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Abstract

This paper investigates the similarities and dif-
ferences between human and machine language
processing by comparing human and machine
surprisals from two self-paced-reading corpora.
The study examines how the frequency dis-
tribution of surprisals changes with increas-
ing context length and presents evidence that
with greater context, both humans and machine
language models can better predict upcoming
words, resulting in narrow surprisal values. The
study also analyzes how machine surprisals be-
have differently from human surprisals across
parts of speech tags, and shows that increas-
ing context size leads to better correlation with
human processing effort. The findings also
suggest that with increasing model complexity,
machine language models may capture a wider
range of cognitive and neural processes, poten-
tially providing a more accurate representation
of human language processing.

1 Introduction

Sentence Comprehension is a topic is of interest for
those studying human language processing as well as
those studying algorithmic Natural Language Process-
ing. It is a complicated process that involves integrating
many levels of linguistic information. And so, conduct-
ing a comparative analysis between humans and ma-
chine models (capable of natural language understand-
ing and generation) represents an intriguing research
direction.

Sentence Comprehension is thought to be a process
that combines the ability to predict and eventually in-
tegrate the upcoming words into the working mem-
ory. And in order to understand this phenomenon, re-
searchers have employed various methods over the years.
One such method is surprisal. The concept of surprisal
(Hale, 2016) originating in information theory, has been
utilized to measure the level of unexpectedness of a
word based on the preceding context. It has also found
its place in psycholinguistics, where it been formulated
as a function of metrics such as reading time(Monsalve

et al., 2012). Previous studies have shown that higher
levels of surprisal' predict longer reading times (Lowder
et al., 2018; Monsalve et al., 2012; Staub, 2015). Addi-
tionally, surprisal has been utilized to evaluate the ability
of neural language models (eg. Davis and Van Schijndel
(2020)) to learn “human-like” language structures. In
the present study, we employ surprisal to investigate
large pretrained language models (based on the Trans-
former architecture) and how are they related with no-
tions of human surprisal (estimated from reading times).

Recent advances in deep neural networks have led to
the development of large language models (based on the
Transformer architecture), such as the GPT family of
auto-regressive models, that are capable of generating
high-quality text. The effectiveness of these models has
opened up new avenues for investigating the extent to
which language models capture human cognitive pro-
cesses (Michaelov et al., 2021; Binz and Schulz, 2023;
Kuribayashi et al., 2022).

This study aims to connect machine surprisal (cal-
culated from the logits returned from GPT2 language
models) with human reading times. In this paper, we
consider reaction times from self-paced reading’® ex-
periments as the indicator of reading times. We are
interested in understanding how increasing the param-
eter size of the models affect the relationship between
machine surprisal and human reading times. Specifi-
cally, we explore if larger models can be considered to
be better models of human cognition. In doing this, we
also look at how context length affects the surprisals in
both humans and machines.

This paper adopts the stand that the human language
processing system and the GPT2 models represent two
different types of “language models”. And thus, ma-
chine surprisal (obtained from GPT2 models), and read-
ing times (collected from humans), reflect the process-
ing mechanisms of these two distinct "language mod-
els"3. And so our thesis is that, as a model becomes
more ‘“cognitively plausible”, the predictability of a

IThese studies use eye-tracking data and Recurrent Neural
Networks Language Models to calculate surprisal

“http://www.intro2psycholing.net/resources/experiments/selfpaced.php

3This can be seen as a way to think about extrinsic evalua-
tion of the two very different ‘language models’



word as reflected in the machine surprisal would be
close to the predictability (as defined in Bianchi et al.
(2020)) of a word as per a human participant. And
if the progress in language modelling using the Trans-
former architecture over the last few years is taken into
consideration, models with larger parameter sizes have
out-performed smaller mdoels. And so the question
is: are models with larger parameter sizes also more
“cognitively plausible”?

To do this, we use reading time data from two exist-
ing datasets and surprisals calculated from four different
GPT2 language models with varying parameter sizes.
Our study contributes to the growing body of research
that is exploring the extent to which deep neural net-
works can serve as credible models of human language
processing.

2 Related Work

Studies on the cognitive plausibility of language models
have highlighted both their strengths and weaknesses
in modeling human language processing. On one hand,
multiple studies have shown that language models can
predict a range of language processing phenomena like
reading times, word recognition, and syntactic process-
ing with a high degree of accuracy (Smith and Levy,
2013; Frank and Bod, 2011; Demberg and Keller, 2008).
These studies suggest that language models may be able
to capture some aspects of the cognitive processes un-
derlying language comprehension. However, it should
be mentioned that in most psycholinguistic accounts
of sentence processing, reading times often imply data
collected from physiological data like eye-tracking or
fMRI data among others. But in this paper, we primarily
look at the much coarser reaction time data.

On the other hand, some researchers have raised con-
cerns about the limitations of language models in captur-
ing the full complexity of human language processing.
For example, Bender and Koller (2020) argue that lan-
guage models may be limited by the assumptions and
biases present in the training data, and may not be able
to capture certain aspects of linguistic knowledge, such
as pragmatic reasoning or world knowledge.

Nonetheless, the use of language models in cognitive
science research has opened up new avenues for inves-
tigating the cognitive processes underlying language
comprehension. For example, recent studies have used
language models to investigate how syntactic and seman-
tic factors interact during language processing (Linzen
etal., 2016; Hupkes et al., 2018), and how individual dif-
ferences in working memory and attention influence lan-
guage processing ((Schwering and MacDonald, 2020)
Other studies have explored the relationship between
language model surprisal and brain activity during lan-
guage processing (Hale et al., 2018), further supporting

the idea that language models capture some aspects of
human language processing. Moreover, recent research
has also shown that the correlation between language
model surprisal and reading times may depend on the
size of the language model (Futrell et al., 2019; Gulor-
dava et al., 2018).

The present paper contributes to this line of research
by investigating how the parameter size of language
models and context size affect the relationship between
reading time and language model surprisal.

3 Datasets

We use two different datasets to study how language
models were similar/dissimilar to humans in terms of
the information theoretic definition of surprisal. Both
corpora were curated using text from existing novels and
each corpus represented a different aspect of context.
Since both corpora have previously been used to test
theories in psycholinguistics, they seemed to be good
candidates to test the hypothesis that language models
were valid computational models of human language
processing.

3.1 Natural Stories Corpus

The Natural Stories Corpus (Futrell et al., 2017) was
created as an attempt to include low-frequency syntactic
constructions into sentences so that different processing
theories could be tested. The corpus consists of 10
stories with a total of 10,245 words and 485 sentences.
As part of the dataset, the authors also include parse
trees generated using the Stanford parser (followed by
hand correcting of the results) and self-paced reading
data. For the purpose of this paper we use the actual
stories from the corpus and the self-paced reading data
to make comparisons with the machine results.

3.2 UCL corpus

The UCL corpus (Frank et al., 2013) was designed as
a standard dataset for the evaluation of computational
psycholinguistic models. The dataset consists of 361
stimuli sentences collected from 3 different novels. As
part of the dataset, the authors release the reading times
and eye-tracking data from a psycholinguistic task of
self-paced reading (of 43 subjects) of the sentences in
the dataset.

Overall, the stimuli from the Natural Stories corpus
were longer in comparison with the stimuli from the
UCL corpora. Now, we know that human reading times
are affected by a multitude of factors. And hence, the
disparate nature of the corpora could help pin down
the common similarities in the humans and machines
by comparing the reading time and machine surprisal
behavior across the two corpora.



4 Concepts Used

Reading time is a measure commonly used in psycholin-
guistics to study how language is processed in the hu-
man brain. It refers to the amount of time a person takes
to read a specific piece of text. Reading time is affected
by various factors, including complexity of the content,
the reader’s level of expertise and their cognitive and
linguistic abilities. Studying reading time can provide
insights into the cognitive processes involved in reading.

Surprisal or self-information is a concept in informa-
tion theory that measures the degree of unexpectedness
of an event or a message. In the context of language
processing (Hale, 2001; Levy, 2008), surprisal refers
to the level of uncertainty or unpredictability associ-
ated with a given word or sequence of words in a text.
It is typically calculated using probabilistic language
models that estimate the probability of a word given its
preceding context. Words with low probability or high
surprisal are more difficult to process and can lead to
slower reading times and increased cognitive process-
ing effort. Processing Effort was earlier related with
uncertainty by Frank (2010).

5 Methodology

We calculate surprisal from four different models*
of the GPT2 family by using the usual information-
theoretic formulation of surprisal. The surprisal of ob-
serving a particular word w; given its preceding context
(wg, w1, ..., w;—1) can be calculated using the following
equation:

S(wi|wo...wi_1) = —10g2 P(wi|w0...wi_1) (1)

where P(w;|wp...w;_1) is the probability of observ-
ing word w; given its preceding context. The logarithm
base 2 is used to convert the probability into bits, which
represents the amount of information conveyed by the
occurrence of the word w; in the context. The surprisal
value S(w;|C;) is high when the observed word is un-
expected given its preceding context and low when the
word is highly predictable.

As mentioned earlier, we consider reading time to be
proportional to the processing effort (P). More specifi-
cally:

RT x P

Specifically, we define the reading time (RT) as a
function of different cognitive processes (), length of
the word (L) and the effort required to read the word
(E). And hence, we envisage the functional form of RT
to be given as:

RTy = f(p, Luw, Ew) @)

49pt2=124M parameters; gpt2-medium=355M parameters,
gpt2-large:774M parameters; gpt-xl: 1.5B parameters

Hence we hypothesize that the ratio of RT to the
length of a word would be proportional to the ’actual
effort’ taken to read the word. In other words:

% x Fy,
And so the question is, do bigger models lead to better
correlation with the observed human data?

We assume that both GPT style models and human
language models incorporate incremental processing
mechanisms. There is also some evidence that human
brains think in terms of ‘sub-words’ (Solomyak and
Marantz, 2009; Nieuwland, 2019). And hence, we as-
sume that even for humans, if a word is represented as
k sub-words in the language processing system, then:

Pword = P1 X ... X Dk

Also, “processing effort” to read the can be written as:

P=f(p1) + ...+ f(pr)

which implies that:

P = 0logy (pword)

where 6 is a scaling parameter. Now, given that we
assume RT,,-q to be an indicator of p,,,-q, We rewrite
“processing effort” as:

PE,, =log, (Ey) 3)

We also assume that for models with greater degree of
“cognitive plausibility”, this ratio would have a positive
correlation with the machine values of surprisal. And
so the question is, are bigger models more “cognitively
plausible”?

6 Observations

We start our analysis by looking at the nature of fre-
quency distribution of the normalized reading times and
machine surprisals from both the corpora.
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Figure 1: Natural Stories: Histogram of Human “pro-
cessing effort” across all stimuli
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Figure 2: UCL: Histogram of Human “processing effort”
across all stimuli

We perform normalization on both the Processing
Effort and Machine Surprisal to compare the human and
machine surprisals on a comparable scale (0 to 1). It
seems that the frequency distribution of both the Pro-
cessing Effort and Machine Surprisal has a single mode
for the Natural Stories corpus but has multiple modes
for the UCL corpus. To confirm the nature of modality
of the distributions, we proceed to perform the Hartigan
Dip-test of Unimodality (Hartigan and Hartigan, 1985)
implemented using Python>. The results for the test for
both corpora are shown in Tables 1 and 3.

Natural Stories: Histogram of machine surprisal

gpt2 gpt2-medium
120

gpt2-xl

4 o
surprisal

Figure 3: Natural Stories: Histogram of frequencies
of surprisals of GPT2 models with different parameter
sizes.
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Figure 4: UCL: Histogram of frequencies of surprisals
of GPT2 models with different parameter sizes.

Based on the p-values in Table 3, we conclude that the
frequency distribution of human processing effort and
machine surprisal are indeed multimodal (p<0.05) for
the UCL corpus. The frequency distribution of process-
ing effort and surprisal for the Natural Stories corpus
Table 1 on the other hand seems to unimodal as sus-
pected earlier. However, to ascertain if the nature of
this distribution changes with increasing context length,
we repeat the Dip-test after splitting the stimuli in the
Natural Stories Corpus into three parts based on their
lengths. Hence, the first part of the split contained the
first % of the stimuli and so on. The results from this
Dip-test are shown in Table 2.

H Model Half 1 Half 2 Half 3 ‘
human-RT | 0.087912 | 0.771229 | 0.742258
GPT2 1.0 1.0 0.996003
GPT2-medium 1.0 0.986014 1.0
GPT2-large | 0.825174 1.0 1.0
GPT2-x1 1.0 0.941059 | 0.989011

H Category ‘ d ‘ p-value H
human-RT 0.00066 | 0.311688
GPT2 0.00183 1.0
GPT2-medium | 0.00197 1.0
GPT2-large 0.00189 1.0
GPT2-xl 0.00226 | 0.995005

Table 1: p-values for Dip-Test results for Natural Stories
corpus

Shttps://github.com/BenjaminDoran/unidip

Table 2: p-values for Dip-Test of three halves results for
Natural Stories corpus

Even when looking at the individual halves in Table 2,
we see that the distributions remain unimodal. But it
should be kept in mind that the length of each half
was almost 80 to 90 times that of the average sentence
length of the UCL corpus. And so, we investigate if this
property of modality of distributions was some kind of
statistical artefact caused due to the the length of the
Natural Stories corpus.

Thus it appears that the nature of distribution of both
human and machine surprisals change with increasing
context length. We suspect that this is an effect of work-
ing memory (Baddeley, 1992) and integration of words
in action. We hope to delve into more details about it in
the future.

We further investigate this property of the effect of



H Item ‘ d ‘ p-value H
human-RT 0.03691 | 0.000999
GPT2 0.03649 | 0.000999
GPT2-medium | 0.03647 | 0.000999
GPT2-large 0.03641 | 0.000999
GPT2-x1 0.03641 | 0.000999

Table 3: p-values for Dip-Test results for UCL corpus

context length on the distribution of surprisals using an
“artificial corpus” where we can easily control the length
of sentences and automatically generate a corpus to per-
form our analysis. In the next section, we describe and
then run the machine models on our corpus of “artificial
sentences” generated using an open-source generator to
repeat the analysis methods that we used in this section.

6.1 Artificial Sentence Corpus

There has been a phenomenal growth in the quality of
output of Natural Language Generation systems in the
last few years. They have thus emerged as an interesting
way to generate test data for the line of research that we
are advocating in this paper. To study how the frequency
distribution of surprisal corresponding to different GPT2
models differ with differing context sizes, we create an
"Artificial Sentence Corpus” using the state-of-the-art
ChatGPT® system. ChatGPT has lately captured the
public imagination on account of its ability to gener-
ate “coherent responses to various questions” (Shahriar
and Hayawi, 2023). To create the corpus, we prompt
ChatGPT to construct sentences of different lengths’.
In this way, we generate 200 ‘artificial stories’. The sen-
tences were then fed into all four of the GPT2 models
for obtaining the values of surprisal. For the purpose of
analysis, we club the sentences into four separate length
bins: 0-15 (50 sentences), 15-50 (50 sentences), 50-100
(50 sentences), 100-300 (50 sentences).

For the analysis of the surprisals obtained from the
models, we perform a dip-test on the frequency distribu-
tions of the 4 length bins for the four different models
of the GPT2 family. As mentioned earlier, p-value of
less than 0.05 in the test indicates that the distribution
is multimodal. And conversely, p-values more than
0.05 indicate that the distribution is unimodal. Figure 5
shows that, in terms of the results from the dip-test, for
all models, sentences of different context lengths exhibit
different patterns of distributional modality in their sur-
prisals. For all models, the surprisals are multimodal till
bin2. But bins 3 and 4 correspond to a p-value way more
than 0.05 for the dip-test. In other words, for sentences
with more than 50 words, the GPT2 models starts being

®https://chat.openai.com
"Example prompt: Generate 10 stories each having 110
words

Artificial Sentence Corpus: Dip-ests for different length bins

Figure 5: P-values for Dip-Test for different length bins
across different models of the GPT2 family

surprised in a specific range about most words and word
classes. We find this behavior very intriguing because
we saw a similar feature while studying the frequency
distribution of human processing effort for the Natural
Stories corpus in Table 2.

H Model ‘ Bin | ‘Binzz‘ Bin 3 ‘ Bin 4 H

GPT2 | 0.0009 | 0.0009 | 0.2498 | 1.0000

GPT2-m | 0.0009 | 0.0009 | 0.2418 | 0.9980
GPT2-1 | 0.0009 | 0.0009 | 0.2428 1.0

GPT2-x | 0.0009 | 0.0009 | 0.1648 | 0.9960

Table 4: p-values for Dip-Test of four bins for Artificial
Stories corpus

6.2 Surprisal vs PE: A Part-Of-Speech (POS)
perspective

Our next step involves analyzing the human processing
effort and GPT2 surprisal in terms of parts-of-speech.
To do this, we extract the POS tags for every sentence
in the two corpora and gather the processing effort and
surprisal scores for each sentence, from human obser-
vations and machine predictions respectively. After
calculating the average scores for both processing effort
and surprisal across all categories, we visualize the data
in a plot.

Looking at the UCL corpus for human participants
(Figure 6), we observe that nouns and verbs (content
words) require slightly less processing effort compared
to other Part-Of-Speech categories. A similar trend
can be seen in the Natural Stories corpus (Figure 7).
Previous research on whether function words or con-
tent words take longer to process during reading has
not yielded a clear consensus. Some studies suggest
that function words are processed faster (Staub and
Clifton Jr, 2006; Schmauder et al., 2000), while others
indicate that content words are processed more quickly
(Rayner et al., 1986, 2000). Moreover, most studies
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on reading time rely on fixation times and other phys-
iological data, whereas we used reaction times from
self-paced reading experiments for our observations.

UCL: Surprisal corresponding to specific Part-Of-Speech tags
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Figure 8: UCL: POS-wise average surprisal for ma-
chines

When analyzing the machines’ performance (Fig-
ures 8 to 10), we notice that categories like Determiners
and Pronouns (function words) result in lower surprisal
scores than categories like Verbs and Nouns (content
words). Additionally, as the context size increases (UCL
vs. Natural Stories), the difference in surprisal between
the content words and that of function words decrease.

To determine which models are the most similar to

Natural Stories: Surprisal corresponding to specific P-O-S tags
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Figure 9: Natural Stories: POS-wise average PE for
machines

humans (based purely on POS categories), we compute
the Wasserstein distance between humans and machines
for both datasets.

H Model Determiners ‘ Noun ‘ Verb ‘ Pronoun H
GPT2-s 6.09 5.27 | 5.50 5.84
GPT2-m 6.01 522 | 545 5.87
GPT2-1 6.15 531 | 542 5.92
GPT2-x 6.10 524 | 540 5.90

Table 5: Wasserstein distance (humans and machines)
across POS for UCL corpus

The Wasserstein distance measures how much ‘effort’
it would take to transform one distribution to another.
In this case, lower distances imply greater similarity
among surprisal and processing effort for a particular
POS category. Tables 5 and 6 shows that the Wasserstein
distances were relatively lower for the Natural Stories
Corpus than the UCL corpus. But there doesn’t seem
to be any evidence suggesting that the similarity be-
tween patterns of human processing effort and machine
surprisal increased with increased parameter sizes.

H Model Determiners ‘ Noun ‘ Verb ‘ Pronoun H
GPT2-s 5.92 485 | 5.11 591
GPT2-m 5.94 485 | 5.13 5.94
GPT2-1 5.96 485 | 5.13 5.95
GPT2-x 5.97 485 | 5.12 5.95

Table 6: Wasserstein distance (humans and machines)
across POS for Natural Stories corpus

Hence, our analysis suggests that the patterns of sur-
prisal and processing effort for Part-Of-Speech tags are
vastly different between machines (pretrained GPT2
systems) and humans, regardless of the parameter size
of the GPT2 models. However, there is weak evidence
that with longer context size, the models exhibit more
“human-like” behavior (based on the Wasserstein dis-



tance).

We propose that the discrepancy in behavior for POS
tags may be due to the way GPT2 models are trained.
Humans do not learn a language by processing terabytes
of text data, and this likely results in the representation
and processing of word-classes in the GPT-style neural
models differing significantly from those in the internal
language models of humans. Additionally, as we noted
in our previous analysis of the distribution of surprisal
and processing effort, the distributions become more
unimodal with increasing context length. Thus, the
relatively smaller Wasserstein distance for the Natural
Stories corpus may be explained by this phenomenon.

Artificial Sentences: Surprisal corresponding to specific Part-Of-Speech tags
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Figure 10: Artificial Sentences: POS wise average sur-
prisal for machines

Sobieszek and Price (2022) explored why the statisti-
cal capabilities of GPT3 might allow it to ‘play tricks’
that make its responses seem more plausible than truth-
ful. The comparatively less surprisal associated with
function in this case might be a sign of those tricks and
needs further exploration.

6.3 Comparison of complexities

We will now introduce a metric for comparing the "ef-
fort" required to process sentences in a corpus by both
the GPT2 systems and human participants. This metric
is partly inspired by the work of Frank (2010) and is
based on a perplexity-like measure. Specifically, we de-
fine our metric as the mean of Processing Effort, which
itself is a logarithmic function of surprisals. This mea-
sures the amount of unexpected information contained
in a sentence. Our metric is based on a fundamental
principle of information theory and is therefore applica-
ble to measures of machine surprisal (and behaves like
perplexity).

For a given sentence, we define sentence complexity
as follows:

n n

“

In Equation (4), ‘PE’ and ‘S’ refer to Processing Ef-
fort and Surprisal respectively as defined in the previous

sections. Mathematically speaking, the summation of
the surprisal terms translate to the product of proba-
bilities. In the following sections we use this metric
to compare the performance of the GPT2 models (of
different parameter sizes) with averages of human per-
formance effort complexities.

For a sentence 1/, To make the comparison between
the GPT2 models and the human participants, we ob-
serve the difference defined as:

D; = C(PEy) — C(Sy) (5)

In other words, for a sentence i, Equation (5) yields
the difference in complexities of processing it by hu-
mans and by machines. Hence, if a sentence was easier
(in terms of surprisal values) for humans to read in com-
parison to the humans, then the term D, would be <0
and vice versa.

H Model Average Difference H
GPT2 -0.0950
GPT2-medium -0.1347
GPT2-large -0.1063
GPT2-xl -0.1245

Table 7: Average of difference of complexities for UCL
corpus

From Tables 7 and 8, it seems that larger models
indeed behave more “human-like” in terms of this metric
with large contexts.

’ ‘ Model Average Difference ‘ ‘
GPT2 -0.6357
GPT2-medium -0.6158
GPT2-large -0.6157
GPT2-x1 -0.6135

Table 8: Average of difference of complexities for NS
corpus

6.4 Do bigger models ‘look’ like humans?

Finally, we investigate the relationship between reading
behavior and processing effort by conducting a joint
analysis (as done for example with different data by Re-
ichle et al. (1998)) of Reaction Times and Eye-Tracking
data from the UCL corpus. Our goal was to eventually
compare these measures with values obtained from ma-
chine surprisal, which is a computational measure of
information processing difficulty.

Many (if not most) papers exploring similar research
questions use eye-tracking metrics for estimating read-
ing time. However we use reaction times as our metric
for reading time in this paper. And hence, we first tested



the the Pearson correlation between the Processing ef-
fort measured by Reading Time and Fixation Duration.
We calculated the Processing effort for a sentence by
taking the means of both the reading times and total
fixation duration for each word. The results (Table 9)
showed a strong positive correlation between Reaction
Times and Fixation Times, indicating that these mea-
sures are both sensitive indicators of processing effort
during reading.

correlation coefficient
0.5592

p-value
<< 0.05

Table 9: Result of Pearson correlation between Fixation
Duration and Reaction time for sentences in UCL corpus

The scientific literature commonly considers eye-
tracking metrics, such as fixation times, as a standard
measure for estimating cognitive load. This is often the
norm in psycholinguistics since this metric reflects the
amount of attention and processing resources required
to read a given text (Kliegl et al., 2004). Therefore,
we conduct a correlation analysis to examine whether
Processing Effort, as measured by both mean Reaction
Times and mean Fixation duration, is correlated with
machine surprisal.

Model Correlation Coefficient | P-value
GPT2 0.0910 << 0.05
GPT2-m 0.1597 << 0.05
GPT2-1 0.1521 << 0.05
GPT2-x 0.1721 << 0.05

Table 10: Result of Pearson correlation between Read-
ing Time and Machine Surprisal for sentences in UCL
corpus

Model Correlation Coefficient | P-value
GPT2 0.1053 << 0.05
GPT2-m 0.1920 << 0.05
GPT2-1 0.1871 << 0.05
GPT2-x 0.2170 << 0.05

Table 11: Result of Pearson correlation between Fixa-
tion Duration and Machine Surprisal for sentences in
UCL corpus

From Tables 10 and 11, we see that as the number
of parameters in the models increased, the correlation
coefficient statistic also increased. This suggests that
surprisals generated from models with greater parameter
size have a stronger positive correlation with human
physiological data collected in the form of Reading
Time and Fixation Duration.

This observation suggests that more complex mod-
els can perhaps capture a wider range of cognitive and
neural processes, and thus provide a more accurate rep-
resentation of human reading behavior.

7 Discussion

The development of neural networks was initially in-
spired by the functioning of human neurons, but prac-
tical applications have since driven their engineering.
However, language is a uniquely human trait, and it is
therefore crucial to investigate whether Language Model
(LM) training approaches that do not perfectly mimic
human language learning are able to learn the same as-
pects of language. This paper contributes to this line
of inquiry by comparing human and machine surprisals
from two self-paced-reading corpora. The study’s find-
ings, including the change in frequency distribution of
surprisals and POS analysis, suggest that with greater
context, both humans and machine language models
can better predict upcoming words, resulting in narrow
surprisal values. However the nature of representation
of syntax in Transformer-based models (in comparison
to humans) requires further investigation. Also, the ob-
servation that increasing model parameter size leads to
better correlation with human processing effort, empha-
sizes the benefits of scaling up language models and
the need for more research into emergent capabilities of
larger models.

8 Conclusion

This paper compared human and machine surprisals
from two existing self-paced-reading corpora. The es-
timation of human surprisal was done using reaction
times. Analysis showed that the nature of frequency
distribution of the surprisals for both humans and pre-
trained LMs changed with increasing context length.
We observe that the distribution starts with being multi-
modal, but it quickly becomes unimodal with increasing
context length. Additionally, we found that for long con-
text lengths, in both GPT2 models and humans, surprisal
peaked at a specific range for most words.

We also find that the machine surprisals behave very
differently than human surprisals across parts of speech
tags. We find that GPT2 models are way less surprised
by more “predictable” POS tags like determiners than
humans. We also present rudimentary evidence that with
increasing context length, GPT2 models (irrespective of
size) might be more similar to humans in terms of being
surprised by specific word-classes.

Finally, we show that increasing the parameter sizes
seems to make models perform more “human-like” for
sentence-level metrics. We also find that surprisal from
eye-tracking metrics seem to correlate better with GPT2
surprisals than surprisal from reading times.
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