Published as a conference paper at ICLR 2022

MEMORIZING TRANSFORMERS

Yuhuai Wu, Markus N. Rabe, DeLesley Hutchins, Christian Szegedy

{yuhuai, mrabe,delesley, szegedy}@google.com

ABSTRACT

Language models typically need to be trained or finetuned in order to acquire
new knowledge, which involves updating their weights. We instead envision
language models that can simply read and memorize new data at inference time,
thus acquiring new knowledge immediately. In this work, we extend language
models with the ability to memorize the internal representations of past inputs. We
demonstrate that an approximate £NN lookup into a non-differentiable memory of
recent (key, value) pairs improves language modeling across various benchmarks
and tasks, including generic webtext (C4), math papers (arXiv), books (PG-19),
code (Github), as well as formal theorems (Isabelle). We show that the performance
steadily improves when we increase the size of memory up to 262K tokens. On
benchmarks including code and mathematics, we find that the model is capable of
making use of newly defined functions and theorems during test time.

1 INTRODUCTION

Transformers (Vaswani et al.l 2017) have led to remarkable progress in natural language process-
ing (Devlin et al.,2019; Brown et al., [2020), mathematical reasoning (Polu & Sutskever, 2020} [Wang
et al.,|2020a; Rabe et al.| 2021} |Li et al., 2021} Hahn et al., [2021}; |Cobbe et al., 2021)), and program
synthesis (Austin et al.|[2021;|Chen et al.,[2021} |Li et al.,[2022). However, transformer performance
on many of these tasks is limited by the context length of attention, which is typically short. The
ability to attend to far-away tokens is important in many situations. In novels, characters and events
are referenced across multiple chapters. In source code, references to classes and functions may
occur quite far from the places in which they are defined. In theorem proving, proofs make use of
previously defined lemmas.

Attention over long sequences is also useful as a form of rapid learning. Facts and information
which are stored in the form of weight matrices must be slowly trained over hundreds of thousands
of training steps. By using attention, however, a model can simply memorize facts (e.g. function
definitions) by storing them as (key, value) pairs in long-term memory, and then retrieve those facts
later by creating a query that attends to them. In this case, attention acts as a form of information
retrieval, allowing the model to look up facts that it has seen previously.

We demonstrate that a simple and effective way to increase the size of the attention context is to use
approximate k-nearest-neighbor (KNN) lookup, which is widely used in information retrieval. A
number of extremely scalable implementations of kNN lookup are available, such as ScaNN (Guo
et al., [2020) and Faiss (Johnson et al., [2021}).

There are two things which distinguish our approach from previous work on long-range attention (c.f.
Section[2). First, unlike some other approaches, kNN lookup does not do averaging or summarization
of tokens at long distances, but retrieves exact values even from the distant context.

Second, gradients are not backpropagated into the external memory, which is critical to the scalability
of our technique. The keys and values are a function of model parameters, so attempting to backprop-
agate gradients into external memory would necessarily involve computing all of the keys and values
with the current model parameters on every training step. However, if the external memory is not
differentiable, then we can instead instead reuse keys and values that were previously computed on
prior training steps, which drastically reduces the amount of computation for large memories. With

Published as a conference paper at ICLR 2022

2.8
= [W =@ - Transformer
g 2.6 S~ao ~k- Memorizing Transformer
> Ss<
<24 W< | g
S N\\ Sso
222 TS Rl
S b B)
k) S~
220 Ss~al
o B ¢
1.8
200M 1B 8B
Model size

Figure 1: Adding a memory of 8K tokens improves perplexity across different model sizes.

our technique, we are easily able to scale external memory up to sequence lengths of 131k or 262k
tokens on a single TPU device, while maintaining a reasonable step time.

We show that model perplexity steadily improves with the size of external memory on a variety of
language modelling tasks, including C4 (long documents only), Github code repositories, PG-19
books, formal proofs in Isabelle, and arXiv math papers. We further show that models can generalize
to larger memory sizes than they were trained on: models trained with a small memory show gains
from using a much larger memory at inference time. Finally, we show that our models are actually
using memory in the way that we had hoped, e.g. by looking up the definitions of lemmas in a theorem
proving corpus.

The simplicity of the changes to the Transformer architecture allows us to easily integrate this
approach into existing code bases, including extremely large language models. We further show that
the improvements to quality are maintained across models of increasing size, and that the model
improvements gained from adding memory are even larger than increasing the size of the model by
5X or more as shown in Figure[I]

2 RELATED WORK

A great deal of work has been done on efficient long-range attention mechanisms; see Tay et al.| (2020
2021) recent surveys. Sliding windows (Beltagy et al.,[2020) use a long sequence, but attend within
a smaller window, thus reducing complexity to the window size, rather than total sequence length.
Approximate mechanisms such as Linformer (Wang et al., [2020b), and Performer (Choromanski
et al., [2021)) refactor the attention matrix by using a different kernel than softmax to obtain O (V)
complexity. Pooling strategies such as Hierarchical 1D attention (Zhu & Soricut,2021)), and Combiner
(Ren et al.| [2021]) apply pooling or averaging over tokens at longer distances. Sparse strategies such as
Big Bird (Zaheer et al., |2020) select only a subset of tokens to attend to; Routing Transformers (Roy
et al.,|2021)) use clustering to select the subset, while Reformer (Kitaev et al.|[2020) relies on hashing.
Hierarchical mechanisms (Ainslie et al.,|2020) combine multiple tokens into phrases or sentences to
reduce sequence length. Expire-span (Sukhbaatar et al.|[2021) prunes far-away tokens that it learns
are “unimportant”. (Zemlyanskiy et al., 2021 process long sequences in two passes with different
encoders. The second pass is given a lot of context by accessing summaries of the first pass.

Feedback transformers (Fan et al., [2020) use a recurrent architecture in which each token attends to
the output of the final layer instead of the previous layer. Recurrence does not increase the size of the
attention context itself, but it expands the receptive field at the cost of parallelism and training speed.

Truncated backpropagation through time (Williams & Peng| [1990) was originally introduced as a
way of training recurrent neural networks (RNN) over very long sequences, when the entire sequence
does not fit in memory. The sequence is chopped into segments, and after each training step, the final
RNN state for the segment is saved in a non-differentiable cache, and used as the initial state on the
next training step. Neural caches (Grave et al.,|2017) extend the cache to contain a record of many
prior hidden states, and attend over them. Transformer-XL (Dai et al.| 2019) applies this technique to
transformers; it caches the (key,value) pairs computed from the previous training step, and uses them
as a prefix for the tokens on the next training step, which yields significant gains on long documents.
Rae et al.|(2020) improve over Transformer-XL by compressing the tokens before adding them to the

Published as a conference paper at ICLR 2022

output predictions
A 4 &% & & a

softmax

local attention + FEN

000

kNN attention 4 4 4
[k nearest neighbor lookup. kNN & local attention + FEN J

(O T T T O

local context

LB
L

external memory: cached (key, value) pairs
Will be added to - more layers ...
external memory
after the current
training step. A A A A A A

local attention + FFN

—
J

embedding layer J

input tokens

Figure 2: We extend Transformers with access to (key, value) pairs of previously seen subsequences.

cache. In contrast, we use a very large cache without compression, combined with an approximate
kNN attention mechanism over it.

Sukhbaatar et al.|(2019) make the observation that the feed-forward portion of a transformer layer
functions very much like attention if one replaces the ReLU activation with softmax. They implement
a combined attention over both tokens from the input sequence and a learned (and differentiable)
“memory”. |[Lample et al.| (2019)) exploit this observation to replace the feed-forward layers (FFNs)
with a fast kNN lookup over a much larger “memory”, and achieve large gains in model accuracy
without significant computation overhead. (We use kNN lookup to approximate attention to previous
tokens, not to replace the FFN.)

Non-differentiable external memory has been used in different ways by |Khandelwal et al.|(2020), who
run a pre-trained model over an entire corpus, and construct a large table of (key, token) pairs. They
then use that table to replace the final softmax layer for token selection in the model, which results in
significant improvements in language modeling. |Yogatama et al.[(2021) extend this approach by a
gating mechanism and a process to compress the context into keys for retrieval.

There are several works that combine retrieval with transformers. REALM (Guu et al.| [2020),
MARGE (Lewis et al.,[2020a), RAG (Lewis et al., 2020b), and composite memory for dialog (Fan
et al.| 2021)) retrieve documents from a knowledge base to improve question answering or dialogue.
The knowledge base consists of text snippets and is static and typically separate from the inputs and
outputs of the models. Instead, we focus on language modeling using a decoder-only model, and
propose a simple model that unifies attention and retrieval.

k-nearest-neighbor lookup is a general-purpose technique that is used for a wide variety of machine
learning and retrieval tasks, and high-performance implementations are available for various architec-
tures (Johnson et al.,|2021;|Guo et al.| 2020). Memory-efficient Transformers (Gupta et al., 2021)
replace dense attention with a kNN lookup to increase speed and reduce memory usage.

3 METHOD

The architecture of our kNN-augmented transformer is shown in Figure[2] The bulk of the model is a
vanilla, decoder-only transformer (Vaswani et al., 2017). The input text is tokenized, and the tokens
are embedded into vector space. The embedding vectors are passed through a series of transformer
layers, each of which does dense self-attention, followed by a feed-forward network (FFN). Since
this is a decoder-only language model, we use a causal attention mask and the token embeddings of
the last layer are used to predict the next token.

Long documents are split into subsequences of 512 tokens, and each subsequence is used as the input
for one training step. In contrast to standard practice, we do not shuffle the subsequences; instead,
each long document is fed into the transformer sequentially, from beginning to end, as is done with
Transformer-XL (Dai et al.,[2019).

Published as a conference paper at ICLR 2022

subsequence
1 1 1 1] 1 1 1 1 1] 1 1 1 1
batch Document A I Document C | Document F ...
dimension| | DocumentB | DocumentD | DocumentE | Document G ...

Figure 3: Our data pipeline splits documents into subsequences and packs subsequences into batches.

We also use a Transformer-XL style cache, which holds the keys and values from the previous training
step. When doing self-attention, the cached keys and values are prepended to the current keys and
values, and we use a sliding-window causal mask (Beltagy et al., | 2020) so that each token has a local
context that includes the previous 512 tokens.

3.1 KkNN-AUGMENTED ATTENTION LAYER

One of the transformer layers near the top of the stack is a kNN-augmented attention layer, which
combines two forms of attention. Like all of the other layers, it uses standard dense self-attention on
the local context, which is the input subsequence for the current training step. Unlike the other layers,
however, it also does an approximate k-nearest-neighbor search into the external memory.

The same queries are used for both the local context, and for the external memory. The keys and
values also belong to the same distribution; after each training step, the (key, value) pairs in the local
context are appended to the end of the external memory. If the document is very long, old (key, value)
pairs will be dropped from the memory to make room for new ones. Thus, for each head, the external
memory keeps a cache of the prior M (key, value) pairs, where M is the memory size.

The kNN lookup will return a set of retrieved memories, which consist of the top-k (key, value) pairs
that kNN search returns for each query (i.e. each token) in the input subsequence. As with standard
dense attention, we first construct an attention matrix by computing the dot product of each query
against the retrieved keys, then apply softmax, and finally return a weighted sum of the retrieved
values. Unlike standard dense attention, the retrieved memories contain a different set of (key, value)
pairs for each query.

Attention over the local context is performed in the usual way. The results of KNN-attention and local
attention are then combined using a learned gate:

g =o(by) (D
Vo=V0ao0g+Veo(l-yg) 2

where o is the sigmoid function, and © is element-wise multiplication. V, is the combined result of
attention, V,,, is the result of attending to external memory, and V. is the result of attending to the
local context. The bias b, is a learned per-head scalar parameter, which allows each head to choose
between local and long-range attention. In our experiments, the value of the gate g does not depend
on the content of the token at each position, although that would be a trivial extension to implement.
We did observe that over time, most heads learned to attend almost exclusively to external memory.

Position bias. For dense attention within the local context, we use the TS5 relative position bias (Raffel
et al.}2020). As noted by |Dai et al.|(2019)), adding a global position encoding to each token does not
work well when processing long documents. We don’t use a position bias for the retrieved memories.
Experiments on the PG19 dataset (Sun et al., 2021) have shown that relative position does not appear
to matter at long range, and the TS5 relative bias puts all long-range tokens in the same bucket anyway.

Batching. Figure 3]illustrates how multiple long documents of different lengths are packed into a
batch, and split into subsequences. Each subsequence in the batch comes from a different document,
and thus requires a separate external memory, which is cleared at the start of each new document.

3.2 DISTRIBUTIONAL SHIFT

Because each long document is processed over multiple training steps, there is a distributional shift
in the keys and values that are stored in external memory. The model parameters that produce the
queries change over time, and will thus have shifted since the keys and values were stored. For
very large memories, older records may become “stale.” Similar observations have been made for
CrossBatch memory (Wang et al., 2020c) in the vision domain.

Published as a conference paper at ICLR 2022

To reduce the effects of staleness, we normalize keys and queries (Henry et al.|[2020). Normalization
does not eliminate staleness, but it at least ensures that older keys and newer keys do not differ in
magnitude. We also found that normalization helps stabilize training with the Transformer-XL cache.

In some of our experiments, we observed that training models from scratch with a large memory
sometimes resulted in worse performance than pretraining the model with a small memory of size
8192, and then finetuning it on a larger memory. This training instability could be due to staleness.
However, models seem to be able to cope with a limited degree of staleness (with the small memory)
by adjusting their queries accordingly.

3.3 APPROXIMATE kNN

We employ approximate kNN search rather than exact kNN search because it significantly improves
the computational speed of our model. We use a simple approximation of kNN for TPUs, which has
a recall of about 90%, i.e. 90% of the true top k are returned in the approximate top k. There are
various other efficient approximate kNN algorithms available for CPU and GPU/TPU, for example
through Faiss (Johnson et al., 2021 or ScaNN (Guo et al.|[2020), which can scale into the billions.

4 EXPERIMENTS

We evaluate the effect of adding external memory on five language modeling tasks, all of which
involve long-form text: English language books (PG-19), long web articles (C4), technical math
papers (arXiv Math), source code (Github), and formal theorems (Isabelle). The results show
significant improvements in the perplexity of the model with the addition of external memory. We
experimented with various sizes of external memory, from 1536 to as high as 262K. On most of the
datasets, there was an initial sharp gain from adding a small external memory, followed by smaller
but steadily increasing gains as the size of the memory was increased.

4.1 DATASETS

arXiv Math For the arXiv dataset, we collected a corpus of papers by downloading them via
the arXiv Bulk Data Accessﬂ We filtered papers to include only articles labeled as “Mathematics”
and whose ISTEX source was available. The number of tokens per paper in this dataset is roughly
comparable to the number of tokens per book in PG19, because ISIEX source has many special
characters and the tokenizer tends to output small subwords.

Github We used BngueryE] to obtain a large corpus of Github repositories that are published with
open-source licenses. We used file endings to filter for files in the languages C, C++, Java, Python
(including Jupyter notebooks), Go, and TypeScript. Individual source code files are often fairly short,
and there are many dependencies and cross-references between files in the repository. To capture
these dependencies, we created one long document for each Github repository by traversing the
directory tree, and concatenating all of the files within it. The order in which files are traversed within
the repository is random, but each subdirectory is processed as a unit, so that all the files within the
subdirectory are close to each other in the resulting document. Source code is usually structured
so that related files are all grouped together in the same subdirectory; this traversal preserves that
structure, while still shuffling files and subdirectories in random order.

Formal Math - Isabelle The Isabelle corpus consists of formal mathematical proofs of theories.
We collected all 627 theories available on The Archive of Formal Proofﬂ (as of October 6, 2021) and
an additional 57 theories from the Isabelle standard librar to create a corpus of 684 theories. All
theories have open-source licenses. Each theory is a self-contained mathematical object, on topics
such as foundational logic, advanced analysis, algebra, or cryptography, and consists of multiple
files containing proofs. As with the Github corpus, all files that make up a theory are concatenated

lhttps://arxiv.com/help/bulk_data
2https://Console.cloud.google.com/marketplace/product/github/githubfrepos
3https://www.isafafp.org/topics.html

4https://isabelle.in.tum.de/

https://arxiv.com/help/bulk_data
https://console.cloud.google.com/marketplace/product/github/github-repos
https://www.isa-afp.org/topics.html
https://isabelle.in.tum.de/

Published as a conference paper at ICLR 2022

Context Memory XL cache arXiv PG19 C4(4K+) GitHub Isabelle

512 None None 3.29 13.71 17.20 3.05 3.09
2048 None None 2.69 12.37 14.81 2.22 2.39
512 None 512 2.67 1234 15.38 2.26 2.46
2048 None 2048 242 11.88 14.03 2.10 2.16
512 1536 None 2.61 12.50 14.97 2.20 2.33
512 8192 None 249 12.29 14.42 2.09 2.19
512 8192 512 237 1193 14.04 2.03 2.08
512 65K 512 231 11.62 14.04 1.87 2.06
2048 8192 2048 233 11.84 13.80 1.98 2.06
2048 65K 2048 226 11.37 13.64 1.80 1.99

Table 4: Average token-level perplexities of each model when trained for 500k steps.

together into one long document. Unlike the Github corpus, we order the files according to their
import dependencies, so that later files use sub-theorems that are proved in earlier files.

C4(4K+) (4, the colossal cleaned common crawl, is a very large collection of documents that have
been scraped from the internet (Raffel et al., 2020). We filtered out all documents that have less than
4096 tokens to focus on documents where memory can have an impact.

PG-19 PG-19 is a large dataset of English-language books, published prior to 1919, which were
retrieved from the Project Gutenberg archive (Rae et al.,|2020; Sun et al., | 2021)). PG-19 is one of the
few public datasets that only contains full-length books, and has become a benchmark for long-range
natural language text modeling.

4.2 EXPERIMENTAL METHOD

We used a 12-layer decoder-only transformer (with and without Transformer-XL cache) with an
embedding size of 1024, 8§ attention heads of dimension 128, and an FFN hidden layer of size 4096.
For all of our experiments, we used k£ = 32. Unless specified otherwise, we use the 9th layer as the
kNN augmented attention layer. We used a sentence-piece (Kudo & Richardson, 2018)) tokenizer
with a vocabulary size of 32K.

We used the Adafactor optimizer (Shazeer & Stern, |2018). In preliminary experiments, we conducted
a hyperparameter search to determine the optimal learning rate among three choices ({3.0, 1.0,
3- 10_1}), and found that 1.0 works best. We used a linear warmup schedule for the first 1000
steps, followed by square root decay. We trained the models from scratch for SO0K steps on all the
datasets, except for the Isabelle dataset. Isabelle is small, so we stopped training after 100K steps
when the model began to overfit. We ran all of our experiments on 32 TPU cores. Our models were
implemented in JAX (Bradbury et al.| 2018)) and Flax (Heek et al., [2020)).

When comparing models with different context lengths, we adjusted the batch size (the number of
documents in a batch) so that there are always 2'7 tokens in a batch. E.g., a model with a context
length of 512 has a batch size of 256, while the 2048 model has a batch size of 64.

We experimented with multiple implementations of approximate kNN lookup with different tradeoffs
between quality and computational cost. We did not observe a significant degradation of the model
quality when switching to lower quality approximations of kNN, so the model appears to be quite
robust with respect to the quality of kNN retrieval. For a model with around 200M trainable
parameters the step time increased from 0.2s to 0.25s when we added a memory of size 8K, and to
0.6s when we added a memory of size 65K (measured on TPUv3).

4.3 EFFECT OF EXTERNAL MEMORY

Adding external memory results in substantial gains across datasets and architectures, as
shown in Table[d] Across all five datasets, adding external memory to either the vanilla Transformer
or the Transformer-XL architecture improves perplexity by a substantial amount. For example, on

Published as a conference paper at ICLR 2022

Context Pretrain Fine-tune Perplexity

512 8192 None 2.37
512 65K None 2.31
512 8192 65K 2.32
512 8192 131K 2.30
512 8192 262K 2.26
2048 8192 None 2.33
2048 65K None 2.26
2048 65K 131K 2.23
2048 65K 262K 2.21

Table 5: Finetuning for 20K steps to make use of a larger memory on the arXiv data set.

C4(4K+) dataset, adding memory of size 8192 improves the perplexity of the vanilla Transformer
(with context size 512) from 17.20 to 14.42, and improves Transformer-XL from 15.38 to 14.04.

Increasing the size of the memory increases the benefit of the memory. The best perplexities
for all datasets and architectures were obtained with a memory size of 65K.

Note that Transformer-XL with context size 2048 already has a theoretical receptive field that is quite
large. Each token in a higher layer can attend up to 2048 tokens away in the layer below, so the total
receptive field is 2048 - 12 (layers) ~ 25K. Nevertheless, we still saw a substantial gain when adding
an external memory of size 8192 to this model. kNN attention into memory would appear to be a
more effective way to retrieve information from the distant past than the Transformer-XL cache.

On the other hand, we also saw improvements by adding XL cache to the large-memory (65K) models.
In a vanilla (non-XL) Transformer, the first few tokens in a sequence have very little context, and
thus have higher perplexity. The XL cache provides additional local short-range context at the start of
a sequence, which complements the long-range context provided by external memory.

Interestingly, in a vanilla Transformer, using even a small external memory of size 1536 provides
a gain in perplexity which is almost as good as using a local context of size 2048 but no memory
(e.g. Table[). This is surprising, because the external memory is not differentiable, and is added only
to one layer of the Transformer, whereas increasing the context size is differentiable and affects all
layers. We conclude that the lower layers of a Transformer don’t necessarily need long-range context,
and having a differentiable memory is not as important as one might suspect.

4.4 SCALING TO LARGER MODELS

We scaled up the Transformer model to sizes of 1 and 8 billion parameters. For the 1 billion parameter
model, we use 8 layers, 32 heads with head dimension 128, d_model 2048, and d_ff 16384. For the
8 billion parameter model, we use 64 heads, 16 layers, d_model 4096, and d_ff 32768. We used a
context size of 2048, memory size of 8192, and no XL cache. We ran the comparisons to the vanilla
Transformer on the arXiv math dataset. Scaling plots are shown in Figure[I]

External memory provides a consistent improvement to the model as it is scaled up. Remarkably, we
found that the smaller Memorizing Transformer with just 8k tokens in memory can match the
perplexity of a larger vanilla Transformer which has 5X more trainable parameters.

4.5 FINETUNING ON LARGER MEMORIES

Finetuning on a larger memory. In some cases, training was unstable when using large memories,
possibly due to distributional shift early in the training (See Section [3.2)). Thus, for memories of
131K or more tokens, we first pretrain the model with a memory size of 8192 or 65K for 500K steps,
and then finetune it with the larger memory for an additional 20K steps. The results of finetuning on
the arXiv Math data set are shown in Table[5] Increasing the size of external memory provided
consistent gains up to a size of 262K. Note that 262K tokens is longer than almost all of the
documents in arXiv, and thus we would not expect to see any gain past this point (see Appendix [A).

Published as a conference paper at ICLR 2022

2.8
= —— Memory Fine-tuning
© —— Transformer
E 2.6 —— Memorizing Transformer
%
L
224 T\ T TTTTTTTTTTTTTMATTTTIITTTT
<
K
=
o)
022 TN

0 300K 500K 600K

Training steps

Figure 6: Finetuning a 1B vanilla Transformer model to use external memory of size 65K.

Finetuning a non-memory model to use memory Pretraining can be very costly both in time
and computational resources. Thus, a natural question to ask is: can one fine-tune a pretrained
Transformer to use external memory? The answer is yes!

We took a pre-trained 1B vanilla Transformer model, and fine-tuned it to use external memory (the
1B models used in Section[d.4). The fine-tuning result is shown in Figure [] Notice that the model
quickly learns to use external memory. Within 20K steps (4% of the pre-training time) the fine-tuned
model has already closed 85% of the gap between it and the 1B Memorizing Transformer, and after
100k steps it has closed the gap entirely.

4.6 INFORMATION RETRIEVAL PATTERNS

We conducted a qualitative study of what the model was actually retrieving from external memory,
by finding which tokens showed the biggest improvements in cross-entropy loss when the size of
the memory was increased, and then examining the top-k retrieved memories for those tokens. We
found that the model gained the most when looking up rare words, such as proper names, references,
citations, and function names, where the first use of a name is too far away from subsequent uses to
fit in the local context. This result is in keeping with the prior analysis of long-context Transformers
on PG19 (Sun et al.[2021), which found similar lookup patterns. For this experiment, we used a
slightly older version of the architecture without the gating mechanism.

Which tokens show a benefit from memory? Figure [/| shows a visualization of which tokens
show an improvement when the size of the external memory is increased. We selected a math paper at
random, and plotted the difference in cross entropy loss for each token z; in the paper, comparing two
models with the same parameters, but with memories of different sizes. A; = cross-entropyg; g ()
— Cross-entropys,i (;). Positive values show an improvement in loss.

The x-axis on the chart is the token number 7, while the y-axis is A;. For the first 8192 tokens, the
difference between the two models is zero, since the larger capacity of the 32K memory isn’t being
used yet. However, after token 8193, we can see that the larger memory helps, on average, over the
smaller memory. The benefit is not universal, since the predictions for some tokens become worse,
possibly due to the fact that a relevant retrieved memory no longer makes it into the top-k£ when the
size of the external memory is increased. This figure also shows that the benefit of external memory
is somewhat sparse. The improvement in perplexity seems to be mainly driven by a small percentage
of tokens that obtain a large improvement in cross-entropy loss when using the larger memory.

What information is being looked up? Given that only a subset of tokens shows improvement
from external memory, we did a further investigation into what, exactly, those tokens are using the
memory for. We took those tokens which showed the largest improvement in cross-entropy loss, and
for each of them tokens, we examined the top-k retrieved memories. We studied arXiv math, Github
and Isabelle corpus. For arXiv math and Github, we found the model retrieved function and variable
names. See more details with examples in Appendix

Published as a conference paper at ICLR 2022

10

0 MWTWWWW

Ok 10k 20k

Figure 7: Difference in loss for each token in a randomly chosen paper, using the same model once
with a memory size of 8K and once with 32K. Higher numbers mean the longer memory helped in
comparison to the shorter memory. This paper is 22K tokens long.

Query index Input Target Surrounding context Retrieved index ~ Retrieved surrounding context

29721 mark ov rule prob_space. markov_inequality 8088 M. t \<le> X a} \<le> expectation X / t"
40919 _ th = (subgraph_threshold Hn/p n) 27219 threshold H n = n powr (-(1 / max_density’
49699 S w assumes " orthonormal_system S w" 28050 definition orthonormal_system :: "

Table 8: Examples of memory retrieval in the Isabelle dataset. The model is able to find the definition of
a lemma from a reference to it. The retrieved surrounding context (highlighted) is the definition body of the
mathematical object highlighted in the querying context.

Retrieving mathematical definitions. Our case study on the Isabelle corpus provides one of the
clearest illustrations of how a model can make good use of external memory. When predicting the
name of a mathematical object or a lemma, the model looked up the definition from earlier in the
proof. Examples of this behavior are shown in Table[§] In example 1, the model retrieves a definition
within the body of a lemma, markov_inequality. In example 2, it retrieves the definition of a
previously defined concept subgraph_threshold. In example 3, it retrieves the definition of
orthonormal_system. We manually checked 10 examples where the model made a prediction
of lemma names, and 8 out of 10 times model found the body of the lemma it needs to predict. In
the other two cases, the model also looked up materials in the immediate vicinity. To the best of
our knowledge, this is the first demonstration that attention is capable of looking up definitions and
function bodies from a large corpus. The Isabelle case study used a model with two memory layers
of size 32K.

5 CONCLUSION

We present a simple extension to the Transformer architecture, called KNN-augmented attention,
which dramatically increases the length of the context that a language model can attend to by using
k-nearest-neighbor lookup into a large external memory. We demonstrate the effectiveness of external
memory in a series of language modeling experiments over a variety of long-document datasets,
including LaTeX documents, source code, formal proofs, and books.

The Memorizing Transformer shows large improvements in perplexity over the baseline for all of
the data sets and architectures that we studied; it is comparable to a vanilla transformer that has
5 times the number of parameters. Perplexity continues to improve with increasing memory size,
although there is a point of diminishing returns. Moreover, external memory continues to provide
benefits even as the transformer is scaled up from 200M to 8B parameters. Perhaps most intriguingly,
a Memorizing Transformer does not need to be pre-trained from scratch; it is possible obtain large
gains from adding memory to an existing pre-trained model, and then fine-tuning it.

Unlike other forms of attention, kNN retrieval can be easily scaled up to huge memory sizes, and is
thus potentially able to leverage vast knowledge bases or code repositories. How to make the best use
of this capability is a topic for future work.

ACKNOWLEDGMENTS

We want to thank Charles Staats for the many fruitful discussions and detailed comments, Henryk
Michalewski for early version of of the memory implementation, Petros Maniatis for his help with our
code datasets, Aitor Lewkowycz for his help with larger scale memorizing transformer experiments,
Behnam Neyshabur for his comments on finetuning non-memory models, Imanol Schlag for his
proofread and detailed comments, and Dennis Lee and Manzil Zaheer for discussions about large-scale
attention and retrieval.

Published as a conference paper at ICLR 2022

ETHICS

The ability to memorize large databases of facts could have potential ramifications for society,
especially if those databases include sensitive personal information or copyrighted works. However,
one advantage of using an external memory is that the memory can be easily cleared of all such
information, as we do at the end of each document that we train on. The same is not true of
differentiable model parameters, which is what most existing architectures use to store facts and
information that they are trained on.

REPRODUCIBILITY

Details of our architecture and training hyperparameters are given in Section [4.2] The datasets
for C4 and PG-19 are publicly available. Our additional datasets, Github, Isabelle, and ArXiv
Math are derived from publicly available data buckets, which we link in the main part of the paper.
Subsection .| include details on how we constructed the datasets from those datasets. We plan to
release our code as open source.

REFERENCES

Joshua Ainslie, Santiago Ontafién, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham,
Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. ETC: encoding long and structured
inputs in transformers. In EMNLP, 2020.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732,2021. URL |https://arxiv.org/abs/
2108.07732.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
CoRR, abs/2004.05150, 2020. URL https://arxiv.org/abs/2004.05150.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/ jax.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374,2021. URL https://arxiv,
org/abs/2107.03374.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlds, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
jamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. In
ICLR, 2021.

10

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2004.05150
http://github.com/google/jax
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Published as a conference paper at ICLR 2022

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168,
2021. URL https://arxiv.org/abs/2110.14168.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In ACL, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In ACL, 2019.

Angela Fan, Thibaut Lavril, Edouard Grave, Armand Joulin, and Sainbayar Sukhbaatar. Addressing
some limitations of transformers with feedback memory. arXiv preprint arXiv:2002.09402, 2020.

Angela Fan, Claire Gardent, Chloé Braud, and Antoine Bordes. Augmenting transformers with
KNN-based composite memory for dialog. Transactions of the Association for Computational
Linguistics, 9:82-99, 2021.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models with a
continuous cache. In ICLR, 2017.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar.
Accelerating large-scale inference with anisotropic vector quantization. In /CML, 2020.

Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, and Jonathan Berant. Memory-efficient
transformers via top-k attention. CoRR, abs/2106.06899, 2021. URL https://arxiv.org/
abs/2106.06899.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Retrieval augmented
language model pre-training. In ICML, 2020.

Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus Norman Rabe, and Bernd Finkbeiner.
Teaching temporal logics to neural networks. In /CLR, 2021.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2020. URL
http://github.com/google/flax.

Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-key
normalization for transformers. In EMNLP, 2020.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 2021.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In /CLR, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In ICLR,
2020.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In EMNLP, 2018.

Guillaume Lample, Alexandre Sablayrolles, Marc’ Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Large memory layers with product keys. In NeurIPS, 2019.

Mike Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan, Sida Wang, and Luke
Zettlemoyer. Pre-training via paraphrasing. In NeurIPS, 2020a.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, et al. Retrieval-augmented genera-
tion for knowledge-intensive NLP tasks. In NeurIPS, 2020b.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Isarstep: a benchmark for high-level
mathematical reasoning. In ICLR, 2021.

11

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2106.06899
https://arxiv.org/abs/2106.06899
http://github.com/google/flax

Published as a conference paper at ICLR 2022

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. DeepMind, 2022.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

Markus Norman Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical reasoning
via self-supervised skip-tree training. In ICLR, 2021.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. In /CLR, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 2020.

Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure Leskovec, Dale Schuurmans, and Bo Dai.
Combiner: Full attention transformer with sparse computation cost. CoRR, abs/2107.05768, 2021.
URL https://arxiv.org/abs/2107.05768.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53-68, 2021.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In ICML, 2018.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample, Herve Jegou, and Armand Joulin. Aug-
menting self-attention with persistent memory. arXiv preprint arXiv:1907.01470, 2019.

Sainbayar Sukhbaatar, Da Ju, Spencer Poff, Stephen Roller, Arthur Szlam, Jason Weston, and Angela
Fan. Not all memories are created equal: Learning to forget by expiring. In /ICML, 2021.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-Micke, and Mohit Iyyer. Do long-range language
models actually use long-range context? In EMNLP, 2021.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. arXiv
preprint arXiv:2009.06732, 2020.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. In ICLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural machine
translation in autoformalization of mathematics in mizar. In International Conference on Certified
Programs and Proofs, 2020a.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020b.

Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R. Scott. Cross-batch memory for embedding
learning. In CVPR, 2020c.

Ronald J. Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural Computation, 1990.

Dani Yogatama, Cyprien de Masson d’Autume, and Lingpeng Kong. Adaptive semiparametric
language models. ACL, 9:362-373, 2021.

12

https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2107.05768

Published as a conference paper at ICLR 2022

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontandn, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird:
Transformers for longer sequences. In NeurIPS, 2020.

Yury Zemlyanskiy, Joshua Ainslie, Michiel de Jong, Philip Pham, Ilya Eckstein, and Fei Sha.
Readtwice: Reading very large documents with memories. In ACL: Human Language Technologies,

2021.

Zhenhai Zhu and Radu Soricut. H-transformer-1d: Fast one-dimensional hierarchical attention for
sequences. In ACL, 2021.

13

Published as a conference paper at ICLR 2022

A LENGTH OF INPUTS

- -1 - - oo =) . . .
Ok 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k

Figure 9: Histogram of the number of tokens in arXiv math papers dataset. We tuncated the histogram
at 500k tokens. The maximum paper had almost 1.6M tokens.

A - e - - R -- L m e o - - B . ‘- - . .
Ok 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k

Figure 10: Histogram of the number of tokens in Github repositories dataset. We cut off the long tail
of this plot. The repository with the maximum length has just over 9M tokens.

el e - —_— ., A - - -
50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Figure 11: Histogram of the number of tokens in Isabelle proof scripts dataset.
[== K o ol — .
50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Figure 12: Histogram of the number of tokens in PG19 books dataset.
ok 10k 20k 30k a0k 50k 60k 70k 80k 90k 100k

Figure 13: Histogram of the number of tokens in C4 documents filtered by documents that have less
than 4096 tokens.

14

Published as a conference paper at ICLR 2022

A.1 ABLATION STUDIES

In the following section, we performed ablation studies to investigate the effects of various hy-
perparameters. Unless otherwise specified, we carried out these experiments with a memorizing
transformer with context size 512, XL cache 512 with a memory size of 8§192.

Multiple NN layers. We experimented with using two kNN layers, rather than just one. However,
we did not see further benefits brought by more than multiple retrieval layers.

kNN layer index We experimented with adding the external memory to layer 3, 6, 9 and 12 in a
12-layer transformer, with results shown in Table[14] We found that adding memory to the middle of
the layer stack will obtain the best result, whereas adding memory to layers either too close to the
input or to the output obtained less gains.

Table 14: Different layer index.

Layer index Perplexity

3 240
6 2.36
9 2.37
12 243

Number of neighbors We studied the effects of the number of neighbors we retrieve from memory,
with results shown in Table[T5] We found that even with 32 number of neighbors, we can already
obtain a comparable results with 128 or 256 neighbors.

Table 15: Number of neighbors.

Number of neighbors Perplexity

32 2.38
128 2.37
256 2.37

Random seeds We measured the statistical significant of the results reported. We did 3 runs with
3 random seeds for Transformer XL of size 512, and also a memorizing transformer with memory
size 8192. We measured the standard deviation of perplexities after 500K steps of training, shown in
Table[I6] We saw the standard deviation between different runs of the same experiment appears to be
much smaller than the gap between different models.

Table 16: Random seeds.

Models Perplexity

Transformer XL 2.67+0.01
Memorizing Transformer 2.37 £ 0.005

15

Published as a conference paper at ICLR 2022

B WHAT DOES THE MODEL RETRIEVE FROM MEMORY?

Retrieving citation names On arXiv math, several examples are shown in Table[T7] which includes
both the retrieved token and its surrounding context. We observe that many of the gains in cross-
entropy loss took place when trying to predict the name of bibitems, citations, or references, by
looking up the references and citations used previously in the paper. Such lookups usually span over
the entire paper, which is much longer than 8192 tokens, providing a plausible explanation for the
gain beyond memory size of 8§192.

Table 17: The table shows several examples of which tokens were retrieved during language modelling of arXiv
math dataset. The model is retrieving names of the references from previous passages.

Query index Input Target Surrounding context Retrieved index Retrieved surrounding context

20389 Mon thus bibitem{ ComtetMonthusYor } 2208 Brownian motion \cite{ ComtetMonthusYor }
16623 cha kra \cite{ chakrabarti }. 4677 ~1.2 of \cite{ chakrabarti }

14747 as d \egref{ asdfg } which 3365 begin{equation} \n \label{ asdfg .1}

Retrieving function names from the codebase As with the arXiv papers, we also studied which
tokens the model retrieved from memory. As might be expected, the model is often looking up the
names of functions, and variables, as shown in Table [T8]

Table 18: Examples of memory retrieval in the Github dataset. The model looks up how functions are used
elsewhere in the repository.

Query index Input Target Surrounding context Retrieved index Retrieved surrounding context
23837 Fo nte menu_play-> setarFonte 14607 menu_load-> setarFonte
23825 s 35 hscreen/2-50, 50, 200, 35); 14599 20, y+40, 200, 35)

14546 -> adi panel-> adicionaComponente 5205 panel-> adicionaComponente

16

Published as a conference paper at ICLR 2022

B.1 MORE RETRIEVING EXAMPLES IN FORMAL THEOREM PROVING CORPUS

Example 1

Input token index: 64604

@ 9

Input token: “_
Target token: “pair”
Surrounding context:)) by (simp add: Fourier_sum_limit_pair [OF f, symmetric] Fourier’
Name needs to be predicted: Fourier_sum_limit_pair
Retrieved token: “Four”
Retrieved token index: 64412
Retrieved context: 2 * n. Fourier_coefficient f k * trigonometric_set k t)
Definition of the name:
lemma Fourier_sum_limit pair:
assumes "f absolutely integrable on {-pi..pi}"
shows "(An. > k<2 * n. Fourier_coefficient f k * trigonometric_set k t) —— 1

«—— (An. Y k<n. Fourier coefficient f k * trigonometric set k t) —— 1"
(is "?lhs = ?rhs")

Figure 19: Definition of Fourier_sum_limit_pair.

Example 2

Input token index: 46175
Input token: “tri”’

Target token: “gon”

Surrounding context: <le>n. a k * trigonometric_set k x)

Name needs to be predicted: orthonormal_system_trigonometric_set
Retrieved token: “gon”

Retrieved token index: 35457

Retrieved context: lemma orthonormal_system_trigonometric_set:\n "orthonormal_system

Definition of the name:

lemma orthonormal_system trigonometric_set:
"orthonormal system {-pi..pi} trigonometric_ set"

Figure 20: Definition of orthonormal_system_trigonometric_set.

17

Published as a conference paper at ICLR 2022

Example 3

e Input token index: 49760
e Input token: “sum’™

e Target token: “m”

e Surrounding context: nusing Fourier_series_square_summable [OF assms, of’
e Name needs to be predicted: Fourier series_square_summable

e Retrieved token: “sum”

e Retrieved token index: 35457

e Retrieved context: lemma Fourier_series_square_summable\n assumes:

e Definition of the name:

lemma Fourier_series_square_summable:
assumes 0s: "orthonormal system S w" and w: "Ai. (w i) square integrable S"
and f: "f square integrable S"
shows "summable (confine (Ai. (orthonormal_coeff S w f i) ~ 2) I)"

Figure 21: Definition of Fourier_series_square_summable.

Example 4

o Input token index: 49697

[T3R L]

e Input token: “_

o Target token: “system”

e Surrounding context: lemma Riemann_lebesgue_square_integrable:
nassumes "orthonormal_system S w

e Name needs to be predicted: orthonormal_system

e Retrieved token: “system”

e Retrieved token index: 28052

e Retrieved context: definition orthonormal_system :: "\’a::euclidean’
e Definition of the name:

definition orthonormal_system :: "‘'a::euclidean_space set = ('b =

= real) = bool"
where "orthonormal system S w = Vm n. 12product S (w m) (w n) m

'a
(if =n then 1 else 0)"

Figure 22: Definition of orthonormal_system.

18

Published as a conference paper at ICLR 2022

Example 5

e Input token index: 34817
e Input token: “.”

o Target token: “b”

e Surrounding context: shows "integrable (lebesgue_on {a..b})
e Retrieved token 1: “.”

e Retrieved token index 1: 2416

e Retrieved context 1: lebesgue_on {a..b}) fi

e Retrieved token 2: “-”

e Retrieved token index 2: 2445

e Retrieved context 2: (Iebesgue_on {a-c..b-c}) (

e Retrieved token 3: “-”

e Retreived token index 3: 6479

e Retrieved context 3: (lebesgue_on {-pi..pi}) (

Example 6

o Input token index: 49759

@ 99

e Input token:

i)

e Target token: “sum
e Surrounding context: 0"\n using Fourier_series_square_summable [OF assms
e Retrieved token 1: “set”

e Retrieved token index 1: 35044

e Retrieved context 1: definition trigonometric_set :: "nat \<Rightarrow>

e Retrieved token 2: “ier”

e Retrieved token index 2: 47272

e Retrieved context 2: definition Fourier_coefficient\nwhere

e Retrieved token 3: “ine”

e Retrieved token index 3: 18160

e Retrieved context 3: lemma Schwartz_inequality_strong:\nassumes “f’
e Retrieved token 4: “system”

e Retrieved token index 4: 28052

e Retrieved context 4: definition orthonormal_system :: “\’a::euclidean’
e Retrieved token 5: “<”

e Retrieved token index 5: 47241

e Retrieved context 5: subsection\<open>Convergence wrt the L’

e Retrieved token 6: “n”

e Retrieved token index 6: 40835

e Retrieved context 6: \n subsection\<open>A bit of extra’

19

	Introduction
	Related Work
	Method
	kNN-augmented Attention Layer
	Distributional Shift
	Approximate kNN

	Experiments
	Datasets
	Experimental Method
	Effect of external memory
	Scaling to larger models
	Finetuning on Larger Memories
	Information Retrieval Patterns

	Conclusion
	Length of inputs
	Ablation studies

	What does the model retrieve from memory?
	More Retrieving examples in formal theorem proving corpus

