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Abstract

Driving dataset is essential for success of autonomous driv-001
ing system, yet collecting real-world data under diverse002
domains such as weather, time, and location is challeng-003
ing and costly. This difficulty results in real-world driving004
datasets with restricted data domains. Although synthetic005
driving datasets have been introduced to address this is-006
sue, the diversity of domains they can cover remains lim-007
ited. In this paper, we present ReSIT, a synthetic driv-008
ing dataset built using a simulation platform that enables009
precise control over data collection conditions, resulting010
in more domains and possible combinations than exist-011
ing datasets. Comparative analyses demonstrate that our012
dataset is more realistic than previous datasets. Addition-013
ally, we present a text-guided diffusion model tailored for014
multi-domain image-to-image translation, using an adapter015
for precise source image feature injection and guidance for016
effective translation. Experimental results show that our017
model outperforms existing models in preserving the struc-018
tural content of source images during domain translation019
even in complex driving scenes. Our code and dataset will020
be released with the paper.021

1. Introduction022

The success of autonomous driving depends on the ad-023
vancement of various computer vision tasks, such as object024
detection, classification, and segmentation, which necessi-025
tate well-curated, large-scale datasets [19, 38]. However,026
collecting real-world driving data is challenging due to the027
high costs and laborious data annotation. Moreover, exist-028
ing real-world datasets [5, 14, 17, 57, 74] have limited diver-029
sity in terms of geographical locations, weather conditions,030
and scene variations, which reduces the generalization per-031
formance of the trained model and limits its deployment in032
diverse environments.033

To overcome these challenges, some studies have em-034
ployed synthetic datasets generated in virtual environ-035
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Figure 1. Sample images from ReSIT containing various do-
mains such as weather, time of day, road marking status, road sur-
face, and location.

ments [4, 16, 46, 51, 52, 63]. Those datasets have a 036
great ability to control various domain conditions and pro- 037
vide perfect annotation labels for training machine learning 038
models. However, current synthetic driving datasets are pri- 039
marily designed for specific sub-tasks such as pedestrian de- 040
tection [61] and weather classification [42]. Additionally, as 041
shown in Tab. 1, they provide limited domain combinations 042
that cannot reflect complex real-world [46]. As a result, 043
models trained on these datasets often lack robustness when 044
applied to more diverse or unexplored environments [72]. 045

Although synthetic images aim to replicate real-world, 046
there are inherent discrepancies in visual appearance, result- 047
ing in suboptimal model performance when directly trans- 048
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Annotations

Dataset Year Domain
Possible

Combination
Image

Resolution
Total

Frame
Sem.
Seg.

Ins.
Seg.

2D
Det.

3D
Det. Depth Line

Optical
Flow

Graphic
Engine

Real
World

KITTI [17] 2012 3 1 1382x512 7K ✓ ✓ ✓ ✓
CityScapes [14] 2016 3 27 2048×1024 25K ✓ ✓ ✓ ✓
BDD100K [74] 2018 3 18 1280×720 100K ✓ ✓ ✓ ✓

INIT [57] 2019 1 4 1920×1208 155K ✓
nuScenes [5] 2020 3 12 1600×900 1.4M ✓

Synthetic

VKITTI [16] 2016 2 6 1242×375 21K ✓ ✓ ✓ ✓ ✓ ✓ UNITY
GTA-V [51] 2016 2 4 1914×1052 25K ✓ GTA
Synthia [54] 2016 3 18 1280×760 9K ✓ ✓ ✓ UNITY

SynScapes [70] 2018 1440×720 25K ✓ ✓ ✓ ✓ ✓ Procedural Engine
Apolloscape [27] 2018 1920×1080 273K ✓ ✓ ✓ ✓ ✓ ✓ UNITY

VKITTI2 [4] 2020 3 8 1242×375 21K ✓ ✓ ✓ ✓ ✓ ✓ UNITY
Shift [63] 2022 4 432 1280×800 2.5M ✓ ✓ ✓ ✓ ✓ ✓ Carla

CarlaScenes [33] 2022 2 16 1280×960 ✓ ✓ ✓ Carla
UrbanSyn [20] 2023 2048×1024 7.5K ✓ ✓ ✓ UNITY
ReSIT(Ours) 2024 5 5040 1920×1080 300K ✓ ✓ ✓ ✓ ✓ ✓ ✓ UNITY

Table 1. Comparison of driving datasets in terms of domain, size, and supported tasks.

ferred to real-world tasks [64]. One reason for this discrep-049
ancy is the resolution of available 3D assets and the speed050
of data generation, which result in non-photorealistic im-051
ages [20]. Pedestrians and vehicles provide a clear example052
of the visual gap inherent in this issue, along with back-053
ground elements such as roads, weather, and time under var-054
ious domain-specific conditions. While domain adaptation055
techniques [10, 34, 71] have been developed to bridge this056
gap, they have yet to offer a fundamental solution, empha-057
sizing the need for more realistic synthetic data.058

In this paper, we introduce ReSIT, a more realistic059
synthetic driving dataset for multi-domain image-to-image060
translation created using Cognata simulation platform [12],061
to address key limitations including image quality, domain062
diversity, and rare driving scenarios [18, 20, 38]. Compared063
to existing synthetic driving datasets [4, 16, 46, 51, 52, 63],064
ReSIT offers a greater number of domain variations—such065
as weather, time of day, road marking status, road surface,066
and location— and their possible combinations, thereby067
enabling greater data diversity in road scenes. Fig. 1068
demonstrates examples of domain diversity in our dataset.069
Through a comprehensive analysis, our dataset exhibits its070
superiority in terms of diversity and realism.071

To demonstrate the effectiveness of our dataset, we pro-072
pose a text-guided diffusion model specifically designed for073
multi-domain image-to-image translation across the exten-074
sive range of combinations in our dataset. We incorporated075
an adapter in our model for accurate input image embed-076
ding, along with direct guidance for efficient domain trans-077
lation. This method preserves dominant contents such as078
vehicles, pedestrians, and the overall road structure in driv-079
ing scenes, modifying domain-specific semantics. By lever-080
aging multi-domains in ReSIT, it enables a richer variety of081
scene generation. It achieves remarkable performance in082
multi-domain translation metrics, particularly outperform-083
ing existing methods in content preservation.084

Our work offers the following key contributions:085

• Diverse multi-domain synthetic dataset: We introduce086

a new synthetic driving dataset that provides a compre- 087
hensive collection of multi-domain combinations, encom- 088
passing diverse environmental variations. 089

• Novel multi-domain image translation method: We 090
propose a new unpaired image-to-image translation 091
model capable of handling multiple domain combinations 092
simultaneously, while preserving the structural and con- 093
textual content of the source images. 094

2. Related Work 095

Real-World and Synthetic Driving Datasets Following 096
the introduction of the KITTI dataset [17], prominent 097
datasets such as Cityscapes [14] and BDD100K [74] have 098
been key contributors to the development of models for 099
tasks like object detection [15], semantic segmentation [62], 100
and depth estimation [3] in self-driving vehicles. However, 101
real-world datasets have shortcomings, making it difficult 102
to encompass the diverse environmental changes in driving 103
scenarios. Furthermore, annotations such as segmentation, 104
depth estimation, lane detection, and optical flow –which 105
require extensive manual labeling– are either unavailable or 106
provided in small quantities [76]. The nuScenes dataset [5], 107
which employs Lidar sensors to provide 1.4 million images 108
with 3D bounding box annotations, has recently been intro- 109
duced. While nuScenes plays an important role in 3D de- 110
tection, it offers data from only two cities, and annotations 111
are largely focused on Lidar-based 3D detection. 112

In response to the challenges faced by real-world 113
datasets, several synthetic datasets have been proposed, 114
starting with VKITTI [4, 16]. The advancement of 3D 115
graphics engines has enabled the creation of various syn- 116
thetic datasets offering the advantage of providing perfect 117
labels for every frame. However, existing synthetic datasets 118
generate limited objects and biased environments, failing 119
to capture the full diversity of real-world driving scenar- 120
ios [20]. Datasets like GTA [51] and VIPER [52] face con- 121
straints in representing diverse driving domains due to the 122
inherent limitations of the game engine. Although, the re- 123
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cent SHIFT [63] provides 2.5 million images across 8 cities124
with a variety of domain categories, the domain combina-125
tions are not sufficient.126

Domain Gap Traditional machine learning approaches127
assume that the training and test data share the same un-128
derlying distribution. When this assumption is violated,129
the model performance can significantly degrade [48]. In130
particular, there is a substantial domain gap between syn-131
thetic datasets and real-world datasets [56], which hin-132
ders the direct application of synthetic data in practical133
scenarios. Transfer learning techniques, particularly do-134
main adaptation, have been widely explored to bridge this135
domain gap [2, 7, 34]. Recent studies have investigated136
advanced strategies such as multi-domain adaptation, do-137
main mixing, and adversarial training to tackle these chal-138
lenges [1, 10, 71]. While these approaches offer some im-139
provements, they still struggle with the growing complexity140
of domain combinations, highlighting the need for more ro-141
bust solutions that can handle diverse driving scenarios.142

Multi-domain I2I Translation This enables transfor-143
mations across multiple visual domains for several appli-144
cations like style transfer and data augmentation. Early145
models like StarGAN [11] introduced a unified frame-146
work to translate images across multiple domains using147
a single model, eliminating the need for separate models148
for each domain pair. Subsequent methods such as MU-149
NIT [28] and DRIT [37] further advanced image transla-150
tion by enabling multi-modal outputs, allowing for varied151
translations within each domain and enhancing model flex-152
ibility. Recent studies have advanced translation quality153
using diffusion-based approaches with text-guided meth-154
ods [32, 35, 55]. Additionally, techniques that invert input155
images into noise [31, 41, 60] and selectively translate spe-156
cific areas through attention control [6, 22, 66] have proven157
highly effective. However, challenges remain in achiev-158
ing a balance between preserving contextual content and al-159
lowing flexible domain translation, especially when dealing160
with diverse domains.161

3. Dataset Overview162

3.1. Motivation and Background163

Most existing driving datasets have limited complexity in164
domain combinations. This results in a lack of scene di-165
versity and difficulties in reflecting the wide range of real-166
world environmental conditions, as indicated by the find-167
ings of previous studies [38–40]. This insufficiency re-168
stricts the capacity of deep learning models to learn from169
the complex conditions that can be encountered in the real170
world. Domains such as status of road marking wear and171
surface conditions are frequently excluded from considera-172
tion, making it challenging for models to adapt to real-world173
environments [20]. To address this limitation, we generated174

2D bounding box 3D bounding box semantic seg.

instance seg. lane instance seg. depth map

Figure 2. Annotations in ReSIT. Comprehensive annotations are
provided for all source images.

(a) Time of Day (b) Weather (c) Location

Figure 3. t-SNE visualization for domain categories in ReSIT.

the ReSIT synthetic driving dataset using the Cognata Sim- 175
ulation Platform [12], which built upon the Unity Graphics 176
Engine. The ReSIT dataset systematically combines multi- 177
ple domain elements to represent complex real-world driv- 178
ing conditions, allowing for comprehensive model evalua- 179
tion across diverse scenarios and enhancing the reliability 180
of autonomous driving tasks. 181

3.2. Dataset Generation Strategy 182

The primary contribution of our dataset is amplifying do- 183
main combinations to closely create and simulate a more 184
diverse real-world driving environment. Unique scenarios 185
can be generated through numerous combinations across 186
the following domain categories: 187

• Time of Day: Various times of day represent sunlight and 188
brightness changes, such as morning, dawn, and evening. 189

• Weather: Combining various climatic variables such as 190
cloudy, rain, and fog enables us to create complex and 191
unpredictable environmental conditions. 192

• Location: Our Dataset reflects geographic characteris- 193
tics across 14 diverse regions, including various regions 194
of America, Europe, Asia, and the Middle East, ensuring 195
comprehensive representation beyond specific locales. 196

• Road Surface: Diverse road surface conditions are incor- 197
porated, including wet roads, puddles, and snow-covered 198
surfaces, to simulate real-world road conditions. 199

• Road Marking Status: Road type is diversified with lev- 200
els of degradation such as wear, no wear, and faded mark- 201
ings reflecting the variability of road conditions. 202

As shown in Tab. 1, our dataset encompasses a broad 203
range of domain categories, generating a total of 5,040 204
unique domain combinations – a level of diversity surpass- 205
ing that of typical datasets. These domain combinations are 206
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Dataset Type
Object Detection

(mAP)
Semantic Segmentation

(mIoU)
Total Car Person Total Car Person

KITTI [17] real 0.29 0.35 0.22 - - -
INIT [57] real 0.38 0.54 0.23 - - -

BDD100K [74] real 0.31 0.40 0.23 88.75 97.56 79.93
SHIFT [63] synthetic 0.29 0.35 0.22 91.86 98.96 84.76

ReSIT (Ours) synthetic 0.32 0.37 0.27 95.47 99.67 91.26

Table 2. In-dataset evaluation results.

Train Test
Object Detection

(mAP)
Semantic Segmentation

(mIoU)
Total Car Person Total Car Person

SHIFT KITTI 0.20 0.25 0.19 - - -
ReSIT (Ours) KITTI 0.24 0.28 0.19 - - -
SHIFT INIT 0.08 0.13 0.04 - - -
ReSIT (Ours) INIT 0.14 0.16 0.12 - - -
SHIFT BDD100k 0.12 0.14 0.10 59.43 88.19 30.67
ReSIT (Ours) BDD100k 0.18 0.23 0.14 69.53 92.63 46.42

Table 3. Cross-dataset evaluation results.

meticulously considered to capture a wide range of driving207
conditions, which helps minimize data bias. The dataset is208
comprised of 300,000 images in total. For further details on209
the distribution and proportions of each domain category,210
please refer to the supplementary material.211

3.3. Dataset Design212

• Camera Specifications and Frame Rate: Our dataset213
uses a front camera with a 100-degree field of view214
(FOV). Similar to other datasets [63, 74], our dataset was215
created from continuous scenarios by extracting 1 FPS216
from 50-second videos, resulting in 50 frames per sce-217
nario and balancing continuity with inter-frame variation.218

• Resolution and Compatibility: The dataset has 1920219
× 1080 resolution, capturing extensive details for object220
recognition while maintaining compatibility with other221
datasets.222

• Annotations: Our dataset provides a richer set of annota-223
tions, such as bounding box, segmentation, depth, optical224
flow, supporting a wide range of computer vision tasks.225
Figure 2 visualizes the provided annotations.226

4. Dataset Analysis227

4.1. t-SNE Visualization of domain categories228

To validate that the classes within each domain in229
our dataset are clearly distinguished, we trained a230
ResNet152 [21] classification model from scratch and231
extracted feature embeddings for visualization using t-232
SNE [67]. Figure 3 presents the t-SNE plots for key do-233
mains in our dataset: time of day, weather condition, and lo-234
cation. The results show that the images for each class form235
distinct clusters, even though diverse domain conditions236
can introduce substantial variations. While a single class237
may appear as multiple sub-clusters due to different do-238
main factors, these sub-clusters are remain well-separated239
from other classes within the same domain. This demon-240

strates that our dataset captures distinguishable image-level 241
features for each class across varying domain conditions. 242
Therefore, our dataset provides reliable and robust repre- 243
sentations that enable accurate image classification across 244
multiple domain combinations. 245

4.2. Dataset Evaluation 246

To evaluate the applicability and realism of the proposed 247
synthetic dataset, we conducted two key experiments. The 248
first experiment focuses on in-dataset evaluation, where 249
models are trained and tested on the same dataset to assess 250
the dataset’s ability to support effective learning for driv- 251
ing scene understanding. The second experiment examines 252
cross-dataset evaluation, where models trained on synthetic 253
datasets are tested on a real-world dataset to assess general- 254
ization performance and the realism of the synthetic data. 255

4.2.1. Evaluation Setup 256

• Model: We employed Faster R-CNN [50] for object de- 257
tection and DeepLab v3 [9] for semantic segmentation. 258

• Dataset Configuration: We used KITTI [17], 259
BDD100K [74], INIT [57], SHIFT [63], and our 260
dataset for training. Testing was conducted within the 261
same dataset (in-dataset Evaluation) and on KITTI, 262
BDD100K, INIT (cross-dataset Evaluation). For all 263
experiments, the number of training images was limited 264
to 50000, and the number of test images was set to 5000. 265
In the case of segmentation experiments, due to limited 266
labels in BDD10k, we used 7000 training images and 267
1000 test images. All images were resized to have a 640 268
width while maintaining the original aspect ratio. 269

• Class Selection: We focused on two common classes: 270
car, and pedestrian, across all experiments. 271

• Hyperparameter Settings: We followed the default hy- 272
perparameter settings of MMDetection [8] and MMSeg- 273
mentation [13] to ensure fair baseline comparisons. 274

4.2.2. In-Dataset Evaluation 275

The in-dataset evaluation aims to compare the performance 276
of models trained and tested on the same dataset across five 277
datasets: KITTI, BDD100K, INIT, SHIFT, and Ours. This 278
experiment is intended to validate that our dataset can effec- 279
tively serve as training data for vision tasks in autonomous 280
driving (e.g., Object Detection, Semantic Segmentation), 281
similar to both existing real and synthetic datasets. As 282
shown in Tab. 2, models trained and tested on each dataset 283
achieved comparable performance. These results demon- 284
strate that our synthetic dataset provides sufficient learning 285
capability for vision tasks, similar to well-established real 286
(KITTI, BDD100K, INIT) and synthetic (SHIFT) datasets. 287
This finding emphasizes that our dataset effectively captures 288
key features of driving scenes, making it a viable alternative 289
or complement to existing datasets. 290

4



CVPR
#23

CVPR
#23

CVPR 2025 Submission #23. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 4. Pipeline of our method for multi-domain I2I translation. DIP-Adapter projects both image-level and pixel-level tokens from
the input image into the U-Net to preserve important structures in complex driving scenes. Domain Translation Guidance utilizes the
difference between the latent vectors obtained from the source and target text prompts to enable efficient and direct domain translation.

4.2.3. Cross-Dataset Evaluation291

The cross-dataset evaluation assesses the generalization ca-292
pability of models trained on synthetic datasets (SHIFT293
and Ours) by applying them to real-world datasets (KITTI,294
BDD100K, INIT). The primary objective is to validate295
whether the proposed synthetic dataset offers greater re-296
alism and better captures diverse driving scenarios com-297
pared to SHIFT, thereby leading to improved performance298
in real-world tasks. According to Tab. 3, models trained on299
our synthetic dataset outperforms models trained on SHIFT300
when tested on real-world datasets. This indicates that our301
proposed dataset can cover a broader range of driving sce-302
narios and provides more realistic representations of real-303
world driving conditions. The superior cross-dataset per-304
formance of our dataset suggests that it is better suited for305
training models with enhanced generalization capabilities,306
making it a more effective choice for real-world applica-307
tions.308

5. Proposed Method309

5.1. Preliminaries310

Diffusion models [26, 53, 59] are probabilistic generative311
models that iteratively denoise random noise to approxi-312
mate a target image. By employing a specialized loss func-313
tion that minimizes the difference between target noise ϵ314
and predicted noise, these models accurately learn the trans-315

formation from noise to image: 316

L = Ex0,ϵ ∼N (0,I),c,t∥ϵ− ϵθ(xt, c, t)∥2, (1) 317

where ϵθ(·) represents the noise predicted by the model with 318
image data x, additional condition c, and t denotes the cur- 319
rent time step in the diffusion process. 320

In multi-domain unpaired image-to-image translation, it 321
is essential to preserve the structural and contextual con- 322
tent of the source image while modifying only the neces- 323
sary domain-specific attributes [35]. Particularly for driv- 324
ing scenes, which contain both large objects such as pedes- 325
trians and vehicles and semantically important smaller ele- 326
ments like traffic lights and signs, it is important to main- 327
tain the structural content of these elements while translat- 328
ing domain-specific attributes, such as weather or location. 329

Existing models [6, 22, 31, 41, 43, 60, 66] often invert 330
the input image into noise to retain as much image con- 331
tent as possible and then apply attention map control for 332
selective editing of domain-specific attributes. While effec- 333
tive across general datasets with few primary objects, these 334
approaches face limitations in preserving critical structures 335
within complex driving scenes. Therefore, we propose the 336
first text-guided diffusion model, tailored for multi-domain 337
image-to-image translation using an adapter. Our model 338
uses the adapter to embed the input image more precisely 339
and offers direct guidance for effective domain translation. 340
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Source SDEdit DDIM+MasaCtrl Direct+PnP IP-Adapter ReSIT (Ours)
1

do
m

ai
n

morning time / clear weather / flooded→snow road surface / no wear road marking / Highway location

3
do

m
ai

n

afternoon→evening time / cloudy weather / puddles→partial snow road surface / faded road marking / Munich→Hod HaSharon Urban location

5
do

m
ai

n

morning→afternoon time / cloudy→clear weather / wet→water covered road surface / faded→no wear road marking / Pittsburgh→Munich location

Figure 5. Qualitative evaluation for multi-domain image-to-image translation methods.

5.2. Dense Image Prompt Adapter341

Adapters [44, 73] have frequently been employed in dif-342
fusion models to incorporate image prompts alongside text343
prompts. By training only the projection network of the344
adapter that injects extracted features, while keeping the345
image encoder and diffusion model frozen, the model can346
efficiently integrate visual information without additional347
training. The loss function with the text prompt ct, addi-348
tional image prompt ci is represented as follows:349

L = Ex0,ϵ ∼N (0,I),ct,ci,t∥ϵ− ϵθ(xt, ct, ci, t)∥2. (2)350

To embed visual information, CLIP [49] image encoder351
enables efficient semantic image representation by embed-352
ding image and text features into a shared latent space.353
However, due to global supervision based on image cap-354
tions, this image encoder has limitations in learning detailed355
pixel-level information such as color and position, making356
it less effective in capturing fine-grained pixel details [30].357
DINOv2 [47], trained using self-supervised learning on im-358
age data alone, can encode fine-grained pixel-level repre-359
sentations. Therefore, as shown in Fig. 4, we designed360
Dense Image Prompt (DIP) Adapter, which concatenates361
image-level tokens from CLIP and pixel-level tokens from362
DINOv2 to produce semantically rich and accurate image363
embeddings. This method demonstrates improved retention364
of detailed image features, outperforming the IP-Adapter,365
which relies solely on image-level token embeddings.366

5.3. Domain Translation Guidance 367

Classifier-free guidance (CFG) [25] is a technique in diffu- 368
sion models that enables conditional control in image gen- 369
eration without a separate classifier model. The diffusion 370
model is trained simultaneously on both conditional and un- 371
conditional setting, and during sampling steps, it utilizes a 372
guidance scale w to adjust the strength of conditioning by 373
combining the conditional prediction ϵθ(xt, c, t) and uncon- 374
ditional prediction ϵθ(xt, t). This approach allows for flex- 375
ible control over the generated image’s characteristics, as 376
expressed in the following equation: 377

ϵ̂θ(xt, c, t) = wϵθ(xt, c, t) + (1− w)ϵθ(xt, t). (3) 378

CFG has proven successful in conditional diffusion mod- 379
els [45, 53], particularly in high-quality image sampling. 380
However, this guidance is designed for tasks with only a sin- 381
gle prompt type, making it inefficient for translation tasks 382
where both a source image and text prompt are provided. 383
Although the text prompt shifts from source to target, the in- 384
jected source image retains source domain attributes. Con- 385
sequently, adjusting the guidance scale affects both the tar- 386
get prompt and the source attributes, limiting efficient con- 387
trol over the domain transition. We introduce domain trans- 388
lation guidance (DTG), which directly guides the gap be- 389
tween the source and target domain based on the source im- 390
age. The degree of translation can also be appropriately 391
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Number of
translations Methods FID↓ FIDclip↓

Structure
Distance↓

Background Preservation CLIP
Similarity↑PSNR↑ LPIPS↓ MES↓ SSIM↑

1 domain

SDEdit [41] 47.60 3.41 0.0642 17.71 0.30 0.0202 0.51 29.48
DDIM [60]+PnP [66] 54.19 5.02 0.0889 16.67 0.31 0.0296 0.51 29.62
DDIM [60]+MasaCtrl [6] 53.66 5.81 0.0801 17.40 0.28 0.0232 0.52 27.63
Direct [31]+PnP [66] 54.22 4.93 0.0881 16.66 0.31 0.0297 0.51 29.70
Direct [31]+MasaCtrl [6] 49.74 4.88 0.0774 17.56 0.27 0.0227 0.52 28.04
IP-Adapter [73] 64.23 6.61 0.1074 14.81 0.41 0.0422 0.44 28.46
ReSIT (Ours) 36.06 2.29 0.0326 21.18 0.14 0.0129 0.67 28.93

3 domains

SDEdit [41] 56.05 5.11 0.0959 15.54 0.41 0.0321 0.43 29.79
DDIM [60]+PnP [66] 60.05 6.20 0.1501 12.95 0.43 0.0667 0.41 29.59
DDIM [60]+MasaCtrl [6] 58.53 7.43 0.1121 14.76 0.36 0.0443 0.44 26.28
Direct [31]+PnP [66] 60.07 6.02 0.1483 12.92 0.43 0.0672 0.41 29.63
Direct [31]+MasaCtrl [6] 55.46 6.30 0.1105 14.84 0.36 0.0438 0.45 26.66
IP-Adapter [73] 67.50 7.06 0.1392 12.90 0.47 0.0643 0.39 28.53
ReSIT (Ours) 42.87 2.87 0.0737 16.31 0.23 0.0345 0.56 28.28

5 domains

SDEdit [41] 61.16 6.27 0.1071 15.12 0.45 0.0344 0.40 28.52
DDIM [60]+PnP [66] 60.52 6.35 0.1835 11.60 0.49 0.0914 0.36 30.04
DDIM [60]+MasaCtrl [6] 60.26 8.24 0.1254 13.80 0.40 0.0554 0.41 25.85
Direct [31]+PnP [66] 59.78 6.27 0.1829 11.58 0.49 0.0919 0.36 30.08
Direct [31]+MasaCtrl [6] 56.67 7.47 0.1234 13.86 0.40 0.0547 0.41 26.22
IP-Adapter [73] 67.37 7.39 0.1612 12.01 0.50 0.0793 0.35 28.71
ReSIT (Ours) 45.39 3.17 0.1012 14.41 0.28 0.0516 0.50 28.21

Table 4. Quantitative evaluation for multi-domain image-to-image translation methods. The best results are highlighted in bold, the
second best results are marked with an underline.

controlled through the translation scale s, as shown below:392
393

ϵ̂θ(xt, r̂, ci, t) = ϵθ(xt, r, ci, t)394

+ s {ϵθ(xt, r̂, ci, t)− ϵθ(xt, r, ci, t)} , (4)395

where r refers to the source text prompt (e.g.cloudy396
weather), and r̂ indicates the target text prompt (e.g.clear397
weather). Additionally, DTG technique allows for the use398
of different scale values s1, s2, ..., sD across D domains, en-399
abling differential scaling for each domain:400

401

ϵ̂θ(xt, r̂, ci, t) = ϵθ(xt, r, ci, t)402

+
D∑

d=1

sd {ϵθ(xt, r̂d, ci, t)− ϵθ(xt, r, ci, t)} . (5)403

The application of differential DTG enhances the flexi-404
bility and practicality of multi-domain translation, making405
it more intuitive. We demonstrate this effect through addi-406
tional experiments in the supplementary material.407

6. Experiments408

In our experiments, we fine-tuned Stable Diffusion v2.1409
base model on our dataset using two NVIDIA A40 GPUs410
with a batch size of 16 per GPU over 300,000 steps. In-411
put images were resized to 512 × 512 to match the pre-412
trained model’s size, then encoded into latents with a (4,413
64, 64) shape via a VAE. The learning rate was fixed at 1e-414
05 throughout training. In addition, the adapters also were415

trained with a batch size of 24 per GPU over 300,000 steps, 416
with OpenCLIP ViT-H/14 [29] and DINOv2-large [47] used 417
as image encoders. For compatibility with baseline models, 418
we utilized the HuggingFace diffusers [68] library for dif- 419
fusion models in our experiments. 420

We also performed additional ablation studies for our 421
method, detailed in the supplementary material. 422

6.1. Comparisons with Existing Methods 423

We conducted comparative experiments with existing multi- 424
domain I2I translation models to evaluate the effective- 425
ness of our method. For baseline models, we included 426
SDEdit [41], DDIM, Direct Inversion [31, 60] with edit- 427
ing methods MasaCtrl [6], Plug-and-Play [66], and IP- 428
Adapter [73] to compare performance across a diverse range 429
of models. Leveraging the multiple domain characteristics 430
of our dataset, we conducted model performance evalua- 431
tions by adjusting the number of translated domains. From 432
600 validation scenarios, we randomly selected one image 433
and applied translations across a randomly chosen set of 1, 434
3, or 5 domains. 435

Qualitative evaluation was performed on four popular 436
criteria: image quality (FID [24], FIDclip [36]), structure 437
distance [65], background preservation (PSNR, LPIPS [75], 438
MES, SSIM [69]), translation quality (CLIP Similar- 439
ity [23]). Table 4 shows the results, indicating that our 440
method achieved state-of-the-art (SOTA) performance in 441
most metrics, though not all. This suggests that our model 442
effectively preserves the structural and contextual content of 443
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Figure 6. Image translation results of adaptation to real-world dataset using our method trained synthetic datasets.

the source image during translation. Although our method444
did not achieve SOTA, especially in CLIP Similarity, due to445
its emphasis on structural preservation, the results remained446
competitive, as depicted in Fig. 5447

6.2. Adaptation to Real-World Scenarios448

In the previous section, we demonstrated that our dataset449
contains diverse domains and that our translation method450
effectively preserves the structural and background infor-451
mation of the source image. As a next step, we tested the ap-452
plicability of our method on real-world data to determine its453
practical viability. Applying models trained solely on syn-454
thetic data to real-world scene presents a significant chal-455
lenge due to the domain gap, often resulting in performance456
degradation. However, our translation model trained on re-457
alistic ReSIT dataset, we achieved promising results.458

As shown in Tab. 5, model trained on ReSIT achieved459
better FID scores than trained on SHIFT [63] for weather460
transformation tasks on INIT [57] real-world data, demon-461
strating enhanced alignment with real-world conditions.462
Figure 6 provides visual examples supporting these find-463
ings. Overall, this experiment demonstrates that realistic464
synthetic data, when paired with high-quality vision task465
models, has the potential to be effectively applied to real-466
world.467

Source
domain

Train
Dataset

Translated domain
sunny cloudy rainy night

sunny SHIFT - 103.67 117.56 112.95
ReSIT 92.55 102.62 94.52

cloudy SHIFT 97.82 - 105.68 105.68
ReSIT 94.21 98.82 93.68

rainy SHIFT 93.70 91.28 - 104.07
ReSIT 89.85 88.00 91.81

night SHIFT 114.32 110.75 115.58 -ReSIT 110.34 108.31 111.17

Table 5. FID score of image translation results.

7. Conclusion 468

In this paper, we present ReSIT, a more realistic syn- 469
thetic driving dataset specifically designed to support multi- 470
domain image-to-image translation. Our dataset offers a 471
significantly broader range of domain combinations than 472
existing datasets. We also propose a novel text-guided diffu- 473
sion model tailored for multi-domain I2I translation trained 474
on our new dataset, achieving outstanding performance by 475
preserving the structural content of source images in com- 476
plex driving scenes. For future work, we will expand the 477
applicability of ReSIT across various vision tasks, includ- 478
ing joint training with real-world datasets. 479
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ReSIT: A more Realistic Synthetic Driving Dataset for Multi-Domain
Image-to-Image Translation

Supplementary Material

A. More Details about ReSIT Dataset834

In this section, we present more details about our dataset.835

A.1. Domain Category and Example836

Figure 7 illustrates the list of categories provided for the five837
domains in our dataset. By combining these categories, the838
dataset can generate a total of 5,040 unique domain com-839
binations. Figure 9 present sample images corresponding840
to the domain categories. In addition to the t-SNE visu-841
alization results presented in Sec. 4.1, the sample images842
also demonstrate that the dataset exhibits distinguishable843
features for each category.844

A.2. Domain-wise Category Distribution845

To demonstrate that our dataset is consistently generated846
across all domain categories, we measured the category-847
wise image distribution ratios of the generated dataset for848
each domain and visualized the results in a graph. As shown849
in Fig. 10, the images for all categories within each location850
are well-distributed.851

A.3. Object Statistics852

Our dataset contains a sufficient number of key objects com-853
monly encountered in driving environments. We counted854
the occurrence frequency of various objects, such as cars,855
buses, pedestrians, and trucks, across all images in the856
dataset. As shown in Fig. 8, the dataset includes a diverse857
range of objects in quantities adequate for various vision858
tasks.859

B. Ablation Study860

We conducted detailed ablation studies to empirically val-861
idate the effectiveness of each component in our proposed862
method. The IP-Adapter [73], which supports both text and863
image prompts as input, was used as the baseline for these864
evaluations. Performance changes were measured as com-865
ponents were sequentially incorporated. The evaluations866
followed the protocol described in Sec. 6.1, with results867
averaged over 1, 3, and 5 multi-domain translation tasks.868

Initially, we enhanced the baseline adapter by fully in-869
corporating pixel-level tokens, in addition to the original870
image-level tokens, through the CLIP [49] image encoder.871
This modification significantly enhanced both FID [24] and872
FIDclip [36] scores. Replacing the CLIP with DINOv2 [47]873
and subsequently adopting the DIP-Adapter led to further874
quantitative improvements, particularly in the retention of875

pixel-level details such as color, as illustrated in Fig. 11. 876
Furthermore, replacing Classifier-free Guidance (CFG) [25] 877
with Domain Translation Guidance (DTG) resulted in sub- 878
stantial performance gains across various metrics, including 879
FID. Finally, incorporating DDIM Inversion [60] enabled 880
precise computation of initial noise, which significantly en- 881
hanced the preservation of structural and contextual content 882
in the source images. A comprehensive overview of the per- 883
formance variations introduced by each component is pre- 884
sented in Tab. 6 885

C. Variations in Image Translation 886

In this section, we present a detailed exploration of varia- 887
tions in image translation enabled by our method. Using the 888
BDD100k [74] dataset, we trained our method and demon- 889
strated translation experiments across the weather and time 890
of day domains. 891

C.1. Translation Scale 892

In Sec. 5.3, we demonstrated that the degree of transla- 893
tion can be effectively controlled by adjusting the transla- 894
tion scale s. Figure 12 showcases the visual variations 895
in multi-domain image-to-image translation applied to the 896
source image as guided by the target, based on different val- 897
ues of s. The results indicate that higher translation scale 898
values lead to stronger guidance to the target, and the ap- 899
propriate scale value can be depending based on the dataset 900
and the domain. 901

C.2. Differential Translation Scale 902

As previously shown, the translation scale provides an ef- 903
fective mechanism for controlling the degree of transla- 904
tion, but there are situations where finer granularity is re- 905
quired. In multi-domain i2i translation, where translations 906
across multiple domains are performed simultaneously, the 907
inability to adjust the translation intensity for each domain 908
can significantly limit the method’s usability. To overcome 909
this limitation, we propose the use of differential transla- 910
tion scales, which allow flexible and domain-specific ad- 911
justments. This method is both straightforward and effec- 912
tive. Figure 13 depicts the visual outcomes of image trans- 913
lation under varying s1 and s2. While this example divides 914
the scale into two, as demonstrated in Sec. 5.3, more de- 915
tailed divisions can be applied to achieve significantly di- 916
verse variations in translation. 917
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Figure 7. Possible combinations of categories for each domain: For location, the following categories are excluded to maintain the visual
clarity of the figure: Roadways, Munich, Pittsburgh, Parking Lot, Ashdod, Hod HaSharon Highway, Hod HaSharon Urban, Lombard, and
Stevenes Creek.
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Figure 8. Number of instances of each object category: Our dataset contains more diverse objects, such as trailers and gantries, but we
excluded objects with less than 100,000 records for clarity of the graph.

D. More Results of Adaptation to Real-World918

This section elaborates on the experiments described in Sec.919
6.2 and presents supplementary visual results. We trained920
our method on two synthetic driving datasets and applied921
it to the real-world driving dataset, INIT [57], for weather922
domain translation. Although INIT has only one translat-923
able domain, it was chosen for its similarity to the syn-924
thetic datasets in terms of camera settings, resulting in rela-925
tively minimal performance degradation. In contrast, while926
BDD100k is a multi-domain real-world driving dataset, its927
domain gap is larger due to the camera being mounted in-928
side the vehicle windshield, causing issues such as light929
reflections. Through this experiment, we demonstrate that930
sufficiently realistic synthetic data, combined with a vision931
model that preserves source image characteristics, can be932
effectively applied to real-world scenarios. Additional vi-933
sual results are presented in Fig. 14.934

E. Adaptation to other dataset 935

In the previous experiments, we demonstrated that our 936
method achieves excellent performance in image transla- 937
tion tasks. We further conducted a qualtitative comparison 938
with text-guided translation models, such as DiffuseIT [35]. 939
Given limitations in computational resources, we leveraged 940
the experimental setup used in DiffuseIT, training our model 941
under identical conditions to compare results with previ- 942
ously evaluated models. We selected Animals Faces [58] 943
dataset for comparison to showcase the effectiveness of our 944
method on non-driving datasets. Figure 15 presents the 945
comparison results, highlighting that our model effectively 946
preserves the structural content from the source image while 947
performing accurate translations. We provided two trans- 948
lation results per case to emphasize that reducing the im- 949
age prompt scale allows the translation to shift focus from 950
source content to better align with the target. 951
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Figure 9. Sample images for categories in 5 domains: Weather, Time of day, Road Marking Status, Road Surface, Location.
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Figure 10. Visualization of the dataset distribution across domains, grouped by location.
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Background Preservation

Method FID↓ FIDclip↓
Structure
Distance↓ PSNR↑ LPIPS↓ MES↓ SSIM↑

Baseline 66.37 7.02 0.14 13.24 0.46 0.06 0.39

+CLIP-Full - 16.46 - 3.16 - 0.51 - 0.03 + 0.01 - 0.03

+DinoV2 - 0.19 + 0.20 - 0.01 + 0.36 - 0.04 + 0.01

+DIP-Adapter - 0.26 - 0.14 + 0.02

+DTG - 7.03 - 0.57 - 0.04 + 1.88 - 0.09 - 0.02 + 0.06

+DDIM - 0.98 - 0.58 - 0.02 + 2.30 - 0.08 - 0.01 + 0.14

ReSIT (Ours) 41.44 2.78 0.07 17.30 0.21 0.03 0.58

Table 6. Ablation study results showing performance metric variations in the multi-domain i2i translation methods.

Source Baseline + CLIP-Full + DIP-Adapter + DTG + DDIM (Ours)

1
do

m
ai

n

morning→dawn time / clear weather / wet surface / wear marking / Hod HaSharon Highway location

3
do

m
ai

n

morning time / cloudy→clear weather / puddles surface / faded→wear marking / Highway→Lombard location

5
do

m
ai

n

evening→morning time / clear→cloudy weather / partial puddles→puddles surface / wear→no wear marking / Highway→Stevens Creek location

Figure 11. The ablation study of multi-domain image-to-image translation methods. The addition of each component leads to improved
preservation of the structural details in the source image, while maintaining effective translation results.
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Source Target s = 10 s = 20 s = 30

Figure 12. Variations in image translation results across the translation scale s. As the translation scale increases, the visual results
show stronger translations in both domains guided by the target.

Source Target s1 = 10 , s2 = 10 s1 = 30 , s2 = 10 s1 = 10 , s2 = 30

Figure 13. Variations in image translation results across the differential translation scales s1, s2. The two differential translation
scales, s1 and s2, control the degree of translation for the weather and time of day domains, respectively.
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Source Sunny → Cloudy Sunny → Rainy Sunny → Night

Figure 14. Image translation results of adaptation to real-world using our method trained ReSIT dataset.
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Figure 15. Qualitative comparison of text-guided translation on Animal Faces dataset. We presented two results for each case in our
method by applying image prompt scales of 1.0 and 0.7, respectively. This demonstrates that decreasing the impact of the source image
facilitates translations that align more closely with the target.
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