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Abstract

Symmetry plays a central role in the sciences, machine learning, and statistics.
When data are known to obey a symmetry, various methods that exploit symmetry
have been developed. However, statistical tests for the presence of group invariance
focus on a handful of specialized situations, and tests for equivariance are largely
non-existent. This work formulates non-parametric hypothesis tests, based on a
single independent and identically distributed sample, for distributional symmetry
under a specified group. We provide a general formulation of tests for symmetry
within two broad settings. Generalizing existing theory for group-based randomiza-
tion tests, the first setting tests for the invariance of a marginal or joint distribution
under the action of a compact group. The second setting tests for the invariance
or equivariance of a conditional distribution under the action of a locally compact
group. We show that the test for conditional symmetry can be formulated as a test
for conditional independence. We implement our tests using kernel methods and
apply them to testing for symmetry in problems from high-energy particle physics.

1 Introduction

Symmetry has played an important role in classical statistical problems [43, 44], and more recently in
modern problems in statistics and machine learning [e.g., 7, 10, 13, 32]. One key idea that emerges
from this line of work is that by using models that account for symmetries present in data, one obtains
statistical benefits through various forms of optimality [22, 43, 44], improved sample efficiency
[10, 32], and better out-of-sample generalization [23, 24, 45]. A pervasive characteristic shared by
all of that work is that a specific symmetry group is known or assumed, and the problem is carefully
constructed with respect to that group. However, a symmetry assumption can be difficult to check
and, if violated, can degrade performance when enforced in a model.

Separately, symmetry plays a central role in modern science, particularly in the physical sciences
where entire theories are constructed around the symmetries that must be obeyed by equations de-
scribing the behaviour of physical systems [30]. Additionally, detection of new or broken symmetries
is playing a role in the search for physics beyond the Standard Model [2], particularly in data-driven
approaches [5, 37]. Recent work in machine learning and physics aims to learn or estimate symmetry
groups from data [17, 18, 42, 56, 58] or to detect anomalous symmetry-breaking [5, 14]. However,
key inferential tools based on hypothesis tests for symmetry are missing. Such tools are crucial if the
discovery of symmetry from data is to be a reliable part of the scientific process: they should be used
to test for the presence or absence of a particular symmetry in data, with that symmetry specified by
hypothesis or by a data-driven method that has learned or estimated a symmetry. In situations with
known or assumed symmetry, hypothesis tests for symmetry could also be used as model-checking
criteria for models meant to exhibit that symmetry.
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The present work formulates non-parametric tests, based on a single independent and identically
distributed (i.i.d.) sample, for distributional symmetry under a specified group. We provide abstract
formulations of tests that apply to two broad settings. The first setting tests for the invariance of
a marginal or joint distribution under the action of a compact group. The test is formulated as an
easy-to-implement conditional Monte Carlo test that achieves exact p-values with finitely many
observations and Monte Carlo samples. We establish properties of the test that generalize results
from the statistics literature on group-based randomization tests, through an argument based on
conditioning on a sufficient statistic induced by the group. The second setting tests for the invariance
or equivariance of a conditional distribution under the action of a locally compact group, provided
that the group action obeys weak regularity conditions. We show that a test for equivariance can be
formulated as a particular test for conditional independence, which inherits the statistical properties
of the conditional independence test chosen for implementation. Although universally statistically
valid tests of conditional independence testing are known to be impossible [52], we implement as a
proof-of-concept a valid test that is calibrated by cross-validation. Improved methods for this test are
left to future work.

In addition to the generic testing methods and the study of their theoretical properties, we provide
specific instantiations of the tests using kernel-based methods, which allow these tests to be used with
any data structure for which a characteristic kernel exists. We apply these tests to two problems in high-
energy particle physics. Computer code required to run the experiments can be found on a GitHub
repository (https://github.com/chiukenny/Tests-for-Distributional-Symmetry).

2 Testing for distributional invariance

The mathematical object that encodes symmetry is a group G. We provide a review of relevant
concepts from group theory in Appendix A. We assume throughout that G has a topology that is
locally compact, second countable, and Hausdorff (lcscH), and which makes the group operations
continuous. Elements g ∈ G act via transformations x 7→ gx of elements from a sample space x ∈ X
that has a topology and a corresponding Borel σ-algebra, SX. We assume throughout that the group
action is continuous and, if G is non-compact, that it is also proper. This ensures that none of the
required measure-theoretic properties “break.” (See Appendix A for details.)

The action on X extends to the set P(X) of probability measures on X: If P is the distribution
of a random element X ∈ X, then g acts on P via the pushforward, g∗P (A) := P (g−1A), with
A ⊆ X and g−1A := {g−1x : x ∈ A}. A key question in many settings is whether the distribution
P underlying a set of i.i.d. observations X1:n := (X1, . . . , Xn) is invariant under G in the sense that
g∗P = P for each g ∈ G. Outside of ill-behaved situations that typically do not arise in practice, this
is only possible for a probability measure when G is compact. Any compact group G has a unique
invariant (Haar) probability measure λ that can be thought of as the uniform distribution on G.

For a specified compact group G, the statistical problem we address is to test the hypotheses

H0 : P is G-invariant versus H1 : P is not G-invariant .

If G is relatively small and finite, or generated by a small set of elements (say of size m), invariance
might be tested with a composite of m two-sample hypothesis tests. For large discrete groups, this
approach quickly becomes untenable; for uncountable groups, it is not possible. Instead, we propose
tests based on other characterizations of distributional invariance. Perhaps the most well-known
characterization is that P = P ◦ if and only if P is G-invariant, where P ◦ is the orbit-averaged
distribution obtained by orbit-averaging g∗P over G with respect to Haar measure λ,

P ◦(A) :=

∫
G

P (g−1A) λ(dg) , A ∈ SX . (1)

Because both P and P ◦ are probability measures on X, any metric D on P(X) can be used in
conjunction with the empirical measure and a Monte Carlo estimate of the integral in (1) to define a
test statistic of the form

Tn,m(X1:n) := D

(
1

n

n∑
i=1

δXi
( • ),

1

nm

n∑
i=1

m∑
j=1

δGi,jXi
( • )

)
, Gi,j

iid∼ λ , (2)

where δx denotes the Dirac measure at a point x. This approach is very general and can be used
for abstract spaces X other than Rd as long as one has a metric on P(X) and the ability to sample

2

https://github.com/chiukenny/Tests-for-Distributional-Symmetry


random elements of G. For a sequence of metric-based statistics (Tn,m)n≥1 with fixed D and m ≥ 1,
and critical values (cn)n≥1, define the corresponding sequence of critical functions, or tests,

ϕn,m(X1:n) := 1{Tn,m(X1:n) > cn} . (3)

Theorem 2 in Appendix B.1 shows that for appropriate sequences (cn)n≥1, tests based on (2) are
consistent. The main idea is that the averages inside the metric in Equation (2) converge to their
respective probability distributions via the Law of Large Numbers. Therefore, by the continuity of
the metric D, Tn,m(X1:n) converges almost surely to D(P, P ◦).

Beyond this general-purpose averaging approach, more detailed structure induced by G is often
available, and we can use it to construct an exact test for finite n. The group action partitions X into
equivalence classes called orbits so that x and x′ are equivalent if and only if x = gx′ for some g ∈ G.
One can choose a representative element [x] of each orbit to obtain a set of representatives [X], which
can then be used to define an orbit selector γ : X → [X] that maps x to its representative [x]. The
orbit selector induces a decomposition so that a random variable X has an invariant distribution if
and only if it satisfies X d

= Gγ(X), where G ⊥⊥ X is sampled uniformly from G.

If G acts freely on X in the sense that gx = x implies g is the identity element of G, then the orbit
selector γ can be “inverted” to obtain the element of G that sends [x] to x. We call such a function,
denoted τ : X → G, a representative inversion because it satisfies τ(x)γ(x) = τ(x)[x] = x. Yet
another characterization of G-invariance is that P disintegrates as P = λ ⊗ γ∗P . In this case, a
metric on the space of probability measures on G × [X] can be used as a test statistic, where the
joint distribution of (τ(X), γ(X)) is compared to that of (G, γ(X)), with G ∼ λ. If the action of
G is not free, so that gx = x for g in some non-trivial subset of G, then τ can be replaced by an
appropriate random variable τ̃ sampled from an inversion kernel [35], ζ(x, • ). The inversion kernel
has a number of remarkable properties; the relevant one here is that if τ̃ ∼ ζ(x, • ), then τ̃ γ(x) = x

with probability one. From this, a characterization of G-invariance is that (τ̃ , γ(X))
d
= (G, γ(X)).

We summarize the above characterizations of distributional invariance in the following.
Proposition 1. Let G be a compact group acting on X and P a probability measure on X. Let γ be
a measurable orbit selector and ζ a measurable inversion kernel. With X ∼ P , the following are
equivalent:

I0. P is G-invariant.

I1. P = P ◦.

I2. If G ∼ λ with G ⊥⊥ X , then X d
= GX .

I3. If G ∼ λ and Y ∼ γ∗P with G ⊥⊥ Y , then X
d
= GY . This holds even condi-

tionally on γ(X). That is, (γ(X), X,G)
d
= (γ(X), Gγ(X), G), which implies that

X | γ(X)
d
= Gγ(X) | γ(X).

I4. If τ̃ ∼ ζ(X, • ) and G ∼ λ with τ̃ ⊥⊥ G, then τ̃ d
= G and τ̃ ⊥⊥ γ(X). If there exists

a representative inversion τ(x), then this holds with τ̃ replaced by τ(X)H , where H ∼
λGγ(X)

.

I5. P = λ⊗ γ∗P .

It follows from invariance of Haar measure that Properties I0 and I1 imply each other, which is
easy to verify. Property I2 is a reformulation of Property I1 in terms of random variables. These
properties hold regardless of the existence of a measurable orbit selector and inversion kernel. Proving
that Properties I0 and I3 imply each other is only slightly more involved. An accessible proof can
be found in Eaton [21, Theorems 4.3–4.4]; see also Kallenberg [36, Theorem 7.15]. Property I3
and Property I4 imply each other using the identity x a.s.

= τ̃ γ(x). Property I5 is a reformulation of
Property I4 in terms of a disintegration into the corresponding probability measures. The following
example illustrates the main ideas.
Example 1. Let X = Rd, so that X is a random d-dimensional real vector. The isotropic multivari-
ate normal distribution N(0, Id) is known to be invariant under the action of SO(d), the group of
d-dimensional rotation matrices, where the action is by matrix-vector multiplication. Properties I1
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Figure 1: First row: Densities for the 2D multivariate Gaussian N(02, I2) (blue), Cartesian repre-
sentation of the distribution χ2 ⊗ vonMises(π/4, 4) over polar coordinates (orange) and the same
distribution averaged over SO(2) (green). Second row: 50 samples from the respective distributions.
Third row: Angles in [0, 2π] needed for a counterclockwise rotation of each sample Xi to the point
(∥Xi∥, 0), sorted in increasing order.

and I2 in Proposition 1 are straightforward to check. Using the standard formula for affine trans-
formations of a multivariate normal distribution, if X ∼ N(0, Id) and g ∈ SO(d), then gX has
distribution N(0, gIdg

⊤) = N(0, Id). This holds for all g, and therefore it also holds for random G.

The set of orbit representatives can be chosen to be the points on the axis with unit basis vector
e1 = [1, 0, . . . , 0]⊤. Then for each x ∈ Rd, γ(x) = ∥x∥e1. For d = 2, the action is free; for d > 2,
the set of d-dimensional rotations around the axis corresponding to e1 leave γ(x) invariant. When
X ∼ N(0, Id), ∥X∥ has a χd-distribution (the square root of a χ2

d-distributed random variable),
and Y d

= ∥X∥e1 satisfies X d
= GY , with G a uniform random rotation from SO(d). The left

column of Figure 1 illustrates this for d = 2. One may construct a representative inversion function
corresponding to γ(x) = ∥x∥e1 by, for example, rotating ∥x∥e1 to x in the 2D subspace spanned by
x/∥x∥ and e1. That is, let x̃ := (x−⟨e1,x⟩e1)/∥x−⟨e1,x⟩e1∥, so that [e1, x̃] is a matrix in Rd×2 whose
columns form an orthonormal basis for the 2D subspace spanned by x/∥x∥ and e1. Now let θx be
such that cos(θx) = ⟨e1, x/∥x∥⟩, and Rθ the standard 2D rotation matrix of angle θ,

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Then the d-dimensional rotation defined by

τ(x) = Id − e1e
⊤
1 − x̃x̃⊤ + [e1, x̃]Rθx [e1, x̃]

⊤ (4)

satisfies τ(x)(∥x∥e1) = x. A sample from the corresponding inversion kernel is then generated
by taking a uniform random (d − 1)-dimensional rotation H and extending it to a d-dimensional
rotation H ′ that fixes e1, so that τ(x)H ′ has distribution ζ(x, • ). For d = 2, ζ(γ(x), • ) = δid, so
Property I4 indicates that τ(X)

d
= G, with G a uniform random 2D rotation. This is visualized in the

bottom-left plot of Figure 1. Furthermore, for d = 2, N(0, Id) can be expressed as the distribution
λ⊗ χ1 over polar coordinates.
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Algorithm 1 Exact conditional Monte Carlo p-value
1: procedure MCTEST(X1:n,m,B,D)
2: Sample Gj,1, . . . , Gj,n

iid∼ λ, for j = 1, . . . ,m
3: Using (Gj,1, . . . , Gj,n)j≤m, compute Tn,m(X1:n) as in (2)
4: for b in 1, . . . , B do
5: Sample G(b)

1 , . . . , G
(b)
n

iid∼ λ

6: Set X(b)
1:n := (G

(b)
1 X1, . . . , G

(b)
n Xn)

7: (Re)using (Gj,1, . . . , Gj,n)j≤m, compute Tn,m(X
(b)
1:n)

8: end for
9: return p-value pB computed as

pB :=
1 +

∑B
b=1 1{Tn,m(X

(b)
1:n) ≥ Tn,m(X1:n)}

1 +B
(5)

10: end procedure

2.1 Exact conditional Monte Carlo tests of invariance

To obtain a p-value for the test statistic defined in (2), we use group-based randomization techniques,
which can yield tests with exact level α for finite sample sizes. The test relies on the fact that γ(X) is
a special case of a maximal invariant statistic, which is an invariant function that takes a different
value on each orbit and thus uniquely encodes the orbits. We denote a generic maximal invariant
by M(X). It is known that any maximal invariant is a sufficient statistic for P◦(X), the class of
G-invariant probability distributions [6, 15], which means that for each P ∈ P◦(X), a sample
X1:n

iid∼ P has the same conditional distribution given γ(X)1:n. We can then generate samples from
that conditional distribution as (G1γ(X1), . . . , Gnγ(Xn)), with Gi

iid∼ λ and independent of X1:n.
These samples can be used to estimate conditional quantities that are valid uniformly across the null
hypothesis class P◦(X). Due to the invariance of λ, GX d

= Gγ(X) (even conditionally on γ(X)),
so in practice we can replace γ(Xi) with Xi. The conditional Monte Carlo sampling procedure we
use is outlined in Algorithm 1.

Theorem 3 in Appendix B.2 formalizes that Algorithm 1 produces a valid p-value for B ≥ 1. The
estimate pB can be used in a critical function 1{pB ≤ α}, and the resulting test has level α. A special
case of the result, for finite G, appeared in [31]. Our result applies more generally to compact G
using an argument based on the sufficiency of γ(X).

3 Conditional symmetry

In some problems, especially those involving regression, classification, or prediction of a variable
Y ∈ Y from X , symmetry of the conditional distribution PY |X is of interest. The conditional
distribution is said to be equivariant if for each measurable subset B ⊆ Y,

PY |X(gx,B) = PY |X(x, g−1B) , x ∈ X, g ∈ G .

It is said to be invariant if the action of G on Y is trivial, so that the above equation holds with
g−1B replaced by B. Equivariant conditional distributions arise from the disintegration of jointly
invariant probability distributions PX,Y = PX ⊗PY |X . If G is compact and the marginal distribution
PX is known to be invariant, then testing for conditional equivariance of PY |X is equivalent to
testing for the joint invariance of PX,Y , which could be carried out using the methods described in
Section 2. However, the marginal distribution of X may not be invariant—in many cases it is known
not to be—and the problem cannot be reduced to a test for joint invariance. For example, if G is
non-compact, then PX cannot be G-invariant, but PY |X may be. We instead formulate a test for
conditional symmetry (equivariance or invariance) based on a conditional independence property that
characterizes equivariance. The following theorem shows that PY |X is equivariant if and only if

(τ̃ , X) ⊥⊥ τ̃−1Y |M(X) , with τ̃ | X ∼ ζ(X, • ) . (6)
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Theorem 1. Let G be a lcscH group acting on each of X and Y, with the action on X proper, so
that a measurable inversion kernel ζ exists. Then PY |X is conditionally G-equivariant if and only if
(6) holds. If there exists a measurable inversion function τ : X → G, then (6) reduces to

X ⊥⊥ τ(X)−1Y |M(X) . (7)

If the action of G on Y is trivial, then (6) reduces to X ⊥⊥ Y | M(X). In any of the foregoing
cases, if the action of G on X is transitive then the respective statements of conditional independence
become statements of independence.

The theorem generalizes a result of Bloem-Reddy and Teh [6], who established a special case of the
result under the assumptions that G is compact and acts freely on X, and that PX is G-invariant.
Theorem 1 relaxes all of these conditions so that it holds under the proper action of a locally compact
group. The proof can be found in Appendix B.3.

The result implies that a test for conditional symmetry can be formulated as a test for conditional
independence. In our experiments in Section 5, we use general-purpose kernel-based tests for
conditional independence. However, it is known that testing for conditional independence under
the most general assumptions is an impossible problem [52]. Our implementation in Section 5 gets
around this by calibrating the conditional independence test via cross-validation on an independent
training set of data, thus restricting the null hypothesis set to be localized around the distribution that
gave rise to the data. This approach should therefore be viewed as a first demonstration of what a
test for equivariance may look like. An improved testing framework for equivariance is the focus of
ongoing work.

4 Related work

Our conditional Monte Carlo test in Section 2 belongs to the family of group-based randomization
tests; such tests have also been applied as tests for invariance under specific groups in specialized
situations [31, 41, 49, 50]. The most general proof of which we are aware of pertains to finite
groups [31]. Our proof of the validity of the test for general compact groups is based on sufficiency
arguments, which to our knowledge is different from (or implicit in) the existing literature; it may
also be of independent interest for group-based randomization tests.

Apart from hypothesis testing, researchers in physics and machine learning have developed methods
for estimating symmetries from data; see the references in Section 1. Hypothesis tests for symmetry,
either as part of the estimation procedure or as validation of the estimated symmetry, have not been
developed. To the best of our knowledge, the only exception is [5], which develops a test for anomaly
detection, but requires restrictive distributional assumptions and approximations.

Whereas the group-based randomization testing literature uses group invariance primarily as a device
for testing some other hypothesis, a smaller body of work [11, 26, 51] focuses on group symmetry as
the property of interest. As we describe in more detail in Appendix D, those methods make strong
assumptions that limit their applicability. Our methods are broadly applicable: both the abstract
formulation of our tests for invariance and their kernel-based implementations can be applied to any
compact group, which includes finite (discrete) groups. To our knowledge, the test we formulate in
Section 3 is the first general-purpose test for symmetry (invariance or equivariance) of a conditional
distribution.

Many of the mathematical techniques used in this work have appeared in various statistical contexts,
and a thorough treatment can be found in [21, 54]. Inversion kernels do not seem to have been used
previously in statistics or machine learning, perhaps owing to their relatively recent appearance in
probability [35]. However, special cases of representative inversions with deterministic versions have
appeared in the recent machine learning literature [6, 33, 55].

5 Experiments

We evaluate our proposed tests on two applications from high-energy particle physics. In our
experiments, we sample n data points from a dataset and perform a test for a specified symmetry.
We repeat this procedure over N = 1000 simulations for each test and record the proportion of
simulations in which the test rejected, which estimates either the test size or power. With N = 1000
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Table 1: Test rejection rates over N = 1000 simulations for the LHC data. Test significance levels
were α = 0.05. For G0, rejection rates should be ≤ 0.05; for G1 and G2, a higher rejection rate
indicates a more powerful test (maximum 1).

G0 = {paired SO(2)-rotations} G1 = SO(2)× SO(2) G2 = SO(4)

2SMMD 0.035 0.967 0.983
MMD 0.038 1.000 1.000

NMMD 0.058 0.241 0.214
CW 0.052 0.971 0.999

simulations, estimates are precise up to approximately ±0.016. We use test level α = 0.05 in our
experiments. We use m = 2 sampled group actions except where otherwise specified.

We implement our tests for invariance and conditional symmetry using kernel methods. Background
for kernel methods as well as specific details about these tests can be found in Appendices C and D.1.
The tests that we evaluate for invariance include: a baseline two-sample test (2SMMD) that compares
the original sample to a G-transformed sample under the maximum mean discrepancy (MMD)
[29]; a MMD test based on Algorithm 1 (MMD) and a related test that uses Nyström approximation
with J = ⌈

√
n⌉ subsamples (NMMD) [9]; and the Cramér–Wold test [26] with J = ⌈

√
n⌉ random

projections (CW). Where applicable, we use the sampling procedure described in Algorithm 1 with
B = 200. We test for conditional symmetries using the kernel conditional independence test (KCI)
[57] and the conditional permutation test [3] with kernel conditional density estimation (CP, S = 50
steps).

5.1 Large Hadron Collider dijet events

The first application that we examine is based on the Large Hadron Collider (LHC) Olympics 2020
dataset [38, 40] consisting of 1.1 million simulated dijet events generated by PYTHIA [4], a widely-
used Monte Carlo generator for high-energy physics processes. A dijet event is two jets of particles
that are produced by the collision of subatomic particles. The transverse momentum, polar angle
ϕ and pseudorapidity η for up to 200 jet constituents were recorded for each jet. The Cartesian
momentum of a particle in the transverse plane is represented by the pair

px = pT cos(ϕ) , py = pT sin(ϕ) .

The leading constituent in a jet is the particle with the largest transverse momentum in any direction.
We focus on the joint distribution of the two constituents with the largest transverse momenta in
each event [after 18]. A single observation is therefore a 4D vector X = (p1x , p1y , p2x , p2y ), where
p1 and p2 correspond to the momenta of the two leading particles, respectively. We randomly split
the dataset into a training and test set of equal size. We draw samples of size n = 100 in all of the
following experiments. Histograms of p-values obtained from the tests are shown in Figure 2.

5.1.1 Joint invariance

By conservation of angular momentum, the distribution of the Cartesian momenta of the two leading
particles across jet events should be invariant to simultaneous rotations by the same angle, i.e.,
with respect to the subgroup G0 = {(g1, g2) ∈ SO(2) × SO(2) : g1 = g2}. We conduct tests for
invariance with respect to this subgroup, as well as with respect to the full G1 = SO(2) × SO(2)
group, and to G2 = SO(4). Results are shown in Table 1. We see that 2SMMD, MMD, and CW
are able to identify G0-invariance and correctly reject G1- and G2-invariance at a higher rate. In
Appendix E.1, we find that increasing the number of random projections from 10 to 15 significantly
improves the power of NMMD.

5.1.2 Conditional equivariance

By taking Xi = (p1x , p1y ) and Yi = (p2x , p2y ), invariance of the 4D vector with respect to the
subgroup G0 can also be viewed as Yi being conditionally equivariant with respect to SO(2) given
Xi. We perform a test for SO(2)-equivariance. We obtain rejection rates 0.0 for KCI and 0.051 for
CP in this setting. We also perform a test for conditional SO(2)-invariance, which KCI correctly
rejects with rate 1.0 and CP with rate 0.997.
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Figure 2: Histograms of the p-values obtained overN = 1000 simulations for tests for joint invariance
and equivariance in the LHC experiments. The p-value of a Kolmogorov–Smirnov test for uniformity
of the distribution is shown in the bottom-right corner of each plot.

5.2 Top quark tagging

We consider a second particle physics application based on the Top Quark Tagging Reference dataset
[39], which also consists of jet events simulated by PYTHIA. The original dataset was constructed
for the task of classifying jet events as having decayed from a top quark or not and consists of a
training, validation, and test set. We only use the test set, which contains 404,000 simulated jet
events. The four-momenta p = (E, px, py, pz) of up to 200 jet constituents are recorded for each
event. Each event is also labelled as 1 or 0, representing that the jet decayed from a top quark or did
not, respectively. According to the Standard Model, when predicting whether a jet is the decay of
a top quark based on the four-momenta of jet constituents, the distribution of the label should be
conditionally invariant with respect to the Lorentz group O(1, 3), which consists of spatial rotations
and relativistic boosts and preserves the quadratic form Q(p) = E2 − p2x − p2y − p2z . According to
Theorem 1, conditional invariance is equivalent to X ⊥⊥ Y |M(X) in this scenario.

For convenience, we take the data to be the four-momenta X = (p1, p2) of the two leading con-
stituents in each jet [as in 56] and the top quark label Y ∈ {0, 1}. We split the data into a training and
test set. We perform a test for conditional invariance of Y given X with respect to the Lorentz group
based on samples of size n = 200. We use the 2D maximal invariant M(X) = (Q(p1), Q(p2)). For
the kernel on Y = {0, 1}, we use kY (x, y) = 1(x = y). KCI rejects conditional invariance at a rate
of 0.029, which is consistent with the theory of the Standard Model. To verify that KCI is identifying
symmetry in a meaningful way, we simulate new labels Y ′

i given Xi using the model

Y ′
i | Xi ∼ Bernoulli (0.91{E ≥ 200}+ 0.11{E < 200}) .

With the new labels, KCI rejects conditional invariance with respect to the Lorentz group at a rate of
0.781. Histograms of the KCI p-values can be found in Appendix E.2. We were unable to tune CP to
produce meaningful results.
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A Background: Groups, group actions, and invariant measures

A group G is a set with a binary operation · that satisfies the associativity, identity, and inverse
axioms. We denote the identity element by id. For notational convenience, we write g1g2 = g1 · g2
for g1, g2 ∈ G. The group G is said to be measurable if the group operations g 7→ g−1 and
(g1, g2) 7→ g1g2 are SG-measurable, where SG is a σ-algebra of subsets of G. In this work, we
assume that G has a topology that is locally compact, second countable, and Hausdorff (lcscH),
and which makes the group operations continuous. We may then take SG as the Borel σ-algebra,
making G a standard Borel space. For A ⊆ G and g ∈ G, we write gA = {gh : h ∈ G} and
Ag = {hg : h ∈ G}. A measure ν on G is said to be left-invariant if ν(gA) = ν(A) for all A ∈ SG,
and right-invariant if ν(Ag) = ν(A). When G is lcscH, there exist left- and right-invariant σ-finite
measures λG and λ̃G, respectively, that are unique up to scaling [25, Ch. 2.2], known as left- and
right-Haar measures. When there is no chance of confusion, we use λ to denote left-Haar measure. If
G is compact, then λ = λ̃, and the unique normalized Haar measure acts as the uniform probability
measure over the group.

A.1 Group actions

A group G acts measurably on a set X if the group action Φ: G×X → X is measurable relative
to SG ⊗ SX and SX. We write gx = Φ(g, x) as short-hand. For a set A ⊆ X, the group acts as
gA = {gx : x ∈ A}. For fixed x ∈ X, the stabilizer subgroup is Gx = {g ∈ G : gx = x}. The
action is called free or exact if gx = x implies that g = id, in which case Gx = {id} for all x ∈ X.
The orbit of x ∈ X is the set O(x) = {gx : g ∈ G}. The orbits partition X into equivalence classes,
where two points are equivalent if and only if they belong to the same orbit. If X has only one
orbit, then the action is said to be transitive. It is not hard to show that if hx = x′ for x ̸= x′, then
hGxh

−1 = Gx′ . That is, the stabilizer subgroups of the elements of an orbit are all conjugate.

A function f with domain X is invariant if it is constant on each orbit: f(gx) = f(x), x ∈ X, g ∈ G.
In general, an invariant function may take the same value on different orbits. A maximal invariant is
an invariant functionM : X → M that takes a different value on each orbit, so that ifM(x) =M(x′),
then x = gx′ for some g ∈ G. Maximal invariants arise as particularly useful statistics in problems
with group symmetry because any invariant function f can be written as f(x) = k(M(x)), for some
function k. Maximal invariants are typically not unique. However, they are all isomorphic to the
canonical projection onto the quotient space, π : X → X/G, x 7→ O(x). Measurability issues can
arise when G is non-compact; we discuss these below.

Invariance is a special case of a more general property. Suppose G acts on X and on another
set Y; the group action may be different on each. A function f : X → Y is G-equivariant if
f(gx) = gf(x), x ∈ X, g ∈ G. These properties extend to measures.

Definition 1. A probability measure P on X is G-invariant if P (g−1A) = P (A) for all g ∈ G,
A ∈ SX.

We write g∗P (A) = P (g−1A) as the pushforward of P under the action of g ∈ G. In that notation,
G-invariance of P entails g∗P = P for all g ∈ G.

We say that PX,Y is jointly G-invariant if it is invariant in the sense of Definition 1 extended to
G acting on X × Y. In addition to joint invariance, we may define symmetry in the conditional
distribution.

Definition 2. The conditional distribution of Y given X is said to be G-equivariant if

PY |X(x,B) = PY |X(gx, gB) , x ∈ X, B ∈ SY, g ∈ G . (8)

If the action of G on Y is trivial and PY |X satisfies (8) so that PY |X(gx,B) = PY |X(x,B), then
the conditional distribution is said to be G-invariant.

Some authors refer to (8) as invariance; we use equivariance to avoid confusion with the invariance
of marginal and joint distributions, and to be consistent with current usage, especially with respect
to equivariant functions. Both of these definitions (invariance and equivariance) also apply when
probability measures and conditional distributions are replaced by measures and Markov kernels,
respectively.
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A.2 Representatives and inversions

Our work makes extensive use of special entities that are somewhat non-standard in the recent
invariance-based statistics and machine learning literature. We can assign a particular element of
each orbit as the orbit representative. We write [x] as the representative on the orbit O(x). That is,
[x] = gx for some g ∈ G. The structural properties described below do not depend on which element
of the orbit is chosen as the representative. All of the properties are relative to a particular choice,
and a different choice would result in the same properties relative to that choice. For a particular
choice of representatives, the subset of X consisting of each orbit’s representative is denoted by [X].
Note that [X] ∩ O(x) consists of a single point; namely, [x]. A function γ : X → [X] that maps
elements of X onto their corresponding orbit representatives in [X] is called an orbit selector. Note
that any orbit selector is a maximal invariant by definition. Conversely, a maximal invariant defines a
choice of orbit representatives if the value it takes on each orbit is an element of the orbit. If [X] is
a measurable subset of X and γ is a measurable function relative to SX and SX ∩ [X], then [X] is
called a measurable cross-section.

A function τ : X → G is called a representative inversion if Φ(τ(x), γ(x)) = τ(x)γ(x) = x and
τ(gx) = gτ(x) for all x ∈ X, g ∈ G. The role of τ is to return the element of G that must be
applied to move [x] to x. Conversely, the inverse element, τ(x)−1, moves x to [x]. In order for τ to be
uniquely defined, the group action must be free. If it is not, an equivariant inversion probability kernel,
or inversion kernel for short, ζ : X× SG → [0, 1], can be used in place of τ , so that a sample from
ζ(X, • ) will transform γ(X) into X with probability one. That is, if X ∼ P and τ̃ | X ∼ ζ(X, • ),
then X = τ̃ γ(X) almost surely. At a high level, one may think of the inversion kernel ζ(x, • ) as
the uniform distribution on the left coset gGγ(x), where gγ(x) = x. In the case of a free action, this
simplifies to ζ(x, • ) = δτ(x). In some cases, a representative inversion can still be defined when the
action is not free (see Example 1), in which case an equivalent inversion kernel can be defined as
ζ ′(x,B) := ζ(γ(x), τ(x)−1B).

A.3 Proper group actions

In the analysis of probabilistic aspects of group actions, measurability issues can arise without
regularity conditions. The key regularity condition that we assume in this work is that the group
action is proper. That is, there exists a strictly positive measurable function h : X → R+ such that for
each x ∈ X, we have

∫
G
h(gx)λ(dg) <∞ [34]. This definition of proper group action is a slightly

weaker, non-topological version of the definition commonly used in previous work in the statistics
literature [e.g., 21, 46, 54], and only requires the existence of Haar measure. The previously used
topological version is as follows: the map (g, x) 7→ (gx, x) is a proper map, i.e., the inverse image of
each compact set in X×X is a compact set in G×X. That definition implies the one used here; see
[34] for details.

A sufficient condition for proper group action is that G is compact and acts continuously on X.
When G is non-compact, a group action can fail to be proper if G is “too large” for X in the sense
that the stabilizer subgroups are non-compact. A class of non-compact group actions known to be
proper are those of the isometry group of a Riemannian manifold. For the purposes of this work,
we rely on the assumption of proper group actions to guarantee the existence of measurable orbit
selectors and inversion kernels, which turn out to have extremely useful properties. We gather some
of those properties in a proposition, which is a collection of existing results. To state it, let ν be
any bounded measure on (X,SX) and let S̄ν

X be the completion of SX to include all subsets of
ν-null sets, and denote by ν̄ the extension of ν to S̄ν

X [see, e.g. 8, Proposition 1.3.10]. All statements
of ν̄-measurability in the following proposition are with respect to S̄ν

X, so that a set A ⊆ X is
ν̄-measurable if A ∈ S̄ν

X. Moreover, a function defined by a particular property is ν̄-measurable
if it is measurable in the usual sense with respect to S̄ν

X, and if the defining property holds with
the possible exception of a ν̄-null set. Clearly, such a function would also be ρ̄-measurable for any
measure ρ≪ ν.
Proposition 2. Let G be a lcscH group acting continuously and properly on X, and ν any bounded
measure on X. Then the following hold:

1. The canonical projection π : X → X/G is a measurable maximal invariant. Any measur-
able G-invariant function f : X → Y can be written as f = f∗ ◦ π, for some measurable
f∗ : X/G → Y, and f∗ is bijective if and only if f∗ ◦ π is a measurable maximal invariant.
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2. There exists a ν̄-measurable orbit selector γ : X → [X], which is a maximal invariant
statistic, and it induces a ν̄-measurable cross-section [X] = γ(X).

3. For a fixed ν̄-measurable orbit selector γ, there exists a unique ν̄-measurable inversion
probability kernel ζ : X× SG → [0, 1] with the following properties:

(a) ζ is G-equivariant: For all g ∈ G, x ∈ X, B ∈ SG, ζ(gx,B) = ζ(x, g−1B).
(b) For each x ∈ X, ζ(γ(x), • ) is normalized Haar measure on the stabilizer subgroup

Gγ(x).
(c) For each x ∈ X, if τ̃ ∼ ζ(x, • ), then τ̃ γ(x) = x with probability one.
(d) If there is a ν̄-measurable representative inversion τ : X → G associated with γ such

that it satisfies τ(x)γ(x) = x and τ(gx) = gτ(x) for each x ∈ X, g ∈ G, then
ζ ′(x,B) = ζ(γ(x), τ(x)−1B) is an equivalent inversion kernel. In particular, this
holds when the action of G on X is free, in which case Gγ(x) = {id} and the inversion
kernel is δτ(x).

The measurability of the canonical projection is a result from functional analysis; see Eaton [21,
Theorem 5.4] for an extended statement and references. One implication is that π generates the
invariant σ-algebra on X, so that every invariant function can be written as a measurable function
of it. Items 2–3c follow directly from results of Kallenberg [35, 36] on the existence of universally
measurable versions of γ and ζ. Item 3d follows from 3a and 3b.

In this work, we assume that the action of G on any space is continuous and proper; these conditions
are implicit in statements such as “let G be a group that acts on X”. In particular, measurable orbit
selectors and inversion kernels exist under these assumptions.

B Additional results and proofs

B.1 Consistency of metric-based test

The power function of a test based on ϕn,m is
βn(P ) := EP⊗λ[ϕn,m(X1:n)] , P ∈ P(X) ,

where the expectation with respect to P ⊗ λ is taken over X1:n and the random transformations
Gi,j

iid∼ λ. The following result shows that the test statistic defined in (2) yields a consistent test.
Theorem 2. Fix m ≥ 1 and a metric or divergence D on P(X). Let a sequence of tests (ϕn,m)n≥1

(as in (3)) be such that the critical values (cn)n≥1 satisfy limn→∞ cn = c ≥ 0. Then (ϕn,m)n≥1 is
pointwise asymptotically level α for any α ∈ [0, 1]. That is, for any c ≥ 0, for any P ∈ P◦(X),

lim sup
n→∞

EP⊗λ[ϕn,m(X1:n)] ≤ α , α ∈ [0, 1] . (9)

If c = 0, then (ϕn,m)n≥1 is also pointwise consistent in power: for any P ∈ P×(X),
lim
n→∞

EP⊗λ [ϕn,m(X1:n)] = 1 , (10)

and therefore the sequence of tests is asymptotically unbiased.

Proof. The results follow easily from Proposition 1 and the fact that D(P̂n, P̂
□
n,m) converges almost

surely (with respect to the product measure P ⊗ λ) to D(P, P ◦) by the strong law of large numbers.
In particular, if P ∈ P◦(X), then P = P ◦ and so D(P, P ◦) = 0. Since D is continuous, it follows
that

lim
n→∞

D(P̂n, P̂
□
n,m) = 0 , P ⊗ λ-a.s. , for any P ∈ P◦(X) .

Therefore, if cn → c ≥ 0, then

lim
n→∞

EP⊗λ[ϕn,m(X1:n)] = lim
n→∞

EP⊗λ[1{D(P̂n, P̂
□
n,m) > cn}] = 0 ,

from which (9) follows.

On the other hand, if P ∈ P×(X), then P ̸= P ◦ and therefore D(P, P ◦) > 0. If cn → 0, then

lim
n→∞

EP⊗λ[ϕn,m(X1:n)] = lim
n→∞

EP⊗λ[1{D(P̂n, P̂
□
n,m) > cn}] = 1 ,

from which (10) follows.
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B.2 Validity of Algorithm 1 output as a p-value

Theorem 3. Let X(0)
1:n := X1:n, and assume that EP⊗λ[1{Tn,m(X

(b)
1:n) = Tn,m(X

(b′)
1:n )}] = 0 for

b ̸= b′. For any fixed B ∈ N, pB obtained as in Algorithm 1 is a valid p-value in the sense that for
any α ∈ [0, 1], if P ∈ P◦(X), then for any (gi,j)i≤n,j≤m ∈ Gn×m,

EP⊗λ [1{pB ≤ α} | (Gi,j)i≤n,j≤m = (gi,j)i≤n,j≤m] =
⌊α(B + 1)⌋
B + 1

≤ α . (11)

The same also holds unconditionally for random (G
(b)
i,j )i≤n,j≤m sampled independently of X1:n such

that they are exchangeable over the index b = 1, . . . , B, which includes using the same random
sample (Gi,j)i≤n,j≤m for each b.

As noted by Dufour and Neves [20], if α(B + 1) is an integer, then the inequality in (11) becomes
equality. Because it holds uniformly over P◦(X), the critical region for the test, {pB ≤ α}, has size
α. Although the theorem indicates that reusing (Gj,1, . . . , Gj,n)

m
j=1 is not strictly necessary, doing

so amounts to conditioning, reducing computation and potentially reducing estimation variance in the
procedure. A version of Theorem 3 holds for a suitably modified version of the Monte Carlo test
that uses a sample of representative inversions, (τ̃i)ni=1, where τ̃i | Xi ∼ ζ(Xi, • ). In that case, Xi

is replaced in Algorithm 1 by τ̃i, and the null hypothesis sample iterates (G(b)
1 τ̃1, . . . , G

(b)
n τ̃n) are

compared to (G1, . . . , Gn) sampled i.i.d. from λ. If (G1, . . . , Gn) are sampled from a probability
measure other than λ then a valid p-value is still produced; however, the power of the test may suffer.

The proof of Theorem 3 relies on the following result proven by Dufour [19]. For simplicity, we
assume that the probability of ties is zero, but that case can be handled with a randomized tie-breaking
procedure described by Dufour [19].

Lemma 1 ([19], Proposition 2.2). Let S0, S1, . . . , SB be an exchangeable sequence of R-valued
random variables such that Pr{Si = Sj} = 0 for i ̸= j, i, j ∈ {0, . . . , B}. Set

pB =
1 +

∑B
b=1 1{Sb ≥ S0}
B + 1

.

Then for any α ∈ [0, 1],

Pr{pB ≤ α} =
⌊α(B + 1)⌋
B + 1

.

Proof of Theorem 3. Due to the sufficiency of γ(X) for P◦(X), the samples X
(b)
1:n =

(G
(b)
1 X1, . . . , G

(b)
n Xn) are conditionally i.i.d. given γ(X)1:n, with the same conditional distribu-

tion as the null conditional distribution. Because of their independence from X1:n, conditioning
on (Gj,1, . . . , Gj,n)

m
j=1 does not change that, and therefore (Tn,m(X

(b)
1:n))

B
b=0 are conditionally i.i.d.

given γ(X)1:n and (Gj,1, . . . , Gj,n)
m
j=1, with the same conditional distribution as the null conditional

distribution. The sequence (X(b)
1:n)

B
b=0 is easily seen to be exchangeable (over the index b) conditioned

on γ(X)1:n and (Gj,1, . . . , Gj,n)
m
j=1, and therefore so is (Tn,m(X

(0)
1:n), . . . , Tn,m(X

(B)
1:n )). The va-

lidity of pB as a conditional (on γ(X)1:n) p-value, and (11) in particular, follows from Lemma 1.
Since this holds for P -almost every realization of γ(X)1:n under each P ∈ H0, it is also a valid
p-value conditioned only on (Gj,1, . . . , Gj,n)

m
j=1.

The proof remains valid unconditionally if (Gj,1, . . . , Gj,n)
m
j=1 are sampled independently

of X1:n, so that (X
(b)
1:n, (Gj,1, . . . , Gj,n)

m
j=1)

B
b=0 are exchangeable and therefore so is

(T
(0)
n,m(X

(0)
1:n), . . . , T

(B)
n,m(X

(B)
1:n )).

The proof also applies unconditionally to random (G
(b)
i,j )i≤n,j≤m sampled independently of X1:n

in a way such that they are exchangeable over the index b = 1, . . . , B, in which case the sequence
(X

(b)
1:n, (G

(b)
j,1, . . . , G

(b)
j,n)

m
j=1)

B
b=0 is exchangeable and therefore so is (T (0)

n,m(X
(0)
1:n), . . . , T

(B)
n,m(X

(B)
1:n )).
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B.3 Proof of Theorem 1

Proof. To simplify notation, let Q : X× SY → [0, 1] be a regular version (i.e., a Markov probability
kernel) of the conditional probability PY |X , and denote the marginal distribution of X by P , so that
PX,Y = PX ⊗ PY |X = P ⊗ Q. Define the random variable Ỹ := τ̃X , where τ̃ ∼ ζ(X, • ). The
conditional distribution of Ỹ given (τ̃ , X) is represented by the Markov probability kernel Q̃ so that
for any integrable function f : G×X×Y → R,

∫
P (dx)ζ(x, dτ̃)Q̃(τ̃ , x, dỹ)f(τ̃ , x, ỹ) =

∫
P (dx)ζ(x, dτ̃)Q(x, dy)f(τ̃ , x, τ̃−1y) .

From this follows the identity Q̃(τ̃ , x, B) = Q(x, τ̃B).

Now assume that Q is equivariant, so that for each g ∈ G, x ∈ X, B ∈ SY, Q(gx,B) =
Q(x, g−1B). Then for any τ̃ ∈ G, x ∈ X, g ∈ G and integrable f : Y → R,

∫
Q̃(gτ̃ , gx, dỹ)f(ỹ) =

∫
Q(gx, dy)f((gτ̃)−1y)

=

∫
Q(x, dy)f(τ̃−1g−1gy)

=

∫
Q(x, dy)f(τ̃−1y)

=

∫
Q̃(τ̃ , x, dỹ)f(ỹ) .

This shows that the mapping (τ̃ , x) 7→ Q̃(τ̃ , x, • ) is G-invariant. Therefore, by Proposition 2, for
any measurable maximal invariant M̃ : G×X → M, there is a unique Markov probability kernel
R̃ : M× SY → [0, 1] such that

Q̃(τ̃ , x, B) = R̃(M̃(τ̃ , x), B) , τ̃ ∈ G, x ∈ X, B ∈ SY .

Because the action of G on itself is transitive (i.e., there is only one orbit in G), any maximal invariant
M for G acting on X is also a maximal invariant for G acting on G×X, and

Q̃(τ̃ , x, B) = R̃(M(x), B) , τ̃ ∈ G, x ∈ X, B ∈ SY . (12)

This is enough to establish the desired conditional independence in (6): For any integrable f : G×
X×Y → R,

∫
P (dx)ζ(x, dτ̃)Q̃(τ̃ , x, dỹ)f(τ̃ , x, ỹ) =

∫
P (dx)ζ(x, dτ̃)R̃(M(x), dỹ)f(τ̃ , x, ỹ) .

Conversely, assume that (τ̃ , X) ⊥⊥ τ̃−1Y | M(X). Then (12) holds for P ⊗ ζ-almost all (τ̃ , x) ∈
G×X. In particular, Q̃ is G-invariant for P ⊗ ζ-almost all (τ̃ , x). In particular, Q̃ is G-invariant
for P ⊗ ζ-almost all (τ̃ , x). Recall also that the inversion kernel ζ is G-equivariant. Therefore, for
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any integrable f : G×X×Y → R and any g ∈ G,∫
P (dx)ζ(x, dτ̃)Q(x, dy)f(τ̃ , x, y)

=

∫
P (dx)ζ(x, dτ̃)Q(x, dy)f(τ̃ , x, τ̃(τ̃−1y))

=

∫
P (dx)ζ(x, dτ̃)Q̃(τ̃ , x, dỹ)f(τ̃ , x, τ̃ ỹ)

=

∫
P (dx)ζ(x, dτ̃)Q̃(gτ̃ , gx, dỹ)f(τ̃ , x, τ̃ ỹ)

=

∫
(g∗P )(dx)ζ(g

−1x, dτ̃)Q̃(gτ̃ , x, dỹ)f(τ̃ , g−1x, τ̃ ỹ)

=

∫
(g∗P )(dx)ζ(x, dτ̃)Q̃(τ̃ , x, dỹ)f(g−1τ̃ , g−1x, g−1τ̃ ỹ)

=

∫
(g∗P )(dx)ζ(x, dτ̃)Q(x, dy)f(g−1τ̃ , g−1x, g−1y)

=

∫
P (dx)ζ(gx, dτ̃)Q(gx, dy)f(g−1τ̃ , x, g−1y)

=

∫
P (dx)ζ(x, dτ̃)Q(gx, dy)f(τ̃ , x, g−1y) .

This implies that

Q(x,B) = Q(gx, gB) , B ∈ SY, g ∈ G, P -a.e. x ∈ X . (13)

The subset of X for which (13) holds is a G-invariant set [36, Lemma 7.7], and therefore the possible
exceptional null set on whichQ is not equivariant does not depend on g. If there is such an exceptional
null set on which Q is not equivariant, denoted N×, define Q′ as

Q′(x,B) :=

{
Q(x,B) if x /∈ N×∫
G
ζ(x, dτ̃)Q(τ̃−1x, τ̃−1B) if x ∈ N× .

Since ζ(x, • ) and Q(x, • ) are probability kernels, so too is Q′. It is also straightforward to show
that Q′ is G-equivariant, so that Q′ is another regular version of PY |X that is G-equivariant for all
x ∈ X, and equivalent to Q up to the null set N×.

If there exists a measurable representative inversion (function) τ , then the same proof holds with the
inversion kernel ζ(x, • ) substituted by δτ(x), resulting in the simplified conditional independence
statement in (7).

If the action of G on Y is trivial, then Ỹ = Y . Moreover, τ̃ ⊥⊥ Y | X by construction, and therefore
(τ̃ , X) ⊥⊥ Y |M(X) is implied by X ⊥⊥ Y |M(X).

C Kernel hypothesis tests

We provide additional details about the tests used in our experiments.

C.1 Kernel methods and the maximum mean discrepancy

Our tests for invariance use the maximum mean discrepancy (MMD) as the metric on P(X). Let H
be a reproducing kernel Hilbert space (RKHS) of functions f : X → R, with inner product ⟨ • , • ⟩H
and reproducing kernel k : X ×X → R. See [12] for a thorough treatment of RKHS theory. The
kernel mean embedding (KME) of a distribution P on X is defined as µP ( • ) :=

∫
X
k(x, • )P (dx)

and is the unique element of H such that EP [f(X)] = ⟨f, µP ⟩H, for all f ∈ H [47]. It follows that
⟨µP1 , µP2⟩ =

∫
k(x, x′)P1(dx)P2(dx

′). If the kernel k is characteristic so that the map P 7→ µP

from P(X) into H is injective, which leads to a unique embedding for each probability measure P
[53], then the MMD is a metric on P(X).
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Kernel-based hypothesis tests compare distributions through their KMEs [28], and can have an
advantage over classical tests in that the same testing framework can be used with any type of data as
long as a kernel is available. As is common practice, we use the squared MMD,

MMD2(P1, P2) := ∥µP1 − µP2∥
2
H = ⟨µP1

, µP1
⟩H + ⟨µP2

, µP2
⟩H − 2⟨µP1

, µP2
⟩H ,

which can be estimated from samples X1:n1

iid∼ P1 and Y1:n2

iid∼ P2 via the U-statistic

M̂MD
2
(P̂1,n1 , P̂2,n2)

=
1

n1(n1 − 1)

∑
i̸=j

k(Xi, Xj) +
1

n2(n2 − 1)

∑
i̸=j

k(Yi, Yj)−
2

n1n2

∑
i,j

k(Xi, Yj) .

For convenience, we refer to the MMD2 as the MMD, and similarly for related estimators.

For our tests for invariance, we default to Gaussian radial basis function kernels for continuous data
and use the median distance heuristic [27] for the kernel bandwidth unless otherwise specified. The
median distance is computed from a “training” set of n data points randomly split from the “test” set
used to estimate the rejection rate, and is recomputed in every simulation.

For tests for conditional symmetry, we find that tuning the kernel bandwidths via a grid search for
each kernel leads to better results. For each combination of bandwidths, we estimate the size and
power of the test over 100 simulations involving training data (separate from data used to report
results). We choose the combination that leads to a rejection rate of at most 0.1 on data generated
under H0 and that maximizes rejection rate on data generated under H1. If no combination has
rejection rate less than 0.1 under H0, we then use the combination that leads to the lowest rejection
rate.

C.2 Baseline test

Under H0, giXi
d
= Xi for each gi ∈ G, i = 1, . . . , n. Therefore, a standard two-sample MMD test

for equality in distribution [29] can be applied to the samples X1:n and Y1:n := (g1X1, . . . , gnXn).
We can randomize the gi’s and still have a test of the correct level. We use this test (2SMMD) as a
sensible baseline since it is a valid test but does not take full advantage of the group structure via the
sufficiency argument behind Theorem 3.

C.3 MMD test for invariance based on orbit-averaging

Our MMD test for invariance based on Algorithm 1 (MMD) involves comparing P and P ◦ under the
MMD. The quantity of interest is

MMD(P, P ◦) = ⟨µP , µP ⟩H + ⟨µP◦ , µP◦⟩H − 2⟨µP , µP◦⟩H

= ⟨µP , µP ⟩H +

∫
X×X

∫
G×G

k(gx, hx′)λ(dg)λ(dh)P (dx)P (dx′)

− 2

∫
X×X

∫
G

k(x, gx′)λ(dg)P (dx)P (dx′) ,

which, given data X1:n
iid∼ P and sampled group actions G1:m, H1:m

iid∼ λ, is estimated by the test
statistic

M̂MD(P̂n, P̂
□
n,m)

=
1

n(n− 1)

∑
i ̸=j

(
k(Xi, Xj) +

1

m2

m∑
ℓ=1

m∑
r=1

k(GℓXi, HrXj)−
2

m

m∑
ℓ=1

k(Xi, GℓXj)

)
.
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C.4 Nyström approximation MMD test for invariance

The Nyström approximation [9, 48] can be used to obtain an approximate MMD test (NMMD) based
on the biased MMD test statistic, which is a V-statistic of the form

M̂MD
□

V(P̂1,n1
, P̂2,n2

)

=
1

n2

n∑
i=1

n∑
j=1

(
k(Xi, Xj) +

1

m2

m∑
ℓ=1

m∑
r=1

k(GℓXi, HrXj)−
2

m

m∑
ℓ=1

k(Xi, GℓXj)

)

=
1

n2

(
1⊤nK1n +

1

m2

m∑
ℓ=1

m∑
r=1

1⊤nK
(2)
ℓr 1n − 2

m

m∑
ℓ=1

1⊤nK
(1)
ℓ 1n

)
,

where the kernel matrices are defined as

[K]ij = k(Xi, Xj) ,
[
K

(2)
ℓr

]
ij
= k(GℓXi, HrXj) ,

[
K

(1)
ℓ

]
ij
= k(Xi, GℓXj) .

Nyström approximates the original kernel matrices with matrix products involving J-dimensional ran-
dom matrices. For J ≪ n, let t be J points sampled independently and uniformly with replacement
from x := X1:n, and similarly for tG from (GX1, . . . , GXn). Applying Nyström approximation to
the MMD leads to the test statistic

M̂MD
□

N(P̂1,n1
, P̂2,n2

) = ψ⊤
t Kt,tψt +

1

m2

m∑
ℓ=1

m∑
r=1

ψ⊤
tGℓ

KtGℓ ,tHrψtHr − 2

m

m∑
ℓ=1

ψ⊤
t Kt,tGℓψtGℓ ,

where K • , • denotes the kernel matrix between two sets of points and

ψ • =
1

n
K+

• , •K • ,x1n ,

with + denoting the Moore-Penrose inverse.

C.5 Kernel conditional independence test for conditional symmetry

The kernel conditional independence test (KCI) [57] is a kernel-based test for conditional indepen-
dence. The test statistic in the KCI test for conditional symmetry is constructed as follows. Let
kX , kY and kM be kernels on X, Y, and M, respectively. Given data (X,Y )1:n, define the kernel
matrices KY , KM and KXM as

[KY ]ij = kY (τ(Xi)
−1Yi, τ(Xj)

−1Yj) , [KM ]ij = kM (M(Xi),M(Xj)) ,

[KXM ]ij = kX(Xi, Xj) [KM ]ij .

Let K̄Y = HKY H denote the centralized kernel matrix, where H = In − n−11n, and similarly
for K̄M and K̄XM . For fixed ε > 0, define the matrices RM = ε(K̄M + εIn)

−1, K̄XM |M =

RMK̄XMRM , and K̄Y |M = RMK̄Y RM . Then the test statistic is given by

TKCI(X1:n, Y1:n) =
1

n
Tr(K̄XM |MK̄Y |M ) .

The distribution of this test statistic under H0 can be approximated by samples T (1), . . . , T (B) drawn
through a simulation procedure described by Zhang et al. [57], and the test rejects H0 at level α if
1
B

∑B
b=1 1

{
TKCI(X1:n, Y1:n) ≤ T (b)

}
≤ α.

C.6 Conditional permutation test with kernel conditional density estimation for conditional
symmetry

The conditional permutation test (CP) [3] is a general non-parametric test for conditional indepen-
dence. The test requires estimates of conditional densities and a choice of an arbitrary test statistic
TCP : X

n ×Yn ×Mn → R, for which we use kernel conditional density estimation (KCDE) [16]
and the multiple correlation coefficient [1] of X and Y , respectively. The p-value for the test is
computed as follows. Let kY and kM be kernels on Y and M. Given data X1:n and Y1:n, let
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Z1:n := (τ(X)−1Y )1:n to simplify notation. Let Zπ0(1:n) := Z1:n. On iteration s, we sample ⌊n/2⌋
disjoint pairs of indices (i(s)1 , j

(s)
1 ), . . . , (i

(s)
⌊n/2⌋, j

(s)
⌊n/2⌋) from {1, . . . , n}. For each pair (i(s)ℓ , j

(s)
ℓ ),

we independently perform a swap of the i(s)ℓ -th and j(s)ℓ -th observations with probability p(s)ℓ obtained
from the KCDE conditional density ratio

p
(s)
ℓ

1− p
(s)
ℓ

=

f̂KCDE

(
Z

(s−1)

j
(s)
ℓ

∣∣∣M(X
i
(s)
ℓ

)

)
f̂KCDE

(
Z

(s−1)

i
(s)
ℓ

∣∣∣M(X
j
(s)
ℓ

)

)
f̂KCDE

(
Z

(s−1)

i
(s)
ℓ

∣∣∣M(X
i
(s)
ℓ

)

)
f̂KCDE

(
Z

(s−1)

j
(s)
ℓ

∣∣∣M(X
j
(s)
ℓ

)

)

=

{∑n
r=1 kY

(
Z

(s−1)

j
(s)
ℓ

, Zr

)
kM

(
M(X

i
(s)
ℓ

),M(Xr)
)}

{∑n
r=1 kY

(
Z

(s−1)

i
(s)
ℓ

, Zr

)
kM

(
M(X

i
(s)
ℓ

),M(Xr)
)}

×

{∑n
r=1 kY

(
Z

(s−1)

i
(s)
ℓ

, Zr

)
kM

(
M(X

j
(s)
ℓ

),M(Xr)
)}

{∑n
r=1 kY

(
Z

(s−1)

j
(s)
ℓ

, Zr

)
kM

(
M(X

j
(s)
ℓ

),M(Xr)
)} .

Denote by Zπs(1:n) the resulting permutation of Z1:n after all swaps in iteration s have been con-
sidered. The CP test runs an initial S iterations, after which it then runs B independent sequences
initialized at ZπS(1:n), each for another S iterations [3, Algorithm 2]. For b ∈ {1, . . . , B}, denote the
final permutation of each procedure as Z(b)

π2S(1:n). The p-value is then computed as

pCP =
1

1 +B

[
1 +

B∑
b=1

1

{
TCP(X1:n, Z1:n,M(X)1:n) ≤ TCP(X1:n, Z

(b)
π2S(1:n),M(X)1:n)

}]
.

D Other tests for symmetry

In this section, we provide further details about other known tests that are specifically designed to be
general-purpose tests for symmetry.

D.1 Invariance

Sakhanenko [51] introduced a general test for invariance with respect to linear transformation groups.
Their test can be viewed as being based on a different characterization of distributional invariance
where if P is characterized by a certain class of functions F , then P is invariant if and only if∫

f(x)P (dx) =

∫
f(gx)λ(dg)P (dx) (14)

for all f ∈ F . Their test statistic estimates the worst case error between the two sides of the equality
in (14) using sampled functions f from F . The class F needs to be carefully chosen according to the
group G being tested, which is a non-trivial task and a confining limitation beyond common groups.

The recent work of Fraiman et al. [26] applied the Cramér–Wold (CW) theorem to formulate non-
parametric tests for group invariance. Those tests rely on the group G being generated by a (small)
finite set G0 of transformations such that each element of G can be written as a finite product
g = g1 · · · gm, where for each j, either gj ∈ G0 or g−1

j ∈ G0. When this assumption holds, it can
lead to a reduction in the computational complexity of the test. On the other hand, the assumption
can only be satisfied by discrete groups, as no uncountable group can be finitely generated.

The CW test procedure is as follows. For i.i.d. random variables Z1:n supported on R, let F̂Z1:n denote
the empirical cumulative distribution function of a random variable Z. The procedure proposed by
Fraiman et al. [26] requires that G be finitely generated by a subset of group elements of size L.
Given data X1:n on Rd, the group generators (gℓ)Lℓ=1 and J random unit vectors tj ∈ Rd are used to
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compute the worst-case Kolmogorov–Smirnov statistic,

TCW(X1:n) = max
ℓ∈1:L
j∈1:J

sup
u∈R

∣∣∣F̂(t⊤j X)
1:n

(u)− F̂(t⊤j (gℓX))
1:n

(u)
∣∣∣ .

The p-value is estimated by standard bootstrap resampling from X1:n. (There is also a version
that does not rely on bootstrapping but requires the sample to be split and the use of a Bonferroni
correction, which likely reduces the power.) It is straightforward to extend the CW test to more
general groups by sampling Gℓ

iid∼ λ and applying the methods of Section 2 to obtain a valid test. We
use the extended CW test in our experiments in Section 5.

D.2 Conditional invariance

Christie and Aston [11] proposed two tests for G-invariance of the conditional expectation f(x) =
E[Y |X = x], f : X → R. Both of those tests require the user to assume that f belongs to
some specific class of functions, F , of bounded variation, and the assumption of an additive noise
model, Yi = f(Xi) + εi, for independent mean-zero noise εi. One test requires knowledge of
the bound V (x, x′) = supf∈F |f(x)− f(x′)| and a bound on the deviations on the noise variable,
Pr(|εi − εj | ≥ c) ≤ pc. The other test is less restrictive, instead requiring knowledge of some
V(x, x′) satisfying |f(x)− f(x′)| ≤ CfV(x, x′). In our experiments in Section 5, these assumptions
are too restrictive for the tests to be applicable. We note that the primary aim of Christie and Aston
[11] is to estimate the maximal group under which f is invariant, which amounts to conducting a
collection of tests over a subgroup lattice of some candidate maximal group. In principle, our tests
could be substituted into their procedure, though we do not address that problem in this work.

E Additional experimental results

We provide additional results for the experiments described in Section 5.

E.1 LHC experiment

The grid {10−2, 10−1, 0, 10} was used to train the kernels kX , kY , and kM(X) in KCI. The grid
{10−3, 10−2, 10−1} was used to train the kernels kY and kM(X) in CP.

Figure 3 shows the rejection rate and average computation time for NMMD and CW as the number of
random projections J increases in the LHC joint invariance experiment.

E.2 Top quark experiment

For KCI in the top quark experiment, the grid {5, 7.5, 10, . . . , 50} was used to train the kernel kX ,
and the grid {5, 7.5, 10, . . . , 100} was used to train the kernel kM(X). The grids were manually
selected based on trial and error.

Figure 4 shows the p-value distributions obtained from KCI in the top quark experiment.
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Figure 3: LHC test for joint invariance rejection rates and standard deviations (first row) and average
computation time in seconds for a single execution (second row) over N = 1000 simulations as the
number of random projections increases.

Figure 4: Histograms of the KCI p-values obtained over N = 1000 simulations in the top quark
experiment.
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