
Published as a conference paper at COLM 2024

LoraHub: Efficient Cross-Task Generalization via Dy-
namic LoRA Composition

Chengsong Huang†§∗ , Qian Liu†∗, Bill Yuchen Lin♢∗, Tianyu Pang†, Chao Du†, Min Lin†

†Sea AI Lab, Singapore
§Washington University in St. Louis, MO, USA

♢Allen Institute for AI, Seattle, WA, USA

Abstract

Low-rank adaptations (LoRA) are often employed to fine-tune large lan-
guage models (LLMs) for new tasks. This paper investigates LoRA com-
posability for cross-task generalization and introduces LoraHub, a simple
framework devised for the purposive assembly of LoRA modules trained
on diverse given tasks, with the objective of achieving adaptable perfor-
mance on unseen tasks. With just a few examples from a new task, Lo-
raHub can fluidly combine multiple LoRA modules, eliminating the need
for human expertise and assumptions. Notably, the composition requires
neither additional model parameters nor gradients. Empirical results on
the Big-Bench Hard benchmark suggest that LoraHub, while not surpass-
ing the performance of in-context learning, offers a notable performance-
efficiency trade-off in few-shot scenarios by employing a significantly re-
duced number of tokens per example during inference. Notably, LoraHub
establishes a better upper bound compared to in-context learning when
paired with different demonstration examples, demonstrating its poten-
tial for future development. Our vision is to establish a platform for LoRA
modules, empowering users to share their trained LoRA modules. This
collaborative approach facilitates the seamless application of LoRA mod-
ules to novel tasks, contributing to an adaptive ecosystem. Our code is
available at github.com/sail-sg/lorahub, and all the pre-trained LoRA
modules are released at huggingface.co/lorahub.

1 Introduction

LLM LLM LORAHUB
Compose

…
LLM

(b) (c)

27.0
37.5 34.7

Unseen Task Examples Unseen Task Test InputBIG-Bench Hard Performance

zero-shot learning (a)
few-shot in-context learning (b)
few-shot LoraHub learning (c)

(a)

Figure 1: The illustration of zero-shot learning, few-shot in-context learning and few-shot
LoraHub learning (ours). Note that the Compose procedure is conducted per task rather
than per example. Our method achieves similar inference throughput as zero-shot learn-
ing, yet approaches the performance of in-context learning on the BIG-Bench Hard (BBH)
benchmark.

Recent progress in natural language processing (NLP) has been largely fueled by large lan-
guage models (LLMs) such as OpenAI GPT (Brown et al., 2020), FLAN-T5 (Chung et al.,
2022), and LLaMA (Touvron et al., 2023). These models demonstrate top-tier performance

∗The first three authors contributed equally to this work. Correspondence to Qian Liu at
liuqian@sea.com.

1

https://github.com/sail-sg/lorahub
https://huggingface.co/lorahub
mailto:liuqian@sea.com

Published as a conference paper at COLM 2024

across different NLP tasks. However, their enormous parameter size presents issues re-
garding computational efficiency and memory usage during fine-tuning. To mitigate these
challenges, Low-Rank Adaptation (LoRA) (Hu et al., 2022) has emerged as a parameter-
efficient fine-tuning technique (Lester et al., 2021; He et al., 2022; An et al., 2022). By reduc-
ing memory demands and computational costs, it speeds up LLM training. LoRA achieves
this by freezing the base model parameters (that is, an LLM) and training a lightweight
module, which regularly delivers high performance on target tasks.

While prior research has targeted the efficiency enhancement facilitated by LoRA, there is a
dearth of investigation into the inherent modularity and composability of LoRA modules.
Typically, previous methods train LoRA modules to specialize in individual tasks. Yet, the
intrinsic modularity of LoRA modules presents an intriguing research question: Would it
be possible to compose LoRA modules to generalize to novel tasks in an efficient manner?
In this paper, we tap into the potential of LoRA modularity for broad task generalization,
going beyond single-task training to meticulously compose LoRA modules for malleable
performance on unknown tasks. Crucially, our method enables an automatic assembling of
LoRA modules, eliminating dependency on manual design or human expertise. With just
a handful of examples from new tasks (e.g., 5), our approach can autonomously compose
compatible LoRA modules without human intrusion. We do not make assumptions about
which LoRA modules trained on particular tasks can be combined, allowing for flexibility
in amalgamating any modules as long as they conform to the specification (e.g., using the
same LLM). As our approach leverages several available LoRA modules, we refer to it as
LoraHub and denote our learning method as LoraHub learning.

To validate the efficiency of our proposed methods, we test our approaches using the
widely recognized BBH benchmark with FLAN-T5 (Chung et al., 2022) serving as the
base LLM. The results underline the effectiveness of the LoRA module composition for
unfamiliar tasks through a few-shot LoraHub learning process. Notably, our methodology
achieves an average performance that closely matches that of few-shot in-context learning,
while demonstrating a superior upper bound, particularly when using different demon-
stration examples. Additionally, our method substantially reduces the inference cost com-
pared to in-context learning, eliminating the requirement of examples as inputs for the
LLM. With fewer tokens per example during inference, our method significantly reduces
computational overhead and enables faster responses. It aligns with a broader research
trend, where recent studies are actively exploring approaches to reduce the number of in-
put tokens (Zhou et al., 2023; Ge et al., 2023; Chevalier et al., 2023; Jiang et al., 2023a; Li
et al., 2023; Jiang et al., 2023b). Our learning procedure is also notable for its computational
efficiency, using a gradient-free approach to obtain the coefficients of LoRA modules and
requiring only a handful of inference steps for unseen tasks. For example, when applied
to a new task in BBH, our methodology can deliver superior performance in less than a
minute using a single A100 card.

Importantly, LoraHub learning can feasibly be accomplished with a CPU-only machine,
requiring proficiency solely for processing LLM inference. In our pursuit to democratize
artificial intelligence, we are taking an important step forward by envisioning the establish-
ment of the LoRA platform. The platform would serve as a marketplace where users can
seamlessly share and access well-trained LoRA modules for diverse applications. LoRA
providers have the flexibility to freely share or sell their modules on the platform without
compromising data privacy. Users, equipped with CPU capability, can leverage trained
LoRA modules contributed by others through automated distribution and composition al-
gorithms. This platform not only cultivates a repository of reusable LoRA modules with a
myriad of capabilities but also sets the stage for cooperative AI development. It empow-
ers the community to collectively enrich the LLM’s capabilities through dynamic LoRA
composition.

2 Problem Statement

Large Language Models We assume that a large language model Mθ is based on Trans-
former architecture (Vaswani et al., 2017) and has been pre-trained on a large-scale text cor-

2

Published as a conference paper at COLM 2024

pus. The model architecture can be either encoder-decoder (Raffel et al., 2020) or decoder-
only (Brown et al., 2020). Also, Mθ could also have been fine-tuned with a large set of
instruction-following datasets such as Flan Colleciton (Longpre et al., 2023) and Prompt-
Source (Bach et al., 2022).

Cross-Task Generalization In real-world situations, users often desire an LLM to per-
form novel tasks that it has not encountered before — an ability widely known as cross-task
generalization. Generally, cross-task generalization falls into two categories: zero-shot learn-
ing (Mishra et al., 2022; Sanh et al., 2022; Chung et al., 2022; OpenAI, 2022; Lin et al., 2022),
which necessitates no labeled examples of the new task, and few-shot learning (Ye et al.,
2021; Min et al., 2022) which demands a handful of labeled examples. Assume we have
N distinct upstream tasks that the LLM has been trained on, denoted as T = {T1, ..., TN}.
Our paper primarily focuses on the latter category, where for an unseen target task T ′ /∈ T,
users can only provide a limited set of labeled examples, Q. Our aim is to modify the model
Mθ to adapt it to task T ′ using only Q. An intuitive method would be to fine-tune the
weights of Mθ based on Q, yielding an updated model Mϕ with enhanced performance on
T ′. However, this approach is inefficient, time-consuming, and unstable when Q is small.

LoRA Tuning LoRA is a parameter-efficient fine-tuning method (Hu et al., 2022), facil-
itates the adaptation of LLMs using lightweight modules, eliminating the need for fine-
tuning the entire weights. LoRA tuning involves keeping the original model weights
frozen while introducing trainable low-rank decomposition matrices as adapter modules
into each layer of the model. Compared to the base LLM, this module possesses signif-
icantly fewer trainable parameters, paving the way for rapid adaptation using minimal
examples. As such, LoRA tuning presents a resource-efficient technique to quickly adapt
LLMs for new tasks with restricted training data. However, traditional LoRA methods pri-
marily concentrate on training and testing within the same tasks (Gema et al., 2023), rather
than venturing into few-shot cross-task generalization.

3 Methodology

In this section, we provide an overview of our proposed method. We then explain the
LoRA tuning procedure in detail. Last, we introduce the procedure of our LoraHub learn-
ing, which consists of the COMPOSE stage and the ADAPT stage.

3.1 Method Overview

As depicted in Figure 2, we initially train LoRA modules on a variety of upstream tasks.
Specifically, for N distinct upstream tasks, we separately train N LoRA modules, each rep-
resented as mi for task Ti ∈ T. Subsequently, for a new task T ′ /∈ T, such as Boolean Ex-
pressions represented in Figure 2, its examples Q are utilized to steer the LoraHub learning
process. The LoraHub learning encapsulates two main phases: the COMPOSE phase and
the ADAPT phase. In the COMPOSE phase, all available LoRA modules are combined into
a single integrated module m̂, using {w1, w2, . . . , wN} as coefficients. Each wi is a scalar
value that can take on positive or negative values, and the combination can be done in
different ways. During the ADAPT phase, the combined LoRA module m̂ is amalgamated
with the LLM Mθ , and its performance on few-shot examples from the new task T ′ is as-
sessed. A gradient-free algorithm is subsequently deployed to update w, enhancing m̂’s
performance (e.g., loss) on the few-shot examples Q. Finally, after iterating through K
steps, the optimum performing LoRA module is applied to the LLM Mθ , yielding the final
LLM Mϕ = LoRA(Mθ , m̂). This serves as an effectively adjusted model for the unseen task
T ′, which will then be deployed and not updated anymore.

3.2 LoRA tuning on upstream tasks

LoRA effectively minimizes the number of trainable parameters through the process of
decomposing the attention weight matrix update of the LLM, denoted as W0 ∈ Rd×k, into

3

Published as a conference paper at COLM 2024

COMPOSE

LoRA Tuning on Upstream Tasks

Commonsense
Reasoning

Question
Answering

Natural Language
Inference

Question
Generation

…

LLM
Evaluate the result of a
Boolean expression:
not (True) and
(True) is False

𝑤!
×

𝑤"
×

+ + +

𝑤#
×

𝑤$
×

+ ⋯
→

. evaluate()

ADAPT

LoraHub Learning for Unseen Tasks
Boolean Expressions

K ×

𝑤%
×

𝑸

Figure 2: Our method encompasses two stages: the COMPOSE stage and the ADAPT stage.
During the COMPOSE stage, existing LoRA modules are integrated into one unified mod-
ule, employing a set of coefficients, denoted as w. In the ADAPT stage, the combined LoRA
module is evaluated on a few examples from the unseen task. Subsequently, a gradient-free
algorithm is applied to refine w. After executing K iterations, a highly adapted combined
LoRA module is produced, which can be incorporated with the LLM to perform the in-
tended task.

low-rank matrices. In more specific terms, LoRA exhibits the updated weight matrix in
the form W0 + δW = W0 + AB, where A ∈ Rd×r and B ∈ Rr×k are trainable low-rank
matrices with rank r, a dimension significantly smaller than those of d and k. In this context,
the product AB defines the LoRA module m, as previously elaborated. By leveraging the
low-rank decomposition, LoRA substantially reduces the number of trainable parameters
needed to adapt the weights of LLMs duriing fine-tuning.

3.3 COMPOSE: Element-wise composition of LoRA modules

Within the COMPOSE stage, we implement an element-wise method to combine LoRA
modules. This process integrates the corresponding parameters of the LoRA modules,
requiring the modules being combined to have the same rank r to properly align the struc-
tures. Given that mi = AiBi, the combined LoRA module m̂ can be obtained by:

m̂ = (w1 A1 + w2 A2 + · · ·+ wN AN)(w1B1 + w2B2 + · · ·+ wN BN). (1)

Notbly, as we show in Sec. 5, combining too many LoRA modules at once can expand
the search space exponentially, which may destabilize the LoraHub learning process and
prevent optimal performance. To mitigate this, we employ random selection to prune the
candidate space, and more advanced pre-filtering algorithms could be explored in the fu-
ture.

3.4 ADAPT: Weight optimization via gradient-free methods

During the ADAPT stage, our goal is to modify the coefficients w to boost the model’s per-
formace on the examples from an unseen task. One might think of using gradient descent
to optimize w, following standard backpropagation methods. However, this approach de-
mands constructing a hypernetwork for all LoRA modules, similar to differentiable archi-
tecture search methods (Zhang et al., 2019). Constructing these hypernetworks demands
for substantial GPU memory and time, posing a challenge. Given that w consists of a rel-
atively small number of parameters, we opted for gradient-free methods for optimization
instead of gradient descent.

Inspired by previous work (Sun et al., 2022), we utilize a black-box optimization technique
to find the optimal w. The optimization process is steered by the cross-entropy loss, setting
the goal to locate the best set {w1, w2, . . . , wN} that reduces the loss L on the few-shot
examples Q. Furthermore, we incorporate L1 regularization to penalize the sum of the
absolute values of w, helping to prevent obtaining extreme values. Consequently, the final
objective of LoraHub is to minimize L + α · ∑N

i=1 |wi|, where α serves as a hyperparameter.

4

Published as a conference paper at COLM 2024

In terms of the gradient-free method, we leverage Shiwa, a combinatorial optimization ap-
proach (Liu et al., 2020). Shiwa offers a variety of algorithms and chooses the most suitable
optimization algorithm for different circumstances. In most of the forthcoming experi-
mental setups, we primarily employ the Covariance Matrix Adaptive Evolution Strategies
(CMA-ES) (Hansen & Ostermeier, 1996). CMA-ES, as a stochastic and population-based
optimization algorithm, offers versatility in addressing a broad spectrum of optimization
challenges. It dynamically adjusts a search distribution, which is defined by a covariance
matrix. During each iteration, CMA-ES systematically updates both the mean and covari-
ance of this distribution to optimize the target function. In our application, we employ this
algorithm to mold the search space for w. Ultimately, we use it to identify the optimal w by
evaluating their performance on the few-shot examples from an unseen task.

4 Experimental Results

In this section, we provide details on our main experiments. First, we give an overview of
the experimental setup and implementation details. Next, we present our findings along
with the results.

4.1 Experimental setup

Large Language Model In our main experiments, we employ FLAN-T5 (Chung et al.,
2022), particularly FLAN-T5-large, as the base LLM. The model has shown impressive abil-
ities to perform zero-shot and few-shot learning.

Candidate LoRA Modules Our methodology requires a compendium of LoRA modules
trained on preceding tasks. For parity with FLAN, we adopt the tasks utilized to instruct
FLAN-T5, thereby incorporating nearly 200 distinct tasks and their corresponding instruc-
tions. Following this, we trained several LoRA modules as potential candidates. During
each experimental sequence, we randomly select 20 LoRA modules from them as the can-
didate for our LoraHub learning.

Dataset and evaluation Our method is evaluated using the Big-Bench Hard (BBH) bench-
mark, a well-established standard that consists of multiple-choice questions from a variety
of domains. The benchmark consists of 27 different tasks, which are regarded to be chal-
lenging for language models. For all tasks, we employ the exact match (EM) as our evalu-
ation metric.

Baseline Setup To enhance the demonstration of our method’s performance, we ex-
panded our comparisons beyond the zero-shot and in-context learning settings. We specif-
ically chose three representative gradient-based methods for comparison: full fine-tuning
(FFT), LoRA tuning (LoRA) (Hu et al., 2022), and IA3 fine-tuning (IA3) (Liu et al., 2022).
For all gradient-based methods, for a fair comparsion, we train for 40 epochs on the same
three runs of 5 examples employed in our methods. In the case of FFT, a learning rate of
3e-5 is employed, whereas for IA3 and LoRA, we adopt a learning rate of 2e-4. We report
the performance of each method on the test set at the end of training (averaged over three
runs) without any model selection to avoid potential selection bias.

4.2 Main results

As shown in Table 1, our experimental results demonstarte the superior efficacy of our
method in comparison to zero-shot learning while closely resembling the performance of
in-context learning (ICL) in few-shot scenarios. This observation is derived from an aver-
age performance of three runs, each leveraging different few-shot examples. Importantly,
our model utilizes an equivalent number of tokens as the zero-shot method, notably fewer
than the count used by ICL. Although occasional performance fluctuations, our method
consistently outperforms zero-shot learning in most tasks. In the era of LLMs, the input

5

Published as a conference paper at COLM 2024

Table 1: Experimental results of zero-shot learning (Zero), few-shot in-context learning
(ICL), IA3 fine-tuning (IA3), LoRA tuning (LoRA), full fine-tuning (FFT) and our pro-
posed few-shot LoraHub learning (LoraHub) on the BBH benchmark with FLAN-T5-large
as the base LLM. We denote algorithmic tasks with the superscript § following previous
work (Wu et al., 2023b). Note that we employ three runs, each leveraging different 5-shot
examples per task, as demonstrations for all few-shot methods. The average performance
of all methods is reported below, and the best performance of each few-shot method can
be found in the Appendix B.

Task Zero ICLavg IA3avg LoRAavg FFTavg LoraHubavg

Boolean Expressions 54.0 59.6 56.2 56.0 62.2 55.5
Causal Judgement 57.5 59.4 60.2 55.6 57.5 54.3
Date Understanding 15.3 20.4 20.0 35.8 59.3 32.9
Disambiguation 0.0 69.1 0.0 68.0 68.2 45.2
Dyck Languages 1.3 0.9 4.2 22.2 19.5 1.0
Formal Fallacies 51.3 55.3 51.5 53.6 54.0 52.8
Geometric Shapes 6.7 19.6 14.7 24 31.1 7.4
Hyperbaton 6.7 71.8 49.3 55.3 77.3 62.8
Logical Deduction§

(five objects) 21.3 39.1 32.7 40.0 42.2 36.1

Logical Deduction§

(seven objects) 12.7 40.7 33.8 37.3 44.9 36.8

Logical Deduction§

(three objects) 0.0 51.6 8.5 53.6 52.9 45.7

Movie Recommendation 62.7 55.8 61.8 51.5 66.0 55.3
Multistep Arithmetic 0.7 0.7 0.7 0.2 0.0 0.4
Navigate 47.3 45.3 46.2 48.0 48.0 47.1
Object Counting 34.7 32.4 35.1 38.7 35.6 33.7
Penguins in a Table 43.5 41.3 45.0 36.2 31.9 35.9
Reasoning about Colored Objects 32.0 40.2 40.7 39.6 37.6 40.0
Ruin Names 23.3 19.3 24.4 37.8 61.3 24.4
Salient Translation Error Detection 37.3 47.3 37.1 16.0 16.2 36.0
Snarks 50.0 54.2 53.9 55.6 66.7 56.9
Sports Understanding 56.0 54.7 55.1 56.5 54.0 56.7
Temporal Sequences 16.7 25.1 18.2 25.1 37.8 18.2
Tracking Shuffled Objects§

(five objects) 12.0 12.0 12.0 13.8 16.9 12.3

Tracking Shuffled Objects§

(seven objects) 6.7 6.7 6.7 10.0 9.8 7.7

Tracking Shuffled Objects§

(three objects) 24.7 31.1 30.7 30.9 32.0 29.2

Web of Lies 54.0 53.8 54.2 52.7 48.2 50.1
Word Sorting 1.3 0.5 1.3 4.9 4.9 1.1

Avg Performance Per Task 27.0 37.3 31.6 37.7 42.1 34.7
Avg Tokens Per Example 111.6 597.8 111.6 111.6 111.6 111.6
Gradient-based Training No No Yes Yes Yes No

length is directly proportional to the inference cost, and thus LoraHub’s ability to econ-
omize on input tokens while approaching the peak performance grows increasingly sig-
nificant. Moreover, as shown in Appendix Table 4, the upper bound performance of our
method across these runs can surpass ICL on 18 tasks, demonstrating its potential for fu-
ture development.

Even when compared to certain gradient-based optimization methods, our approach con-
sistently demonstrates competitive performance. For example, as depicted in Table 1, our
method exhibits a notable improvement of 3.1% on average in contrast to the promising
IA3 method. Nevertheless, we acknowledge that our approach still falls behind LoRA
tuning and full fine-tuning, especially in tasks that exhibit significant deviation from the
upstream task. Taking Dyck Languages as an example, both LoraHub and ICL achieve

6

Published as a conference paper at COLM 2024

only an average performance of nearly 1.0% on these tasks, while LoRA and FFT methods
showcase impressive results with only 5 examples.

4.3 Discussion

LoraHub addresses the challenge of reducing inference costs by eliminating the need for
processing additional tokens, resulting in a noticeable reduction in overall inference ex-
penses. However, it introduces an inherent cost during the ADAPT stage, necessitating
extra inference steps, such as the 40 steps employed in our experiments. This introduces
a trade-off between choosing the ICL approach and LoraHub, with the decision typically
hinging on the nature of the situation.

For one-time ad-hoc tasks, the ICL approach should be more pragmatic due to LoraHub’s
additional inference step costs. In such scenarios, where immediate, single-use solutions
are preferred, the simplicity and efficiency of ICL might outweigh the benefits of potential
savings offered by LoraHub. Conversely, for recurring or similar tasks, LoraHub emerges
as a compelling option. Despite the added inference step cost, LoraHub’s ability to ef-
ficiently handle repetitive tasks, often occurring thousands of times, while concurrently
reducing overall expenses, positions it as a viable option in such kind of situations.

In summary, our intention is not to replace ICL, but to present LoraHub as a complemen-
tary strategy with performance-efficiency trade-offs. Thus, we encourage a careful consid-
eration of specific use cases and requirements when choosing between ICL and LoraHub,
recognizing that the optimal solution may vary based on the nature and frequency of the
tasks at hand.

5 Experimental Analysis

In this section, we thoroughly examine the characteristics of our proposed method and
uncover several insightful findings. If not specified, we use FLAN-T5-large for all analysis.

Does composing LoRA modules extend beyond the single module’s benefits?

Table 2: The average performance of various methods
across all tasks in the benchmark BBH.

LoRA Retrieval LoraHub avg LoraHub best

31.7 34.7 41.2

We acknowledge the investiga-
tion of cross-task performance in
prior work (Jang et al., 2023),
which delved into the capabilities
of LoRA and proposed a novel
method centered around LoRA
module retrieval. In order to en-
sure a fair comparison, we con-
ducted an experiment where we
designed a LoRA retrieval mechanism based on the loss derived from few-shot examples.
Specifically, we ranked all LoRA module candidates according to this loss and evaluated
the best candidate on the test set of the unseen task. As depicted in Table 2, the performance
of LoRA retrieval is notably impressive, positioning it as a strong baseline. However, in
comparison to LoraHub, the performance of LoRA retrieval is relatively less favorable

How effective is the gradient-free optimization method?

To assess the effectiveness of our gradient-free optimization method in correctly identi-
fying the most suitable LoRA module for a given downstream task, we carried out an
empirical study using the WikiTableQuestions (Pasupat & Liang, 2015) (WTQ) dataset. We
strategically included a LoRA module that was specifically trained on the WTQ dataset
into our pool of LoRA candidate modules, which originally stemmed from tasks exclusive
to the Flan Collection. Subsequently, we designated WTQ as the targeted downstream task
and computed the weights consistent with the methods employed in LoraHub learning.
As an end result, the WTQ-specific LoRA module was awarded the highest weight, ex-

7

Published as a conference paper at COLM 2024

emplifying the algorithm’s success in recognizing it as the most relevant. Moreover, the
combined LoRA module demonstrated marginal superiority over the WTQ LoRA module.
This underscores the claim that the gradient-free optimization method has the ability to
proficiently select the optimal upstream LoRA module for an unseen task.

Can LoraHub work well on non-instruction-tuning models?

In previous investigations, we primarily focused on models with zero-shot capabilities that
were trained with instruction tuning. However, for models like T5 without zero-shot abili-
ties, where training has a larger effect on parameters, it was unclear if LoraHub could still
effectively manage and improve them. Our experiments show that although these mod-
els perform worse than FLAN-T5, LoraHub learning can still enable them to effectively
generlize to unseen tasks. See Appendix C for more details.

Will the rank of LoRA modules impact the performance of LoraHub learning?

The parameter rank plays a crucial role in the LoRA framework, directly influencing the
number of trainable parameters utilized during LoRA tuning. This prompts an intriguing
question: does the variation in rank values influence the outcomes observed within the Lo-
raHub learning? Our analysis indicates that, for FLAN-T5, the choice of rank has minimal
impact. However, for T5, it still exerts some influence. Empirical findings reveal that, in
comparison to rank values of 4 or 64, a rank value of 16 consistently demonstrates superior
performance across different runs, both in terms of average and optimal values. Additional
results are available in Appendix C.

Does more LoRA modules lead to better results?

In our main experiments, we randomly selected 20 LoRA modules for LoraHub learning.
Therefore, we conducted experiments to investigate the effect of using different numbers
of LoRA modules. The results demonstrate that as we increased the number of LoRA
modules, the variance in performance increased. However, the maximum achievable per-
formance also improved. More analysis on the variance and the detailed results can be
found in Appendix H.

How much computational resource can be saved?

We follow to the memory test settings from the LoRA-FA (Zhang et al., 2023b) study for
an accurate benchmark. In this context, full fine-tuning required about 40GB of memory,
whereas LoRA fine-tuning used around 34GB. Remarkably, LoraHub only utilized about
5GB of memory, illustrating its efficiency due to the inference-only mode, which eliminates
the need for storing gradients and optimization states.

6 Related work

Model Merging Our method substantially draws on the concept of LoRA module com-
position, and thus, aligns with the significant thread of research in model merging. This
research focus is broadly categorized based on the ultimate objectives of model merging.

The first category focuses on merging entire models, and the goal is to combine individ-
ually trained models to approximate the performance benefits of model ensembling or
multi-task learning. Prior works (Matena & Raffel, 2021; Jin et al., 2023; Yadav et al., 2023;
Wu et al., 2023a) operated under the assumption of shared model architectures. For ex-
ample, Matena & Raffel (2021) amalgamates models by approximating Gaussian posterior
distributions garnered from Fisher information, while Yadav et al. (2023) merges models
via resolving model interferences. Another approach is merging models with different ar-
chitectures. For instance, Ainsworth et al. (2023) configures weights of different models
prior to their merger. Following this objective, Stoica et al. (2023) merges models operating

8

Published as a conference paper at COLM 2024

on varying tasks by identifying common features, without requiring additional training.
Unlike these works, our work focuses on merging models for better cross-task generaliza-
tion.

The second category most closely aligns with our research, stemming from a shared mo-
tivation of module composition. Various scholars have made advances in this line of re-
search: Kingetsu et al. (2021) decomposes and recomposes modules on the basis of their
functionality; Ilharco et al. (2023) proposes modulating model behavior using task vectors;
Lv et al. (2023) amalgamates parameter-efficient modules weighted according to task simi-
larity; Zhang et al. (2023a) crafts modules by employing specific arithmetic operations; Sun
et al. (2023) improves few-shot performance of unseen tasks by multi-task pre-training of
prompts; Chronopoulou et al. (2023) averages adapter weights intended for transfer; Ponti
et al. (2023) focuses on jointly learning adapters and a routing function that allocates skills
to each task; and Muqeeth et al. (2023) concentrates on amalgamating experts in mixture of
experts models; However, these methods generally necessitate multi-task training or hu-
man prior on module selection for the downstream task. In contrast, our method does not
impose any special training requirements and simply employs vanilla LoRA tuning. Addi-
tionally, the module selection for downstream tasks is entirely data-driven without human
prior knowledge. This design gives the advantage of easily adding new LoRA modules for
reuse, allowing our method to flexibly scale up the number of LoRA module candidates in
the future.

Mixture of Experts The Mixture of Experts (MoE) is an ensemble method, often visual-
ized as a collection of sub-modules, or “experts”, each specializing in processing different
types of input data. Each expert in this system is controlled by a unique gating network,
activated based on the distinct nature of the input data. For every token in these input se-
quences, this network identifies and engages the most suitable experts to process the data.
As a result, the performance is superior compared to relying on a single, generic model for
all types of input. This technique has proven instrumental in numerous domains, such as
natural language processing and computer vision (Jacobs et al., 1991; Shazeer et al., 2017;
Du et al., 2022; Zhang et al., 2022; Wang et al., 2022; crumb, 2023). Our methodology dis-
plays similarities to MoE, wherein upstream-trained LoRA modules can be aligned with
MoE’s expert design. A noteworthy distinguishing factor is that our approach mechanism
does not require any specialized manipulation of LoRAs during training while facilitat-
ing dynamic LoRA module assembly at any scale, each pre-tuned to different tasks. In
contrast, MoE mandates a predetermined count of experts during both the training and
testing phases. Recent studies on the interrelation between MoE and instruction tuning
have demonstrated that the simultaneous application of both approaches enhances the ef-
fectiveness of each individually (Shen et al., 2023).

Cross-Task generalization Recent advancements like CrossFit (Ye et al., 2021),
ExT5 (Aribandi et al., 2022), FLAN (Wei et al., 2022), T0 (Sanh et al., 2022), Instruct-
GPT (Ouyang et al., 2022), and ReCross (Lin et al., 2022) have been striving to foster a
vastly multi-task model’s generalization across different tasks, very much aligned with the
objectives of our research. Among this cohort, the connections of CrossFit and ReCross
with LoraHub are particularly noteworthy. The CrossFit framework (Ye et al., 2021) man-
dates a minimal number of labeled examples of the target task for few-shot fine-tuning.
However, its limitation lies in the application of task names as hard prefixes in templates,
posing challenges in the task’s generalization. On the other hand, while ReCross mitigates
the need for labels in few-shot examples for retrieval, it necessitates a fine-tuning process
using the retrieved data. This procedure appears time-consuming when compared to Lo-
raHub’s approach. Through the deployment of few-shot labeled examples and a gradient-
free optimization process, LoraHub facilitates an iterative update of weights to compose
the LoRA modules. The resultant method is more efficient and cost-effective relative to
previous work. Overall, LoraHub offers a more practical and viable solution to the opti-
mization process.

9

Published as a conference paper at COLM 2024

7 Conclusion

In this work, we have introduced LoraHub, a strategic framework for composing LoRA
modules trained on diverse tasks in order to achieve adaptable performance on new tasks.
Our approach enables the fluid combination of multiple LoRA modules using just a few
examples from a novel task, without requiring additional model parameters or human
expertise. The empirical results on the BBH benchmark demonstrate that LoraHub can
effectively match the performance of in-context learning in few-shot scenarios, removing
the need for in-context examples during inference. Overall, our work shows the promise
of strategic LoRA composability for rapidly adapting LLMs to diverse tasks. By fostering
reuse and combination of LoRA modules, we can work towards more general and adapt-
able LLMs while minimizing training costs.

Reproducibility Statement

The authors have made great efforts to ensure the reproducibility of the empirical results
reported in this paper. Firstly, the experiment settings, evaluation metrics, and datasets
were described in detail in Section 4.1. Secondly, the codes and script for reproduce the
result will be opensource after accepted. Second, the source code implementing the pro-
posed method and experiments will be made publicly available at upon acceptance of the
paper. Third, pre-trained LoRA modules from this work along with their configuration
files and weights will be shared. These allow reproduction without retraining the LoRA
modules, enabling quick testing and verification.

References

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging
models modulo permutation symmetries. In The Eleventh International Conference on
Learning Representations, 2023.

Shengnan An, Yifei Li, Zeqi Lin, Qian Liu, Bei Chen, Qiang Fu, Weizhu Chen, Nanning
Zheng, and Jian-Guang Lou. Input-tuning: Adapting unfamiliar inputs to frozen pre-
trained models. ArXiv preprint, 2022.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Huaixiu Steven Zheng, Sanket Vaibhav
Mehta, Honglei Zhuang, Vinh Q. Tran, Dara Bahri, Jianmo Ni, Jai Prakash Gupta, Kai
Hui, Sebastian Ruder, and Donald Metzler. Ext5: Towards extreme multi-task scaling for
transfer learning. In Proc. of ICLR, 2022.

Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak,
Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid Alyafeai, Manan
Dey, Andrea Santilli, Zhiqing Sun, Srulik Ben-david, Canwen Xu, Gunjan Chhablani,
Han Wang, Jason Fries, Maged Al-shaibani, Shanya Sharma, Urmish Thakker, Khalid
Almubarak, Xiangru Tang, Dragomir Radev, Mike Tian-jian Jiang, and Alexander Rush.
PromptSource: An integrated development environment and repository for natural lan-
guage prompts. In Proc. of ACL, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

10

Published as a conference paper at COLM 2024

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language
models to compress contexts. CoRR, abs/2305.14788, 2023. doi: 10.48550/ARXIV.2305.
14788. URL https://doi.org/10.48550/arXiv.2305.14788.

Alexandra Chronopoulou, Matthew Peters, Alexander Fraser, and Jesse Dodge. Adapter-
Soup: Weight averaging to improve generalization of pretrained language models. In
Findings of the Association for Computational Linguistics: EACL 2023, 2023.

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane
Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Dasha Valter,
Sharan Narang, Gaurav Mishra, Adams Wei Yu, Vincent Zhao, Yanping Huang, An-
drew M. Dai, Hongkun Yu, Slav Petrov, Ed Huai hsin Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language
models. ArXiv preprint, 2022.

crumb. Llama-2, mixutre of lora. https://crumbly.medium.com/
llama-2-molora-f5f909434711, 2023.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong
Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fe-
dus, Maarten P. Bosma, Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster,
Marie Pellat, Kevin Robinson, Kathleen S. Meier-Hellstern, Toju Duke, Lucas Dixon, Kun
Zhang, Quoc V. Le, Yonghui Wu, Zhifeng Chen, and Claire Cui. Glam: Efficient scaling
of language models with mixture-of-experts. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, Proceedings
of Machine Learning Research, 2022.

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model. CoRR, abs/2307.06945, 2023. doi: 10.
48550/ARXIV.2307.06945. URL https://doi.org/10.48550/arXiv.2307.06945.

Aryo Pradipta Gema, Luke Daines, Pasquale Minervini, and Beatrice Alex. Parameter-
efficient fine-tuning of llama for the clinical domain. ArXiv preprint, 2023.

Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distri-
butions in evolution strategies: the covariance matrix adaptation. Proceedings of IEEE
International Conference on Evolutionary Computation, 1996.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig.
Towards a unified view of parameter-efficient transfer learning. In Proc. of ICLR, 2022.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In
Proc. of ICLR, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arithmetic. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 1991.

Joel Jang, Seungone Kim, Seonghyeon Ye, Doyoung Kim, Lajanugen Logeswaran, Moontae
Lee, Kyungjae Lee, and Minjoon Seo. Exploring the benefits of training expert language
models over instruction tuning. In International Conference on Machine Learning, 2023.
URL https://api.semanticscholar.org/CorpusID:256627673.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Com-
pressing prompts for accelerated inference of large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, December 2023a. URL https://arxiv.org/abs/2310.05736.

11

https://doi.org/10.48550/arXiv.2305.14788
https://crumbly.medium.com/llama-2-molora-f5f909434711
https://crumbly.medium.com/llama-2-molora-f5f909434711
https://doi.org/10.48550/arXiv.2307.06945
https://api.semanticscholar.org/CorpusID:256627673
https://arxiv.org/abs/2310.05736

Published as a conference paper at COLM 2024

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and
Lili Qiu. Longllmlingua: Accelerating and enhancing llms in long context scenarios via
prompt compression. CoRR, abs/2310.06839, 2023b. doi: 10.48550/ARXIV.2310.06839.
URL https://doi.org/10.48550/arXiv.2310.06839.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge
fusion by merging weights of language models. In The Eleventh International Conference
on Learning Representations, 2023.

Hiroaki Kingetsu, Kenichi Kobayashi, and Taiji Suzuki. Neural network module decom-
position and recomposition. ArXiv preprint, 2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proc. of EMNLP, 2021.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance
inference efficiency of large language models. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational Linguistics,
December 2023. URL https://arxiv.org/abs/2310.06201.

Bill Yuchen Lin, Kangmin Tan, Chris Miller, Beiwen Tian, and Xiang Ren. Unsupervised
cross-task generalization via retrieval augmentation. In NeurIPS, 2022.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal,
and Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-
context learning. ArXiv, abs/2205.05638, 2022. URL https://api.semanticscholar.org/
CorpusID:248693283.

Jialin Liu, A. Moreau, Mike Preuss, Baptiste Rozière, Jérémy Rapin, Fabien Teytaud, and
Olivier Teytaud. Versatile black-box optimization. Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, 2020.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou,
Quoc V. Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing
data and methods for effective instruction tuning, 2023.

Xingtai Lv, Ning Ding, Yujia Qin, Zhiyuan Liu, and Maosong Sun. Parameter-efficient
weight ensembling facilitates task-level knowledge transfer. In Annual Meeting of the
Association for Computational Linguistics, 2023.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, and Sayak Paul.
Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/
huggingface/peft, 2022.

Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging. ArXiv
preprint, 2021.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning
to learn in context. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, 2022.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task gen-
eralization via natural language crowdsourcing instructions. In Proc. of ACL, 2022.

Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adap-
tive routing. ArXiv preprint, 2023.

OpenAI. ChatGPT. 2022. URL https://openai.com/blog/chatgpt.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder,
Paul Francis Christiano, Jan Leike, and Ryan J. Lowe. Training language models to fol-
low instructions with human feedback. ArXiv preprint, 2022.

12

https://doi.org/10.48550/arXiv.2310.06839
https://arxiv.org/abs/2310.06201
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://openai.com/blog/chatgpt

Published as a conference paper at COLM 2024

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured
tables. In Proc. of ACL, 2015.

Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy. Combining
parameter-efficient modules for task-level generalisation. In Proceedings of the 17th Con-
ference of the European Chapter of the Association for Computational Linguistics, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. J. Mach. Learn. Res., 2020.

J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform. https://
GitHub.com/FacebookResearch/Nevergrad, 2018.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari,
Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim,
Gunjan Chhablani, Nihal V. Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian
Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel
Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli,
Thibault Févry, Jason Alan Fries, Ryan Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. Multitask prompted training enables zero-shot
task generalization. In Proc. of ICLR, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. In Proc. of ICLR, 2017.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won
Chung, Barret Zoph, William Fedus, Xinyun Chen, Tu Vu, Yuexin Wu, Wuyang Chen,
Albert Webson, Yunxuan Li, Vincent Zhao, Hongkun Yu, Kurt Keutzer, Trevor Darrell,
and Denny Zhou. Mixture-of-experts meets instruction tuning:a winning combination
for large language models, 2023.

George Stoica, Daniel Bolya, Jakob Bjorner, Taylor Hearn, and Judy Hoffman. Zipit! merg-
ing models from different tasks without training. arXiv, 2023.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tun-
ing for language-model-as-a-service. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, Proceedings of Machine
Learning Research, 2022.

Tianxiang Sun, Zhengfu He, Qin Zhu, Xipeng Qiu, and Xuanjing Huang. Multitask pre-
training of modular prompt for Chinese few-shot learning. In Proc. of ACL, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and
efficient foundation language models. ArXiv preprint, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, 2017.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao,
Ahmed Hassan Awadallah, and Jianfeng Gao. AdaMix: Mixture-of-adaptations for
parameter-efficient model tuning. In Proc. of EMNLP, 2022.

13

https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

Published as a conference paper at COLM 2024

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners.
In Proc. of ICLR, 2022.

Chengyue Wu, Teng Wang, Yixiao Ge, Zeyu Lu, Ruisong Zhou, Ying Shan, and Ping Luo.
π-tuning: Transferring multimodal foundation models with optimal multi-task inter-
polation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Ma-
chine Learning Research, pp. 37713–37727. PMLR, 2023a. URL https://proceedings.mlr.
press/v202/wu23t.html.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann,
Prabhanjan Kambadur, David S. Rosenberg, and Gideon Mann. Bloomberggpt: A large
language model for finance. CoRR, abs/2303.17564, 2023b. doi: 10.48550/arXiv.2303.
17564. URL https://doi.org/10.48550/arXiv.2303.17564.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-
merging: Resolving interference when merging models. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
xtaX3WyCj1.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. CrossFit: A few-shot learning challenge for
cross-task generalization in NLP. In Proc. of EMNLP, 2021.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural archi-
tecture search. In Proc. of ICLR, 2019.

Fan Zhang, Duyu Tang, Yong Dai, Cong Zhou, Shuangzhi Wu, and Shuming Shi. Skillnet-
nlu: A sparsely activated model for general-purpose natural language understanding,
2022.

Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junxian He. Composing parameter-efficient
modules with arithmetic operations. ArXiv preprint, 2023a.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa:
Memory-efficient low-rank adaptation for large language models fine-tuning. ArXiv,
abs/2308.03303, 2023b. URL https://api.semanticscholar.org/CorpusID:260683267.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ryan Cotterell, and Mrinmaya Sachan. Ef-
ficient prompting via dynamic in-context learning. CoRR, abs/2305.11170, 2023. doi:
10.48550/ARXIV.2305.11170. URL https://doi.org/10.48550/arXiv.2305.11170.

14

https://proceedings.mlr.press/v202/wu23t.html
https://proceedings.mlr.press/v202/wu23t.html
https://doi.org/10.48550/arXiv.2303.17564
https://openreview.net/forum?id=xtaX3WyCj1
https://openreview.net/forum?id=xtaX3WyCj1
https://api.semanticscholar.org/CorpusID:260683267
https://doi.org/10.48550/arXiv.2305.11170

Published as a conference paper at COLM 2024

Table 3: The top five beneficial LoRA modules for BBH tasks and their associated upstream
tasks, the average weight values and the average performance on all BBH tasks.

Rank Dataset: Task Weight Perf Task Description

1 WIQA: Last Process 0.72 28.1 Identifying the last step of a given process.
2 RACE: Is this the Right Answer 0.68 30.8 Determining if given answer is correct.
3 WIQA: First Process 0.63 28.1 Identifying the first step of a given process.

4 AdversarialQA: BiDAF 0.61 25.1 Answering question created by an
adversarial model-in-the-loop.

5 WebQuestions: What is the Answer 0.58 27.0 Answering question based on information
extracted from the web.

A More Analysis

Which LoRA modules are most effective for BBH tasks?

We hypothesized that the amalgamation of LoRA modules could incorporate skills and
insights from a variety of specific tasks. To evaluate this, we examined the extent of influ-
ence a single LoRA module had amongst all tasks from the BBH benchmark. We measured
the impact of each isolated task by calculating the average absolute weight. The top five
modules, presented in Table 3, were found to have substantial influence, as indicated by
their maximum average weights, which suggested that they were notably more effective in
cross-task transfer. Remarkably, a common feature among these top five modules was their
association with tasks requiring reading comprehension and reasoning skills—attributes
indicative of higher cognitive complexity. However, it is worth noting that none of the
modules exhibited consistent improvement across all BBH tasks, as reflected in their av-
erage performance on all BBH tasks, which did not show a significant improvement com-
pared to the original FLAN-T5-large, except for the Rank 2. The results underscore the
advantages of composing diverse modules in LoraHub.

How effective is the gradient-free optimization method?

To assess the effectiveness of our gradient-free optimization method in correctly identi-
fying the most suitable LoRA module for a given downstream task, we carried out an
empirical study using the WikiTableQuestions (Pasupat & Liang, 2015) (WTQ) dataset. We
strategically included a LoRA module that was specifically trained on the WTQ dataset
into our pool of LoRA candidate modules, which originally stemmed from tasks exclusive
to the Flan Collection. Subsequently, we designated WTQ as the targeted downstream task
and computed the weights consistent with the methods employed in LoraHub learning.
As an end result, the WTQ-specific LoRA module was awarded the highest weight, ex-
emplifying the algorithm’s success in recognizing it as the most relevant. Moreover, the
combined LoRA module demonstrated marginal superiority over the WTQ LoRA module.
This underscores the claim that the gradient-free optimization method has the ability to
proficiently select the optimal upstream LoRA module for an unseen task.

B Result of Best Results

As shown in Table 4, compared to gradient-based parameter-efficient training methods like
LoRA and IA3, our approach demonstrates superior performance in terms of best results
over experimental runs. While it exhibits a noticeable lag behind the fully fine-tuning (FFT)
method, which updates all parameters during training, this observation suggests that our
proposed method has a promising upper limit. We anticipate that future research efforts
can contribute to accelerating the optimization speed and further enhancing the efficacy of
our approach.

15

Published as a conference paper at COLM 2024

Table 4: Experimental results of several few-shot methods, including in-context learning
(ICL), IA3 fine-tuning (IA3), LoRA tuning (LoRA), full fine-tuning (FFT) and our LoraHub
learning (LoraHub) on the BBH benchmark with FLAN-T5-large as the base LLM. We de-
note algorithmic tasks with the superscript § following previous work (Wu et al., 2023b).
Note that we use 5 examples per task as the demonstration for all methods. The best (best)
performance is reported as the maximum value obtained across three runs.

Task ICLbest IA3best LoRAbest FFTbest LoraHubbest

Boolean Expressions 62.7 58.0 60.7 65.3 60.7
Causal Judgement 59.8 62.1 57.5 60.9 63.2
Date Understanding 21.3 20.7 40.7 67.3 45.3
Disambiguation 69.3 0.0 68.7 70.7 68.0
Dyck Languages 2.0 4.7 25.3 33.3 2.7
Formal Fallacies 59.3 52.0 56.7 56.0 59.3
Geometric Shapes 20.0 15.3 28.7 39.3 18.7
Hyperbaton 72.7 49.3 57.3 82.0 72.7
Logical Deduction§

(five objects) 39.3 32.7 41.3 43.3 40.0

Logical Deduction§

(seven objects) 42.0 34.0 42.7 46.0 46.0

Logical Deduction§

(three objects) 52.7 8.7 56.7 60.7 52.7

Movie Recommendation 56.7 62.0 64.5 70.7 62.0
Multistep Arithmetic 0.7 0.7 0.7 0.0 1.3
Navigate 46.7 47.3 50.7 50.0 51.3
Object Counting 34.7 35.3 42.0 38.0 36.7
Penguins in a Table 43.5 45.7 41.3 37.0 47.8
Reasoning about Colored Objects 41.3 41.3 40.7 38.7 44.7
Ruin Names 20.7 25.3 42.0 66.0 28.7
Salient Translation Error Detection 48.0 37.3 17.3 21.3 42.7
Snarks 55.1 56.4 59.0 69.2 61.5
Sports Understanding 56.7 55.3 58.7 58.7 62.7
Temporal Sequences 26.7 18.7 31.3 48.7 21.3
Tracking Shuffled Objects§

(five objects) 12.0 12.0 16.0 20.0 16.7

Tracking Shuffled Objects§

(seven objects) 6.7 6.7 12.0 10.0 15.3

Tracking Shuffled Objects§

(three objects) 31.3 30.7 32.0 36.0 31.3

Web of Lies 54.0 54.7 55.3 54.0 57.3
Word Sorting 0.7 1.3 5.3 6.0 1.3

Best Performance (Average) 38.4 32.1 40.9 46.2 41.2

16

Published as a conference paper at COLM 2024

C Result of non-instrcution-tuned models

Table 5: Comparsion among different ranks for few-shot LoraHub learning with the back-
bone T5-large (Raffel et al., 2020) on the BBH benchmark. Note that the T5-large model
achieved 0.0% on all tasks under the zero-shot setting except Dyck Languages, where it
scored 0.67%.

Task ↓ Rank → 4avg 4best 16avg 16best 64avg 64best

Boolean Expressions 52.13 57.33 50.67 58.00 47.47 58.00
Causal Judgement 52.41 55.17 49.66 54.02 50.80 54.02
Date Understanding 0.40 2.00 14.40 29.33 4.53 10.00
Disambiguation 10.00 31.33 26.93 42.00 1.73 4.67
Dyck Languages 0.40 0.67 0.40 0.67 0.40 2.00
Formal Fallacies 48.40 54.00 46.93 51.33 46.93 50.00
Geometric Shapes 0.00 0.00 6.53 32.67 1.47 7.33
Hyperbaton 30.13 50.00 39.07 57.33 32.93 48.00
Logical Deduction§

(five objects)
5.20 14.67 8.80 19.33 1.33 6.67

Logical Deduction§

(seven objects)
6.40 17.33 9.33 19.33 3.47 16.00

Logical Deduction§

(three objects)
14.40 32.00 21.73 34.67 6.93 15.33

Movie Recommendation 7.07 18.67 7.87 22.00 1.20 6.00
Multistep Arithmetic two 0.00 0.00 0.00 0.00 0.00 0.00
Navigate 49.60 54.67 52.27 56.67 49.87 52.00
Object Counting 7.20 18.00 16.00 21.33 13.73 26.67
Penguins in a Table 6.52 13.04 10.43 17.39 0.43 2.17
Reasoning about Colored Objects 6.27 10.00 5.07 16.67 0.53 2.67
Ruin Names 7.73 13.33 13.20 28.00 5.73 15.33
Salient Translation Error Detection 0.00 0.00 1.73 8.67 0.00 0.00
Snarks 21.28 42.31 49.49 60.26 16.15 38.46
Sports Understanding 46.53 58.67 46.80 58.67 46.53 58.67
Temporal Sequences 3.07 13.33 6.53 26.67 2.40 12.00
Tracking Shuffled Objects§

(five objects)
5.20 14.00 4.13 9.33 0.13 0.67

Tracking Shuffled Objects§

(seven objects)
2.67 10.00 2.80 14.00 3.20 8.00

Tracking Shuffled Objects§

(three objects)
3.73 17.33 16.27 34.67 5.87 26.67

Web of Lies 48.53 54.00 54.00 56.00 54.67 57.33
Word Sorting 0.40 0.67 0.13 0.67 0.00 0.00

Average Performance per Task 16.14 24.17 20.78 30.73 14.76 21.43

17

Published as a conference paper at COLM 2024

D Result of larger model

Table 6: Experimental results of zero-shot learning (Zero) and our few-shot LoraHub learn-
ing (LoraHub) on the BBH benchmark with FLAN-T5-xl as the base LLM. Note that we use
5 examples per task as the demonstration for both ICL and LoraHub. The average (avg) per-
formance of LoraHub is computed over 5 runs with different random seeds, while the best
(best) performance is reported as the maximum value obtained across these runs. We can
see the trend of the results are similar to FLAN-T5-large.

Task Zero LoraHub avg LoraHub best

Boolean Expressions 52.0 58.7 63.3
Causal Judgement 62.1 53.8 59.8
Date Understanding 38.0 37.6 38.0
Disambiguation Qa 0.0 20.5 54.7
Dyck Languages 1.3 0.9 2.0
Formal Fallacies 56.0 56.0 56.0
Geometric Shapes 8.7 17.5 28.0
Hyperbaton 45.3 53.5 56.7
Logical Deduction§

(five objects)
1.3 42.7 48.7

Logical Deduction§

(seven objects)
8.7 44.3 50.0

Logical Deduction§

(three objects)
0.7 56.4 61.3

Movie Recommendation 2.0 62.8 66.0
Multistep Arithmetic Two 0.0 0.4 0.7
Navigate 50.7 50.7 50.7
Object Counting 39.3 40.7 48.0
Penguins In A Table 17.4 40.9 45.7
Reasoning About Colored Objects 46.7 47.3 50.7
Ruin Names 18.0 35.6 44.7
Salient Translation Error Detection 44.7 45.1 48.7
Snarks 60.3 60.8 61.5
Sports Understanding 56.7 51.3 53.3
Temporal Sequences 21.3 21.5 22.0
Tracking Shuffled Objects§

(five objects)
3.3 9.9 13.3

Tracking Shuffled Objects§

(seven objects)
5.3 7.3 8.7

Tracking Shuffled Objects§

(three objects)
7.3 21.7 31.3

Web Of Lies 54.7 47.1 48.7
Word Sorting 1.3 1.5 2.0

Average Performance per Task 25.8 36.5 41.3

18

Published as a conference paper at COLM 2024

E Improving the Robustness of LoraHub

In order to enhance the robustness of LoraHub, we explored a straightforward approach in
the selection of LoRA module candidates. Specifically, we first identified 20 LoRA module
candidates with the lowest loss on the few-shot examples. Our findings indicate a slight
improvement in overall performance after applying the pre-filtering startegy. Since the
primary instability in our approach arises from the selection of LoRA candidates. This
method involves choosing a fixed set of LoRA candidates to ensure the stability of our
approach.

Table 7: The experimental results of loss-based pre-filtering.

Task LoraHubavg LoraHubfilter

Boolean Expressions 55.5 60.00
Causal Judgement 54.3 52.9
Date Understanding 32.9 33.3
Disambiguation 45.2 62.7
Dyck Languages 1.0 0.0
Formal Fallacies 52.8 54.0
Geometric Shapes 7.4 4.0
Hyperbaton 62.8 64.0
Logical Deduction§

(five objects)
36.1 37.3

Logical Deduction§

(seven objects)
36.8 22.0

Logical Deduction§

(three objects)
45.7 56.0

Movie Recommendation 55.3 68.0
Multistep Arithmetic 0.4 0.7
Navigate 47.1 49.3
Object Counting 33.7 38.7
Penguins in a Table 35.9 37.0
Reasoning about Colored Objects 40.0 33.3
Ruin Names 24.4 22.0
Salient Translation Error Detection 36.0 24.0
Snarks 56.9 52.66
Sports Understanding 56.7 58.0
Temporal Sequences 18.2 27.3
Tracking Shuffled Objects§

(five objects)
12.3 11.3

Tracking Shuffled Objects§

(seven objects)
7.7 8.0

Tracking Shuffled Objects§

(three objects)
29.2 32.7

Web of Lies 50.1 46.0
Word Sorting 1.1 1.3

Avg Performance Per Task 34.7 35.4

19

Published as a conference paper at COLM 2024

F Performance on General Important Task

In our research, we have identified specific LoRA modules that exhibit significant impact
when integrated into merged LoRAs. Our focus lies in assessing the performance of the top
five task-related LoRAs on the BBH benchmark. The results indicate that these top LoRAs
perform similarly or even worse than zero-shot in most cases. Only one of them stands out
as significantly better than zero-shot. However, it’s worth noting that this performance is
not as impressive as Lorahub. These findings support the idea that the merging process
can improve overall performance.

Table 8: Detailed experimental results of top five LoRA modules shown in Table 3 on BBH
tasks.

Task WIQA: Last RACE: Right WIQA: First ADQA WebQA

Boolean Expressions 52.67 58.00 52.67 54.67 53.33
Causal Judgement 55.17 63.22 55.17 57.47 57.47
Date Understanding 17.33 19.33 17.33 16.67 15.33
Disambiguation 0.00 0.00 0.00 0.00 0.00
Dyck Languages 0.67 0.67 0.67 1.33 1.33
Formal Fallacies 51.33 51.33 51.33 51.33 51.33
Geometric Shapes 8.00 13.33 8.00 6.67 7.33
Hyperbaton 16.67 44.00 16.67 1.33 6.00
Logical Deduction§

(five objects) 23.33 28.00 23.33 19.33 20.67

Logical Deduction§

(seven objects) 22.00 26.00 22.00 10.67 12.00

Logical Deduction§

(three objects) 0.67 9.33 0.67 0.00 0.00

Movie Recommendation 63.33 62.67 63.33 56.67 63.33
Multistep Arithmetic 0.67 0.67 0.67 0.67 0.67
Navigate 47.33 50.00 47.33 47.33 47.33
Object Counting 34.67 34.00 34.67 35.33 35.33
Penguins in a Table 45.65 41.30 45.65 39.13 43.48
Reasoning about Colored Objects 40.00 37.33 40.00 31.33 30.67
Ruin Names 22.00 21.33 22.00 17.33 22.67
Salient Translation Error Detection 36.67 34.67 36.67 32.67 37.33
Snarks 52.56 55.13 52.56 47.44 52.56
Sports Understanding 56.00 58.67 56.00 55.33 55.33
Temporal Sequences 16.67 17.33 16.67 12.67 17.33
Tracking Shuffled Objects§

(five objects) 12.00 12.00 12.00 10.67 12.00

Tracking Shuffled Objects§

(seven objects) 6.67 6.67 6.67 6.67 6.67

Tracking Shuffled Objects§

(three objects) 20.67 30.67 20.67 10.67 25.33

Web of Lies 54.67 54.00 54.67 54.00 54.00
Word Sorting 1.33 1.33 1.33 1.33 1.33

Avg Performance per Task 28.10 30.78 28.10 25.14 27.04
∆ FLAN-T5-large 1.10 3.78 1.10 -1.86 0.04

20

Published as a conference paper at COLM 2024

5 10 50 100

45

50

55

60

boolean expressions

5 10 50 100
40

45

50

55

causal judgement

5 10 50 100

20

30

40

50

date understanding

5 10 50 100
0

20

40

60

disambiguation qa

5 10 50 100
0

5

10

15
dyck languages

5 10 50 100

50

51

52

53

formal fallacies

5 10 50 100

10

20

30

geometric shapes

5 10 50 100

20

40

60

hyperbaton

5 10 50 100

25
30
35
40
45

logical deduction five

5 10 50 100

20

30

40

logical deduction seven

5 10 50 100
0

20

40

60
logical deduction three

5 10 50 100

50

55

60

65

movie recommendation

5 10 50 100
0.0

0.2

0.4

0.6

multistep arithmetic two

5 10 50 100

42.5

45.0

47.5

50.0

navigate

5 10 50 100

25

30

35

40
object counting

Figure 3: The influence of number of LoRA modules on 15 tasks from BBH, and each box
is obtained from 5 separate runs. The horizontal axis shows the number of LoRA modules
to be composed in LoraHub learning.

G Implementation details

We implemented LoRA tuning using the Huggingface PEFT library (Mangrulkar et al.,
2022), with the rank being set as 16. The gradient-free method was implemented using the
open-source Nevergrad optimization library (Rapin & Teytaud, 2018), with a constraint
that the absolute value of LoRA weights should not exceed 1.5. Originally, all coefficients
of LoRA modules were set at zero.

In our standard settings, we set the maximum number of iterations K as 40. The same 5
examples were used during our LoraHub learning and the few-shot in-context learning.
The hyperparameter α is set as 0.05. Regarding the hyperparameters for training candidate
LoRA modules, we maintained consistency across all modules, setting the batch size at 64,
the learning rate at 1e − 4, and the number of training epochs at 10.

H Influence of Number of LoRA modules

As shown in Figure 3, with an increase in the number of LoRA module candidates, there
is a corresponding increase in the performance variance. Based on our in-depth analysis,
the primary source of variance is not related to gradient-free optimization algorithms but
rather associated with the LoRA candidate modules. In other words, once the candidates
are determined, random seeds have minimal impact on the final performance. Hence, we
posit that the observed instability primarily arises from the inherent challenge of balancing
the quantity and quality of the LoRA module candidates.

I The Impact of Threshold

In this section, we omitted the threshold in our implementation, and the results are summa-
rized in Table 9. Our observations indicate that the removal of the threshold had minimal
impact on the majority of tasks, underscoring the robustness of the gradient-free optimiza-
tion algorithm itself in most cases. The algorithm efficiently identified reasonable ranges
even without specific upper and lower bounds. However, three tasks, namely Date Under-
standing, Disambiguation and Hyperbaton, exhibited notable effects. The resulting perfor-
mance decline led to an average decrease of 1.2% compared to the setting with threshold.

21

Published as a conference paper at COLM 2024

This highlights the significance of establishing a reasonable threshold to mitigate extreme
scenarios.

Table 9: The comparsion between LoraHub and LoraHub without threshold.

Task LoraHubavg with threshold LoraHubavg without threshold

Boolean Expressions 55.5 54.0
Causal Judgement 54.3 54.8
Date Understanding 32.9 17.7
Disambiguation 45.2 40.6
Dyck Languages 1.0 1.1
Formal Fallacies 52.8 51.7
Geometric Shapes 7.4 6.7
Hyperbaton 62.8 55.5
Logical Deduction§

(five objects) 36.1 36.5

Logical Deduction§

(seven objects) 36.8 35.6

Logical Deduction§

(three objects) 45.7 49.9

Movie Recommendation 55.3 59.3
Multistep Arithmetic 0.4 0.7
Navigate 47.1 47.6
Object Counting 33.7 34.7
Penguins in a Table 35.9 33.8
Reasoning about Colored Objects 40.0 37.9
Ruin Names 24.4 24.0
Salient Translation Error Detection 36.0 37.1
Snarks 56.9 51.6
Sports Understanding 56.7 55.9
Temporal Sequences 18.2 16.7
Tracking Shuffled Objects§

(five objects) 12.3 12.3

Tracking Shuffled Objects§

(seven objects) 7.7 8.5

Tracking Shuffled Objects§

(three objects) 29.2 29.8

Web of Lies 50.1 50.3
Word Sorting 1.1 1.3

Avg Performance Per Task 34.7 33.5

22

	Introduction
	Problem Statement
	Methodology
	Method Overview
	LoRA tuning on upstream tasks
	Compose: Element-wise composition of LoRA modules
	Adapt: Weight optimization via gradient-free methods

	Experimental Results
	Experimental setup
	Main results
	Discussion

	Experimental Analysis
	Related work
	Conclusion
	More Analysis
	Result of Best Results
	Result of non-instrcution-tuned models
	Result of larger model
	Improving the Robustness of LoraHub
	Performance on General Important Task
	Implementation details
	Influence of Number of LoRA modules
	The Impact of Threshold

