
NLDL
#13

NLDL
#13

NLDL 2026 Abstract Submission #13. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Reconsidering Spatial Alignment for Longitudinal Breast Cancer
Risk Prediction

Solveig Thrun∗1, Stine Hansen2, Zijun Sun3, Nele Blum4, Suaiba A. Salahuddin1, Xin Wang5, Kristoffer
Wickstrøm1, Elisabeth Wetzer1, Robert Jenssen1,6,7, Maik Stille4, and Michael Kampffmeyer1,6

1Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
2SPKI The Norwegian Centre for Clinical Artificial Intelligence, University Hospital of North Norway, Tromsø,
Norway
3Department of Computer Science and Engineering, University of Bologna, Bologna, Italy
4Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
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Abstract001

Regular mammography screening is vital for early002

breast cancer detection, and deep learning enables003

more personalized strategies. However, misalign-004

ment across time points can obscure subtle tissue005

changes and reduce prediction accuracy. This study006

evaluates image-based, feature-level, and implicit007

alignment methods on two large mammography008

datasets, showing that our proposed image-based009

registration model achieves the highest accuracy and010

anatomically plausible deformations, highlighting011

the importance of precise alignment in longitudinal012

risk prediction.013

1 Introduction014

Mammography remains the gold standard for breast015

cancer screening [1], effectively reducing mortal-016

ity [2]. Recent deep learning studies show that incor-017

porating longitudinal mammography—images from018

multiple timepoints—can enhance risk prediction019

beyond single-timepoint models [3–7]. Realizing020

these benefits requires accurate alignment across021

time, complicated by variations in breast tissue and022

differences in patient positioning [8]. Alignment023

strategies are typically categorized as either explicit,024

where images or features are directly registered, or025

implicit, where alignment is learned jointly during026

feature extraction. We perform the first system-027

atic study of alignment strategies for longitudinal028

breast cancer risk prediction, providing insights into029

both explicit and implicit approaches. Building030

on these insights, we propose a new image-based031

alignment model that achieves improved predictive032

performance. Our main contributions are:033

• A unified framework for evaluating explicit034

(image-/feature-level) and implicit alignment035

strategies for longitudinal breast cancer risk036

∗Corresponding Author.

Figure 1. Overview of the proposed longitudinal risk
prediction framework, highlighting the alignment strate-
gies assessed within a unified risk prediction approach.

prediction. 037

• A novel risk prediction model that leverages 038

image-based alignment to generate anatomically 039

meaningful deformations, achieving state-of-the- 040

art performance on two large-scale datasets. 041

2 Methods 042

We address the challenge of five-year breast cancer 043

risk prediction by evaluating six temporal alignment 044

strategies within a unified risk prediction framework 045

(Figure 1). 046

No Alignment: Our baseline builds on prior 047

work [7, 9], combining Multilevel Joint Learning [7], 048

Temporal Self-Attention [10], and a Cumulative 049

Probability Layer [4, 9, 11]. Current and prior im- 050

ages are encoded with a shared backbone, processed 051

via temporal self-attention, and used for risk predic- 052

tion. Additional prediction heads estimate risk from 053

each timepoint independently. 054

Implicit Alignment: In this strategy, current and 055

prior images are encoded, and their feature maps 056

are concatenated before being processed through 057

convolutional and attention layers. Temporal de- 058

pendencies are learned implicitly, without explicit 059

spatial alignment. 060

1



NLDL
#13

NLDL
#13

NLDL 2026 Abstract Submission #13. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. 1–5 year breast cancer risk prediction using different alignment methods. C-index and selected AUC
values (1, 3, 5 years) with 95% confidence intervals for both datasets.

Method
EMBED CSAW-CC

C-index ↑ 1-yr ↑ 3-yr ↑ 5-yr ↑ C-index ↑ 1-yr ↑ 3-yr ↑ 5-yr ↑

NoAlign
64.0

(61.7–66.7)
64.9

(62.1–67.9)
63.7

(61.2–66.3)
55.7

(51.4–60.0)
65.9

(64.0–67.8)
66.1

(63.8–68.3)
65.7

(63.8–67.6)
66.8

(64.5–68.9)

Implicit
70.9

(68.6–73.3)
72.5

(69.3–75.5)
69.3

(66.6–71.8)
65.7

(62.0–69.7)
67.6

(65.8–69.7)
68.2

(65.7–70.6)
68.3

(66.3–70.2)
68.7

(66.3–71.1)

FeatAlign
72.2

(69.5–75.5)
72.4

(69.5–75.6)
72.0

(69.7–74.6)
68.5

(64.8–72.0)
69.1

(67.0–71.1)
70.1

(67.9–72.4)
70.0

(68.1–71.9)
71.6

(69.4–73.8)

FeatAlignReg
70.6

(67.8–73.2)
71.2

(68.3–74.3)
70.7

(68.2–73.5)
65.7

(61.7–69.6)
68.4

(66.4–70.4)
68.9

(66.7–71.2)
69.8

(68.0–71.6)
72.0

(69.9–74.2)

ImgAlign
72.3

(69.6–74.8)
73.6

(70.6–76.5)
72.3

(69.8–74.5)
69.7

(66.2–73.4)
70.2

(68.1–72.1)
71.2

(68.9–73.4)
71.7

(69.9–73.4)
73.9

(71.7–76.0)

ImgFeatAlign
74.7

(72.3–77.0)
75.0

(72.1–77.7)
75.3

(73.1–77.4)
72.5

(68.9–75.7)
70.4

(68.2–72.3)
72.0

(69.6–74.2)
72.6

(70.8–74.5)
75.2

(73.1–77.5)

Explicit Alignment: This approach extends the061

baseline by integrating spatial alignment through062

deformation fields, improving temporal feature fu-063

sion. Following [7], four feature representations are064

used: current, prior, aligned prior, and their tempo-065

ral difference, capturing longitudinal changes. Risk066

is predicted from three inputs—current, prior, and a067

fused representation that concatenates the current,068

aligned prior, and difference features. We investigate069

alignment strategies at both the image and feature070

levels:071

Feature-Level Alignment (FeatAlign / FeatAl-072

ignReg) learns a deformation field to align prior073

feature maps, fpri, to current feature maps, f cur.074

FeatAlignReg introduces smoothness regularization075

to ensure anatomically plausible deformation fields.076

Image-Level Alignment (ImgAlign): As an077

alternative to feature-level alignment, we propose078

MammoRegNet, a deep learning-based registra-079

tion network inspired by the NICE-Trans architec-080

ture [12]. MammoRegNet is used to align prior081

mammograms, to the current ones. In this setup,082

current, prior, and aligned prior images are encoded083

to extract features, from which temporal difference084

features fdiff are computed. These features are then085

passed to the risk prediction module.086

Image-Based Feature Alignment (ImgFeatAl-087

ign): Rather than applying MammoRegNet’s defor-088

mation field at the image level, this variant applies089

it directly in feature space. This setup allows us to090

explore whether image-driven deformation fields can091

still improve temporal feature fusion when used post-092

encoding, potentially benefiting from both anatomi-093

cally grounded registration and deeper feature rep-094

resentations.095

3 Experimental Setup096

Datasets: Experiments are conducted on two large097

public mammography datasets, EMBED [13] and098

CSAW-CC [14]. Following [7], we include patients099

with at least 5 years of follow-up. Images are resized100

to 1664 × 2048 (preserving aspect ratio) and split101

into training, validation, and test sets (5:2:3).102

Evaluation metrics: Alignment quality is mea- 103

sured by the percentage of Negative Jacobian De- 104

terminants [15]. Risk prediction performance is re- 105

ported using C-index and AUC at 1–5 years [4, 7, 9], 106

with 95% confidence intervals from 1,000 bootstraps. 107

Implementation Details: The pre-trained Mirai 108

encoder [9] is used as a frozen backbone. Feature- 109

level alignment jointly optimizes prediction and 110

feature-matching losses, while image-level alignment 111

freezes MammoRegNet. Training uses Adam [16] 112

(LR 1 × 10−5, weight decay 1 × 10−6, batch size 113

20) for up to 40 epochs with LR scheduling, early 114

stopping, and augmentations. 115

4 Results 116

Table 1 summarizes 1- to 5-year breast cancer risk 117

prediction performance (C-index and AUC with 95% 118

CI) for each alignment strategy. ImgFeatAlign con- 119

sistently achieves the highest C-index and stable 120

AUC, demonstrating superior predictive strength 121

and robustness over time. FeatAlign performs rea- 122

sonably well but is consistently outperformed by 123

image-level alignment. The Implicit method shows 124

moderate results, while NoAlign yields the lowest 125

scores, with the steepest AUC decline, underscoring 126

the importance of alignment in longitudinal mod- 127

els. These findings highlight the value of advanced 128

alignment strategies for improving the accuracy and 129

reliability of breast cancer risk prediction. 130

5 Conclusion and Outlook 131

In summary, accurate spatial alignment is crucial for 132

longitudinal breast cancer risk prediction. Image- 133

based approaches, especially ImgFeatAlign, achieve 134

superior performance by balancing anatomical pre- 135

cision with high-level feature representation. These 136

findings highlight the potential of robust longitu- 137

dinal modeling to enhance personalized screening 138

and early intervention. Future work will extend this 139

by integrating multimodal data to enhance inter- 140

pretability and risk stratification. 141
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