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Abstract

In training-free Conditional Diffusion Models (CDMs), the sampling pro-
cess is steered by the gradient of the loss E(y, z,Cψ), which assesses the
gap between the guidance y and the condition extracted from the interme-
diate outputs. Here the condition extraction network Cψ(·), which could
be a segmentation or depth estimation network, is pre-trained for training-
free purpose. However, existing methods often require small guidance
steps, leading to longer sampling times. We introduce an alternative max-
imization framework to scrutinize training-free CDMs that tackles slow
sampling. Our framework pinpoints manifold deviation as the key factor
behind the sluggish sampling. More iterations are needed for the sampling
process to closely follow the image manifold and reach the target condi-
tions, as the loss gradient doesn’t provide sufficient guidance for larger
steps. To improve this, we suggest retraining the condition extraction net-
work Cψ(·) to refine the loss’s guidance, thereby introducing our AccCtr.
This retraining process is simple, and integrating AccCtr into current CDMs
is a seamless task that does not impose a significant computational bur-
den. Extensive testing has demonstrated that AccCtr significantly boosts
performance, offering superior sample quality and faster generation times
across a variety of conditional generation tasks.

1 introduction

Over the past few years, diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Ho et al., 2020; Song et al., 2021b) have achieved significant success in generative tasks
like image generation Nichol & Dhariwal (2021); Song & Ermon (2020); Song et al. (2021a),
image inpainting Chung et al. (2023), super-resolution Saharia et al. (2023), image editing
Choi et al. (2021), thanks to their strong expressive and re-editing capabilities.
Conditional diffusion models generally employ two techniques: classifier-guided Dhari-
wal & Nichol (2021) and classifier-free Ho & Salimans (2021a) diffusion models. Despite
their effectiveness, these methods encounter challenges related to learning cost and model
generality, as they require additional training and data for conditional generation. Recent
advances Chung et al. (2022); Zhu et al. (2023); Yu et al. (2023); Bansal et al. (2024); Yang
et al. (2024b) have addressed these issues by developing training-free methods that leverage
the differential loss guidance during the denoising process.
These training-free methods, though they avoid extra training, demand fine-tuned guidance
steps for accuracy, which extends sampling times. This is mainly because the tangent space
defined by the differential loss can only approximate a local image manifold area. If
the starting point is remote from the target, multiple manifolds are needed to span the
gap. Thus, more iterations are crucial for the denoising process to navigate the manifold’s
curvature and reach the target condition effectively. Current approaches Chung et al.
(2023); Yu et al. (2023); Bansal et al. (2023) often use small loss-guided steps to ensure
precision, which can considerably slow down the process. However, Yang et al. (2024b) has
made significant progress by enabling larger guidance steps through optimization, thus
improving algorithm efficiency.
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Unlike Yang et al. (2024b) using optimization to constrain the guidance steps to remain
within the boundaries of the intermediate data, we improve the efficiency with a alternative
maximization framework that simplifies the sampling in training-free CDMs to optimizing
two objectives: log p(z0) for unconditional generation and log p(y|z0) for the conditional
generation. Here, z0 represents the denoised image of the diffusion model at time step 0.
We denote the image manifold consisting of z0 as M0. This new interpretation guides us to
streamline sampling by reducing the optimization steps necessary for each objective. Our
further study reveals that reducing the optimization steps for log p(z0) is straightforward,
but not so for log p(y|z0). Taking the value of a well-trained model s(zt), we can estimate
the denoised image z0|t, i.e. the projection of zt on the manifold M0, in one step. However,
maximizing log py(z0|t) involves the gradient of E(y, z0|t,Cψ) and requires multiple steps
for gradient descent to reach the final outcome.
To reduce the maximization steps needed for log p(y|z0|t), we propose retaining the con-
dition extraction network Cψ(·) to enhance its ability so that the gradient of E(y, z0|t,Cψ)
provides a more accurate direction for larger steps. Consequently, it is logical to retrain
the network Cψ(·) with two distinct objectives. The first is to ensure that Cψ(z0|t) effec-
tively extracts the necessary conditions from z0|t. The second is to adjust the gradient of
E(y, z0|t,Cψ) so that it provides accurate guidance for larger steps.
In summary, our contributions are fourfold: 1. We introduce a novel maximization frame-
work that provides insights into the analysis of training-free CDMs. 2. We identify the key
bottleneck in the generation speed of current training-free CDMs using this framework. 3.
We propose a loss to retrain the condition extraction network to address this bottleneck. 4.
Our model outperforms previous models in efficiency and sample quality.

2 Related work

Conditional Diffusion Models (CDMs) are typically divided into two categories: training-
required and training-free. A key aspect of both types of models is the estimation of the
conditional score ∇zt

log p(zt,y) or its component ∇zt
log p(y|zt), which is derived from

the relationship∇zt log p(zt,y) = ∇zt log p(zt) +∇zt log p(y|zt).
Training-required CDMs are categorized into two branches. The first one is the classifier-
guided diffusion mode (Dhariwal & Nichol, 2021), training a time-dependent classifier
denoted as pϕ(y|zt, t) to approximate the posterior probability p(y|zt). Consequently, we
have∇zt

log p(zt,y) = ∇zt
log p(zt)+∇zt

log pϕ(y|zt, t), where the first term represents the
unconditional score function, while the second term signifies the adjustment that converts
the unconditional score into a conditional one. The other one is the classifier-free diffusion
model (Ho & Salimans, 2021b). This approach employs a neural network to approximate
the conditional score∇zt log p(zt,y). Notable examples include Stable Diffusion (Rombach
et al., 2022b), ControlNet (Zhang et al., 2023), and ControlNet++ (Ming Li, 2024), Con-
trolNeXt (Peng et al., 2024), and AnyControl (Sun et al., 2024). These models are great at
creating realistic images but require more data and training time.
Training-free CDMs eliminates classifier training by defining a loss E(y, z0|t,Cψ) and
using its gradient to approximate the conditional score ∇zt

log p(y|zt). In the litera-
ture, researchers devised various strategies to improve the conditional score estimation.
MCG (Chung et al., 2022) addresses solver deviations with a correction term. DPS (Chung
et al., 2023) integrates diffusion sampling with manifold constraints for better noise han-
dling. FreeDoM (Yu et al., 2023) uses a Time-Travel Strategy for robust generation.
UGD (Bansal et al., 2024) and DiffPIR (Zhu et al., 2023) guide clean samples z0 to in-
termediate manifolds zt. LGD (Song et al., 2023) uses Monte Carlo sampling for estimation
refinement. MPGD (He et al., 2024) and DSG (Yang et al., 2024b) apply guidance within
data manifolds, with DSG providing a closed-form solution. These approaches often re-
quire around 100 sampling steps for quality generation, contrasting with the typically less
than 20 steps needed by training-required CDMs.
We in this paper delve into the rationale behind the increased sampling steps required for
training-free CDMs and propose a strategy to enhance their efficiency.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 Preliminaries

Diffusion models (Yang et al., 2024a) are understood through various lenses, such as the De-
noising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020), Score-Matching Langevin
Dynamics (SMLD) (Song & Ermon, 2019), and Stochastic Differential Equations (SDE) (Song
et al., 2021b). This section offers essential background into DDPM related to our method.

3.1 Diffusion and Maximization

Diffusion models are represented as: pθ(z0) =
∫
pθ(z0:T ) dz1:T , where z1, . . . , zT are latent

variables of the same dimension as the data z0 ∼ q(z0). The joint distribution pθ(z0:T ) is
defined by a Markov chain with Gaussian transitions starting from zT ∼ N (zT ;0, I):

pθ(z0:T ) := p(zT )
∏T

t=1
pθ(zt−1|zt), pθ(zt−1|zt) := N (zt−1;µθ(zt, t),Σθ(zt, t)) (1)

The forward diffusion process, gradually introducing Gaussian noise to the data, is defined
by a Markov chain with a predetermined variance schedule β1, . . . , βT :

q(z1:T |z0) :=
∏T

t=1
q(zt|zt−1), q(zt|zt−1) := N (zt;

√
1− βtzt−1, βtI) (2)

LetM0 represent the image manifold generated by the diffusion model. This process allows
for sampling zt at any time step t and deriving its projection onto M0 in closed form:

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I), where ᾱt :=

∏T

t=1
αs, αt := 1− βt (3)

⇔ zt =
√
ᾱtz0 +

√
(1− ᾱt)ϵ, where ϵ ∼ N (0, I) (4)

⇔ z0 =
1√
ᾱt

zt −
√
(1− ᾱt)√

ᾱt
ϵ(zt) ⇔ z0 =

1√
ᾱt

zt +
(1− ᾱt)√

ᾱt
s(zt) (5)

Here ϵ(zt) denote the noised contained in zt and the score function s(zt) := ∇zt
log p(zt)

satisfying ϵ(zt) = −
√
1− ᾱts(zt) due to Tweedie’s formula (Efron, 2011). Let µ̃(zt, z0, t) :=√

ᾱt−1βt

1−ᾱt
z0 +

√
αt(1−ᾱt−1)

1−ᾱt
zt and β̃t :=

1−ᾱt−1

1−ᾱt
βt, q(zt−1|zt, z0) can be written as

q(zt−1|zt, z0) = N (zt−1; µ̃(zt, z0, t), β̄tI), (6)

⇔ zt−1 =

√
ᾱt−1βt

1− ᾱt
z0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
β̄tϵ (7)

By defining sθ(zt) as the neural network designed to approximate the score function s(zt)
and substituting it into Equation (5), we obtain ẑ0|t−1, an estimation for z0 according to
zt−1.

ẑt−1 =

√
ᾱt−1βt

1− ᾱt
ẑ
(t)
0 +

√
αt(1− ᾱt−1)

1− ᾱt
ẑt +

√
β̄tϵ (8)

ẑ0|t−1 =
1√
ᾱt

ẑt +
(1− ᾱt)√

ᾱt
sθ(ẑt) (9)

We thus confirm that ẑ0|t is the projection of ẑt on the image manifoldM0, and the sequence
{ẑ0|t}maximizes log p(ẑ0|t). Hence, we view Equations (8)(9) as the solver for maximizing
log p(z0) on the manifold M0, which includes all z0 generated by the diffusion model.

3.2 Conditional Diffusion

Conditional diffusion models employ the conditional score s(zt,y) := ∇zt
log p(zt,y) as a

substitute for s(zt) in Equation (9), enabling the generation of images conditioned ony. This
function is articulated via Bayes’ theorem as follows: s(zt,y) = s(zt) +∇zt

log p(y|zt). To
sidestep training, a practical approach is to use an energy function, defined as: log p(y|zt) =

3
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Algorithm 1 Alternative Maximization Sampling
Require: The iteration number J , the unconditional diffusion count N for solving p(z0|t)

and the conditional correction count M for solving py(z0|t). The time reversal step K.
Ensure: ẑJN ∼ N (0, I), and ẑ0|JN ←

√
ᾱJN

−1
(ẑJN + (1− ᾱJN )sθ(ẑJN ))

1: for j = J, . . . , 1 do
2: for n = 0, . . . , N − 1 do
3: t← jN − n

4: ẑt−1 ←
√
ᾱt−1βt

1−ᾱt
ẑ0|t +

√
αt(1−ᾱt−1)

1−ᾱt
ẑt +

√
β̄tϵ

5: ẑ0|t−1 ← 1√
ᾱt−1

ẑt−1 +
(1−ᾱt−1)√

ᾱt−1
sθ(ẑt−1)

6: end for
7: t← (j − 1)N
8: for m = 0, . . . ,M − 1 do
9: ẑ

(m)
K|t ←

√
ᾱK ẑ

(m)
0|t +

√
(1− ᾱK)ϵ ▷ Adding noisy to ẑ

(m)
0|t .

10: ẑ
(m)
0|t ←

1√
ᾱt
ẑ
(m)
K|t +

(1−ᾱK)√
ᾱK

sθ(ẑ
(m)
K|t ) ▷ Estimating a new ẑ

(m)
0|t .

11: ẑ
(m+1)
0|t ← ẑ

(m)
0|t − λ∇

ẑ
(m)

0|t
E(y, ẑ(m)

0|t ,Cψ)

12: end for
13: ẑ0|t ← ẑ

(M)
0|t

14: end for

−λE(y, z0|t,Cψ), where z0|t =
√
ᾱt

−1
(zt+(1− ᾱt))sθ(zt). In this expression, λ is a positive

parameter. Consequently, Equations (8)(9) can be restructured accordingly.

ẑt−1 =

√
ᾱt−1βt

1− ᾱt
ẑ0|t +

√
αt(1− ᾱt−1)

1− ᾱt
ẑt +

√
β̄tϵ (10)

ẑ′0|t−1 =
1

√
ᾱt−1

ẑt−1 +
(1− ᾱt−1)√

ᾱt−1
sθ(ẑt−1) (11)

ẑ0|t−1 = ẑ′0|t−1 − λ
(1− ᾱt−1)√

ᾱt−1
∇ẑt−1

E(y, ẑt−1,Cψ) (12)

Further, given Equation (4), we have ∇ẑt−1
E(y, ẑt−1,Cψ) =

√
ᾱt−1∇ẑ′

0|t−1
E(y, ẑ′0|t−1,Cψ).

Putting this into Equation (12), we conclude that it operates as a gradient descent step for
E(y, ẑ′0|t−1,Cψ). In contrast, Equations (10)(11) serve as a solver to maximize p(ẑ′0|t). Essen-
tially, these equations alternately maximize the two objectives log p(ẑ′0) and log p(y|ẑ0|t)
on the image manifold M0 with each step focusing on one objective. Thus, the sequence
{ẑ′0|t}maximizes log p(ẑ′0|t), while the sequence {ẑ0|t}maximizes log py(ẑ0|t).

4 Alternative Maximization For Conditional Diffusion

In this section, we frame the conditional diffusion process as an alternating maximization
of two objectives: p(z0) and p(y|z0). This insight helps us understand why training-free
CDMs require more sampling steps and leads to a strategy for speeding up the process.

4.1 The local maxima Characteristics of p(z0) and p(y|z0)

The marginal distribution p(z0) peaks at natural images, and the condition extraction
function Cψ(·) is tailored for such images. The conditional distribution p(y|z0) reaches its
peak when y matches z0, with p(y|z0) ≥ p(y|z) for neighboring images z ̸= z0. Therefore,
p(y|z0) attains its maximum where p(z0) is locally maximized. Consequently, the local
maxima of p(y|z0) form a subset of the local maxima of p(z0). In other words, wherever
p(z0) is locally maximized, p(y|z0) is also likely to achieve a local maximum, provided
y describes z0. This relationship emphasizes the role of the conditional distribution in
guiding the generative process toward images that not only align with the natural image
distribution but also closely match the specified conditions.

4
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Condition Experiment 1: J = 20,
N = 1 and M = 1

Experiment 2: J = 20,
N = 5 and M = 1

Experiment 3: J = 20,
N = 1 and M = 5

Experiment 4: J = 100,
N = 1 and M = 1

Figure 1: Analysis of the Impact of Iteration Counts: Total J , Unconditional N and Condi-
tional M . From top to bottom, each row shows the outcomes of FreeDoM (Yu et al., 2023),
DSG (Yang et al., 2024b), and UGD (Bansal et al., 2024) under conditions of edge, style,
and bounding box control. Four experiments were conducted in total. Observations reveal
that the first two setups failed to achieve the desired control, whereas the last two were
successful. This insight indicates that the total number of conditional iterations, J ×M , is
crucial for control effectiveness, given that the first two experiments had a total of 20, while
the last two had 100. To achieve the desired results, a higher total count of conditional
correction seems to be necessary.

4.2 Alternatve Maximization

We shift focus from the probabilistic details of p(z0) and p(y|z0) in the following sections,
treating them as functions of z0 under a given condition y. We refer to p(y|z0) as py(z0),
recognizing that the local maxima of py(z0) are contained within those of p(z0). The
conditional generation aims to maximize log p(z0,y) by sequentially optimizing log p(z0)
and log py(z0). This strategy, as outlined in the proposition 1, efficiently optimizes the
likelihood log p(z0,y).
Proposition 1 (Convergence of Alternative Maximization). LetA(z) andB(z) be two functions
defined on the same domain. Suppose that: SB , the local maxima point set of B(z), is a subset of SA,
the local maxima point set of A(z). Then, the alternating maximization of A(z) and B(z) converges
to a local maximum of the function A(z) +B(z).

The detailed proof are reserved for Appendix A. Here, we provide an intuitive explanation
for why the proposition holds true: Since the local maxima of B(z) are a subset of those of
A(z), maximizing B(z) will not conflict with the maximization of A(z), as both functions
share the same maxima. In each step of alternating maximization, either A(z) or B(z) is
maximized, ensuring that the combined function A(z) + B(z) is always non-decreasing.
This process continually improves or maintains the value of A(z) + B(z), progressively
guiding the optimization towards the shared local maxima. Therefore, alternating maxi-
mization converges to a local maximum of the combined function.
Equations (10)(11), along with Equation (12), serve as maximization solvers for log p(z0)
and log py(z0). The alternative maximization sampling process is presented in Algorithm 1.
Notably, lines 9, 10 and 11 of Algorithm 1 ensure that the gradient ascent for log py(z0) is
always performed on the natural image manifold M0 defined by the diffusion model.

5 AccCtr: Accelerating Training-free Conditional Diffusion

Algorithm 1 outlines our framework for training-free CDMs. We will examines the impact of
the total iterations J , the iterations N for maximizing p(z0) (green), and M for maximizing
py(z0) (yellow) in the algorithm. Understanding their effects is crucial, as the iteration
number significantly influence algorithm performance in training-free CDMs.

5
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Figure 2: Evolution of Extracted Conditions Across Intermediate Results ẑ(m)
0|t of Algorithm

1 at J = 16 step with N = 1. As the conditional correction count m increases from 2
to 12, the generated results in the first row progressively approximate the final outcome,
and the extracted conditions in the second row become more akin to the guidance image.
Correspondingly, the MSE plot in the last row exhibits a decreasing trend.

5.1 Why traning-free CDMs sampling is slow?

Accelerating the sampling speed requires reducing inference steps. The variation in sam-
pling methods often obscures the root causes of this slowness. Proposition 1 helps break
down the sampling process into two phases: maximizing log p(z0) via unconditional dif-
fusion and maximizing log py(z0) through conditional correction. By integrating existing
algorithms into the framework detailed in Appendix B, we can identify the phase that slows
down the sampling process.
As depicted in Figure 1, we have conducted four experiments. The first section outlines the
condition y, with each row corresponding to a different CDMs and showing performance
under y. Four experiments were tested to ensure consistent behavior across methods.

Experiment 1: With J = 20, N = 1, and M = 1, 20 iterations were allocated to maximize
both log p(z0|t) and log py(z0|t). Results are in the first section of Figure 1.

Experiment 2: Here, J = 20, N = 5, M = 1, with 100 maximization iterations for log p(z0|t)
and 20 steps for log py(z0|t). Results are in the second section of Figure 1.

Experiment 3: With J = 20, N = 1, M = 5, 20 iterations were allocated to maximize
log p(z0|t) and 100 steps to log py(z0|t). Results are in the third section of Figure 1.

Experiment 4: We set J = 100, N = 1, M = 1, resulting in 100 iterations for both log p(z0|t)
and log py(z0|t). Results are in the second section of Figure 1.

Figure 1 shows that the first two experiments lacked control, but the last two were successful.
A higher conditional correction iterations J×M is key for control, with early experiments at
20 and later at 100. Reducing log p(z0|t) iterations is okay, yet cutting log py(z0|t) iterations
harms sample quality by lessening conditional control.
To clarify why reducing the maximization steps for log py(z0|t) is inadvisable, we conducted
Experiment 5 monitors the progression of the extracted condition from the intermediate
outputs ẑ

(m)
0|t , as generated by Algorithm 1 for varying m. Figure 2 demonstrates that

with the increment of m, the extracted condition progressively aligns with the target.
Additionally, we employed MSE loss (Sara et al., 2019) to assess the divergence between
the intermediate edge condition and the target edge image. The bottom row of Figure 2
illustrates that the MSE diminishes with the growth of m, signifying improved conformity
to the guidance.

6
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These findings indicate that decreasing the conditional correction count M may result in
a loss of control over the final output, as the intermediate conditions could stray from the
target. The crux of the issue is the linear manifold assumption, where gradient descent uses
the tangent space to approximate the local image manifold. If the starting point is remote
from the target, additional linear manifolds are necessary to approximate the intervening
region. Therefore, increasing the number of iterations for conditional correction is crucial
for navigating the manifold’s curvature and obtaining a sample that closely matches the
target condition.

5.2 Our approach

For pre-trained condition extraction networks Cψ(·), our five experiments suggest that the
gradient descent algorithm requires more iterations. This is due to the fact that the gradient
∇z0|tE(y, z0|t,Cψ)may not provide accurate estimates for large steps. To reduce the number
of maximization steps needed for log py(z0|t), we propose to refine the condition extraction
network Cψ(·) to improve its accuracy, ensuring that the gradient of E(y, z0|t,Cψ) offers
a more precise direction for larger steps. Consequently, it is logical to retrain the network
Cψ(·) with two distinct objectives:

The 1st term: L1(y, z0|t,Cψ) is to effectively extract necessary conditions from zt. Here,
z0|t represents the projection of zt onto the manifold M0.

The 2st term: L2(y, z0, z0|t,Cψ) is to adjust the gradient of the first term so that it provides
accurate directional guidance for larger steps.

The first loss term can be constructed using two distinct strategies. The initial approach, em-
ployed by previous training-free CDMs, is defined asL1(y, z0|t,Cψ) = ∥y−Cψ(D(z0|t))∥22.
Here, D is the decoder that converts z0|t into an image, and Cψ is the pre-defined network
for tasks like segmentation, depth mapping, or HED. Typically, these pre-defined networks
are substantial, leading to high fine-tuning costs. Moreover, MSE loss may not be suitable
for all types of losses; for instance, cross-entropy loss is more fitting for segmentation guid-
ance. In this paper, we propose shifting the similarity comparison from the pixel domain
to the latent domain, as shown in Equation 13, where E is the encoder that translates an
image into its latent representation. This approach offers two benefits: 1) it allows us to use
MSE loss for various guidance types, and 2) it enables us to leverage the same backbone
for different condition extraction tasks. Here, we utilize the U-Net architecture from stable
diffusion (Rombach et al., 2022a) to handle all guidance tasks.

L1(y, z0|t,Cψ) :=
∥∥E(y)−Cψ(z0|t)

∥∥2
2

(13)

The second loss term is crafted to fine-tune the gradient for larger steps, aiming to achieve
the final outcome in a single iteration. Incorporating E(y, z0|t,Cψ) = ∥E(y)−Cψ(z0|t)∥22,
we employ the conditional score function ∇zt

log p(zt,y) = ∇zt
log p(zt) + ∇zt

log py(zt)
with∇zt

log py(zt) =
√
ᾱt∇z0|t log py(z0|t) to replace the score function in Equation 5. This

adjustment ensures that the gradient is more accurately aligned for larger steps. Conse-
quently, we obtain:

L2(y, z0, z0|t,Cψ) =

∥∥∥∥z0 − zt + (1− ᾱt)s(zt)√
αt

− λ(1− ᾱt)∇z0|tL1(y, z0|t,Cψ)

∥∥∥∥2
2

(14)

In this work, we adopt the two loss terms to retrain the condition extraction network Cψ(·),
which is subsequently integrated into Algorithm 1. Recognizing that z0|t is deducible from
zt through Equation 5 and that zt is retrievable from z0 via Equation 4, we can efficiently
train the condition extraction network Cψ(·) with the mere acquisition of the pair (y, z0).

6 experiment

In this section, we conduct thorough experiments and comparisons to showcase the efficacy
and strengths of our AccCtr sampling approach, while also providing a detailed account of
the experimental configuration.

7
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Figure 3: Visual Quality Assessment of Generated Images Across Various Conditional
Correction Counts M and Guidances. The first column presents various guidances. The
second column lists the prompts. Columns three to seven display the generated images for
different values of M with J = 20, N = 1.

Table 1: Quantitative Running Cost Comparison. We specify the unconditional diffusion
count N , conditional correction counts M , and sampling time in this table. It is clear that
our method provides the fastest outcomes.

UGD FreeDom DSG Ours

Unconditional Diffusion Count N (Times) 500 100 100 20
Conditional Correction Counts M (Times) 3000 90 90 20

Total Sampling Time (Second) 2357 83 53 8

6.1 Implementation Details

We employed the SD-V1.5 model as the foundational backbone for our approach. Our
conditional control network closely aligns with the SD-V1.5 model in terms of parameter
configuration. To facilitate the training process, we selected the Adam optimizer and set its
learning rate to 1e− 5. With a batch size of 1, the model was subjected to 200, 000 training
steps, lasting roughly 60 hours. In our experiments, we relied on the extensive COCO2017
dataset (Lin et al., 2014), which encompasses approximately 110, 000 images, providing a
robust dataset for object detection and segmentation tasks.

6.2 Illustrating Sampling Acceleration

In this section, we explore the acceleration capabilities of AccCtr. Proposition 1 suggests
that training-free CDMs can be distilled into the optimization of two key objectives. Our
experimental results indicate that while the maximum number of iterations for the uncon-
ditional objective can be significantly reduced, the same cannot be said for the conditional
diffusion, which requires a higher number of iterations. To address this, AccCtr proposes
retraining the condition extraction networksCψ(·) to decrease the numberM of conditional
correction iterations needed for the conditional objective log py(z0|t).
Figure 3 presents the visual quality of images generated by AccCtr for different values of
M . It’s evident that our method can achieve satisfactory results even at M = 1, potentially
greatly enhancing the sampling speed for CDMs. When M = 0, the sampling process does
not incorporate conditional control, resulting in outputs that are unaffected by the guidance.
Therefore, setting M = 1 represents the quickest scenario for conditional generation. To

8
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Figure 4: Compatibility Demonstration of MSE Metric for Diverse Guidance Types Using
our Condition Extraction Network. We present 10 distinct guidances and their correspond-
ing generated results in this section. Regardless of the variance in guidance, we opt for the
same MSE metric to calculate the gradient of E(y, z0|t,Cψ).

‘‘two
sheep on
grass”

Condition UGD FreeDom DSG

Figure 5: Compatibility Demonstration of our Condition Extraction Network in Conditional
Generation Across Different Methods. We have replaced the pre-defined condition extrac-
tion networks used by UGD, FreeDoM, and DSG with our own networks. The resulting
generated images are displayed in the second row, while originals are in the first.

offer an overview of the acceleration capabilities of our method, we present a quantitative
comparison of the running costs in Table 1. We specifically evaluate our method against
FreeDoM (Yu et al., 2023), DSG (Yang et al., 2024b), and UGD (Bansal et al., 2024) with
respect to the iteration number N for unconditional diffusion, the iteration number M for
conditional correction, and the total sampling time. It can be observed that our method
incurs the lowest running costs in Table 1.

6.3 Investigating the Compatibility of condition extraction networks

In Section 5.2, we highlighted that our condition extraction network can assess the similarity
between the guidance and intermediate results using the MSE metric. This approach
is notably different from previous methods that employed different metrics for different
guidances. Figure 4 displays the visualization results with different guidances, where the
similarity is consistently measured using MSE. The results substantiate the compatibility
of condition extraction networks for diverse guidances.
Replacing existing pre-defined condition extraction networks with ours is viable, as shown
in Figure 5 for FreeDoM (Yu et al., 2023), DSG (Yang et al., 2024b), and UGD (Bansal
et al., 2024). The first row shows original results, and the second row shows results with
our networks. The sampling quality is comparable, proving our network’s compatibility.
More importantly, it is potential to accelerate sampling as our network could reduce the
conditional correction count M to 1.

9
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Table 2: Quantitative Comparison for Controllable Generation. We selected the depth,
canny, and segmentation conditions, which are universally provided by various methods.
The best results are highlighted in bold.

Depth Canny Segmentation
FID↓ CLIP↑ MSE↓ FID↓ CLIP↑ SSIM↑ FID↓ CLIP↑ mIoU↑

ControlNet 19.3954 0.2793 90.1302 17.3429 0.2801 0.4138 22.1217 0.2795 0.4217
T2I-Adapter 23.9216 0.2913 94.9317 17.6812 0.3011 0.3954 22.0173 0.2995 0.2564

ControlNet++ 18.0139 0.2985 87.2173 20.1487 0.3024 0.5138 24.9371 0.2931 0.5438
UGD 23.0034 0.2921 86.6792 21.8452 0.3013 0.5037 23.5437 0.2992 0.4127

FreeDom 22.7825 0.2879 87.1242 21.9547 0.2987 0.4937 23.3619 0.2965 0.3931
DSG 23.2147 0.2856 87.5637 21.6153 0.2961 0.5011 23.0198 0.2938 0.3985
Our 22.4376 0.2932 86.0179 21.3846 0.3041 0.5217 22.9631 0.3011 0.4018

6.4 Ablation Study For Training Loss

M
=

5

The
majestic

mountain

Condition
M

=
1

w/o L1 w/o L2 L1 & L2

Figure 6: Ablation Study For Training Loss.
Each row shows generated results for differ-
ent M . Each column displays the generated
results from condition extraction networks
trained with various loss configurations.

Our training loss for the condition extrac-
tion networks Cψ(·) is composed of two
key terms. In this section, we perform an
Ablation Study on these terms to evaluate
their individual importance, with the final
results presented in Figure 6. It is evident
that without L1, controllable generation is
possible but requires a greater number M
of conditional corrections. In the absence
of L2, controllability is compromised, even
with a large number of conditional correc-
tions. In contrast, utilizing condition ex-
traction networks trained with both terms
results in more satisfactory outcomes.

6.5 Sampling Quality Comparison

In this section, we conduct quantitative comparison for sampling quality comparison. Total
six methods including three training-free CMDs (FreeDoM (Yu et al., 2023), DSG (Yang et al.,
2024b), UGD (Bansal et al., 2024) ) and three training-required CMDs (ControlNet (Zhang
et al., 2023), T2I-Adapter (Mou et al., 2024), ControlNet++ (Li et al., 2024) ) are compared.
The test is conducted on COCO2017 validation set with timesteps set to 20. For text
alignment, we evaluated the CLIP Scores (Radford et al., 2021). For conditional consistency,
we measured MSE (Sara et al., 2019) for depth maps, SSIM (Wang et al., 2004) for edge maps,
and mIoU (Rezatofighi et al., 2019) for segmentation maps. For conditions not originally
supported by training-free CDMs, we have integrated our condition extraction network
into their existing algorithms. It is evident that AccCtr leads among pioneering training-
free approaches in Table 2, and even when compared to training-required methods, our
approach remains competitive. For qualitative comparison, please refer to Appendix C.

6.6 Conclusion

Slow sampling is a common issue in current training-free CDMs. In this paper, we introduce
a novel framework that reformulates training-free CDMs into the maximization of two
distinct objectives. By meticulously counting the optimization steps for each objective,
we identify the phase that is the bottleneck for sampling speed and propose retraining the
condition extraction networks as a strategy to expedite conditional sampling. Our extensive
experiments confirm that AccCtr can significantly reduce the computational cost without
compromising sample quality. Most importantly, our method exhibits broad compatibility,
holding potential to accelerate a variety of other methods. This conclusion underscores
the versatility and efficacy of our approach in addressing the common challenge of slow
sampling speeds in training-free CDMs.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum,

Jonas Geiping, and Tom Goldstein. Universal guidance for diffusion models. In Conference
on Computer Vision and Pattern Recognition, 2023.

Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. Universal Guidance for Diffusion Models. In Interna-
tional Conference on Learning Representations, 2024.

Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon.
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models. In International
Conference on Computer Vision, 2021.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving Diffusion
Models for Inverse Problems using Manifold Constraints. In Advances in Neural Information
Processing Systems, 2022.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and
Jong Chul Ye. Diffusion Posterior Sampling for General Noisy Inverse Problems. In
International Conference on Learning Representations, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion Models Beat GANs on Image Synthesis.
In Advances in Neural Information Processing Systems, 2021.

Bradley Efron. Tweedie’s Formula and Selection Bias. Journal of the American Statistical
Association, 2011.

Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun
Kim, Wei-Hsiang Liao, Yuki Mitsufuji, J. Zico Kolter, Ruslan Salakhutdinov, and Stefano
Ermon. Manifold Preserving Guided Diffusion. In International Conference on Learning
Representations, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS Workshop on
Deep Generative Models and Downstream Applications, 2021a.

Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. In NeurIPS Workshop
on Deep Generative Models and Downstream Applications, 2021b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In
Advances in Neural Information Processing Systems, 2020.

Ming Li, Taojiannan Yang, Huafeng Kuang, Jie Wu, Zhaoning Wang, Xuefeng Xiao, and
Chen Chen. ControlNet++: Improving Conditional Controls with Efficient Consistency
Feedback. In European Conference on Computer Vision, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In
European Conference on Computer Vision, 2014.

Huafeng Kuang Jie Wu Zhaoning Wang Xuefeng Xiao Chen Chen Ming Li, Taojiannan Yang.
ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback. In
European Conference on Computer Vision, 2024.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying
Shan. T2I-Adapter: Learning Adapters to Dig Out More Controllable Ability for Text-to-
Image Diffusion Models. In AAAI Conference on Artificial Intelligence, 2024.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilis-
tic Models. In International Conference on Machine Learning, July 2021.

Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia.
ControlNeXt: Powerful and Efficient Control for Image and Video Generation, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning Transfer-
able Visual Models From Natural Language Supervision. In International Conference on
Machine Learning, 2021.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. Generalized Intersection over Union: A Metric and A Loss for Bounding Box
Regression. In Conference on Computer Vision and Pattern Recognition, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Conference on Computer
Vision and Pattern Recognition, 2022a.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-Resolution Image Synthesis With Latent Diffusion Models. In Conference on Com-
puter Vision and Pattern Recognition, 2022b.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Moham-
mad Norouzi. Image Super-Resolution via Iterative Refinement. Transactions on Pattern
Analysis and Machine Intelligence, 2023.

Umme Sara, Morium Akter, and Mohammad Shorif Uddin. Image Quality Assessment
through FSIM, SSIM, MSE and PSNR: a Comparative Study. Journal of Computer and
Communications, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Un-
supervised Learning using Nonequilibrium Thermodynamics. In International Conference
on Machine Learning, July 2015.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz,
Yongxin Chen, and Arash Vahdat. Loss-Guided Diffusion Models for Plug-and-Play
Controllable Generation. In International Conference on Machine Learning, 2023.

Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data
Distribution. In Advances in Neural Information Processing Systems, 2019.

Yang Song and Stefano Ermon. Improved Techniques for Training Score-Based Generative
Models. In Advances in Neural Information Processing Systems, 2020.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum Likelihood Training
of Score-Based Diffusion Models. In Advances in Neural Information Processing Systems,
2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equa-
tions. In International Conference on Learning Representations, 2021b.

Yanan Sun, Yanchen Liu, Yinhao Tang, Wenjie Pei, and Kai Chen. AnyControl: Create Your
Artwork with Versatile Control on Text-to-Image Generation, 2024.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image Quality As-
sessment: from Error Visibility to Structural Similarity. Transactions on Image Processing,
2004.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao
Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion Models: A Comprehensive Survey of
Methods and Applications. ACM Computing Surveys, 2024a.

Lingxiao Yang, Shutong Ding, Yifan Cai, Jingyi Yu, Jingya Wang, and Ye Shi. Guidance
with Spherical Gaussian Constraint for Conditional Diffusion. In International Conference
on Machine Learning, 2024b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. FreeDoM: Training-
Free Energy-Guided Conditional Diffusion Model. In International Conference on Computer
Vision, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding Conditional Control to Text-to-
Image Diffusion Models. In International Conference on Computer Vision, 2023.

Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and
Luc Van Gool. Denoising Diffusion Models for Plug-and-Play Image Restoration. In
Conference on Computer Vision and Pattern Recognition Workshops, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A Appendix: Proof of Proposition 1

To prove that the alternating maximization of A(z) and B(z) converges to a local maximum
of the function A(z) +B(z), we proceed with the following steps and assumptions.
Assumptions:
Let z ∈ Rn denote the variable defined over the domain of the functions A(z) and B(z). We
assume:

1. The set of local maxima of B(z), denoted SB , is a subset of the set of local maxima
of A(z), denoted SA. That is: SB ⊆ SA.

2. Both functions A(z) and B(z) are continuously differentiable, and their local max-
ima are isolated points.

3. The functions A(z) and B(z) have local maxima.

Alternating Maximization Algorithm:
The alternating maximization algorithm proceeds as follows:

• Begin with an initial point z0.
• In each odd iteration (step k), maximize A(z), holding B(z) fixed.

zk+1 = argmax
z

A(z),

• In each even iteration (step k + 1), maximize B(z) holding A(z) fixed.

zk+2 = argmax
z

B(z),

Proof:
We aim to show that this alternating process converges to a local maximum of the combined
function A(z) +B(z).
Step 1: Local Maxima Relationship
Suppose at some iteration zk, we have maximized A(z) so that:

zk ∈ SA.

Since SB ⊆ SA, it follows that if zk is also a local maximum of B(z), then:

zk ∈ SB .

Thus, at this point, zk is a local maximum of both A(z) and B(z).
Step 2: Behavior of Alternating Maximization
When we perform alternating maximization, we iterate between optimizing A(z) and B(z).
Given the assumption that SB ⊆ SA, every point that is a local maximum of B(z) is also a
local maximum of A(z). Therefore, in each step, when we maximize B(z), the algorithm
remains within the set of local maxima of A(z).
As a result, as the algorithm iterates, the points zk produced by alternating maximization
will always belong to the set SA. Furthermore, the sequence of points {zk} is confined to
a finite set of local maxima (due to the assumption that both functions have finitely many
maxima), and the process converges to one of these maxima.
Step 3: Convergence to a Local Maximum of A(z) +B(z)

Once the alternating maximization has converged to a point z∗ ∈ SA ∩ SB , we know that:

• z∗ is a local maximum of A(z)

• z∗ is a local maximum of B(z)

14
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Because z∗ is a local maximum of both functions individually, it follows that it is also a local
maximum of their sum:

A(z) +B(z).

Thus, the alternating maximization process converges to a local maximum of the function
A(z) +B(z).
Conclusion
We have shown that the alternating maximization of A(z) and B(z), given the assumption
SB ⊆ SA, converges to a local maximum of the function A(z) +B(z).

Q.E.D.

B Appendix: Alternative Maximization Sampling Counterpart for
FreeDoM, DSG and UGD

Proposition 1 illustrates that conditional sampling is effectively an alternating maximization
of two objectives. In this section, we present the Alternative Maximization Sampling
framework, which is applied to FreeDoM, DSG, and UGD. The purpose of this framework
is to investigate the reasons behind the slow sampling process in training-free Conditional
Diffusion Models (CDMs). By leveraging the concept of alternating maximization, we
seek to enhance our understanding of the efficiency of these models during sampling.
Our analysis reveals that the key differences among these methods lie in their respective
corrections for ẑ(m+1)

0|t . The efficacy of each approach is contingent upon how effectively they
adjust the intermediate sample ẑ

(m+1)
0|t to align with the desired conditional attributes. This

insight is pivotal for refining the sampling process and enhancing the overall effectiveness
of training-free CDMs. By supplying a more precise correction term, we can reduce the
number of optimization steps required.

Algorithm 2 Alternative Maximization Sampling For FreeDoM
Require: The iteration number J , the unconditional diffusion count N for solving p(z0|t)

and the conditional correction count M for solving py(z0|t). The time reversal step K.
Ensure: ẑJN ∼ N (0, I), and ẑ0|JN ←

√
ᾱJN

−1
(ẑJN + (1− ᾱJN )sθ(ẑJN ))

1: for j = J, . . . , 1 do
2: for n = 0, . . . , N − 1 do
3: t← jN − n

4: ẑt−1 ←
√
ᾱt−1βt

1−ᾱt
ẑ0|t +

√
αt(1−ᾱt−1)

1−ᾱt
ẑt +

√
β̄tϵ

5: ẑ0|t−1 ← 1√
ᾱt−1

ẑt−1 +
(1−ᾱt−1)√

ᾱt−1
sθ(ẑt−1)

6: end for
7: t← (j − 1)N
8: for m = 0, . . . ,M − 1 do
9: ẑ

(m)
K|t ←

√
ᾱK ẑ

(m)
0|t +

√
(1− ᾱK)ϵ

10: ẑ
(m)
0|t ←

1√
ᾱt
ẑ
(m)
K|t +

(1−ᾱK)√
ᾱK

sθ(ẑ
(m)
K|t )

11: ẑ
(m+1)
0|t ← ẑ

(m)
0|t − λ∇

ẑ
(m)

0|t
E(y, ẑ(m)

0|t ,Cψ)

12: end for
13: ẑ0|t ← ẑ

(M)
0|t

14: end for
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Algorithm 3 Alternative Maximization Sampling For DSG
Require: The iteration number J , the unconditional diffusion count N for solving p(z0|t)

and the conditional correction count M for solving py(z0|t). The time reversal step K.
Ensure: ẑJN ∼ N (0, I), and ẑ0|JN ←

√
ᾱJN

−1
(ẑJN + (1− ᾱJN )sθ(ẑJN ))

1: for j = J, . . . , 1 do
2: t← jN − n

3: ẑt−1 ←
√
ᾱt−1βt

1−ᾱt
ẑ0|t +

√
αt(1−ᾱt−1)

1−ᾱt
ẑt +

√
β̄tϵ

4: ẑ0|t−1 ← 1√
ᾱt−1

ẑt−1 +
(1−ᾱt−1)√

ᾱt−1
sθ(ẑt−1)

5: end for
6: t← (j − 1)N
7: for m = 0, . . . ,M − 1 do
8: ẑ

(m)
K|t ←

√
ᾱK ẑ

(m)
0|t +

√
(1− ᾱK)ϵ

9: ẑ
(m)
0|t ←

1√
ᾱt
ẑ
(m)
K|t +

(1−ᾱK)√
ᾱK

sθ(ẑ
(m)
K|t )

10: d∗ ← −
√
n
√

β̄t

∇
ẑ
(m)
0|t

E(y,ẑ(m)

0|t ,Cψ)

∥∇
ẑ
(m)
0|t

E(y,ẑ(m)

0|t ,Cψ)∥2

11: dsample =
√
β̄tϵ

12: dm = dsample + gr(d
∗ − dsample)

13: ẑ
(m+1)
0|t ← ẑ

(m)
0|t + r dm

∥dm∥
14: end for
15: ẑ0|t ← ẑ

(M)
0|t

Algorithm 4 Alternative Maximization Sampling For UGD
Require: The iteration number J , the unconditional diffusion count N for solving p(z0|t)

and the conditional correction count M for solving py(z0|t). The time reversal step K.
Ensure: ẑJN ∼ N (0, I), and ẑ0|JN ←

√
ᾱJN

−1
(ẑJN + (1− ᾱJN )sθ(ẑJN ))

1: for j = J, . . . , 1 do
2: for n = 0, . . . , N − 1 do
3: t← jN − n

4: ẑt−1 ←
√
ᾱt−1βt

1−ᾱt
ẑ0|t +

√
αt(1−ᾱt−1)

1−ᾱt
ẑt +

√
β̄tϵ

5: ẑ0|t−1 ← 1√
ᾱt−1

ẑt−1 +
(1−ᾱt−1)√

ᾱt−1
sθ(ẑt−1)

6: end for
7: t← (j − 1)N
8: for m = 0, . . . ,M − 1 do
9: ẑ

(m)
K|t ←

√
ᾱK ẑ

(m)
0|t +

√
(1− ᾱK)ϵ

10: ẑ
(m)
0|t ←

1√
ᾱt
ẑ
(m)
K|t +

(1−ᾱK)√
ᾱK

sθ(ẑ
(m)
K|t )

11: ∆ẑ
(m)
0|t = argmin

∆

E(y, ẑ(m)
0|t +∆,Cψ)

12: ẑ
(m+1)
0|t ← ẑ

(m)
0|t − λ

(
∇

ẑ
(m)

0|t
E(y, ẑ(m)

0|t ,Cψ)−
√

αt

1−αt
∆ẑ

(m)
0|t

)
13: end for
14: ẑ0|t ← ẑ

(M)
0|t

15: end for

C Appendix: Qualitative Comparison
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Figure 7: Visual Quality Comparison. In each pair of columns, the first column showcases
the generated results, while the second column displays the extracted conditions from these
results. It is evident that our method adheres precisely to the guidance compared to other
methods.
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