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Abstract

Driving dataset is essential for success of autonomous driv-
ing system, yet collecting real-world data under diverse
domains such as weather, time, and location is challeng-
ing and costly. This difficulty results in real-world driving
datasets with restricted data domains. Although synthetic
driving datasets have been introduced to address this is-
sue, the diversity of domains they can cover remains lim-
ited. In this paper, we present ReSIT, a synthetic driv-
ing dataset built using a simulation platform that enables
precise control over data collection conditions, resulting
in more domains and possible combinations than exist-
ing datasets. Comparative analyses demonstrate that our
dataset is more realistic than previous datasets. Addition-
ally, we present a text-guided diffusion model tailored for
multi-domain image-to-image translation, using an adapter
for precise source image feature injection and guidance for
effective translation. Experimental results show that our
model outperforms existing models in preserving the struc-
tural content of source images during domain translation
even in complex driving scenes.

1. Introduction
The success of autonomous driving depends on the ad-
vancement of various computer vision tasks, such as object
detection, classification, and segmentation, which necessi-
tate well-curated, large-scale datasets [19, 38]. However,
collecting real-world driving data is challenging due to the
high costs and laborious data annotation. Moreover, exist-
ing real-world datasets [5, 14, 17, 57, 74] have limited diver-
sity in terms of geographical locations, weather conditions,
and scene variations, which reduces the generalization per-
formance of the trained model and limits its deployment in
diverse environments.
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Figure 1. Sample images from ReSIT containing various do-
mains such as weather, time of day, road marking status, road sur-
face, and location.

To overcome these challenges, some studies have em-
ployed synthetic datasets generated in virtual environ-
ments [4, 16, 46, 51, 52, 63]. Those datasets have a
great ability to control various domain conditions and pro-
vide perfect annotation labels for training machine learning
models. However, current synthetic driving datasets are pri-
marily designed for specific sub-tasks such as pedestrian de-
tection [61] and weather classification [42]. Additionally, as
shown in Tab. 1, they provide limited domain combinations
that cannot reflect complex real-world [46]. As a result,
models trained on these datasets often lack robustness when
applied to more diverse or unexplored environments [72].



Annotations

Dataset Year Domain
Possible

Combination
Image

Resolution
Total

Frame
Sem.
Seg.

Ins.
Seg.

2D
Det.

3D
Det. Depth Line

Optical
Flow

Graphic
Engine

Real
World

KITTI [17] 2012 3 1 1382x512 7K ✓ ✓ ✓ ✓
CityScapes [14] 2016 3 27 2048×1024 25K ✓ ✓ ✓ ✓
BDD100K [74] 2018 3 18 1280×720 100K ✓ ✓ ✓ ✓

INIT [57] 2019 1 4 1920×1208 155K ✓
nuScenes [5] 2020 3 12 1600×900 1.4M ✓

Synthetic

VKITTI [16] 2016 2 6 1242×375 21K ✓ ✓ ✓ ✓ ✓ ✓ UNITY
GTA-V [51] 2016 2 4 1914×1052 25K ✓ GTA
Synthia [54] 2016 3 18 1280×760 9K ✓ ✓ ✓ UNITY

SynScapes [70] 2018 1440×720 25K ✓ ✓ ✓ ✓ ✓ Procedural Engine
Apolloscape [27] 2018 1920×1080 273K ✓ ✓ ✓ ✓ ✓ ✓ UNITY

VKITTI2 [4] 2020 3 8 1242×375 21K ✓ ✓ ✓ ✓ ✓ ✓ UNITY
Shift [63] 2022 4 432 1280×800 2.5M ✓ ✓ ✓ ✓ ✓ ✓ Carla

CarlaScenes [33] 2022 2 16 1280×960 ✓ ✓ ✓ Carla
UrbanSyn [20] 2023 2048×1024 7.5K ✓ ✓ ✓ UNITY
ReSIT(Ours) 2024 5 5040 1920×1080 300K ✓ ✓ ✓ ✓ ✓ ✓ ✓ UNITY

Table 1. Comparison of driving datasets in terms of domain, size, and supported tasks.

Although synthetic images aim to replicate real-world,
there are inherent discrepancies in visual appearance, result-
ing in suboptimal model performance when directly trans-
ferred to real-world tasks [64]. One reason for this discrep-
ancy is the resolution of available 3D assets and the speed
of data generation, which result in non-photorealistic im-
ages [20]. Pedestrians and vehicles provide a clear example
of the visual gap inherent in this issue, along with back-
ground elements such as roads, weather, and time under var-
ious domain-specific conditions. While domain adaptation
techniques [10, 34, 71] have been developed to bridge this
gap, they have yet to offer a fundamental solution, empha-
sizing the need for more realistic synthetic data.

In this paper, we introduce ReSIT, a more realistic
synthetic driving dataset for multi-domain image-to-image
translation created using Cognata simulation platform [12],
to address key limitations including image quality, domain
diversity, and rare driving scenarios [18, 20, 38]. Compared
to existing synthetic driving datasets [4, 16, 46, 51, 52, 63],
ReSIT offers a greater number of domain variations—such
as weather, time of day, road marking status, road surface,
and location— and their possible combinations, thereby
enabling greater data diversity in road scenes. Fig. 1
demonstrates examples of domain diversity in our dataset.
Through a comprehensive analysis, our dataset exhibits its
superiority in terms of diversity and realism.

To demonstrate the effectiveness of our dataset, we pro-
pose a text-guided diffusion model specifically designed for
multi-domain image-to-image translation across the exten-
sive range of combinations in our dataset. We incorporated
an adapter in our model for accurate input image embed-
ding, along with direct guidance for efficient domain trans-
lation. This method preserves dominant contents such as
vehicles, pedestrians, and the overall road structure in driv-
ing scenes, modifying domain-specific semantics. By lever-
aging multi-domains in ReSIT, it enables a richer variety of
scene generation. It achieves remarkable performance in
multi-domain translation metrics, particularly outperform-

ing existing methods in content preservation.
Our work offers the following key contributions:

• Diverse multi-domain synthetic dataset: We introduce
a new synthetic driving dataset that provides a compre-
hensive collection of multi-domain combinations, encom-
passing diverse environmental variations.

• Novel multi-domain image translation method: We
propose a new unpaired image-to-image translation
model capable of handling multiple domain combinations
simultaneously, while preserving the structural and con-
textual content of the source images.

2. Related Work
Real-World and Synthetic Driving Datasets Following
the introduction of the KITTI dataset [17], prominent
datasets such as Cityscapes [14] and BDD100K [74] have
been key contributors to the development of models for
tasks like object detection [15], semantic segmentation [62],
and depth estimation [3] in self-driving vehicles. However,
real-world datasets have shortcomings, making it difficult
to encompass the diverse environmental changes in driving
scenarios. Furthermore, annotations such as segmentation,
depth estimation, lane detection, and optical flow –which
require extensive manual labeling– are either unavailable or
provided in small quantities [76]. The nuScenes dataset [5],
which employs Lidar sensors to provide 1.4 million images
with 3D bounding box annotations, has recently been intro-
duced. While nuScenes plays an important role in 3D de-
tection, it offers data from only two cities, and annotations
are largely focused on Lidar-based 3D detection.

In response to the challenges faced by real-world
datasets, several synthetic datasets have been proposed,
starting with VKITTI [4, 16]. The advancement of 3D
graphics engines has enabled the creation of various syn-
thetic datasets offering the advantage of providing perfect
labels for every frame. However, existing synthetic datasets
generate limited objects and biased environments, failing
to capture the full diversity of real-world driving scenar-



ios [20]. Datasets like GTA [51] and VIPER [52] face con-
straints in representing diverse driving domains due to the
inherent limitations of the game engine. Although, the re-
cent SHIFT [63] provides 2.5 million images across 8 cities
with a variety of domain categories, the domain combina-
tions are not sufficient.

Domain Gap Traditional machine learning approaches
assume that the training and test data share the same un-
derlying distribution. When this assumption is violated,
the model performance can significantly degrade [48]. In
particular, there is a substantial domain gap between syn-
thetic datasets and real-world datasets [56], which hin-
ders the direct application of synthetic data in practical
scenarios. Transfer learning techniques, particularly do-
main adaptation, have been widely explored to bridge this
domain gap [2, 7, 34]. Recent studies have investigated
advanced strategies such as multi-domain adaptation, do-
main mixing, and adversarial training to tackle these chal-
lenges [1, 10, 71]. While these approaches offer some im-
provements, they still struggle with the growing complexity
of domain combinations, highlighting the need for more ro-
bust solutions that can handle diverse driving scenarios.

Multi-domain I2I Translation This enables transfor-
mations across multiple visual domains for several appli-
cations like style transfer and data augmentation. Early
models like StarGAN [11] introduced a unified frame-
work to translate images across multiple domains using
a single model, eliminating the need for separate models
for each domain pair. Subsequent methods such as MU-
NIT [28] and DRIT [37] further advanced image transla-
tion by enabling multi-modal outputs, allowing for varied
translations within each domain and enhancing model flex-
ibility. Recent studies have advanced translation quality
using diffusion-based approaches with text-guided meth-
ods [32, 35, 55]. Additionally, techniques that invert input
images into noise [31, 41, 60] and selectively translate spe-
cific areas through attention control [6, 22, 66] have proven
highly effective. However, challenges remain in achiev-
ing a balance between preserving contextual content and al-
lowing flexible domain translation, especially when dealing
with diverse domains.

3. Dataset Overview

3.1. Motivation and Background

Most existing driving datasets have limited complexity in
domain combinations. This results in a lack of scene di-
versity and difficulties in reflecting the wide range of real-
world environmental conditions, as indicated by the find-
ings of previous studies [38–40]. This insufficiency re-
stricts the capacity of deep learning models to learn from
the complex conditions that can be encountered in the real
world. Domains such as status of road marking wear and

2D bounding box 3D bounding box semantic seg.

instance seg. lane instance seg. depth map

Figure 2. Annotations in ReSIT. Comprehensive annotations are
provided for all source images.
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Figure 3. t-SNE visualization for domain categories in ReSIT.

surface conditions are frequently excluded from considera-
tion, making it challenging for models to adapt to real-world
environments [20]. To address this limitation, we generated
the ReSIT synthetic driving dataset using the Cognata Sim-
ulation Platform [12], which built upon the Unity Graphics
Engine. The ReSIT dataset systematically combines multi-
ple domain elements to represent complex real-world driv-
ing conditions, allowing for comprehensive model evalua-
tion across diverse scenarios and enhancing the reliability
of autonomous driving tasks.

3.2. Dataset Generation Strategy
The primary contribution of our dataset is amplifying do-
main combinations to closely create and simulate a more
diverse real-world driving environment. Unique scenarios
can be generated through numerous combinations across
the following domain categories:
• Time of Day: Various times of day represent sunlight and

brightness changes, such as morning, dawn, and evening.
• Weather: Combining various climatic variables such as

cloudy, rain, and fog enables us to create complex and
unpredictable environmental conditions.

• Location: Our Dataset reflects geographic characteris-
tics across 14 diverse regions, including various regions
of America, Europe, Asia, and the Middle East, ensuring
comprehensive representation beyond specific locales.

• Road Surface: Diverse road surface conditions are incor-
porated, including wet roads, puddles, and snow-covered
surfaces, to simulate real-world road conditions.

• Road Marking Status: Road type is diversified with lev-
els of degradation such as wear, no wear, and faded mark-
ings reflecting the variability of road conditions.
As shown in Tab. 1, our dataset encompasses a broad



Dataset Type
Object Detection

(mAP)
Semantic Segmentation

(mIoU)
Total Car Person Total Car Person

KITTI [17] real 0.29 0.35 0.22 - - -
INIT [57] real 0.38 0.54 0.23 - - -

BDD100K [74] real 0.31 0.40 0.23 88.75 97.56 79.93
SHIFT [63] synthetic 0.29 0.35 0.22 91.86 98.96 84.76

ReSIT (Ours) synthetic 0.32 0.37 0.27 95.47 99.67 91.26

Table 2. In-dataset evaluation results.

Train Test
Object Detection

(mAP)
Semantic Segmentation

(mIoU)
Total Car Person Total Car Person

SHIFT KITTI 0.20 0.25 0.19 - - -
ReSIT (Ours) KITTI 0.24 0.28 0.19 - - -
SHIFT INIT 0.08 0.13 0.04 - - -
ReSIT (Ours) INIT 0.14 0.16 0.12 - - -
SHIFT BDD100k 0.12 0.14 0.10 59.43 88.19 30.67
ReSIT (Ours) BDD100k 0.18 0.23 0.14 69.53 92.63 46.42

Table 3. Cross-dataset evaluation results.

range of domain categories, generating a total of 5,040
unique domain combinations – a level of diversity surpass-
ing that of typical datasets. These domain combinations are
meticulously considered to capture a wide range of driving
conditions, which helps minimize data bias. The dataset is
comprised of 300,000 images in total. For further details on
the distribution and proportions of each domain category,
please refer to the supplementary material.

3.3. Dataset Design
• Camera Specifications and Frame Rate: Our dataset

uses a front camera with a 100-degree field of view
(FOV). Similar to other datasets [63, 74], our dataset was
created from continuous scenarios by extracting 1 FPS
from 50-second videos, resulting in 50 frames per sce-
nario and balancing continuity with inter-frame variation.

• Resolution and Compatibility: The dataset has 1920
× 1080 resolution, capturing extensive details for object
recognition while maintaining compatibility with other
datasets.

• Annotations: Our dataset provides a richer set of annota-
tions, such as bounding box, segmentation, depth, optical
flow, supporting a wide range of computer vision tasks.
Figure 2 visualizes the provided annotations.

4. Dataset Analysis
4.1. t-SNE Visualization of domain categories
To validate that the classes within each domain in
our dataset are clearly distinguished, we trained a
ResNet152 [21] classification model from scratch and
extracted feature embeddings for visualization using t-
SNE [67]. Figure 3 presents the t-SNE plots for key do-
mains in our dataset: time of day, weather condition, and lo-
cation. The results show that the images for each class form
distinct clusters, even though diverse domain conditions
can introduce substantial variations. While a single class

may appear as multiple sub-clusters due to different do-
main factors, these sub-clusters are remain well-separated
from other classes within the same domain. This demon-
strates that our dataset captures distinguishable image-level
features for each class across varying domain conditions.
Therefore, our dataset provides reliable and robust repre-
sentations that enable accurate image classification across
multiple domain combinations.

4.2. Dataset Evaluation
To evaluate the applicability and realism of the proposed
synthetic dataset, we conducted two key experiments. The
first experiment focuses on in-dataset evaluation, where
models are trained and tested on the same dataset to assess
the dataset’s ability to support effective learning for driv-
ing scene understanding. The second experiment examines
cross-dataset evaluation, where models trained on synthetic
datasets are tested on a real-world dataset to assess general-
ization performance and the realism of the synthetic data.

4.2.1. Evaluation Setup
• Model: We employed Faster R-CNN [50] for object de-

tection and DeepLab v3 [9] for semantic segmentation.
• Dataset Configuration: We used KITTI [17],

BDD100K [74], INIT [57], SHIFT [63], and our
dataset for training. Testing was conducted within the
same dataset (in-dataset Evaluation) and on KITTI,
BDD100K, INIT (cross-dataset Evaluation). For all
experiments, the number of training images was limited
to 50000, and the number of test images was set to 5000.
In the case of segmentation experiments, due to limited
labels in BDD10k, we used 7000 training images and
1000 test images. All images were resized to have a 640
width while maintaining the original aspect ratio.

• Class Selection: We focused on two common classes:
car, and pedestrian, across all experiments.

• Hyperparameter Settings: We followed the default hy-
perparameter settings of MMDetection [8] and MMSeg-
mentation [13] to ensure fair baseline comparisons.

4.2.2. In-Dataset Evaluation
The in-dataset evaluation aims to compare the performance
of models trained and tested on the same dataset across five
datasets: KITTI, BDD100K, INIT, SHIFT, and Ours. This
experiment is intended to validate that our dataset can effec-
tively serve as training data for vision tasks in autonomous
driving (e.g., Object Detection, Semantic Segmentation),
similar to both existing real and synthetic datasets. As
shown in Tab. 2, models trained and tested on each dataset
achieved comparable performance. These results demon-
strate that our synthetic dataset provides sufficient learning
capability for vision tasks, similar to well-established real
(KITTI, BDD100K, INIT) and synthetic (SHIFT) datasets.
This finding emphasizes that our dataset effectively captures



Figure 4. Pipeline of our method for multi-domain I2I translation. DIP-Adapter projects both image-level and pixel-level tokens from
the input image into the U-Net to preserve important structures in complex driving scenes. Domain Translation Guidance utilizes the
difference between the latent vectors obtained from the source and target text prompts to enable efficient and direct domain translation.

key features of driving scenes, making it a viable alternative
or complement to existing datasets.

4.2.3. Cross-Dataset Evaluation
The cross-dataset evaluation assesses the generalization ca-
pability of models trained on synthetic datasets (SHIFT
and Ours) by applying them to real-world datasets (KITTI,
BDD100K, INIT). The primary objective is to validate
whether the proposed synthetic dataset offers greater re-
alism and better captures diverse driving scenarios com-
pared to SHIFT, thereby leading to improved performance
in real-world tasks. According to Tab. 3, models trained on
our synthetic dataset outperforms models trained on SHIFT
when tested on real-world datasets. This indicates that our
proposed dataset can cover a broader range of driving sce-
narios and provides more realistic representations of real-
world driving conditions. The superior cross-dataset per-
formance of our dataset suggests that it is better suited for
training models with enhanced generalization capabilities,
making it a more effective choice for real-world applica-
tions.

5. Proposed Method
5.1. Preliminaries
Diffusion models [26, 53, 59] are probabilistic generative
models that iteratively denoise random noise to approxi-
mate a target image. By employing a specialized loss func-

tion that minimizes the difference between target noise ϵ
and predicted noise, these models accurately learn the trans-
formation from noise to image:

L = Ex0,ϵ ∼N (0,I),c,t∥ϵ− ϵθ(xt, c, t)∥2, (1)

where ϵθ(·) represents the noise predicted by the model with
image data x, additional condition c, and t denotes the cur-
rent time step in the diffusion process.

In multi-domain unpaired image-to-image translation, it
is essential to preserve the structural and contextual con-
tent of the source image while modifying only the neces-
sary domain-specific attributes [35]. Particularly for driv-
ing scenes, which contain both large objects such as pedes-
trians and vehicles and semantically important smaller ele-
ments like traffic lights and signs, it is important to main-
tain the structural content of these elements while translat-
ing domain-specific attributes, such as weather or location.

Existing models [6, 22, 31, 41, 43, 60, 66] often invert
the input image into noise to retain as much image con-
tent as possible and then apply attention map control for
selective editing of domain-specific attributes. While effec-
tive across general datasets with few primary objects, these
approaches face limitations in preserving critical structures
within complex driving scenes. Therefore, we propose the
first text-guided diffusion model, tailored for multi-domain
image-to-image translation using an adapter. Our model
uses the adapter to embed the input image more precisely



Source SDEdit DDIM+MasaCtrl Direct+PnP IP-Adapter ReSIT (Ours)
1

do
m

ai
n

morning time / clear weather / flooded→snow road surface / no wear road marking / Highway location

3
do

m
ai

n

afternoon→evening time / cloudy weather / puddles→partial snow road surface / faded road marking / Munich→Hod HaSharon Urban location

5
do

m
ai

n

morning→afternoon time / cloudy→clear weather / wet→water covered road surface / faded→no wear road marking / Pittsburgh→Munich location

Figure 5. Qualitative evaluation for multi-domain image-to-image translation methods.

and offers direct guidance for effective domain translation.

5.2. Dense Image Prompt Adapter
Adapters [44, 73] have frequently been employed in dif-
fusion models to incorporate image prompts alongside text
prompts. By training only the projection network of the
adapter that injects extracted features, while keeping the
image encoder and diffusion model frozen, the model can
efficiently integrate visual information without additional
training. The loss function with the text prompt ct, addi-
tional image prompt ci is represented as follows:

L = Ex0,ϵ ∼N (0,I),ct,ci,t∥ϵ− ϵθ(xt, ct, ci, t)∥2. (2)

To embed visual information, CLIP [49] image encoder
enables efficient semantic image representation by embed-
ding image and text features into a shared latent space.
However, due to global supervision based on image cap-
tions, this image encoder has limitations in learning detailed
pixel-level information such as color and position, making
it less effective in capturing fine-grained pixel details [30].
DINOv2 [47], trained using self-supervised learning on im-
age data alone, can encode fine-grained pixel-level repre-
sentations. Therefore, as shown in Fig. 4, we designed
Dense Image Prompt (DIP) Adapter, which concatenates
image-level tokens from CLIP and pixel-level tokens from
DINOv2 to produce semantically rich and accurate image
embeddings. This method demonstrates improved retention
of detailed image features, outperforming the IP-Adapter,
which relies solely on image-level token embeddings.

5.3. Domain Translation Guidance

Classifier-free guidance (CFG) [25] is a technique in diffu-
sion models that enables conditional control in image gen-
eration without a separate classifier model. The diffusion
model is trained simultaneously on both conditional and un-
conditional setting, and during sampling steps, it utilizes a
guidance scale w to adjust the strength of conditioning by
combining the conditional prediction ϵθ(xt, c, t) and uncon-
ditional prediction ϵθ(xt, t). This approach allows for flex-
ible control over the generated image’s characteristics, as
expressed in the following equation:

ϵ̂θ(xt, c, t) = wϵθ(xt, c, t) + (1− w)ϵθ(xt, t). (3)

CFG has proven successful in conditional diffusion mod-
els [45, 53], particularly in high-quality image sampling.
However, this guidance is designed for tasks with only a sin-
gle prompt type, making it inefficient for translation tasks
where both a source image and text prompt are provided.
Although the text prompt shifts from source to target, the in-
jected source image retains source domain attributes. Con-
sequently, adjusting the guidance scale affects both the tar-
get prompt and the source attributes, limiting efficient con-
trol over the domain transition. We introduce domain trans-
lation guidance (DTG), which directly guides the gap be-
tween the source and target domain based on the source im-
age. The degree of translation can also be appropriately



Number of
translations Methods FID↓ FIDclip↓

Structure
Distance↓

Background Preservation CLIP
Similarity↑PSNR↑ LPIPS↓ MES↓ SSIM↑

1 domain

SDEdit [41] 47.60 3.41 0.0642 17.71 0.30 0.0202 0.51 29.48
DDIM [60]+PnP [66] 54.19 5.02 0.0889 16.67 0.31 0.0296 0.51 29.62
DDIM [60]+MasaCtrl [6] 53.66 5.81 0.0801 17.40 0.28 0.0232 0.52 27.63
Direct [31]+PnP [66] 54.22 4.93 0.0881 16.66 0.31 0.0297 0.51 29.70
Direct [31]+MasaCtrl [6] 49.74 4.88 0.0774 17.56 0.27 0.0227 0.52 28.04
IP-Adapter [73] 64.23 6.61 0.1074 14.81 0.41 0.0422 0.44 28.46
ReSIT (Ours) 36.06 2.29 0.0326 21.18 0.14 0.0129 0.67 28.93

3 domains

SDEdit [41] 56.05 5.11 0.0959 15.54 0.41 0.0321 0.43 29.79
DDIM [60]+PnP [66] 60.05 6.20 0.1501 12.95 0.43 0.0667 0.41 29.59
DDIM [60]+MasaCtrl [6] 58.53 7.43 0.1121 14.76 0.36 0.0443 0.44 26.28
Direct [31]+PnP [66] 60.07 6.02 0.1483 12.92 0.43 0.0672 0.41 29.63
Direct [31]+MasaCtrl [6] 55.46 6.30 0.1105 14.84 0.36 0.0438 0.45 26.66
IP-Adapter [73] 67.50 7.06 0.1392 12.90 0.47 0.0643 0.39 28.53
ReSIT (Ours) 42.87 2.87 0.0737 16.31 0.23 0.0345 0.56 28.28

5 domains

SDEdit [41] 61.16 6.27 0.1071 15.12 0.45 0.0344 0.40 28.52
DDIM [60]+PnP [66] 60.52 6.35 0.1835 11.60 0.49 0.0914 0.36 30.04
DDIM [60]+MasaCtrl [6] 60.26 8.24 0.1254 13.80 0.40 0.0554 0.41 25.85
Direct [31]+PnP [66] 59.78 6.27 0.1829 11.58 0.49 0.0919 0.36 30.08
Direct [31]+MasaCtrl [6] 56.67 7.47 0.1234 13.86 0.40 0.0547 0.41 26.22
IP-Adapter [73] 67.37 7.39 0.1612 12.01 0.50 0.0793 0.35 28.71
ReSIT (Ours) 45.39 3.17 0.1012 14.41 0.28 0.0516 0.50 28.21

Table 4. Quantitative evaluation for multi-domain image-to-image translation methods. The best results are highlighted in bold, the
second best results are marked with an underline.

controlled through the translation scale s, as shown below:

ϵ̂θ(xt, r̂, ci, t) = ϵθ(xt, r, ci, t)

+ s {ϵθ(xt, r̂, ci, t)− ϵθ(xt, r, ci, t)} , (4)

where r refers to the source text prompt (e.g.cloudy
weather), and r̂ indicates the target text prompt (e.g.clear
weather). Additionally, DTG technique allows for the use
of different scale values s1, s2, ..., sD across D domains, en-
abling differential scaling for each domain:

ϵ̂θ(xt, r̂, ci, t) = ϵθ(xt, r, ci, t)

+
D∑

d=1

sd {ϵθ(xt, r̂d, ci, t)− ϵθ(xt, r, ci, t)} . (5)

The application of differential DTG enhances the flexi-
bility and practicality of multi-domain translation, making
it more intuitive. We demonstrate this effect through addi-
tional experiments in the supplementary material.

6. Experiments
In our experiments, we fine-tuned Stable Diffusion v2.1
base model on our dataset using two NVIDIA A40 GPUs
with a batch size of 16 per GPU over 300,000 steps. In-
put images were resized to 512 × 512 to match the pre-
trained model’s size, then encoded into latents with a (4,
64, 64) shape via a VAE. The learning rate was fixed at 1e-
05 throughout training. In addition, the adapters also were

trained with a batch size of 24 per GPU over 300,000 steps,
with OpenCLIP ViT-H/14 [29] and DINOv2-large [47] used
as image encoders. For compatibility with baseline models,
we utilized the HuggingFace diffusers [68] library for dif-
fusion models in our experiments.

We also performed additional ablation studies for our
method, detailed in the supplementary material.

6.1. Comparisons with Existing Methods
We conducted comparative experiments with existing multi-
domain I2I translation models to evaluate the effective-
ness of our method. For baseline models, we included
SDEdit [41], DDIM, Direct Inversion [31, 60] with edit-
ing methods MasaCtrl [6], Plug-and-Play [66], and IP-
Adapter [73] to compare performance across a diverse range
of models. Leveraging the multiple domain characteristics
of our dataset, we conducted model performance evalua-
tions by adjusting the number of translated domains. From
600 validation scenarios, we randomly selected one image
and applied translations across a randomly chosen set of 1,
3, or 5 domains.

Qualitative evaluation was performed on four popular
criteria: image quality (FID [24], FIDclip [36]), structure
distance [65], background preservation (PSNR, LPIPS [75],
MES, SSIM [69]), translation quality (CLIP Similar-
ity [23]). Table 4 shows the results, indicating that our
method achieved state-of-the-art (SOTA) performance in
most metrics, though not all. This suggests that our model
effectively preserves the structural and contextual content of
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Figure 6. Image translation results of adaptation to real-world dataset using our method trained synthetic datasets.

the source image during translation. Although our method
did not achieve SOTA, especially in CLIP Similarity, due to
its emphasis on structural preservation, the results remained
competitive, as depicted in Fig. 5

6.2. Adaptation to Real-World Scenarios

In the previous section, we demonstrated that our dataset
contains diverse domains and that our translation method
effectively preserves the structural and background infor-
mation of the source image. As a next step, we tested the ap-
plicability of our method on real-world data to determine its
practical viability. Applying models trained solely on syn-
thetic data to real-world scene presents a significant chal-
lenge due to the domain gap, often resulting in performance
degradation. However, our translation model trained on re-
alistic ReSIT dataset, we achieved promising results.

As shown in Tab. 5, model trained on ReSIT achieved
better FID scores than trained on SHIFT [63] for weather
transformation tasks on INIT [57] real-world data, demon-
strating enhanced alignment with real-world conditions.
Figure 6 provides visual examples supporting these find-
ings. Overall, this experiment demonstrates that realistic
synthetic data, when paired with high-quality vision task
models, has the potential to be effectively applied to real-
world.

Source
domain

Train
Dataset

Translated domain
sunny cloudy rainy night

sunny SHIFT - 103.67 117.56 112.95
ReSIT 92.55 102.62 94.52

cloudy SHIFT 97.82 - 105.68 105.68
ReSIT 94.21 98.82 93.68

rainy SHIFT 93.70 91.28 - 104.07
ReSIT 89.85 88.00 91.81

night SHIFT 114.32 110.75 115.58 -ReSIT 110.34 108.31 111.17

Table 5. FID score of image translation results.

7. Conclusion
In this paper, we present ReSIT, a more realistic syn-
thetic driving dataset specifically designed to support multi-
domain image-to-image translation. Our dataset offers a
significantly broader range of domain combinations than
existing datasets. We also propose a novel text-guided diffu-
sion model tailored for multi-domain I2I translation trained
on our new dataset, achieving outstanding performance by
preserving the structural content of source images in com-
plex driving scenes. For future work, we will expand the
applicability of ReSIT across various vision tasks, includ-
ing joint training with real-world datasets.
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ReSIT: A more Realistic Synthetic Driving Dataset for Multi-Domain
Image-to-Image Translation

Supplementary Material

A. More Details about ReSIT Dataset
In this section, we present more details about our dataset.

A.1. Domain Category and Example
Figure 7 illustrates the list of categories provided for the five
domains in our dataset. By combining these categories, the
dataset can generate a total of 5,040 unique domain com-
binations. Figure 9 present sample images corresponding
to the domain categories. In addition to the t-SNE visu-
alization results presented in Sec. 4.1, the sample images
also demonstrate that the dataset exhibits distinguishable
features for each category.

A.2. Domain-wise Category Distribution
To demonstrate that our dataset is consistently generated
across all domain categories, we measured the category-
wise image distribution ratios of the generated dataset for
each domain and visualized the results in a graph. As shown
in Fig. 10, the images for all categories within each location
are well-distributed.

A.3. Object Statistics
Our dataset contains a sufficient number of key objects com-
monly encountered in driving environments. We counted
the occurrence frequency of various objects, such as cars,
buses, pedestrians, and trucks, across all images in the
dataset. As shown in Fig. 8, the dataset includes a diverse
range of objects in quantities adequate for various vision
tasks.

B. Ablation Study
We conducted detailed ablation studies to empirically val-
idate the effectiveness of each component in our proposed
method. The IP-Adapter [73], which supports both text and
image prompts as input, was used as the baseline for these
evaluations. Performance changes were measured as com-
ponents were sequentially incorporated. The evaluations
followed the protocol described in Sec. 6.1, with results
averaged over 1, 3, and 5 multi-domain translation tasks.

Initially, we enhanced the baseline adapter by fully in-
corporating pixel-level tokens, in addition to the original
image-level tokens, through the CLIP [49] image encoder.
This modification significantly enhanced both FID [24] and
FIDclip [36] scores. Replacing the CLIP with DINOv2 [47]
and subsequently adopting the DIP-Adapter led to further
quantitative improvements, particularly in the retention of

pixel-level details such as color, as illustrated in Fig. 11.
Furthermore, replacing Classifier-free Guidance (CFG) [25]
with Domain Translation Guidance (DTG) resulted in sub-
stantial performance gains across various metrics, including
FID. Finally, incorporating DDIM Inversion [60] enabled
precise computation of initial noise, which significantly en-
hanced the preservation of structural and contextual content
in the source images. A comprehensive overview of the per-
formance variations introduced by each component is pre-
sented in Tab. 6

C. Variations in Image Translation

In this section, we present a detailed exploration of varia-
tions in image translation enabled by our method. Using the
BDD100k [74] dataset, we trained our method and demon-
strated translation experiments across the weather and time
of day domains.

C.1. Translation Scale

In Sec. 5.3, we demonstrated that the degree of transla-
tion can be effectively controlled by adjusting the transla-
tion scale s. Figure 12 showcases the visual variations
in multi-domain image-to-image translation applied to the
source image as guided by the target, based on different val-
ues of s. The results indicate that higher translation scale
values lead to stronger guidance to the target, and the ap-
propriate scale value can be depending based on the dataset
and the domain.

C.2. Differential Translation Scale

As previously shown, the translation scale provides an ef-
fective mechanism for controlling the degree of transla-
tion, but there are situations where finer granularity is re-
quired. In multi-domain i2i translation, where translations
across multiple domains are performed simultaneously, the
inability to adjust the translation intensity for each domain
can significantly limit the method’s usability. To overcome
this limitation, we propose the use of differential transla-
tion scales, which allow flexible and domain-specific ad-
justments. This method is both straightforward and effec-
tive. Figure 13 depicts the visual outcomes of image trans-
lation under varying s1 and s2. While this example divides
the scale into two, as demonstrated in Sec. 5.3, more de-
tailed divisions can be applied to achieve significantly di-
verse variations in translation.
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D. More Results of Adaptation to Real-World

This section elaborates on the experiments described in Sec.
6.2 and presents supplementary visual results. We trained
our method on two synthetic driving datasets and applied
it to the real-world driving dataset, INIT [57], for weather
domain translation. Although INIT has only one translat-
able domain, it was chosen for its similarity to the syn-
thetic datasets in terms of camera settings, resulting in rela-
tively minimal performance degradation. In contrast, while
BDD100k is a multi-domain real-world driving dataset, its
domain gap is larger due to the camera being mounted in-
side the vehicle windshield, causing issues such as light
reflections. Through this experiment, we demonstrate that
sufficiently realistic synthetic data, combined with a vision
model that preserves source image characteristics, can be
effectively applied to real-world scenarios. Additional vi-
sual results are presented in Fig. 14.

E. Adaptation to other dataset
In the previous experiments, we demonstrated that our
method achieves excellent performance in image transla-
tion tasks. We further conducted a qualtitative comparison
with text-guided translation models, such as DiffuseIT [35].
Given limitations in computational resources, we leveraged
the experimental setup used in DiffuseIT, training our model
under identical conditions to compare results with previ-
ously evaluated models. We selected Animals Faces [58]
dataset for comparison to showcase the effectiveness of our
method on non-driving datasets. Figure 15 presents the
comparison results, highlighting that our model effectively
preserves the structural content from the source image while
performing accurate translations. We provided two trans-
lation results per case to emphasize that reducing the im-
age prompt scale allows the translation to shift focus from
source content to better align with the target.
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Figure 9. Sample images for categories in 5 domains: Weather, Time of day, Road Marking Status, Road Surface, Location.
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Figure 10. Visualization of the dataset distribution across domains, grouped by location.



Background Preservation

Method FID↓ FIDclip↓
Structure
Distance↓ PSNR↑ LPIPS↓ MES↓ SSIM↑

Baseline 66.37 7.02 0.14 13.24 0.46 0.06 0.39

+CLIP-Full - 16.46 - 3.16 - 0.51 - 0.03 + 0.01 - 0.03

+DinoV2 - 0.19 + 0.20 - 0.01 + 0.36 - 0.04 + 0.01

+DIP-Adapter - 0.26 - 0.14 + 0.02

+DTG - 7.03 - 0.57 - 0.04 + 1.88 - 0.09 - 0.02 + 0.06

+DDIM - 0.98 - 0.58 - 0.02 + 2.30 - 0.08 - 0.01 + 0.14

ReSIT (Ours) 41.44 2.78 0.07 17.30 0.21 0.03 0.58

Table 6. Ablation study results showing performance metric variations in the multi-domain i2i translation methods.

Source Baseline + CLIP-Full + DIP-Adapter + DTG + DDIM (Ours)

1
do

m
ai

n

morning→dawn time / clear weather / wet surface / wear marking / Hod HaSharon Highway location

3
do

m
ai

n

morning time / cloudy→clear weather / puddles surface / faded→wear marking / Highway→Lombard location

5
do

m
ai

n

evening→morning time / clear→cloudy weather / partial puddles→puddles surface / wear→no wear marking / Highway→Stevens Creek location

Figure 11. The ablation study of multi-domain image-to-image translation methods. The addition of each component leads to improved
preservation of the structural details in the source image, while maintaining effective translation results.



Source Target s = 10 s = 20 s = 30

Figure 12. Variations in image translation results across the translation scale s. As the translation scale increases, the visual results
show stronger translations in both domains guided by the target.

Source Target s1 = 10 , s2 = 10 s1 = 30 , s2 = 10 s1 = 10 , s2 = 30

Figure 13. Variations in image translation results across the differential translation scales s1, s2. The two differential translation
scales, s1 and s2, control the degree of translation for the weather and time of day domains, respectively.



Source Sunny → Cloudy Sunny → Rainy Sunny → Night

Figure 14. Image translation results of adaptation to real-world using our method trained ReSIT dataset.



Figure 15. Qualitative comparison of text-guided translation on Animal Faces dataset. We presented two results for each case in our
method by applying image prompt scales of 1.0 and 0.7, respectively. This demonstrates that decreasing the impact of the source image
facilitates translations that align more closely with the target.
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