l)
c = {V (l)

c,1 ,V
(l)
c,1 , · · · ,V

(l)
c,k }.

Definition 3.1 (Cosine Similarity). Given two vectors v1 and v2 of same dimension, cosine similarity

CosSim(v1,v2)) = cos(θ)≡ (v1 ·v2)/(||v1|| ||v2||) (8)

It is obvious that CosSim(v1,v2)) of v1 and v1 is the dot product of their unit vectors. We normalize
all vectors in V (l)

c to obtain v(l)c for computing all-pair CosSim of the vectors in V (l)
c . For our set of

k vectors in each class, we need to compute k(k−1)/2 CoSim since that is the number of possible
pairwise combinations. Matrix multiplication provides a convenient method for computing these
values. Let v(l)c,i be the ith row of the matrix G(l) and let (G(l))T be the transpose of G(l). The elements

of the k× k matrix (G(l)(G(l))T ) are (vc,i(l) ·vc, j(l)), the CosSim(v(l)c,i ,vc, j(l)). ach diagonal element,
being dot products of a unit vector with itself, is ‘one’ and also, the (G(l)(G(l))T )i, j =(G(l)(G(l))T ) j, i,
we need to consider only off-diagonal the upper or lower triangular part of the matrix.

Intra-class or within-class Similarity Metric, Min, postulates intra- or within-class prototypes of
a well trained DNN are very similar for a given class and their pairwise CosSim values are close to
one. Since our prototype generation algorithms generate k sets of prototypes (one set for each class)
for a k-class classifier, it is important to evaluate within-class similarity of all prototypes. To get an
estimate of within-class similarity of a DNN, estimates of all classes are combined.
Definition 3.2 (Estimate of intra- or within-class similarity metric). An estimate of intra- or within-
class similarity metric Min is given by

M̂in =
1
k ∑

l∈k

(
2

k(k−1) ∑
j<i≤k

((G(l)(G(l))T )i, j)

)
(9)

The variance of Min of a well trained DNN should be very low as well. Our evaluations reported in
Sec. 4 show that M̂in for CIFAR10 is above 0.972 even when it is trained with 25% of the trained data
and variance is also small, an indication that the DNN was probably trained well. But for CIFAR100
M̂in and variance are relatively higher, indicating that it was not trained well. We propose to use
within-class similarity metric to define upper bound for test accuracy (see Sec. 4).
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Inter-class or between-class Separation Metric, Mbt , postulates that two prototypes of different
classes should be less similar and their pair-wise CosSim value is close to zero. For making Mbt in-
crease towards one as the quality of a trained DNN increases, we define Mbt = 1−CosSim(v(l1)c,i ,v

(l2)
c, j ),

where v(l1)c, j and v(l2)c, j are from class l1 and l2, respectively.

Because every class has k prototypes and estimation of Mbt requires further considerations. Consider
two classes l1 and l2, we can pick one prototype from class l1 and compare it with k prototypes in
l2. This process is repeated for all prototypes in the class l1 requiring k2 CosSim computations; also,
since each prototype in class l1 must be compared with all prototypes in other (k−1) classes, total
(k−1)k2 comparisons are necessary. Overall total computational complexity is O(k4). If computation
time is an issue, one can get a reasonable estimate with O(k3) computations, which is described next.

Let the core prototypes S(2)c,l ,S
(3)
c,l , · · · ,S

(k)
c,l be generated from seed prototype S(l) for l ∈ [k]. From these

prototypes, we extract corresponding feature vectors, and normalize them to get v(1),v(2)c,1 ,v
(3)
c,1 , · · · ,v

(k)
c,l .

Similar to matrix G, we define a matrix H from these normalized feature vectors and use it to estimate
inter-class separation metric.
Definition 3.3 (Estimate of inter- or between-class separation metric). An estimate of inter- or
between-class separation metric Mbt is given by

M̂bt = 1− 1
k ∑

l∈k

(
2

k(k−1) ∑
j<i≤k

((H(l)(H(l))T )i, j)

)
(10)

Because each element of the matrix HHT is the cosine similarities (see Eqn. 8) of a pair of features
of prototypes from different classes, HHT ∈ [0,1]kxk. In Sec. 4, we will use values of Mbt and their
variances to define a lower bound for test accuracy.

3.4 EVALUATION OF TRAINING QUALITY OF FEATURE EXTRACTOR

When a feature classifier’s weights are pairwise orthogonal (our observations support this, see Table 1),
overall classification accuracy will depend on the features that the feature extractor generates. If
feature vectors of all testing examples of a class are similar and their standard deviation is very low,
the value of M̂in will be high; but features of the between-class are very dissimilar and their standard
deviation is high, the value of M̂bt will be low. This situation will cause classification errors. We
believe during training time within-class feature vectors’ become very close to each other faster and
will represent an upper bound for testing accuracy.

Also, we believe it is much harder to impart training so that feature vectors of one class move far
away from that of another class. This will make the value of the metric M̂bt lower. And this will act
as a lower bound for the testing accuracy. Our observations empirically support this hypothesis.

4 EMPIRICAL EVALUATION OF PROPOSED METRICS

Datasets We have used the image classification datasets CIFAR10 (Krizhevsky et al., a), and
CIFAR100 (Krizhevsky et al., a). All of these datasets contain labeled 3-channel 32x32 pixel color
images of natural objects such as animals and transportation vehicles. CIFAR10 and CIFAR100 have
10 and 100 categories/classes, respectively. The number of training examples per category are 5000
and 500 for CIFAR10 and 500, respectively. We created 7 datasets from each original dataset by
randomly selecting 25%, 40%, 60%, 70%, 80%, 90%, and 100% of the data.

Training For results reported we have used ResNet18 (He et al., 2015), defining g( · ;θg) as the
input to the flattened layer (having 256 neurons) after global average pooling and h( · ;θh) as the
fully connected and softmax layers. All evaluations were completed on a single GPU.

For each dataset, we randomly initialize a ResNet18 (He et al., 2015) network and train it for a total
of 200 epochs. The learning rate starts at 0.1 in the first 100 epochs, and then it is reduced to 0.05 for
the last 100 epochs. For each data set we trained 35 networks, 7 partitioned datasets and 5 randomly
initialized weights to reduce biases.
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4.1 EVALUATION OF THE CLASSIFIER

With the network frozen, values of the metric Ĥw were calculated. Because the values were so close
to one we converted them into angles and they are summarized in Table 1. It shows that the weight
vectors are almost orthogonal even when only 25% of the data is used.

Taring Data % 25 40 60 70 80 90 100
CIFAR10 89.98 89.99 89.99 89.99 89.99 89.99 89.99
CIFAR100 89.99 89.99 89.99 89.99 89.99 89.99 89.99

Table 1: Mean Angles in Degrees Between Weight Vectors W of the Classifier h(·;θh).

4.2 EVALUATION OF THE FEATURE EXTRACTOR

For evaluating the feature extractor, we used the frozen network to generate seed prototype images
using Algorithm 1 with a learning rate of 0.1 for CIFAR100 and 0.01 for CIFAR10, respectively.
Then Algorithm 2 was used to generate (k−1) core prototypes (see Sec.3.2) for each category. Thus,
for CIFAR10 we generate a total of 100 prototypes and for CIFAR100 we generate a total of 10,000
prototypes. The process was repeated five times to eliminate random selection bias and reported
results are averages of these five runs. It is worth mentioning that we examined the data from each
run and found no glaring differences.

Our observations are summarized in Table 2. The top-half of the table shows results for the CIFAR10
dataset and its fractions. The 7 rows are for the 7 datasets we created from the original dataset by
partitioning it. The 1st column shows percent of data used. The second and third columns show
values of the mean and standard deviation of the within-class similarity measure M̂in.

An Upper Bound for Testing Dataset Accuracy: The next column shows adjusted values of
M̂in, obtained by subtracting two standard deviations for increasing confidence of the observations.
These values give us an upper bound for accuracy that one would have observed from the testing
dataset. As discussed before, for a given class as the value of M̂in increases and its standard deviation
decreases, the features of the class are close to each other and test data performance should be high.

Taring Mean Within (M̂in - Mean Between CSbt Accu-
Data % within CosSIn 2*Std) between CosSim +2btStd M̂bt racy

CosSim Std M̂in CosSim Std
M̂in (inStd) (CSbt) (CSbtStd)

Test Accuracy Bounds for ResNet14 trained with CIFAR10 (256 feature-layer neurons)
25 0.9727 0.0129 0.9470 0.2354 0.3922 0.6002 0.6078 0.7099
40 0.9793 0.0093 0.9607 0.2511 0.3975 0.5807 0.6025 0.7675
60 0.9825 0.0087 0.9652 0.2277 0.3585 0.5292 0.6415 0.8149
70 0.9837 0.0082 0.9673 0.2218 0.3487 0.5168 0.6513 0.8249
80 0.9824 0.0088 0.9647 0.2339 0.3697 0.5113 0.6303 0.8362
90 0.9849 0.0072 0.9704 0.2269 0.3631 0.4900 0.6369 0.8449
100 0.9844 0.0077 0.9690 0.2292 0.3690 0.4614 0.6310 0.8548

Test Accuracy Bounds for ResNet18 trained with CIFAR100 (256 feature-layer neurons)
25 0.9134 0.0285 0.8565 0.3721 0.1140 0.6002 0.3998 0.3256
40 0.9168 0.02523 0.8664 0.3656 0.1075 0.5807 0.4193 0.414
60 0.9233 0.0229 0.8776 0.3337 0.0977 0.5292 0.4708 0.4982
70 0.9248 0.0221 0.8807 0.3269 0.0949 0.5168 0.4832 0.5282
80 0.9252 0.0218 0.8815 0.3267 0.0923 0.5113 0.4887 0.5526
90 0.9273 0.0216 0.8842 0.3112 0.0894 0.4900 0.5100 0.5685
100 0.9331 0.0204 0.8923 0.2897 0.0858 0.4614 0.5386 0.5945

Table 2: ResNet18 trained with CIFAR10 and CIFAR100 datasets (256 neurons at the feature layer).

Let us explore the columns 5 to 8 of the Table 2. Values in the columns 5 to 7 are analogous to the
values in the values in the columns 2 to 4, but for between-class similarity measures. For a well
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trained network these values should be small. Calculation of values in column 4 differs from that
in column 7 because it is obtained by adding (instead of subtracting) two standard deviations for
increasing confidence of the observations.

A Lower Bound for Test Dataset Accuracy: The column 8 is obtained after subtracting the
values in column 7 (see Eqn. 10). These values give us a lower bound for accuracy one would get
from the testing dataset. As discussed earlier, for a given class as the value of M̂bt increases and its
standard deviation decreases, the features of the class are much different from those of other classes
and accuracy observed from testing dataset should increase.

The data in the column 9 shows accuracy of the trained networks obtained when tested with test
dataset. Note that we used all data in the test dataset (not a fraction as used for the training of the
network). For ease of comparing and contrasting, the values of the Upper and Lower Bounds as well
as test Accuracy for CIFAR10 is shown in Fig. 1. We can see that observed accuracy is correctly
bounded by calculated values of the metrics.
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Figure 1: CIFAR 100 Accuracy Bounds
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Figure 2: CIFAR 100 Accuracy Bounds

The lower half of the Table 2 and the Fig. 2 is for CIFAR100 dataset. Except for 25% and 40% of
the training data the bounds obtained from the network have enclosed the accuracy correctly. But
a closer examination of the data in the table, tells us that 25% and 40% data created a very poorly
trained network. Thus, it may not be worth using them for any serious applications.

5 CONCLUSION

In this paper we have proposed and evaluated a method for dataless evaluation of trained DNN
that uses one-hot coding at the output layer, and usually implemented using softmax function. We
assumed that the network is a composition of a feature extractor and a classifier. The classifier is a
one-layer fully-connected neural network that classifies features produced by the feature extractor. We
have shown that the weight vectors of trained classifier-layer are (almost) orthogonal. Our empirical
evaluations have shown that the orthogonality is achieved very quickly even with a small amount of
data and performance of the overall DNN is quite poor.

The feature extractor part of a DNN is very complex and has a very large number ( usually many
millions) of parameters. We believe a direct evaluation of the parameters of the feature extractor is
an extremely difficult, if not impossible, task. We have proposed two metrics for indirect evaluation
of feature extractors. Using these metrics we were able to define an upper and lower bound for
classification accuracy of a trained network. It is important to note that our posed method finds values
of these metrics from a given DNN without any knowledge of training and evaluation data.

While empirical evaluations show that the bounds enclose the real test accuracy obtained from the
test dataset, we are working to tighten the gap between them. We believe the bounds can be used
to define loss-function for the feature extraction layer for developing classifiers that discourages
overfilling and improves performance of the trained network. We have developed a loss function and
are currently under evaluation.
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