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Abstract

This paper investigates the similarities and dif-001

ferences between human and machine language002

processing by comparing human and machine003

surprisals from two self-paced-reading corpora.004

The study examines how the frequency dis-005

tribution of surprisals changes with increas-006

ing context length and presents evidence that007

with greater context, both humans and machine008

language models can better predict upcoming009

words, resulting in narrow surprisal values. The010

study also analyzes how machine surprisals be-011

have differently from human surprisals across012

parts of speech tags, and shows that increas-013

ing context size leads to better correlation with014

human processing effort. The findings also015

suggest that with increasing model complexity,016

machine language models may capture a wider017

range of cognitive and neural processes, poten-018

tially providing a more accurate representation019

of human language processing.020

1 Introduction021

Sentence Comprehension is a topic is of interest for022

those studying human language processing as well as023

those studying algorithmic Natural Language Process-024

ing. It is a complicated process that involves integrating025

many levels of linguistic information. And so, conduct-026

ing a comparative analysis between humans and ma-027

chine models (capable of natural language understand-028

ing and generation) represents an intriguing research029

direction.030

Sentence Comprehension is thought to be a process031

that combines the ability to predict and eventually in-032

tegrate the upcoming words into the working mem-033

ory. And in order to understand this phenomenon, re-034

searchers have employed various methods over the years.035

One such method is surprisal. The concept of surprisal036

(Hale, 2016) originating in information theory, has been037

utilized to measure the level of unexpectedness of a038

word based on the preceding context. It has also found039

its place in psycholinguistics, where it been formulated040

as a function of metrics such as reading time(Monsalve041

et al., 2012). Previous studies have shown that higher 042

levels of surprisal1 predict longer reading times (Lowder 043

et al., 2018; Monsalve et al., 2012; Staub, 2015). Addi- 044

tionally, surprisal has been utilized to evaluate the ability 045

of neural language models (eg. Davis and Van Schijndel 046

(2020)) to learn “human-like” language structures. In 047

the present study, we employ surprisal to investigate 048

large pretrained language models (based on the Trans- 049

former architecture) and how are they related with no- 050

tions of human surprisal (estimated from reading times). 051

Recent advances in deep neural networks have led to 052

the development of large language models (based on the 053

Transformer architecture), such as the GPT family of 054

auto-regressive models, that are capable of generating 055

high-quality text. The effectiveness of these models has 056

opened up new avenues for investigating the extent to 057

which language models capture human cognitive pro- 058

cesses (Michaelov et al., 2021; Binz and Schulz, 2023; 059

Kuribayashi et al., 2022). 060

This study aims to connect machine surprisal (cal- 061

culated from the logits returned from GPT2 language 062

models) with human reading times. In this paper, we 063

consider reaction times from self-paced reading2 ex- 064

periments as the indicator of reading times. We are 065

interested in understanding how increasing the param- 066

eter size of the models affect the relationship between 067

machine surprisal and human reading times. Specifi- 068

cally, we explore if larger models can be considered to 069

be better models of human cognition. In doing this, we 070

also look at how context length affects the surprisals in 071

both humans and machines. 072

This paper adopts the stand that the human language 073

processing system and the GPT2 models represent two 074

different types of “language models”. And thus, ma- 075

chine surprisal (obtained from GPT2 models), and read- 076

ing times (collected from humans), reflect the process- 077

ing mechanisms of these two distinct "language mod- 078

els"3. And so our thesis is that, as a model becomes 079

more “cognitively plausible”, the predictability of a 080

1These studies use eye-tracking data and Recurrent Neural
Networks Language Models to calculate surprisal

2http://www.intro2psycholing.net/resources/experiments/selfpaced.php
3This can be seen as a way to think about extrinsic evalua-

tion of the two very different ‘language models’
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word as reflected in the machine surprisal would be081

close to the predictability (as defined in Bianchi et al.082

(2020)) of a word as per a human participant. And083

if the progress in language modelling using the Trans-084

former architecture over the last few years is taken into085

consideration, models with larger parameter sizes have086

out-performed smaller mdoels. And so the question087

is: are models with larger parameter sizes also more088

“cognitively plausible”?089

To do this, we use reading time data from two exist-090

ing datasets and surprisals calculated from four different091

GPT2 language models with varying parameter sizes.092

Our study contributes to the growing body of research093

that is exploring the extent to which deep neural net-094

works can serve as credible models of human language095

processing.096

2 Related Work097

Studies on the cognitive plausibility of language models098

have highlighted both their strengths and weaknesses099

in modeling human language processing. On one hand,100

multiple studies have shown that language models can101

predict a range of language processing phenomena like102

reading times, word recognition, and syntactic process-103

ing with a high degree of accuracy (Smith and Levy,104

2013; Frank and Bod, 2011; Demberg and Keller, 2008).105

These studies suggest that language models may be able106

to capture some aspects of the cognitive processes un-107

derlying language comprehension. However, it should108

be mentioned that in most psycholinguistic accounts109

of sentence processing, reading times often imply data110

collected from physiological data like eye-tracking or111

fMRI data among others. But in this paper, we primarily112

look at the much coarser reaction time data.113

On the other hand, some researchers have raised con-114

cerns about the limitations of language models in captur-115

ing the full complexity of human language processing.116

For example, Bender and Koller (2020) argue that lan-117

guage models may be limited by the assumptions and118

biases present in the training data, and may not be able119

to capture certain aspects of linguistic knowledge, such120

as pragmatic reasoning or world knowledge.121

Nonetheless, the use of language models in cognitive122

science research has opened up new avenues for inves-123

tigating the cognitive processes underlying language124

comprehension. For example, recent studies have used125

language models to investigate how syntactic and seman-126

tic factors interact during language processing (Linzen127

et al., 2016; Hupkes et al., 2018), and how individual dif-128

ferences in working memory and attention influence lan-129

guage processing ((Schwering and MacDonald, 2020)130

Other studies have explored the relationship between131

language model surprisal and brain activity during lan-132

guage processing (Hale et al., 2018), further supporting133

the idea that language models capture some aspects of 134

human language processing. Moreover, recent research 135

has also shown that the correlation between language 136

model surprisal and reading times may depend on the 137

size of the language model (Futrell et al., 2019; Gulor- 138

dava et al., 2018). 139

The present paper contributes to this line of research 140

by investigating how the parameter size of language 141

models and context size affect the relationship between 142

reading time and language model surprisal. 143

3 Datasets 144

We use two different datasets to study how language 145

models were similar/dissimilar to humans in terms of 146

the information theoretic definition of surprisal. Both 147

corpora were curated using text from existing novels and 148

each corpus represented a different aspect of context. 149

Since both corpora have previously been used to test 150

theories in psycholinguistics, they seemed to be good 151

candidates to test the hypothesis that language models 152

were valid computational models of human language 153

processing. 154

3.1 Natural Stories Corpus 155

The Natural Stories Corpus (Futrell et al., 2017) was 156

created as an attempt to include low-frequency syntactic 157

constructions into sentences so that different processing 158

theories could be tested. The corpus consists of 10 159

stories with a total of 10,245 words and 485 sentences. 160

As part of the dataset, the authors also include parse 161

trees generated using the Stanford parser (followed by 162

hand correcting of the results) and self-paced reading 163

data. For the purpose of this paper we use the actual 164

stories from the corpus and the self-paced reading data 165

to make comparisons with the machine results. 166

3.2 UCL corpus 167

The UCL corpus (Frank et al., 2013) was designed as 168

a standard dataset for the evaluation of computational 169

psycholinguistic models. The dataset consists of 361 170

stimuli sentences collected from 3 different novels. As 171

part of the dataset, the authors release the reading times 172

and eye-tracking data from a psycholinguistic task of 173

self-paced reading (of 43 subjects) of the sentences in 174

the dataset. 175

Overall, the stimuli from the Natural Stories corpus 176

were longer in comparison with the stimuli from the 177

UCL corpora. Now, we know that human reading times 178

are affected by a multitude of factors. And hence, the 179

disparate nature of the corpora could help pin down 180

the common similarities in the humans and machines 181

by comparing the reading time and machine surprisal 182

behavior across the two corpora. 183
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4 Concepts Used184

Reading time is a measure commonly used in psycholin-185

guistics to study how language is processed in the hu-186

man brain. It refers to the amount of time a person takes187

to read a specific piece of text. Reading time is affected188

by various factors, including complexity of the content,189

the reader’s level of expertise and their cognitive and190

linguistic abilities. Studying reading time can provide191

insights into the cognitive processes involved in reading.192

Surprisal or self-information is a concept in informa-193

tion theory that measures the degree of unexpectedness194

of an event or a message. In the context of language195

processing (Hale, 2001; Levy, 2008), surprisal refers196

to the level of uncertainty or unpredictability associ-197

ated with a given word or sequence of words in a text.198

It is typically calculated using probabilistic language199

models that estimate the probability of a word given its200

preceding context. Words with low probability or high201

surprisal are more difficult to process and can lead to202

slower reading times and increased cognitive process-203

ing effort. Processing Effort was earlier related with204

uncertainty by Frank (2010).205

5 Methodology206

We calculate surprisal from four different models4207

of the GPT2 family by using the usual information-208

theoretic formulation of surprisal. The surprisal of ob-209

serving a particular word wi given its preceding context210

(w0, w1, ..., wi−1) can be calculated using the following211

equation:212

S(wi|w0...wi−1) = − log2 P (wi|w0...wi−1) (1)213

where P (wi|w0...wi−1) is the probability of observ-214

ing word wi given its preceding context. The logarithm215

base 2 is used to convert the probability into bits, which216

represents the amount of information conveyed by the217

occurrence of the word wi in the context. The surprisal218

value S(wi|Ci) is high when the observed word is un-219

expected given its preceding context and low when the220

word is highly predictable.221

As mentioned earlier, we consider reading time to be222

proportional to the processing effort (P). More specifi-223

cally:224

RT ∝ P

Specifically, we define the reading time (RT) as a225

function of different cognitive processes (φ), length of226

the word (L) and the effort required to read the word227

(E). And hence, we envisage the functional form of RT228

to be given as:229

RTw = f(φ,Lw, Ew) (2)230

4gpt2=124M parameters; gpt2-medium=355M parameters,
gpt2-large:774M parameters; gpt-xl: 1.5B parameters

Hence we hypothesize that the ratio of RT to the
length of a word would be proportional to the ’actual
effort’ taken to read the word. In other words:

RTw
Lw

∝ Ew

And so the question is, do bigger models lead to better 231

correlation with the observed human data? 232

We assume that both GPT style models and human
language models incorporate incremental processing
mechanisms. There is also some evidence that human
brains think in terms of ‘sub-words’ (Solomyak and
Marantz, 2009; Nieuwland, 2019). And hence, we as-
sume that even for humans, if a word is represented as
k sub-words in the language processing system, then:

pword = p1 × ...× pk

Also, “processing effort” to read the can be written as:

P = f(p1) + ...+ f(pk)

which implies that:

P = θ log2 (pword)

where θ is a scaling parameter. Now, given that we 233

assume RTword to be an indicator of pword, we rewrite 234

“processing effort” as: 235

PEw = log2 (Ew) (3) 236

We also assume that for models with greater degree of 237

“cognitive plausibility”, this ratio would have a positive 238

correlation with the machine values of surprisal. And 239

so the question is, are bigger models more “cognitively 240

plausible”? 241

6 Observations 242

We start our analysis by looking at the nature of fre- 243

quency distribution of the normalized reading times and 244

machine surprisals from both the corpora. 245

Figure 1: Natural Stories: Histogram of Human “pro-
cessing effort” across all stimuli
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Figure 2: UCL: Histogram of Human “processing effort”
across all stimuli

We perform normalization on both the Processing246

Effort and Machine Surprisal to compare the human and247

machine surprisals on a comparable scale (0 to 1). It248

seems that the frequency distribution of both the Pro-249

cessing Effort and Machine Surprisal has a single mode250

for the Natural Stories corpus but has multiple modes251

for the UCL corpus. To confirm the nature of modality252

of the distributions, we proceed to perform the Hartigan253

Dip-test of Unimodality (Hartigan and Hartigan, 1985)254

implemented using Python5. The results for the test for255

both corpora are shown in Tables 1 and 3.256

Figure 3: Natural Stories: Histogram of frequencies
of surprisals of GPT2 models with different parameter
sizes.

Category d p-value

human-RT 0.00066 0.311688
GPT2 0.00183 1.0

GPT2-medium 0.00197 1.0
GPT2-large 0.00189 1.0

GPT2-xl 0.00226 0.995005

Table 1: p-values for Dip-Test results for Natural Stories
corpus

5https://github.com/BenjaminDoran/unidip

Figure 4: UCL: Histogram of frequencies of surprisals
of GPT2 models with different parameter sizes.

Based on the p-values in Table 3, we conclude that the 257

frequency distribution of human processing effort and 258

machine surprisal are indeed multimodal (p<0.05) for 259

the UCL corpus. The frequency distribution of process- 260

ing effort and surprisal for the Natural Stories corpus 261

Table 1 on the other hand seems to unimodal as sus- 262

pected earlier. However, to ascertain if the nature of 263

this distribution changes with increasing context length, 264

we repeat the Dip-test after splitting the stimuli in the 265

Natural Stories Corpus into three parts based on their 266

lengths. Hence, the first part of the split contained the 267

first 1
3 of the stimuli and so on. The results from this 268

Dip-test are shown in Table 2. 269

Model Half 1 Half 2 Half 3

human-RT 0.087912 0.771229 0.742258
GPT2 1.0 1.0 0.996003

GPT2-medium 1.0 0.986014 1.0
GPT2-large 0.825174 1.0 1.0

GPT2-xl 1.0 0.941059 0.989011

Table 2: p-values for Dip-Test of three halves results for
Natural Stories corpus

Even when looking at the individual halves in Table 2, 270

we see that the distributions remain unimodal. But it 271

should be kept in mind that the length of each half 272

was almost 80 to 90 times that of the average sentence 273

length of the UCL corpus. And so, we investigate if this 274

property of modality of distributions was some kind of 275

statistical artefact caused due to the the length of the 276

Natural Stories corpus. 277

Thus it appears that the nature of distribution of both 278

human and machine surprisals change with increasing 279

context length. We suspect that this is an effect of work- 280

ing memory (Baddeley, 1992) and integration of words 281

in action. We hope to delve into more details about it in 282

the future. 283

We further investigate this property of the effect of 284
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Item d p-value

human-RT 0.03691 0.000999
GPT2 0.03649 0.000999

GPT2-medium 0.03647 0.000999
GPT2-large 0.03641 0.000999

GPT2-xl 0.03641 0.000999

Table 3: p-values for Dip-Test results for UCL corpus

context length on the distribution of surprisals using an285

“artificial corpus” where we can easily control the length286

of sentences and automatically generate a corpus to per-287

form our analysis. In the next section, we describe and288

then run the machine models on our corpus of “artificial289

sentences” generated using an open-source generator to290

repeat the analysis methods that we used in this section.291

6.1 Artificial Sentence Corpus292

There has been a phenomenal growth in the quality of293

output of Natural Language Generation systems in the294

last few years. They have thus emerged as an interesting295

way to generate test data for the line of research that we296

are advocating in this paper. To study how the frequency297

distribution of surprisal corresponding to different GPT2298

models differ with differing context sizes, we create an299

"Artificial Sentence Corpus" using the state-of-the-art300

ChatGPT6 system. ChatGPT has lately captured the301

public imagination on account of its ability to gener-302

ate “coherent responses to various questions” (Shahriar303

and Hayawi, 2023). To create the corpus, we prompt304

ChatGPT to construct sentences of different lengths7.305

In this way, we generate 200 ‘artificial stories’. The sen-306

tences were then fed into all four of the GPT2 models307

for obtaining the values of surprisal. For the purpose of308

analysis, we club the sentences into four separate length309

bins: 0-15 (50 sentences), 15-50 (50 sentences), 50-100310

(50 sentences), 100-300 (50 sentences).311

For the analysis of the surprisals obtained from the312

models, we perform a dip-test on the frequency distribu-313

tions of the 4 length bins for the four different models314

of the GPT2 family. As mentioned earlier, p-value of315

less than 0.05 in the test indicates that the distribution316

is multimodal. And conversely, p-values more than317

0.05 indicate that the distribution is unimodal. Figure 5318

shows that, in terms of the results from the dip-test, for319

all models, sentences of different context lengths exhibit320

different patterns of distributional modality in their sur-321

prisals. For all models, the surprisals are multimodal till322

bin2. But bins 3 and 4 correspond to a p-value way more323

than 0.05 for the dip-test. In other words, for sentences324

with more than 50 words, the GPT2 models starts being325

6https://chat.openai.com
7Example prompt: Generate 10 stories each having 110

words

Figure 5: P-values for Dip-Test for different length bins
across different models of the GPT2 family

surprised in a specific range about most words and word 326

classes. We find this behavior very intriguing because 327

we saw a similar feature while studying the frequency 328

distribution of human processing effort for the Natural 329

Stories corpus in Table 2. 330

Model Bin 1 Bin2 2 Bin 3 Bin 4

GPT2 0.0009 0.0009 0.2498 1.0000
GPT2-m 0.0009 0.0009 0.2418 0.9980
GPT2-l 0.0009 0.0009 0.2428 1.0
GPT2-x 0.0009 0.0009 0.1648 0.9960

Table 4: p-values for Dip-Test of four bins for Artificial
Stories corpus

6.2 Surprisal vs PE: A Part-Of-Speech (POS) 331

perspective 332

Our next step involves analyzing the human processing 333

effort and GPT2 surprisal in terms of parts-of-speech. 334

To do this, we extract the POS tags for every sentence 335

in the two corpora and gather the processing effort and 336

surprisal scores for each sentence, from human obser- 337

vations and machine predictions respectively. After 338

calculating the average scores for both processing effort 339

and surprisal across all categories, we visualize the data 340

in a plot. 341

Looking at the UCL corpus for human participants 342

(Figure 6), we observe that nouns and verbs (content 343

words) require slightly less processing effort compared 344

to other Part-Of-Speech categories. A similar trend 345

can be seen in the Natural Stories corpus (Figure 7). 346

Previous research on whether function words or con- 347

tent words take longer to process during reading has 348

not yielded a clear consensus. Some studies suggest 349

that function words are processed faster (Staub and 350

Clifton Jr, 2006; Schmauder et al., 2000), while others 351

indicate that content words are processed more quickly 352

(Rayner et al., 1986, 2000). Moreover, most studies 353
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Figure 6: UCL: POS wise average PE for human partic-
ipants

Figure 7: Natural Stories: POS wise average PE for
human participants

on reading time rely on fixation times and other phys-354

iological data, whereas we used reaction times from355

self-paced reading experiments for our observations.

Figure 8: UCL: POS-wise average surprisal for ma-
chines

356
When analyzing the machines’ performance (Fig-357

ures 8 to 10), we notice that categories like Determiners358

and Pronouns (function words) result in lower surprisal359

scores than categories like Verbs and Nouns (content360

words). Additionally, as the context size increases (UCL361

vs. Natural Stories), the difference in surprisal between362

the content words and that of function words decrease.363

To determine which models are the most similar to364

Figure 9: Natural Stories: POS-wise average PE for
machines

humans (based purely on POS categories), we compute 365

the Wasserstein distance between humans and machines 366

for both datasets. 367

Model Determiners Noun Verb Pronoun

GPT2-s 6.09 5.27 5.50 5.84
GPT2-m 6.01 5.22 5.45 5.87
GPT2-l 6.15 5.31 5.42 5.92
GPT2-x 6.10 5.24 5.40 5.90

Table 5: Wasserstein distance (humans and machines)
across POS for UCL corpus

The Wasserstein distance measures how much ‘effort’ 368

it would take to transform one distribution to another. 369

In this case, lower distances imply greater similarity 370

among surprisal and processing effort for a particular 371

POS category. Tables 5 and 6 shows that the Wasserstein 372

distances were relatively lower for the Natural Stories 373

Corpus than the UCL corpus. But there doesn’t seem 374

to be any evidence suggesting that the similarity be- 375

tween patterns of human processing effort and machine 376

surprisal increased with increased parameter sizes. 377

Model Determiners Noun Verb Pronoun

GPT2-s 5.92 4.85 5.11 5.91
GPT2-m 5.94 4.85 5.13 5.94
GPT2-l 5.96 4.85 5.13 5.95
GPT2-x 5.97 4.85 5.12 5.95

Table 6: Wasserstein distance (humans and machines)
across POS for Natural Stories corpus

Hence, our analysis suggests that the patterns of sur- 378

prisal and processing effort for Part-Of-Speech tags are 379

vastly different between machines (pretrained GPT2 380

systems) and humans, regardless of the parameter size 381

of the GPT2 models. However, there is weak evidence 382

that with longer context size, the models exhibit more 383

“human-like” behavior (based on the Wasserstein dis- 384
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tance).385

We propose that the discrepancy in behavior for POS386

tags may be due to the way GPT2 models are trained.387

Humans do not learn a language by processing terabytes388

of text data, and this likely results in the representation389

and processing of word-classes in the GPT-style neural390

models differing significantly from those in the internal391

language models of humans. Additionally, as we noted392

in our previous analysis of the distribution of surprisal393

and processing effort, the distributions become more394

unimodal with increasing context length. Thus, the395

relatively smaller Wasserstein distance for the Natural396

Stories corpus may be explained by this phenomenon.397

Figure 10: Artificial Sentences: POS wise average sur-
prisal for machines

Sobieszek and Price (2022) explored why the statisti-398

cal capabilities of GPT3 might allow it to ‘play tricks’399

that make its responses seem more plausible than truth-400

ful. The comparatively less surprisal associated with401

function in this case might be a sign of those tricks and402

needs further exploration.403

6.3 Comparison of complexities404

We will now introduce a metric for comparing the "ef-405

fort" required to process sentences in a corpus by both406

the GPT2 systems and human participants. This metric407

is partly inspired by the work of Frank (2010) and is408

based on a perplexity-like measure. Specifically, we de-409

fine our metric as the mean of Processing Effort, which410

itself is a logarithmic function of surprisals. This mea-411

sures the amount of unexpected information contained412

in a sentence. Our metric is based on a fundamental413

principle of information theory and is therefore applica-414

ble to measures of machine surprisal (and behaves like415

perplexity).416

For a given sentence, we define sentence complexity417

as follows:418

C =

∑n
i=1 PEi
n

=

∑n
i=1 Si
n

(4)419

In Equation (4), ‘PE’ and ‘S’ refer to Processing Ef-420

fort and Surprisal respectively as defined in the previous421

sections. Mathematically speaking, the summation of 422

the surprisal terms translate to the product of proba- 423

bilities. In the following sections we use this metric 424

to compare the performance of the GPT2 models (of 425

different parameter sizes) with averages of human per- 426

formance effort complexities. 427

For a sentence ψ, To make the comparison between 428

the GPT2 models and the human participants, we ob- 429

serve the difference defined as: 430

Di = C(PEψ)− C(Sψ) (5) 431

In other words, for a sentence i, Equation (5) yields 432

the difference in complexities of processing it by hu- 433

mans and by machines. Hence, if a sentence was easier 434

(in terms of surprisal values) for humans to read in com- 435

parison to the humans, then the term Dψ would be <0 436

and vice versa. 437

Model Average Difference

GPT2 -0.0950
GPT2-medium -0.1347

GPT2-large -0.1063
GPT2-xl -0.1245

Table 7: Average of difference of complexities for UCL
corpus

From Tables 7 and 8, it seems that larger models 438

indeed behave more “human-like” in terms of this metric 439

with large contexts. 440

Model Average Difference

GPT2 -0.6357
GPT2-medium -0.6158

GPT2-large -0.6157
GPT2-xl -0.6135

Table 8: Average of difference of complexities for NS
corpus

6.4 Do bigger models ‘look’ like humans? 441

Finally, we investigate the relationship between reading 442

behavior and processing effort by conducting a joint 443

analysis (as done for example with different data by Re- 444

ichle et al. (1998)) of Reaction Times and Eye-Tracking 445

data from the UCL corpus. Our goal was to eventually 446

compare these measures with values obtained from ma- 447

chine surprisal, which is a computational measure of 448

information processing difficulty. 449

Many (if not most) papers exploring similar research 450

questions use eye-tracking metrics for estimating read- 451

ing time. However we use reaction times as our metric 452

for reading time in this paper. And hence, we first tested 453
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the the Pearson correlation between the Processing ef-454

fort measured by Reading Time and Fixation Duration.455

We calculated the Processing effort for a sentence by456

taking the means of both the reading times and total457

fixation duration for each word. The results (Table 9)458

showed a strong positive correlation between Reaction459

Times and Fixation Times, indicating that these mea-460

sures are both sensitive indicators of processing effort461

during reading.462

correlation coefficient p-value

0.5592 << 0.05

Table 9: Result of Pearson correlation between Fixation
Duration and Reaction time for sentences in UCL corpus

The scientific literature commonly considers eye-463

tracking metrics, such as fixation times, as a standard464

measure for estimating cognitive load. This is often the465

norm in psycholinguistics since this metric reflects the466

amount of attention and processing resources required467

to read a given text (Kliegl et al., 2004). Therefore,468

we conduct a correlation analysis to examine whether469

Processing Effort, as measured by both mean Reaction470

Times and mean Fixation duration, is correlated with471

machine surprisal.472

Model Correlation Coefficient P-value

GPT2 0.0910 << 0.05

GPT2-m 0.1597 << 0.05

GPT2-l 0.1521 << 0.05

GPT2-x 0.1721 << 0.05

Table 10: Result of Pearson correlation between Read-
ing Time and Machine Surprisal for sentences in UCL
corpus

Model Correlation Coefficient P-value

GPT2 0.1053 << 0.05

GPT2-m 0.1920 << 0.05

GPT2-l 0.1871 << 0.05

GPT2-x 0.2170 << 0.05

Table 11: Result of Pearson correlation between Fixa-
tion Duration and Machine Surprisal for sentences in
UCL corpus

From Tables 10 and 11, we see that as the number473

of parameters in the models increased, the correlation474

coefficient statistic also increased. This suggests that475

surprisals generated from models with greater parameter476

size have a stronger positive correlation with human477

physiological data collected in the form of Reading478

Time and Fixation Duration.479

This observation suggests that more complex mod- 480

els can perhaps capture a wider range of cognitive and 481

neural processes, and thus provide a more accurate rep- 482

resentation of human reading behavior. 483

7 Discussion 484

The development of neural networks was initially in- 485

spired by the functioning of human neurons, but prac- 486

tical applications have since driven their engineering. 487

However, language is a uniquely human trait, and it is 488

therefore crucial to investigate whether Language Model 489

(LM) training approaches that do not perfectly mimic 490

human language learning are able to learn the same as- 491

pects of language. This paper contributes to this line 492

of inquiry by comparing human and machine surprisals 493

from two self-paced-reading corpora. The study’s find- 494

ings, including the change in frequency distribution of 495

surprisals and POS analysis, suggest that with greater 496

context, both humans and machine language models 497

can better predict upcoming words, resulting in narrow 498

surprisal values. However the nature of representation 499

of syntax in Transformer-based models (in comparison 500

to humans) requires further investigation. Also, the ob- 501

servation that increasing model parameter size leads to 502

better correlation with human processing effort, empha- 503

sizes the benefits of scaling up language models and 504

the need for more research into emergent capabilities of 505

larger models. 506

8 Conclusion 507

This paper compared human and machine surprisals 508

from two existing self-paced-reading corpora. The es- 509

timation of human surprisal was done using reaction 510

times. Analysis showed that the nature of frequency 511

distribution of the surprisals for both humans and pre- 512

trained LMs changed with increasing context length. 513

We observe that the distribution starts with being multi- 514

modal, but it quickly becomes unimodal with increasing 515

context length. Additionally, we found that for long con- 516

text lengths, in both GPT2 models and humans, surprisal 517

peaked at a specific range for most words. 518

We also find that the machine surprisals behave very 519

differently than human surprisals across parts of speech 520

tags. We find that GPT2 models are way less surprised 521

by more “predictable” POS tags like determiners than 522

humans. We also present rudimentary evidence that with 523

increasing context length, GPT2 models (irrespective of 524

size) might be more similar to humans in terms of being 525

surprised by specific word-classes. 526

Finally, we show that increasing the parameter sizes 527

seems to make models perform more “human-like” for 528

sentence-level metrics. We also find that surprisal from 529

eye-tracking metrics seem to correlate better with GPT2 530

surprisals than surprisal from reading times. 531
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