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ABSTRACT

In this paper, we study offline Reinforcement Learning with Human Feedback
(RLHF) where we aim to learn the human’s underlying reward and the MDP’s op-
timal policy from a set of trajectories induced by human choices. Existing RLHF
practices often focus on the simplified bandit-feedback setting or when human
preferences are myopic. However, how to learn optimal policy from non-myopic
human choices in a dynamic environment remains underinvestigated. In this work,
we focus on the Dynamic Discrete Choice (DDC) model that covers all these
cases. DCC, rooted in econometrics and decision theory, is widely used to model
a human decision-making process with forward-looking and bounded rational-
ity. In this paper, we propose a Dynamic-Choice-Pessimistic-Policy-Optimization
(DCPPO) method. The method involves a three-stage process: The first step is to
estimate the human behavior policy and the state-action value function via max-
imum likelihood estimation (MLE); the second step recovers the human reward
function via minimizing Bellman mean squared error using the learned value func-
tions; the third step is to plug in the learned reward and invoke pessimistic value
iteration for finding a near-optimal policy. With only single-policy coverage (i.e.,
optimal policy) of the dataset, we prove that the suboptimality of DCPPO almost
matches the classical pessimistic offline RL algorithm in terms of suboptimality’s
dependency on distribution shift and dimension. To the best of our knowledge,
this paper presents the first theoretical guarantees for off-policy offline RLHF with
dynamic discrete choice model.

1 INTRODUCTION

Reinforcement Learning with Human Feedback (RLHF) is an area in machine learning research
that incorporates human guidance or preference to learn an optimal policy. In recent years, RLHF
has achieved significant success in large language models, clinical trials, auto-driving, robotics, etc.
(Ouyang et al., 2022; Gao et al., 2022; Glaese et al., 2022; Hussein et al., 2017; Jain et al., 2013;
Kupcsik et al., 2018; Menick et al., 2022; Nakano et al., 2021; Novoseller et al., 2020). In RLHF,
the learner does not have direct access to the reward signal but instead can only observe a historical
record of visited states and human-preferred actions. Then the reward is leveraged to learn the
optimal policy by implementing algorithms such as soft actor-critic (Lee et al., 2021; Liang et al.,
2022) or proximal policy optimization (Ouyang et al., 2022; Liang et al., 2022).

Despite its great success, existing RLHF practice often focuses on the simplified bandit feedback
setting or when human preferences are myopic. However, how to learn optimal policy from non-
myopic human choices in a dynamic environment remains underinvestigated. In this paper, we
focus on Dynamic Discrete Choice (DDC) model. Such model has been extensively studied in
econometrics literature (Rust, 1987; Hotz & Miller, 1993; Hotz et al., 1994; Aguirregabiria & Mira,
2002; Kalouptsidi et al., 2021; Bajari et al., 2015; Chernozhukov et al., 2022). In a DDC model, the
agent make decisions under unobservable perturbation, i.e. πh(ah | sh) = argmaxa{Qh(sh, a) +
ϵh(a)}, where ϵh is an unobservable random noise and Qh is the agent’s action value function.
Specifically, our setting covers (i) trajectory-level feedback, in which the human preference is over
prompt and full response, such as in LLM ; (ii) myopic humans (Zhang & Yu, 2013), in which
human prones to choose the best action in current state; (iii) max entropy inverse RL (Ziebart et al.,
2008; Zeng et al., 2022; Sharma et al., 2017), in which expert’s choice actions to be more favorable
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than actions not taken, which is a harder problem due to the non-myopic dynamical decision making
process of the experts. We leave a detailed comparison in Appendix A.

Challenges for RLHF under dynamic choice model are three-folded: (i) The agent must first learn
human behavior policies from the feedback data. (ii) The agent’s behavior is related to the cumu-
lative reward in a dynamic environment. Therefore, we need to recover the unobservable reward of
the current step from estimated behavior policies. (iii) We face the challenge of insufficient dataset
coverage and large state space.

With these coupled challenges, we ask the following question:

Without access to the reward function, can one learn the optimal pessimistic policy from merely
human choices under the dynamic choice model?

Our Results. In this work, we propose the Dynamic-Choice-Pessimistic-Policy-Optimization
(DCPPO) algorithm. By addressing challenges (i)-(iii), our contributions are three folds: (i) For
learning behavior policies in large state spaces, we employ maximum likelihood estimation to esti-
mate state/action value functions with function approximation. We establish estimation error bounds
for general model class with low covering number. (ii) Leveraging the learned value functions, we
minimize the Bellman mean squared error (BMSE) through regression. This allows us to recover
the unobservable reward from the learned policy. Additionally, we demonstrate that the error of
our estimated reward can be efficiently controlled by an uncertainty quantifier. (iii) To tackle the
challenge of insufficient coverage, we follow the principle of pessimism, by incorporating a penalty
into the value function during value iteration. We establish the suboptimality of our algorithm with
high probability with only single-policy coverage.

Our result matches existing pessimistic offline RL algorithms in terms of suboptimality’s depen-
dence on distribution shift and dimension, even in the absence of an observable reward. To the best
of our knowledge, our results offer the first theoretical guarantee for pessimistic RL under the human
dynamic choice model.

1.1 RELATED WORK

Reinforcement Learning with Human Preference. In recent years RLHF and inverse reinforce-
ment learning (IRL) has been widely applied to robotics, recommendation system, and large lan-
guage model (Ouyang et al., 2022; Lindner et al., 2022; Menick et al., 2022; Jaques et al., 2020; Lee
et al., 2021; Nakano et al., 2021). However, there are various ways to incorporate human preferences
or expertise into the decision-making process of an agent. Shah et al. (2015); Ouyang et al. (2022);
Saha & Krishnamurthy (2022) learn reward from pairwise comparison and ranking. Pacchiano et al.
(2021) study pairwise comparison with function approximation in pairwise comparison. Zhu et al.
(2023) study various cases of preference-based-comparison in contextual bandit problem with lin-
ear function approximation. Wang et al. (2018) study how to learn a uniformly better policy of an
MDP from an offline dataset by learning the advantage function. However, they cannot guarantee
the learned policy converges to the optimal policy. Moreover, previous works in RLHF and max en-
tropy inverse RL corresponds to bandit case in our setting and can be easily covered. For a detailed
comparison, check Appendix A.

Dynamic Discrete Choice Model. Dynamic Discrete Choice (DDC) model is a widely studied
choice model in econometrics and is closely related to reward learning in IRL and RLHF. In the
DDC model, the human agent is assumed to make decisions under the presence of Gumbel noise
(Type I Extreme Error)(Aguirregabiria & Mira, 2002; Chernozhukov et al., 2022; Bajari et al., 2015;
Kalouptsidi et al., 2021; Adusumilli & Eckardt, 2019), i.e. under bounded rationality, and the task
is to infer the underlying utility. A method highly related to our work is the conditional choice
probability (CCP) algorithm (Hotz & Miller, 1993; Arcidiacono & Ellickson, 2011; Bajari et al.,
2015; Adusumilli & Eckardt, 2019), in which the learner first estimate choice probability from
the dataset, and then recover the underlying value function from the estimated dynamic choices.
However, most work in econometrics cares for asymptotic

√
n-convergence of estimated utility and

does not study finite sample estimation error. Moreover, their methods requires sufficient coverage
dataset, which is hard to satisfy. In recent years, there has been work combining the dynamic
discrete choice model and IRL. Zeng et al. (2022) prove the equivalence between DDC estimation
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problem and maximum likelihood IRL problem, and propose an online gradient method for reward
estimation under ergodic dynamics assumption. Zeng et al. (2023) reformulate the reward estimation
in the DDC model into a bilevel optimization and propose a model-based approach by assuming an
environment simulator.

Offline Reinforcement Learning and Pessimism. The idea of introducing pessimism for offline
RL to deal with distribution shift has been studied in recent years (Jin et al., 2021; Uehara et al.,
2021). Jin et al. (2021) show that pessimism is sufficient to eliminate spurious correlation and in-
trinsic uncertainty when doing value iteration. Uehara et al. (2021) show that with single-policy
coverage, i.e. coverage over the optimal policy, pessimism is sufficient to guarantee a O(n−1/2)
suboptimality. In this paper, we connect RLHF with offline RL and show our algorithm achieves
pessimism by designing an uncertainty quantifier that can tackle error from estimating reward func-
tions, which is crucial in pessimistic value iteration.

1.2 NOTATIONS AND PRELIMINARIES

For a positive-semidefinitematrix A ∈ Rd×d and vector x ∈ Rd, we use ∥x∥A to denote
√
x⊤Ax.

For an arbitrary space X , we use ∆(X ) to denote the set of all probability distribution on X .
For two vectors x, y ∈ Rd, we denote x · y =

∑d
i xiyi as the inner product of x, y. We de-

note the set of all probability measures on X as ∆(X ). We use [n] to represent the set of in-
tegers from 0 to n − 1. For every set M ⊂ X for metric space X , we define its ϵ-covering
number with respect to norm ∥ · ∥ by N(M, ∥ · ∥, ϵ). We define a finite horizon MDP model
M = (S,A, H, {Ph}h∈[H], {rh}h∈[H]), H is the horizon length, in each step h ∈ [H] , the agent
starts from state sh in the state space S, chooses an action ah ∈ A with probability πh(ah | sh)
, receives a reward of rh(sh, ah) and transits to the next state s′ with probability Ph(s′ | sh, ah).
Here A is a finite action set with |A| actions and Ph(·|sh, ah) ∈ ∆(sh, ah) is the transition ker-
nel condition on state action pair (s, a). For convenience we assume that rh(s, a) ∈ [0, 1] for all
(s, a, h) ∈ S ×A× [H]. Without loss of generality, we assume that the initial state of each episode
s0 is fixed. Note that this will not add difficulty to our analysis. For any policy π = {πh}h∈[H] the
state value function is V πh (s) = Eπ

[∑H
t=h rt(st, at)

∣∣ sh = s
]
, and the action value function is

Qπh(s, a) = Eπ
[∑H

t=h rt(st, at)
∣∣ sh = s, ah = a

]
, here the expectation Eπ is taken with respect

to the randomness of the trajectory induced by π, i.e. is obtained by taking action at ∼ πt(· | st)
and observing st+1 ∼ Ph(· | st, at). For any function f : S → R, we define the transition operator
Phf(s, a) = E[f(sh+1) | sh = s, ah = a]. We also define the Bellman equation for any policy π,
V πh (s) = ⟨πh(a | s), Qπb

h (s, a)⟩, Qπh(s, a) = rh(s, a)+PhV πh+1(s, a). For an MDP we denote its op-
timal policy as π∗, and define the performance metric for any policy π as SubOpt(π) = V π

∗

1 −V π1 .

2 PROBLEM FORMULATION

In this paper, we aim to learn from a dataset of human choices under dynamic discrete choice model.
Suppose we are provided with dataset D = {Dh = {sih, aih}i∈[n]}h∈[H], containing n trajectories
collected by observing a single human behavior in a dynamic discrete choice model. Our goal is to
learn the optimal policy π∗ of the underlying MDP. We assume that the agent is bounded-rational
and makes decisions according to the dynamic discrete choice model (Rust, 1987; Hotz & Miller,
1993; Chernozhukov et al., 2022; Zeng et al., 2023). In dynamic discrete choice model, the agent’s
policy has the following characterization (Rust, 1987; Aguirregabiria & Mira, 2002; Chernozhukov
et al., 2022), which deviates from optimal policy due to bounded rationality:

πb,h(a | s) =
exp(Qπb,γ

h (s, a))∑
a′∈A exp(Qπb,γ

h (s, a′))
, (1)

here Qπb,γ
h (·, ·) works as the solution of the discounted Bellman equation,

V πb,γ
h (s) = ⟨πb,h(a | s), Qπb,γ

h (s, a)⟩, Qπb,γ
h (s, a) = rh(s, a) + γ · PhV πb,γ

h+1 (s, a) (2)

for all (s, a) ∈ S × A. Note that equation 2 differs from the original Bellman equation due to the
presence of γ, which is a discount factor in [0, 1], and measures the myopia of the agent. The case
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of γ = 0 corresponds to a myopic human agent. Such choice model comes from the perturbation of
noises,

πb,h(· | sh) = argmaxa∈A

{
rh(sh, a) + ϵh(a) + γ · PhV πb,γ

h+1 (sh, a)

}
,

where {ϵh(a)}a∈A are i.i.d Gumbel noises that is observed by the agent but not the learner,
{V γ,πb

h }h∈[H] is the value function of the agent. Such model is widely used to model human deci-
sion. We also remark that the state value function defined in equation 2 corresponds to the ex-ante
value function in econometric studies (Aguirregabiria & Mira, 2010; Arcidiacono & Ellickson, 2011;
Bajari et al., 2015). When considering Gumbel noise as part of the reward, the value function may
have a different form. However, such a difference does not add complexity to our analysis.

3 REWARD LEARNING FROM HUMAN DYNAMIC CHOICES

In this section, we present a general framework of an offline algorithm for learning the reward
of the underlying MDP. Our algorithm consists of two steps: (i) The first step is to estimate the
agent behavior policy from the pre-collected dataset D by maximum likelihood estimation (MLE).
We recover the action value functions {Qπb,γ

h }h∈[H] from equation 1 and the state value functions
{V πb,γ

h }h∈[H] from equation 2 using function approximation. In Section 3.1, we analyze the error
of our estimation and prove that for any model class with a small covering number, the error from
MLE estimation is of scale Õ(1/n) in dataset distribution. We also remark that our result does not
need the dataset to be well-explored, which is implicitly assumed in previous works (Zhu et al.,
2023; Chen et al., 2020). (ii) We recover the underlying reward from the model class by minimizing
a penalized Bellman MSE with plugged-in value functions learned in step (i). In Section 3.2, we
study linear model MDP as a concrete example. Theorem 3.5 shows that the error of estimated
reward can be bounded by an elliptical potential term for all (s, a) ∈ S × A in both settings. First,
we make the following assumption for function approximation.
Assumption 3.1 (Function Approximation Model Class). We assume the existence of a model
class M = {Mh}h∈[H] containing functions f : S × A → [0, H] for every h ∈ [H], and is rich
enough to capture rh and Qh, i.e. rh ∈ Mh, Qh ∈ Mh. We also assume a positive penalty ρ(·)
defined on M.

In practice, Mh can be a (pre-trained) neural network or a random forest. We now present our
algorithm for reward learning in RLHF.

Algorithm 1 DCPPO: Reward Learning for General Model Class

Require: Dataset
{
Dh = {sih, aih}i∈[n]

}
h∈[H]

, constant λ > 0, penalty function ρ(·), parameter β.

1: for step h = H, . . . , 1 do
2: Set Q̂h = argmaxQ∈Mh

1
n

∑n
i=1Q(sih, a

i
h)− log

(∑
a′∈A exp(Q(sih, a

′))
)
.

3: Set π̂h(ah | sh) = exp(Q̂h(sh, ah))/
∑
a′∈A exp(Q̂h(sh, a

′).
4: Set V̂h(sh) = ⟨Q̂h(sh, ·), π̂h(· | sh)⟩A.
5: Set r̂h(sh, ah) = argminr∈Mh

{∑n
i=1

(
rh(s

i
h, a

i
h) + γ · V̂h+1(s

i
h+1) − Q̂h(s

i
h, a

i
h)
)2

+

λρ(r)
}

.
6: end for
7: Output: {r̂h}h∈[H].

3.1 FIRST STEP: RECOVERING HUMAN POLICY AND HUMAN STATE-ACTION VALUES

For every step h, we use maximum liklihood estimaton (MLE) to estimate the behaviour policy
πb,h, corresponds to Qπb,γ

h (s, a) in a general model class Mh. For each step h ∈ [H], we have the
log-likelihood function

Lh(Q) =
1

n

n∑
i=1

log

(
exp(Q(sih, a

i
h))∑

a′∈A exp(Q(s, a′))

)
(3)
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for Q ∈ Mh, and we estimate Qh by maximizing equation 3. Note that by Equation equation 1,
adding a constant onQπb,γ

h will produce the same policy under dynamic discrete model, and thus the
real behavior value function is unidentifiable in general. For identification, we have the following
assumption.
Assumption 3.2 (Model Identification). We assume that there exists one a0 ∈ A, such that
Q(s, a0) = 0 for every s ∈ S.

Note that this assumption does not affect our further analysis. Other identifications include pa-
rameter constraint (Zhu et al., 2023) or utility constraints Bajari et al. (2015). We can ensure the
estimation of the underlying policy and corresponding value function is accurate in the states the
agent has encountered. Formally, we have the following theorem,
Theorem 3.3 (Value Functions Recovery from Choice Model). With Algorithm 1 , we have

EDh

[
∥Q̂h(sh, ·)−Qπb,γ

h (sh, ·)∥21
]
≤ O

(
H2e2H · |A|2 · log

(
H ·N(Mh, ∥ · ∥∞, 1/n)/δ

)
n

)
hold for every h ∈ [H] with probability at least 1 − δ. Here EDh

[·] means the expectation is taken
on collected dataset Dh, i.e. the mean value taken with respect to {sih}i∈[n].

Proof. See Appendix B for details.

Theorem 3.3 shows that we can efficiently learn πb,h from the dataset under identification assump-
tion. As a result, we can provably recover the value functions by definition in Equation 1.

3.2 REWARD LEARNING FROM DYNAMIC CHOICES

As a concrete example, we study the instantiation of Algorithm 1 for the linear model class. We
define the function class Mh = {f(·) = ϕ(·)⊤θ : S × A → R, θ ∈ Θ} for h ∈ [H], where
ϕ ∈ Rd is the feature defined on S × A, Θ is a subset of Rd which parameterizes the model class,
and d > 0 is the dimension of the feature. Corresponding to Assumption 3.2, We also assume that
ϕ(s, a0) = 0 for every s ∈ S. Note that this model class contains the reward rh and state action
value function Qh in tabular MDP where ϕ(s, a) is the one-hot vector of (s, a). The linear model
class also contains linear MDP, which assumes both the transition P (sh+1 | sh, ah) and the reward
rh(sh, ah) are linear functions of feature ϕ(sh, ah) (Jin et al., 2020; Duan et al., 2020; Jin et al.,
2021). In linear model case, our first step MLE in equation 3 turns into a logistic regression,

θ̂h = argmaxθ∈Θ

1

n

n∑
i=1

ϕ(sih, a
i
h) · θ − log

( ∑
a′∈A

exp(ϕ(sih, a
′) · θ)

)
, (4)

which can be efficiently solved by existing state-of-art optimization methods. We now
have {Q̂h}h∈[H], {π̂h}h∈[H] and {V̂h}h∈[H] in Algorithm 1 to be our estimations for
{Qπb,γ

h }h∈[H], {πb,h}h∈[H] and {V πb,γ
h }h∈[H]. The second stage estimation in Line 5 of Algorithm

1 now turns into a ridge regression for the Bellman MSE, with ρ(ϕ · w) being ∥w∥22,

ŵh = argminw

{ n∑
i=1

(
ϕ(sih, a

i
h) · w + γ · V̂h+1(s

i
h+1)− Q̂h(s

i
h, a

i
h)

)2

+ λ∥w∥22
}
. (5)

Note that equation 5 has a closed form solution,

ŵh = (Λh + λI)−1

( n∑
i=1

ϕ(sih, a
i
h)
(
Q̂h(s

i
h, a

i
h)− γ · V̂h+1(s

i
h+1)

))
(6)

with Λh =
∑n
i=1 ϕ(s

i
h, a

i
h)ϕ(s

i
h, a

i
h)

⊤, and we set r̂(sh, ah) = ϕ(sh, ah) · ŵh. We also make the
following assumption on the model class Θ and the feature function.

Assumption 3.4 (Regular Conditions). We assume that: (i) For all θ ∈ Θ, we have ∥θ∥2 ≤ H
√
d;

for reward rh = ϕ · wh, we assume ∥wh∥2 ≤
√
d. (ii) For all (sh, ah) ∈ S ×A, ∥ϕ(sh, ah)∥2 ≤ 1.

(iii) For all n > 0, logN(Θ, ∥ · ∥∞, 1/n) ≤ c · d log n for some absolute constant c.
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We are now prepared to highlight our main result:
Theorem 3.5 (Reward Estimation for Linear Model MDP). With Assumption 3.1, 3.4, the esti-
mation of our reward function holds with probability 1− δ for all (s, a) ∈ S ×A and all λ > 0,

|rh(s, a)− r̂h(s, a)| ≤ ∥ϕ(s, a)∥(Λh+λI)−1 · O
(√

λd+ (1 + γ) ·HeH · |A| · d
√
log
(
nH/λδ

))
.

Proof. See Appendix C for details.

Note that the error can be bounded by the product of two terms, the elliptical potential term
∥ϕ(s, a)∥(Λ+λ·I)−1 and the norm of a self normalizing term of scale O(HeH · |A| · d

√
log(n/δ)).

Here the exponential dependency O(eH |A|) comes from estimating Qπb,γ
h with logistic regression

and also occurs in logistic bandit (Zhu et al., 2023; Fei et al., 2020). It remains an open question if
this additional factor can be improved, and we leave it for future work.
Remark 3.6. We remark that except for the exponential term in H , Theorem 3.5 almost matches
the result when doing linear regression on an observable reward dataset, in which case error of
estimation is of scale Õ(∥ϕ(s, a)∥(Λ+λI)−1 · dH) (Ding et al., 2021; Jin et al., 2021). When
the human behavior policy has sufficient coverage, i.e. the minimal eigenvalue of Eπb

[ϕϕ⊤],
σmin(Eπb

[ϕϕ⊤]) > c > 0, we have ∥ϕ(s, a)∥(Λh+λI)−1 = O(n−1/2) holds for all (s, a) ∈ S × A
(Duan et al., 2020) and ∥rh − r̂h∥∞ = O(n−1/2). However, even without strong assumptions
such as sufficient coverage, we can still prove we can still achieve O(n−1/2) suboptimality with
pessimistic value iteration.

4 POLICY LEARNING FROM DYNAMIC CHOICES VIA PESSIMISTIC VALUE
ITERATION

In this section, we describe the pessimistic value iteration algorithm, which minus a penalty function
Γh : S × A → R from the value function when choosing the best action. Pessimism is achieved
when Γh is a uncertainty quantifier for our learned value functions {Ṽh}h∈[H] , i.e.∣∣(r̂h + P̃hṼh+1

)
(s, a)−

(
rh + PhṼh+1

)
(s, a)

∣∣ ≤ Γh(s, a) for all (s, a) ∈ S ×A (7)

with high probability. Then we use {Γh}h∈[H] as the penalty function for pessimistic planning,
which leads to a conservative estimation of the value function. We formally describe our planning
method in Algorithm 2. However, when doing pessimistic value iteration with {r̂h}h∈[H] learned
from human feedback, it is more difficult to design uncertainty quantifiers in equation 7, since the
estimation error from reward learning is inherited in pessimistic planning. In Section 4.1, we propose
an efficient uncertainty quantifier and prove that with pessimistic value iteration, Algorithm 2 can
achieve a O(n−1/2) suboptimality gap even without any observable reward signal, which matches
current standard results in pessimistic value iteration such as (Jin et al., 2021; Uehara & Sun, 2021;
Uehara et al., 2021).

Algorithm 2 DCPPO: Pessimistic Value iteration
Require: Surrogate reward {r̂h(sh, ah)}h∈[H] learned in Algorithm 1, collected dataset
{(sih, aih)}i∈[n],h∈[H], parameter β, penalty .
Initialization: Set ṼH+1(sH+1) = 0.

1: for step h = H, . . . , 1 do
2: Set P̃hṼh+1(sh, ah) = argminf

∑
i∈[n]

(
f(sih, a

i
h)− Ṽh+1(sh+1)

)2
+ λ · ρ(f).

3: Construct Γh(sh, ah) based on D.
4: Set Q̃h(sh, ah) = min

{
r̂h(sh, ah) + P̃hṼh+1(sh, ah)− Γh(sh, ah), H − h+ 1

}
+

.

5: Set π̃h(· | sh) = argmax⟨Q̃h(sh, ·), πh(· | sh)⟩.
6: Set Ṽh(sh) = ⟨Q̃h(sh, ·), π̃h(· | sh)⟩A.
7: end for
8: Output: {π̃h}h∈[H].
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4.1 SUBOPTIMALITY GAP OF PESSIMITIC OPTIMAL POLICY

For linear model class defined in Section 3.2, we assume that we can capture the conditional expec-
tation of value function in the next step with the known feature ϕ. In formal words, we make the
following assumption.
Assumption 4.1 (Linear MDP). For the underlying MDP, we assume that for every Vh+1 : S →
[0, H − h], there exists uh ∈ Rd such that

PhVh+1(s, a) = ϕ(s, a) · uh

for all (s, a) ∈ S ×A. We also assume that ∥uh∥ ≤ (H − h+ 1) ·
√
d for all h ∈ [H].

Note that this assumption is directly satisfied by linear MDP class (Jin et al., 2021, 2020; Yang &
Wang, 2019). For linear model MDP defined in Section 3.2, it suffices to have the parameter set Θ
being closed under subtraction, i.e. if x, y ∈ Θ then x − y ∈ Θ. Meanwhile, we construct Γh in
Algorithm 2 based on dataset D as

Γh(s, a) = β ·
(
ϕ(s, a)⊤(Λh + λI)−1ϕ(s, a)

)1/2
(8)

for every h ∈ [H]. Here that Λh is defined in equation 6. To establish suboptimality for Algorithm
2, we assume that the trajectory induced by π∗ is “covered” by D sufficiently well.
Assumption 4.2 (Single-Policy Coverage). Suppose there exists an absolute constant c† > 0 such
that

Λh ≥ c† · n · Eπ∗

[
ϕ (sh, ah)ϕ (sh, ah)

⊤
]

holds with probability at least 1− δ/2.

We remark that Assumption 4.2 only assumes the human behavior policy can cover the optimal
policy and is therefore weaker than assuming a well-explored dataset, or sufficient coverage e(Duan
et al., 2020; Jin et al., 2021). With this assumption, we prove the following theorem.
Theorem 4.3 (Suboptimality Gap for DCPPO). Suppose Assumption 3.2, 3.4, 4.1,4.2 holds. With

λ = 1 and β = O(HeH · |A| · d
√

log
(
nH/δ

)
), we have (i) Γh defined in equation 8 being

uncertainty quantifiers, and (ii)

SubOpt
(
{π̃h}h∈[H]

)
≤ c · (1 + γ)|A|d3/2H2eHn−1/2

√
ξ

holds for Algorithm 2 with probability at least 1 − δ , here ξ = log(dHn/δ). In particular, if
rank(Σh) ≤ r at each step h ∈ [H], then

SubOpt
(
{π̃h}h∈[H]

)
≤ c · (1 + γ)|A|r1/2dH2eHn−1/2

√
ξ,

here Σh = Eπb
[ϕ(sh, ah)ϕ(sh, ah)

⊤].

Proof. See Appendix D for detailed proof.

Remark. It is worth highlighting that Theorem 4.3 nearly matches the standard result for pes-
simistic offline RL with observable rewards in terms of the dependence on data size and distribution,
up to a constant factor of O(|A|eH) (Jin et al., 2020; Uehara & Sun, 2021), where their subopti-
mality is of Õ(dH2n−1/2). Therefore, Algorithm 1 and 2 almost matches the suboptimality gap of
standard pessimism planning with an observable reward, except for a O(eH) factor inherited from
reward estimation.

5 DCPPO FOR REPRODUCING KERNEL HILBERT SPACE

In this section, we assume the model class M = {Mh}h∈[H] are subsets of a Reproducing Kernel
Hilbert Space (RKHS). For notations simplicity, we let z = (s, a) denote the state-action pair and
denote Z = S × A for any h ∈ [H]. We view Z as a compact subset of Rd where the dimension d
is fixed. Let H be an RKHS of functions on Z with kernel function K : Z ×Z → R, inner product

7
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⟨·, ·⟩ : H×H → R and RKHS norm ∥ · ∥H : H → R. By definition of RKHS, there exists a feature
mapping ϕ : Z → H such that f(z) = ⟨f, ϕ(z)⟩H for all f ∈ H and all z ∈ Z . Also, the kernel
function admits the feature representation K(x, y) = ⟨ϕ(x), ϕ(y)⟩H for any x, y ∈ H. We assume
that the kernel function is uniformly bounded as supz∈Z K(z, z) < ∞. For notation simplicity, we
assume that the discount factor γ = 1.

Let L2(Z) be the space of square-integrable functions on Z and let ⟨·, ·⟩L2 be the inner product for
L2(Z). We define the Mercer operater TK : L2(Z) → L2(Z),

TKf(z) =

∫
Z
K (z, z′) · f (z′) dz′, ∀f ∈ L2(Z). (9)

In what follows, we assume the eigenvalue of the integral operator defined in 9 has a certain decay
condition.
Assumption 5.1 (Eigenvalue Decay of H). Let {σj}j≥1 be the eigenvalues induced by the integral
opretaor TK defined in Equation equation 9 and {ψj}j≥1 be the associated eigenfunctions. We
assume that {σj}j≥1 satisfies one of the following conditions for some constant µ > 0.

(i) µ-finite spectrum: σj = 0 for all j > µ, where µ is a positive integer.

(ii) µ-exponential decay: there exists some constants C1, C2 > 0, τ ∈ [0, 1/2) and Cψ > 0
such that σj ≤ C1 · exp (−C2 · jµ) and supz∈Z σ

τ
j · |ψj(z)| ≤ Cψ for all j ≥ 1.

(iii) µ-polynomial decay: there exists some constants C1 > 0, τ ∈ [0, 1/2) and Cψ > 0 such
that σj ≤ C1 · j−µ and supz∈Z σ

τ
j · |ψj(z)| ≤ Cψ for all j ≥ 1, where µ > 1.

For a detailed discussion of eigenvalue decay in RKHS, we refer the readers to Section 4.1 of Yang
et al. (2020).

5.1 GURANTEE FOR RKHS

In RKHS case, our first step MLE in equation 3 turns into a kernel logistic regression,

Q̄h = argminQ∈H
1

n

n∑
i=1

Q(sih, a
i
h)− log

( ∑
a′∈A

exp(Q(s, a′))

)
. (10)

Line 5 in Algorithm 1 now turns into a kernel ridge regression for the Bellman MSE, with ρ(f)
being ∥f∥2H,

r̂h = argminr∈H

{ n∑
i=1

(
r(sih, a

i
h) + γ · V̂h+1(s

i
h+1)− Q̂h(s

i
h, a

i
h)

)2

+ λ∥r∥2H
}
. (11)

Following Representer’s Theorem (Steinwart & Christmann, 2008), we have the following closed
form solution

r̂h(z) = kh(z)
⊤(Kh + λ · I)−1yh,

where we define the Gram matrix Kh ∈ Rn×n and the function kh : Z → Rn as

Kh =
[
K
(
zih, z

i′

h

)]
i,i′∈[n]

∈ Rn×n, kh(z) =
[
K
(
zih, z

)]⊤
i∈[n]

∈ Rn, (12)

and the entry of the response vector yh ∈ Rn corresponding to i ∈ [n] is

[yh]i = Q̂h(s
i
h, a

i
h)− γ · V̂h+1

(
sih+1

)
.

Meanwhile, we also construct the uncertainty quantifier Γh in Algorithm 2,

Γh(z) = β · λ−1/2 ·
(
K(z, z)− kh(z)

⊤ (Kh + λI)
−1
kh(z)

)1/2
(13)

for all z ∈ Z . Parallel to Assumption 4.1, we impose the following assumption for the kernel setting.
Assumption 5.2. Let Rr > 0 be some fixed constant and we define function class Q =
{f ∈ H : ∥f∥H ≤ HRr}. We assume that PhVh+1 ∈ Q for any Vh+1 : S → [0, H]. We also
assume that ∥r∥H ≤ Rr for some constant Rr > 0. We set the model class Mh = Q for all
h ∈ [H].

8
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The above assumption states that the Bellman operator maps any bounded function into a bounded
RKHS-norm ball, and holds for the special case of linear MDP Jin et al. (2021).

Besides the closeness assumption on the Bellman operator, we also define the maximal information
gain (Srinivas et al., 2009) as a characterization of the complexity of H :

G(n, λ) = sup {1/2 · log det (I +KC/λ) : C ⊂ Z, |C| ≤ n} (14)

Here KC is the Gram matrix for the set C, defined similarly as Equation equation 12.

We are now ready to present our results for RKHS setting. Theorem 5.3 establishes the concrete
suboptimality of DCPPO under various eigenvalue decay conditions.

Theorem 5.3 (Suboptimality Gap for RKHS). Suppose that Assumption 5.1 holds. For µ-
polynomial decay, we further assume µ(1− 2τ) > 1. For Algorithm 1 and 2, we set

λ =


C · µ · log(n/δ) µ-finite spectrum,
C · log(n/δ)1+1/µ µ-exponential decay,
C · (n/H)

2
µ(1−2τ)−1 · log(n/δ) µ-polynomial decay,

and

β =


C ′′ ·H ·

{√
λRr + dsample

eff eH |A| · log(nRrH/δ)1/2+1/(2µ)

}
µ-finite spectrum,

C ′′ ·H ·
{√

λRr + dsample
eff eH |A| · log(nRrH/δ)1/2+1/(2µ)

}
µ-exponential decay,

C ′′ ·H ·
{√

λRr + dsample
eff eH |A| · (nRr)κ

∗ ·
√
log(nRrH/δ)

}
µ-polynomial decay.

Here C > 0 is an absolute constant that does not depend on n or H . Then with probability at least
1− δ, it holds that (i) Γh set in equation 13 being uncertainty quantifiers, and (ii)

SubOpt({π̃h}h∈[H]) ≤


C ′ · d̃ ·HeH |A|

√
µ · log(nRrH/δ)} µ-finite spectrum,

C ′ · d̃ ·HeH |A| ·
√
(log(nRrH)/δ)1+1/µ µ-exponential decay,

C ′ · d̃ ·HeH |A| · (nRr)κ
∗ ·
√
log(nRrH/δ) µ-polynomial decay.

Here C,C ′, C ′′ are absolute constants irrelevant to n and H and d̃ = dpop
eff · dsample

eff , κ∗ = d+1
2(µ+d) +

1
µ(1−2τ)−1 . Here dpop

eff is the population effective dimension, which measures the ”coverage” of the
human behavior πb for the optimal policy π∗.

Proof. See Appendix E.2 for detailed proof.

For simplicity of notation, we delay the formal definition of dsample
eff and dpop

eff to the appendix. If
the behavior policy is close to the optimal policy and the RKHS satisfies Assumption 5.1, dpop

eff =

O(H3/2n−1/2) and dsample
eff remains in constant level. In this case suboptimality is of order O(n−1/2)

for µ-finite spectrum and µ-exponential decay, while for µ-polynomial decay we obtain a rate of
O(nκ

∗−1/2). This also matches the results in standard pessimistic planning under RKHS case (Jin
et al., 2021), where the reward is observable.

6 CONCLUSION

In this paper, we have developed a provably efficient online algorithm, Dynamic-Choice-
Pessimistic-Policy-Optimization (DCPPO) for RLHF under dynamic discrete choice model. By
maximizing log-likelihood function of the Q-value function and minimizing mean squared Bellman
error for the reward, our algorithm learns the unobservable reward, and the optimal policy following
the principle of pessimism. We prove that our algorithm is efficient in sample complexity for linear
model MDP and RKHS model class. To the best of our knowledge, this is the first provably efficient
algorithm for offline RLHF under the dynamic discrete choice model.
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A COMPARISON TO EXISTING RLHF METHODS AND MAX ENTROPY
INVERSE RL

Existing methods in RLHF. We give a detailed comparison between our setting and existing
RLHF works such as Ouyang et al. (2022); Liang et al. (2022); Stiennon et al. (2022); Christiano
et al. (2023); Lee et al. (2021). In those works, the agent interacts with the environment base on
trajectory-level feedbacks: (i) a model generates several trajectories {{σji }i∈[2]}j∈[n] given i.i.d.
prompts {pj}j∈[n]; (ii) the human scorer ranks her preference yj ∈ {1, 2} by a probability of

P(σj1 ≻ σj2 | pj) = P(yj = 1) =
exp(r(pj , σj1))

exp(r(pj , σj1)) + exp(r(pj , σj2))
. (15)

The algorithm then (i) collects the human feedback dataset D = {(σj1, σ
j
2, y

j)}j∈[n] and learns the
reward by MLE:

r̂ ∈ argmin
r∈F

ℓD(r),

where ℓD(r) = −
n∑
i=1

log

(
1
(
yj = 1

)
· exp(r(σj1))

exp(r(σj1)) + exp(r(σj2))
+

1
(
yj = 0

)
· exp(r(σj2))

exp(r(σj1)) + exp(r(σj2))

)
where F is a function class, e.g. a neural network; (ii) the algorithm uses reinforcement learning
methods such as proximal policy optimization or soft actor-critic to learn the optimal policy: π(σ |
p) = maxσ r̂(p, σ).

We would like to point out these papers consider RLHF in static case since they consider why the
human prefers a whole trajectory over others. Due to the trajectories i.i.d. generated by an under-
lying model, the agent and the algorithm are myopic, since they only take the reward of the instant
choice into account. In this paper, we consider dynamic cases – why the human agent iteratively
makes choices in different states, which is more challenging due to the dynamic nature of MDP
transition. Specifically, current trajectory-based RLHF settings in large language models such as
Ouyang et al. (2022); Liang et al. (2022); Stiennon et al. (2022); Christiano et al. (2023) can be
taken as a special case of DDC model: by taking H = 1 and s1 being the concatenation of input
prompt and multiple trajectories generated by the pre-trained model, i.e. s1 =

(
p, {σi}i∈[2]

)
, and

the action set A = {1, 2}, the human choice probability under DDC is

P(a = 1 | s1) =
exp(r(s1, σ1))

exp(r(s1, σ1)) + exp(r(p, σ2))
,

which exactly recovers equation 15. Note that such a setting lies in the contextual bandit case, in
which action selections do not impact future state transitions, while our algorithm is more general
can handle broader cases with non-myopic agents.

Existing methods in inverse RL. Another concept closely related to our paper is inverse rein-
forcement learning. In entropy-based inverse RL work such as Wulfmeier et al. (2016); Ziebart
et al. (2008); Zhou et al. (2020), the reward is unknown and we can only observe {σj}j∈[n], a set
of trajectories generated by an agent, where σj = {(xjk)}k∈[K], with xk being the k-th context of
the trajectory that could either be a single state or a state-action pair. The agent is assumed to be
attempting to optimize

∑K
k=1 ck(xk), where c acts as the reward function of the agent. Follow-

ing the principle of maximum entropy, the algorithm assumes that plans with higher rewards are
exponentially more preferred, i.e. the agent chooses trajectory σ with probability

P(σ) =
exp

(∑K
k=1 ck(xk)

)∑
σ′∈T exp

(∑K
k=1 ch(x

′
k)
) ,

here T represents all possible trajectories. The algorithm then recover the underlying reward
{ch}h∈[H] by the following optimization:

{cj}k∈[K] = argmax
ck∈F,k∈[K]

∑
j∈[n]

logP(σj),

13
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here F can either be a linear function class (Ziebart et al., 2008) or a deep neural network (Wulfmeier
et al., 2016). We claim that such a setting is covered by our model. Specifically, set H = 1,
and let A = T , i.e. the agent makes choices among all possible trajectories. For a trajectory
σ = {xk}k∈[K], set the reward rh(σ) =

∑
k∈[K] c(xk). Then the human choice probability under

DDC is

P(a = σ) =
exp(r(a))∑

a′∈A exp(r(a′))
=

exp
(∑

k∈[K] ck(xk)
)∑

σ′∈T exp(
∑
k∈[K] ck(x

′
k))

,

which recovers the result in max entropy IRL. Moreover, we claim that Algorithm 1 is more general
and realistic than the classical max entropy inverse RL, since we can handle the non-bandit case in
which human makes preferences on single state-action pairs for each step h ∈ [H], instead of only
the whole trajectory set.

B PROOF FOR THEOREM 3.3

Theorem 3.3 can be regarded as an MLE guarantee for dataset distribution. Our proof for Theorem
3.3 lies in two steps: (i) We prove an MLE guarantee in population distribution, i.e. when sh is
sampled by the behavior policy πb,h, the estimation error can be bounded in expectation; (ii) With
a concentration approach, we transfer the expectation bound to a bound on a realized dataset. First,
for MLE with an identifiable Qπb,γ

h ∈ Mh, we have the following guarantee:

Lemma B.1 (MLE distribution bound). For Q̂h estimated by equation 3, we have

Esh∼πb

[
∥π̂h(· | sh)− πb,h(· | sh)∥21

]
≤ c ·

log
(
H ·N(M, ∥ · ∥∞, 1/n)/δ

)
n

with probability at least 1 − δ. Here c, c′ > 0 are two absolute constants, and δ measures the
confidence in the estimation.

Proof. For all h ∈ [H], define

Πh =
{
πQ(a | s) = exp(Q(s, a))/

∑
a′∈A

exp(Q(s, a′)) for some Q ∈ Mh

}
.

Let N[](Πh, ∥ · ∥∞, 1/n) be the smallest 1/n-upper bracketing of Πh. And |N[](Πh, ∥ · ∥∞, 1/n)| =
N[](Πh, ∥ · ∥∞, 1/n), where N[](Πh, ∥ · ∥∞, 1/n) is the bracketing number of Πh. First, we prove
that

Esh∼πb

[
∥π̂h(· | sh)− πb,h(· | sh)∥21

]
≤ O

(
log
(
H ·N[](Πh, ∥ · ∥∞, 1/n)/δ

)
n

)
with probability at least 1− δ. By MLE guarantee, we have

1

n

n∑
i=1

log

(
π̂h(a

t
h | sth)

πb,h(ath | sth)

)
≥ 0,

by Markov’s inequality and Boole’s inequality, it holds with probability at least 1 − δ that for all
π̄ ∈ N[](Π, ∥ · ∥∞, 1/n), we have
n∑
i=1

1

2
log

(
π̄(ath | sth)
πb,h(ath | sth)

)
≤ n log

(
Eπb

[
exp

(
1

2
log

(
π̄(· | ·)
πb,h(· | ·)

))])
+log

(
N[](Π, ∥ · ∥∞, 1/n)

δ

)
,

specify π̄ to be the upper bracket of π̂h, we have

0 ≤ n log

(
Eπb

[
exp

(
1

2
log

(
π̄(· | ·)
πb,h(· | ·)

))])
+ log

(
N[](Π, ∥ · ∥∞, 1/n)

δ

)
≤ n · log

(
Eπb

[√
π̄(· | ·)
πb,h(· | ·)

])
+ log

(
N[](Π, ∥ · ∥∞, 1/n)

δ

)
= n · log

(
Esh∼πb

[∑
a∈A

√
π̄(a | sh) · πb,h(a | sh)

])
+ log

(
N[](Π, ∥ · ∥∞, 1/n)

δ

)
,
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Here Esh∼πb
means sh is simulated by the policy πb. Utilizing the log x ≤ x− 1, we have

1− Eπb

[∑
a∈A

√
π̄(a | sh) · πb,h(a | sh)

]
≤ 1

n
log

(
N[](Π, ∥ · ∥∞, 1/n)

δ

)
.

Therefore we can bound the Hellinger distance between πb,h and π̄,

h(π̄, πb,h) = Esh∼πb

[∑
a∈A

(
π̄(a | sh)1/2 − πb,h(a | sh)1/2

)2]
(16)

≤ 2

(
1−

∑
a∈A

√
π̄(a | sh) · πb,h(a | sh)

)
+

1

n
(17)

≤ 2

n
log

(
N[](Π, ∥ · ∥∞, 1/n)

δ

)
+

1

n
, (18)

here the second inequality comes from the fact that π̄ is a upper bracketing of Π. Moreover, it is
easy to verify that

Esh∼πb

[∑
a∈A

((π̄(a | sh)1/2 + πb,h(a | sh)1/2))2
]
≤ 2Esh∼πb

[∑
a∈A

(π̄(a | sh) + πb,h(a | sh))
]

(19)

≤ 2

n
+ 4, (20)

where the second inequality comes from the fact that π̄ is the 1/n-upper bracket of a probability
distribution. Combining the equation 16 and equation 19, by Cauchy-Schwarz inequality, we have

Esh∼πb

[
∥π̄(· | sh)− πb,h(· | sh)∥21

]
≤ 15

n
· log

(
N[](Π, ∥ · ∥∞, 1/n)

δ

)
.

Meanwhile,

∥π̄(· | sh)− πb,h(· | sh)∥21 − ∥π̂h(· | sh)− πb,h(· | sh)∥21
≤
(∑
a∈A

|π̄(· | sh)− πb,h(· | sh)|+
∑
a∈A

|π̂h(· | sh)− πb,h(· | sh)|
)

·
(∑
a∈A

|π̄(· | sh)− πb,h(· | sh)| −
∑
a∈A

|π̂h(· | sh)− πb,h(· | sh)|
)

≤ (4 +
1

n
) · 1
n
,

therefore we have

Esh∼πb

[
∥π̂h(· | sh)− πb,h(· | sh)∥21

]
≤ 20

n
· log

(
N[](Πh, ∥ · ∥∞, 1/n)

δ

)
.

Next, we boundN[](Πh, ∥ ·∥∞, 1/n) byN(Mh, ∥ ·∥∞, 1/4n). For all h ∈ [H], recall the definition

Πh =
{
πQ(a | s) = exp(Q(s, a))/

∑
a′∈A

exp(Q(s, a′)) for some Q ∈ Mh

}
,

it is easy to check that

|πQ(a | s)− πQ′(a | s)| ≤ 2 · ∥Q−Q′∥∞,∀(s, a) ∈ S ×A.
Recall that N(Mh, ∥ · ∥∞, 1/n) is the covering number for model class Mh. Using Lemma F.3, we
have

N[](Πh, ∥ · ∥∞, 1/n) ≤ N(Mh, ∥ · ∥∞, 1/4n) (21)
always hold for all h ∈ [H]. Therefore we have

Esh∼πb

[
∥π̂h(· | sh)− πb,h(· | sh)∥21

]
≤ O

(
log(H ·N(Mh, ∥ · ∥∞, 1/n)/δ)

n

)
holds for h ∈ [H] with probability 1− δ/H . Taking union bound on h ∈ [H] and we conclude the
proof for Lemma B.1.

15



Under review as a conference paper at ICLR 2024

B.1 PROOF FOR THEOREM 3.3

From Lemma B.1, we have the following generalization bound: with probability 1− δ,

Esh∼πb

[
∥π̂h(· | sh)− πb,h(· | sh)∥21

]
≤ O

(
log(H ·N(Mh, ∥ · ∥∞, 1/n)/δ)

n

)
for all h ∈ [H]. We now condition on this event. Letting

A(π̂h) :=
∣∣Esh∼πb

[
∥π̂h(· | sh)− πb,h(· | sh)∥21

]
− EDh

[
∥π̂h(· | sh)− πb,h(· | sh)∥21

]∣∣.
With probability 1− δ, from Bernstein’s inequality, we also have

A(π̂h) ≤ O
(
log(H/δ)

n
+

√
Varsh∼πb

[∥π̂h(· | sh)− πb,h(· | sh)∥21] log(H/δ)
n

)
≤ O

(
log(H/δ)

n
+

√
Esh∼πb

[∥π̂h(· | sh)− πb,h(· | sh)∥21] log(H/δ)
n

)
≤ O

(
log(H ·N(Mh, ∥ · ∥∞, 1/n)/δ)

n

)
.

holds for all h ∈ [H] with probability at least 1− δ, and therefore we have

EDh

[
∥π̂h(· | sh)− πb,h(· | sh)∥21

]
≤ O

(
log(H ·N(Mh, ∥ · ∥∞, 1/n)/δ)

n

)
,

i.e. the error of estimating πb,h decreases in scale Õ(1/n) on the dataset. Recall that

π̂h(a | s) = exp(Q̂h(s, a))∑
a′∈A exp(Q̂h(sh, a′)

and

πb,h(a | s) =
exp(Qπb,γ

h (s, a))∑
a′∈A exp(Qπb,γ

h (s, a′))
.

Also we have Q̂h(s, a0) = Qπb,γ
h (s, a0) = 0 and Qπb,γ

h ∈ [0, H] by Assumption 3.2 and definition
of Mh. Therefore, we have∣∣Q̂h(s, a)−Qπb,γ

h (s, a)
∣∣ = ∣∣∣∣ log( π̂h(a | s)

πb,h(a | s)

)
− log

(
π̂h(a0 | s)
πb,h(a0 | s)

)∣∣∣∣.
Utilizing ln(x/y) ≤ x/y − 1 for x, y > 0, and πh(a | s) ∈ [e−H , 1], we have∣∣Q̂h(s, a)−Qπb,γ

h (s, a)
∣∣ ≤ eH ·

(
|πb,h(a | s)− π̂h(a | s)|+ |πb,h(a0 | s)− π̂h(a0 | s)|

)
,

and by taking summation over a ∈ A, we have

Esh∈Dh

[
∥Q̂h(sh, ·)−Qπb,γ

h (sh, ·)∥21
]
≤ c′ ·

H2e2H · |A|2 · log
(
H ·N(M, ∥ · ∥∞, 1/n)/δ

)
n

,

and we complete our proof.

C PROOF FOR THEOREM 3.5

Recall that in equation 6, we have

ŵh = (Λh + λI)−1

( n∑
i=1

ϕ(sih, a
i
h)
(
Q̂h(s

i
h, a

i
h)− γ · V̂h+1(s

i
h+1)

))
where

Λh =

n∑
i=1

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

⊤.
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By Assumption 3.1, there exists wh ∈ Rd such that rh(s, a) = ϕ(s, a) ·wh. By our construction for
r̂h in Algorithm 1, we therefore have
|rh(s, a)− r̂h(s, a)| = |ϕ(s, a)(wh − ŵh)|

=

∣∣∣∣ϕ(s, a)(Λh + λI
)−1
(
λ · wh +

n∑
i=1

ϕ(sih, a
i
h)
(
Q̂h(s

i
h, a

i
h)− γ · V̂h+1(s

i
h+1)− rh(s

i
h, a

i
h)
))∣∣∣∣

≤ λ · |ϕ(s, a)
(
Λh + λI

)−1
wh|︸ ︷︷ ︸

(i)

+

∣∣∣∣ϕ(s, a)(Λh + λI
)−1
( n∑
i=1

(
Q̂h(s

i
h, a

i
h)− γ · V̂h(sih+1)− rh(s

i
h, a

i
h)
))∣∣∣∣︸ ︷︷ ︸

(ii)

,

For (i), we have
(i) ≤ λ · ∥ϕ(s, a)∥(Λh+λI)−1 · ∥wh∥(Λh+λI)−1 ,

by Cauchy-Schwarz inequality and by Λh being semi-positive definite and ∥wh∥2 ≤
√
d, we have

(i) ≤ λ ·
√
d/λ · ∥ϕ(s, a)∥(Λh+λI)−1 =

√
λd · ∥ϕ(s, a)∥(Λh+λI)−1 , (22)

and

(ii) ≤ ∥ϕ(s, a)∥(Λh+λI)−1 ·
∥∥∥∥ n∑
i=1

ϕ(sih, a
i
h)
(
Q̂h(s

i
h, a

i
h)− γ · V̂h+1(s

i
h+1)− rh(s

i
h, a

i
h)
)∥∥∥∥

(Λh+λI)−1︸ ︷︷ ︸
(iii)

.

Recall that in equation 2, we have the following Bellman equation hold for all (sh, ah) ∈ S ×A,
rh(sh, ah) + γ · PhV πb,γ

h+1 (sh, ah) = Qπb,γ
h (sh, ah),

substitute this into (iii), and we have

(iii) =
∥∥∥∥ n∑
i=1

ϕ(sih, a
i
h)

((
Q̂h(s

i
h, a

i
h)−Qπb,γ

h (sih, a
i
h)
)
− γ ·

(
V̂h+1(s

i
h+1)− PhV πb,γ

h+1 (sih+1)
))∥∥∥∥

(Λh+λI)−1

≤
∥∥∥∥ n∑
i=1

ϕ(sih, a
i
h)

((
Q̂h(s

i
h, a

i
h)−Qπb,γ

h (sih, a
i
h)
))∥∥∥∥

(Λh+λI)−1︸ ︷︷ ︸
(iv)

+ γ ·
∥∥∥∥ n∑
i=1

ϕ(sih, a
i
h)

((
V̂h+1(s

i
h+1)− V πb,γ

h+1 (sih+1)
))∥∥∥∥

(Λh+λI)−1︸ ︷︷ ︸
(v)

+ γ ·
∥∥∥∥ n∑
i=1

ϕ(sih, a
i
h)

((
PhV πb,γ

h+1 (sih, a
i
h)− V πb,γ

h+1 (sih+1)
))∥∥∥∥

(Λh+λI)−1︸ ︷︷ ︸
(vi)

, (23)

First, we bound (iv) and (v). By Theorem 3.3, we have

EDh

[
∥π̂h(· | sh)− πb,h(· | sh)∥21

]
≤ O

(
log
(
H ·N(Mh, ∥ · ∥∞, 1/n)/δ

)
n

)
and

EDh

[
∥Q̂h(sh, ·)−Qπb,γ

h (sh, ·)∥21
]
≤ O

(
H2e2H · |A|2 · log

(
H ·N(Mh, ∥ · ∥∞, 1/n)/δ

)
n

)
(24)

hold for every h ∈ [H] with probability at least 1 − δ/2. By V̂h(s) = ⟨Q̂h(s, ·), π̂h(· | s)⟩A for
every sh+1 ∈ S , we have

EDh

[
|V̂h+1(sh+1)− V πb,γ

h+1 (sh+1)|2
]
≤ O

(
H2e2H · |A|2 · log

(
H ·N(Mh, ∥ · ∥∞, 1/n)/δ

)
n

)
(25)
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for all h ∈ [H] simultaneously. In the following proof, we will condition on these events. For
notation simplicity, we define two function f : X → R and f̂ : X → R for each h ∈ [H],
and dataset {xi}i∈[n]. We consider two cases: (1) f̂h = Q̂h, fh = Qπb,γ

h , and xi = (sih, a
i
h),

X = S × A, (2) f̂h = V̂h+1, fh = V πb,γ
h+1 , and xi = sih+1 , X = S. To bound (iv) and (v), we only

need to uniformly bound ∥∥∥∥ n∑
i=1

ϕ(sih, a
i
h)
(
fh(xi)− f̂h(xi)

)∥∥∥∥
(Λh+λI)−1

. (26)

in both cases. We denote term fh(xi) − f̂h(xi) by ϵi. Since we condition on equation 24 and
equation 25, we have

n∑
i=1

ϵ2i ≤ O
(
H2e2H · |A|2 · log

(
H ·N(Mh, ∥ · ∥∞, 1/n)/δ

))
for both cases (1) and (2). Meanwhile, we also have

equation 262 =

( n∑
i=1

ϵiϕ(s
i
h, a

i
h)

)⊤(
λI +

n∑
i=1

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

⊤
)−1( n∑

i=1

ϵiϕ(s
i
h, a

i
h)

)

= Tr

(( n∑
i=1

ϵiϕ(s
i
h, a

i
h)

)( n∑
i=1

ϵiϕ(s
i
h, a

i
h)

)⊤(
λI +

n∑
i=1

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

⊤
)−1)

.

By Lemma F.2, we have( n∑
i=1

ϕ(sih, a
i
h)ϵi

)( n∑
i=1

ϕ(sih, a
i
h)ϵi

)⊤

≤ O
(
H2e2H ·|A|2·log(H·N(Θ, ∥·∥∞, 1/n)/δ)

)
·
( n∑
i=1

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

⊤
)
,

and therefore we have

Tr

(( n∑
i=1

ϵiϕ(s
i
h, a

i
h)

)( n∑
i=1

ϵiϕ(s
i
h, a

i
h)

)⊤(
λI +

n∑
i=1

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

⊤
)−1)

≤ O
(
H2e2H · |A| · log(N(Θ, ∥ · ∥∞, 1/n)/δ)

)
· Tr

(( n∑
i=1

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

⊤ + λ

)−1( n∑
i=1

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

⊤
))

≤ d ·H2e2H · |A2| log(N(Θ, ∥ · ∥∞, 1/n)/δ). (27)
here the last inequality comes from Lemma F.1. Therefore we have

(iii) ≤
√
dHeH · |A| ·

√
log(N(Θ, ∥ · ∥∞, 1/n)/δ)

Next, we bound (vi). We prove the following Lemma:
Lemma C.1. Let V : S → [0, H] be any fixed function. With our dataset D = {Dh}h∈[H], we have∥∥∥∥ n∑
i=1

ϕ(sih, a
i
h)

((
PhVh+1(s

i
h, a

i
h)−Vh+1(s

i
h+1)

))∥∥∥∥2
(Λh+λI)−1

≤ H2·
(
2·log(H/δ)+d·log(1+n/λ)

)
with probability at least 1− δ for all h ∈ [H].

Proof. Note that for Vh+1 : S → R, we have

E[Vh+1(s
i
h+1)− PhVh+1(s

i
h, a

i
h) | F i

h] = E[Vh+1(s
i
h+1)− PhVh+1(s

i
h, a

i
h) | sih, aih] = 0.

Here F i
h = σ

(
{(sit, ait}ht=1

)
is the filtration generated by state-action pair before step h+1 for the i-

th trajectory. We now invoke Lemma F.4 withM0 = λI andMn = λI+
∑n
i=1 ϕ(s

i
h, a

i
h)ϕ(s

i
h, a

i
h)

⊤.
We have ∥∥∥∥ n∑

i=1

ϕ(sih, a
i
h)

((
PhVh+1(s

i
h, a

i
h)− Vh+1(s

i
h+1)

))∥∥∥∥2
(Λh+λI)−1

≤ 2H2 · log
(
H · det(Λh + λI)1/2

δ · det(λI)1/2

)

18
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with probability at least 1 − δ/2. Recall that by Assumption 3.4, ∥ϕ(s, a)∥2 ≤ 1 and therefore we
have det(Λh + λI) ≤ (λ+ n)d. Also we have det(λI) = λd, and we have∥∥∥∥ n∑

i=1

ϕ(sih, a
i
h)

((
PhVh+1(s

i
h, a

i
h)− Vh+1(s

i
h+1)

))∥∥∥∥2
(Λh+λI)−1

≤ H2 ·
(
2 · log(H/δ) + d · log(1 + n/λ)

)
.

By equation 34, equation 38, Lemma C.1 and Assumption 3.4, we have

(iii) ≤ O
(
(1+γ)·

√
d ·H2e2H · |A| · log

(
H ·N(Θ, ∥ · ∥∞, 1/n)/δ

))
≤ O

(
(1+γ)·dHeH

√
|A| log(nH/λδ)

)
.

Therefore (ii) ≤ O
(
(1 + γ) · |A| · d ·HeH

√
log(nH/λδ)

)
· ∥ϕ(s, a)∥(Λh+λI)−1 . Combined with

equation 22, we conclude the proof of Theorem 3.5.

D PROOF FOR THEOREM 4.3

In this section, we prove Theorem 4.3. First, we invoke the following theorem, whose proof can be
found in Jin et al. (2021), Appendix 5.2.

Theorem D.1 (Theorem 4.2 in Jin et al. (2021)). Suppose {Γh}Hh=1 in Algorithm 2 is a uncertainty
quantifier defined in equation 7. Under the event which equation 7 holds, suboptimality of Algorithm
2 satisfies

SubOpt({π̃h}h∈[H]) ≤ 2

H∑
h=1

Eπ∗ [Γh (sh, ah)] .

Here Eπ∗ is with respect to the trajectory induced by π∗ in the underlying MDP.

With Theorem equation D.1, our proof for Theorem equation 4.3 then proceeds in two steps: (1) We
prove that our uncertainty quantifier defined in 8, with β defined in 2, is an uncertainty quantifier,
with probability at least 1 − δ/2; (2) We prove that with penalty function set in 8, we can bound∑H
h=1 Eπ∗ [Γh (sh, ah)] with probability at least 1− δ/2.

Step (1). We now prove that Γh defined in 8 is an uncertainty quantifier, with

β = O(HeH · |A| · d
√
log
(
nH/δ

)
).

We have ∣∣(r̂h + P̃hṼh+1

)
(s, a)−

(
rh + PhṼh+1

)
(s, a)

∣∣
≤
∣∣r̂h(s, a)− rh(s, a)

∣∣︸ ︷︷ ︸
(i)

+
∣∣P̃hṼh+1(s, a)− PhṼh+1(s, a)

∣∣︸ ︷︷ ︸
(ii)

,

To bound (i), recall that we construct r̂h by Algorithm 1 with guarantee

|rh(s, a)− r̂h(s, a)| ≤ ∥ϕ(s, a)∥(Λh+λI)−1 · O
(
(1 + γ) ·HeH |A| · d

√
log(nH/δ)

)
for all (s, a) ∈ S×A with λ = 1. To bound (ii), recall that we construct P̃hṼh+1(s, a) = ϕ(s, a)·ũh
by the Algorithm 2,

ũh = argminu

n∑
i=1

(
ϕ(sih, a

i
h) · u− Ṽh+1(s

i
h+1)

)2
+ λ · ∥u∥2,

note that we have a closed form solution for ũh,

ũh =
(
Λh + λI

)−1
( n∑
i=1

ϕ(sih, a
i
h)Ṽh+1(s

i
h+1)

)
,
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And by Assumption 4.1, we have PhṼh+1(s, a) = ϕ(s, a) · uh with ∥uh∥ ≤ (H − h + 1)
√
d,

therefore we have∣∣P̃hṼh+1(s, a)− PhṼh+1(s, a)

∣∣∣∣ = |ϕ(s, a)
(
uh − ũh

)
|

=

∣∣∣∣ϕ(s, a)(Λh + λI
)−1
( n∑
i=1

ϕ(sih, a
i
h)
(
Ṽh+1(s

i
h+1)− PhṼh+1(s

i
h, a

i
h)
))

+ ϕ(s, a)
(
Λh + λI

)−1
uh

∣∣∣∣
≤
∣∣∣∣ϕ(s, a)(Λh + λI

)−1
( n∑
i=1

ϕ(sih, a
i
h)
(
Ṽh+1(s

i
h+1)− PhṼh+1(s

i
h, a

i
h)
))∣∣∣∣

+ λ ·
∣∣ϕ(s, a)(Λh + λI

)−1
uh
∣∣,

and with Caucht-Schwarz inequality we have∣∣P̃hṼh+1(s, a)− PhṼh+1(s, a)
∣∣ ≤ ∥ϕ(s, a)∥(

Λh+λI
)−1 ·

(
λ∥uh∥(Λh+λI)−1

+

∥∥∥∥( n∑
i=1

ϕ(sih, a
i
h)
(
Ṽh+1(s

i
h+1)− PhṼh+1(s

i
h, a

i
h)
))∥∥∥∥

(Λh+λI)−1

)
≤ ∥ϕ(s, a)∥(Λh+λI)−1 ·

(
H
√
λd

+

∥∥∥∥( n∑
i=1

ϕ(sih, a
i
h)
(
Ṽh+1(s

i
h+1)− PhṼh+1(s

i
h, a

i
h)
))∥∥∥∥

(Λh+λI)−1︸ ︷︷ ︸
(iii)

)
.

Completing the first step now suffices to bound (iii). However, (iii) is a self-normalizing summation
term with Ṽh+1 depends on dataset {(sit, ait)}t>h,i∈[n], therefore we cannot directly use Lemma F.4.
We first prove the following lemma, which bound ∥ũh + ŵh∥.

Lemma D.2. In Algorithm 2, we have

∥ũh + ŵh∥ ≤ 2H
√
nd/λ.

Proof. For the proof we only need to bound ∥ũh∥ and ∥ŵh∥ respectively. First we have

∥ũh∥ =

∥∥∥∥(Λh + λI
)−1
( n∑
i=1

ϕ(sih, a
i
h)Ṽh+1(s

i
h+1)

)∥∥∥∥
≤ H ·

n∑
i=1

∥∥(Λh + λI
)−1

ϕ(sih, a
i
h)
∥∥

≤ H
√
n/λ ·

√
Tr
((
Λh + λI

)−1
Λh
)

≤ H
√
nd/λ.

Here the first inequality comes from Ṽh+1 ∈ [0, H], and the second inequality comes from Jensen’s
inequality. Similarly, we have

∥ŵh∥ =

∥∥∥∥(Λh + λI
)−1
( n∑
i=1

ϕ(sih, a
i
h)
(
Q̂h(s

i
h, a

i
h)− V̂h+1(s

i
h+1)

))∥∥∥∥
≤ H

√
nd/λ.

Therefore we complete the proof.
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With ∥ũh + ŵh∥ bounded, we can now invoke Theorem F.6 to bound term (iii). Set R0 =

2H
√
nd/λ, B = 2β, λ = 1 and ϵ = dH/n, we have

(iii) ≤ sup
V ∈Vh+1(R,B,λ)

∥∥∥∥∥
n∑
i=1

ϕ
(
sih, a

i
h

)
·
(
V (sih+1)− E[V (sh+1) | sih, aih]

)∥∥∥∥∥
(Λh+λI)−1

≤ O(dH · log(dHn/δ)).
Therefore we have∣∣P̃hṼh+1(s, a)− PhṼh+1(s, a)

∣∣ ≤ ∥ϕ(s, a)∥(Λh+λI)−1 · O
(
dH · log(dHn/δ) +H

√
d
)
.

Set λ = 1 in Theorem 3.5, we have
|rh(s, a)− r̂h(s, a)|+

∣∣P̃hṼh+1(s, a)− PhṼh+1(s, a)
∣∣ ≤ β∥ϕ(s, a)∥(Λh+λI)−1 (28)

holds with probability at least 1− δ. Recall that Γh = β∥ϕ(s, a)∥(Λh+λI)−1 , we prove that Γh is an
uncertainty quantifier defined in 7. To finish the proof of Theorem 4.3, it suffices to finish the proof
of the second step, i.e., we bound the term

n∑
i=1

Eπ∗ [Γh(sh, ah)] =

n∑
i=1

β · Eπ∗ [∥ϕ(sh, ah)∥(Λh+λI)−1 ].

Step (2). By Cauchy-Schwarz inequality, we have

Eπ∗

[(
ϕ (sh, ah)

⊤
(Λh + λI)−1ϕ (sh, ah)

)1/2]
= Eπ∗

[√
Tr
(
ϕ (sh, ah)

⊤
(Λh + λI)−1ϕ (sh, ah)

)]

= Eπ∗

[√
Tr
(
ϕ (sh, ah)ϕ (sh, ah)

⊤
(Λh + λI)−1

)]

≤
√
Tr
(
Eπ∗

[
ϕ (sh, ah)ϕ (sh, ah)

⊤
]
Λ−1
h

)
(29)

for all h ∈ [H]. For notational simplicity, we define

Σh = Eπ∗
[
ϕ (sh, ah)ϕ (sh, ah)

⊤ ]
for all h ∈ [H]. Condition on the event in Equation equation 28 and with Assumption 4.2, we have

SubOpt
(
{π̃h}h∈[H]

)
≤ 2β ·

H∑
h=1

Eπ∗

[
ϕ(sh, ah)

⊤(Λh + λ · I)−1ϕ(sh, ah)

]

≤ 2β

H∑
h=1

√
Tr
(
Σh · (I + c† · n · Σh)−1

)

= 2β

H∑
h=1

√√√√ d∑
j=1

λh,j
1 + c† · n · λh,j

,

here {λh,j}dj=1 are the eigenvalues of Σh. The first inequality comes from the event in Equation
equation 28, the second inequality comes from Equation equation 29. Meanwhile, by Assumption
3.4, we have ∥ϕ(s, a)∥ ≤ 1 for all (s, a) ∈ S ×A. By Jensen’s inequality, we have

∥Σh∥2 ≤ Eπ∗
[
∥ϕ (sh, ah)ϕ (sh, ah)⊤ ∥2

]
≤ 1

for all h ∈ [H], for all sh ∈ S and all h ∈ [H]. As Σh is positive semidefinite, we have λh,j ∈ [0, 1]
for all x ∈ S, all h ∈ [H], and all j ∈ [d]. Hence, we have

SubOpt({π̃h}h∈[H]) ≤ 2β

H∑
h=1

√√√√ d∑
j=1

λh,j
1 + c† · n · λh,j

≤ 2β

H∑
h=1

√√√√ d∑
j=1

1

1 + c† · n
≤ c′ · d3/2H2n−1/2

√
ξ,
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where ξ =
√
log(dHn/δ), the second inequality follows from the fact that λh,j ∈ [0, 1] for all

h ∈ [H], and all j ∈ [d], while the third inequality follows from the choice of the scaling parameter
β > 0 in Theorem 4.3. Here we define the absolute constant c′ = 2c/

√
c† > 0, where c† > 0 is the

absolute constant used in Assumption 4.2. Moreover, we consider the case of rank(Σh) ≤ r. Then
we have

SubOpt({π̃h}h∈[H]) ≤ 2β

H∑
h=1

√√√√ d∑
j=1

λh,j
1 + c† · n · λh,j

= 2β

H∑
h=1

√√√√ r∑
j=1

λh,j
1 + c† · n · λh,j

≤ 2β

H∑
h=1

√√√√ r∑
j=1

1

1 + c† · n
≤ c′ · r1/2dH2n−1/2

√
ξ

Thus we finish the proof for Theorem 4.3.

E PROOF FOR RKHS CASE

In this section, we prove the results of DCPPO in RKHS model class. In the following, we adopt
an equivalent set of notations for ease of presentation. We formally write the inner product in H as
⟨f, f ′⟩H = f⊤f ′ = f ′⊤f for any f, f ′ ∈ H, so that f(z) = ⟨ϕ(z), f⟩H = f⊤ϕ(z) for any f ∈ H
and any z ∈ Z . Moreover we denote the operators Φh : H → Rn and Λh : H → H as

Φh =

 ϕ
(
z1h
)⊤

...
ϕ (znh )

⊤

 , Λh = λ · IH +
∑
i∈[n]

ϕ (zτh)ϕ (z
τ
h)

⊤
= λ · IH +Φ⊤

hΦh

where IH is the identity mapping in H and all the formal matrix multiplications follow the same
rules as those for real-valued matrix. In this way, these operators are well-defined. Also, Λh is a
self-adjoint operator eigenvalue no smaller than λ, in the sense that ⟨f,Λhg⟩ = ⟨Λhf, g⟩ for any
f, g ∈ H. Therefore, there exists a positive definite operator Λ1/2

h whose eigenvalues are no smaller
than λ1/2 and Λh = Λ

1/2
h Λ

1/2
h . We denote the inverse of Λ1/2

h as Λ−1/2
h , so that Λ−1

h = Λ
−1/2
h Λ

−1/2
h

and
∥∥∥Λ−1/2

h

∥∥∥
H

≤ λ−1/2. For any z ∈ Z , we denote Λh(z) = Λh + ϕ(z)ϕ(z)⊤. In particular, it
holds that (

Φ⊤
hΦh + λ · IH

)
Φ⊤
h = Φ⊤

h

(
ΦhΦ

⊤
h + λ · I

)
.

Since both the matrix ΦhΦ
⊤
h + λ · I and the operator Φ⊤

hΦh + λ · IH are strictly positive definite,
we have

Φ⊤
h

(
ΦhΦ

⊤
h + λ · I

)−1
=
(
Φ⊤
hΦh + λ · IH

)−1
Φ⊤
h . (30)

Our learning process would depend on the ”complexity” of the dataset sampled by πb. To measure
this complexity, we make the following definition.

Definition E.1 (Effective dimension). For all h ∈ [H], Denote Σh = Eπb

[
ϕ (zh)ϕ (zh)

⊤ ]
,Σ∗

h =

Eπ∗
[
ϕ (zh)ϕ (zh)

⊤ ], where Eπ∗ is taken with respect to (sh, ah) induced by the optimal policy π∗,
and Eπb is similarly induced by the behavior policy πb. We define the (sample) effective dimension
as

dsample
eff =

H∑
h=1

Tr
(
(Λh + λIH)

−1
Σh

)1/2
.

Moreover, we define the population effective dimension under πb as

dpopeff =

H∑
h=1

Tr
(
(n · Σh + λIH)

−1
Σ∗
h

)1/2
.
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We first present our result for reward estimation in the RKHS case:

Theorem E.2 (Reward Estimation for RKHS). For Algorithm 1 and 2, with probability at least
1− δ, we have the following estimations of our reward function for all z ∈ Z ×A and λ > 1,

|rh(z)− r̂h(z)| ≤ ∥ϕ(z)∥(Λh+λIH)−1 · O
(
H2 ·G

(
n, 1 + 1/n

)
+ λ ·R2

r + ζ2
)1/2

,

where ζ = O
(
dsample

eff

√
log
(
H ·N(Q, ∥ · ∥∞, 1/n)/δ

)
·HeH

)
, here dsample

eff is the sampling effec-

tive dimension.

Proof. See Appendix E.1 for detailed proof.

Here we use the notation ∥ϕ(z)∥(Λh+λIH)−1 = ⟨ϕ(z), (Λh + λIH)−1ϕ(z)⟩H, where we define
Λh =

∑n
i=1 ϕ(z

i
h)ϕ(z

i
h)

⊤.

E.1 PROOF FOR THEOREM E.2

Our proof for reward estimation in RKHS model class is very similar to the proof of linear model
MDP, which can be found in Section C. To prove Theorem E.2, we first invoke Theorem 3.3, and
we have

EDh

[
∥π̂h(· | sh)− πb,h(· | sh)∥21

]
≤ O

(
log
(
H ·N(Q, ∥ · ∥∞, 1/n)/δ

)
n

)
and

EDh

[
∥Q̂h(sh, ·)−Qπb,γ

h (sh, ·)∥21
]
≤ O

(
H2e2H · |A|2 · log

(
H ·N(Q, ∥ · ∥∞, 1/n)/δ

)
n

)
(31)

hold for every h ∈ [H] with probability at least 1 − δ/2. Here the model class Q is defined in
Assumption 5.2. Conditioning on this event, we have

EDh

[
|V̂h+1(sh+1)− V πb,γ

h+1 (sh+1)|2
]
≤ O

(
H2e2H · |A|2 · log

(
H ·N(Q, ∥ · ∥∞, 1/n)/δ

)
n

)
(32)

for all h ∈ [H] and all sh+1 ∈ S simultaneously. By Algorithm 1, we have

r̂h = (Λh + λI)−1

( n∑
i=1

ϕ(zih)
(
Q̂h(z

i
h)− γ · V̂h+1(s

i
h+1)

))
,

Recall that we denote (s, a) ∈ S × A by z ∈ Z . Since we have rh(z) = ϕ(z) · rh. By our
construction for r̂h in Algorithm 1, we therefore have

|rh(z)− r̂h(z)| = |ϕ(z)(rh − r̂h)|

=

∣∣∣∣ϕ(z)(Λh + λI
)−1
(
λ · rh +

n∑
i=1

ϕ(zih)
(
Q̂h(z

i
h)− γ · V̂h+1(s

i
h+1)− rh(z

i
h)
))∣∣∣∣

≤ λ · |ϕ(z)
(
Λh + λI

)−1
rh|︸ ︷︷ ︸

(i)

+

∣∣∣∣ϕ(z)(Λh + λI
)−1
( n∑
i=1

(
Q̂h(z

i
h)− γ · V̂h(sih+1)− rh(z

i
h)
))∣∣∣∣︸ ︷︷ ︸

(ii)

holds for all z ∈ Z . For (i), we have

(i) ≤ λ · ∥ϕ(z)∥(Λh+λI)−1 · ∥rh∥(Λh+λI)−1 ,
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by Cauchy-Schwarz inequality and by Λh being semi-positive definite and ∥rh∥H ≤ Rr, we have

(i) ≤ λ ·Rr/
√
λ · ∥ϕ(z)∥(Λh+λI)−1 =

√
λ ·Rr · ∥ϕ(z)∥(Λh+λI)−1 , (33)

and

(ii) ≤ ∥ϕ(z)∥(Λh+λI)−1 ·
∥∥∥∥ n∑
i=1

ϕ(zih)
(
Q̂h(z

i
h)− γ · V̂h+1(s

i
h+1)− rh(z

i
h)
)∥∥∥∥

(Λh+λI)−1︸ ︷︷ ︸
(iii)

.

Recall that in equation 2, we have the following Bellman equation hold for all (sh, ah) ∈ S ×A,

rh(zh) + γ · PhV πb,γ
h+1 (zh) = Qπb,γ

h (zh),

substitute this into (iii), and we have

(iii) =
∥∥∥∥ n∑
i=1

ϕ(zih)

((
Q̂h(z

i
h)−Qπb,γ

h (zih)
)
− γ ·

(
V̂h+1(s

i
h+1)− PhV πb,γ

h+1 (zih)
))∥∥∥∥

(Λh+λI)−1

≤
∥∥∥∥ n∑
i=1

ϕ(zih)

((
Q̂h(z

i
h)−Qπb,γ

h (zih)
))∥∥∥∥

(Λh+λI)−1︸ ︷︷ ︸
(iv)

+ γ ·
∥∥∥∥ n∑
i=1

ϕ(zih)

((
V̂h+1(s

i
h+1)− V πb,γ

h+1 (sih+1)
))∥∥∥∥

(Λh+λI)−1︸ ︷︷ ︸
(v)

+ γ ·
∥∥∥∥ n∑
i=1

ϕ(zih)

((
PhV πb,γ

h+1 (zih)− V πb,γ
h+1 (sih+1)

))∥∥∥∥
(Λh+λI)−1︸ ︷︷ ︸

(vi)

, (34)

First, we bound (iv) and (v). By Theorem 3.3, we have

EDh

[
∥π̂h(· | sh)− πb,h(· | sh)∥21

]
≤ O

(
log
(
H ·N(Q, ∥ · ∥∞, 1/n)/δ

)
n

)
and

EDh

[
∥Q̂h(sh, ·)−Qπb,γ

h (sh, ·)∥21
]
≤ O

(
H2e2H · |A|2 · log

(
H ·N(Q, ∥ · ∥∞, 1/n)/δ

)
n

)
(35)

hold for every h ∈ [H] with probability at least 1 − δ/2. By V̂h(s) = ⟨Q̂h(s, ·), π̂h(· | s)⟩A for
every sh+1 ∈ S , we have

EDh

[
|V̂h+1(sh+1)− V πb,γ

h+1 (sh+1)|2
]
≤ O

(
H2e2H · |A|2 · log

(
H ·N(Q, ∥ · ∥∞, 1/n)/δ

)
n

)
(36)

for all h ∈ [H] simultaneously. In the following proof, we will condition on these events. For
notation simplicity, we define two function f : X → R and f̂ : X → R for each h ∈ [H], and
dataset {xi}i∈[n]. We consider two cases: (1) f̂h = Q̂h, fh = Qπb,γ

h , and xi = zih, X = Z, (2)
f̂h = V̂h+1, fh = V πb,γ

h+1 , and xi = sih+1 , X = S. To bound (iv) and (v), we only need to uniformly
bound ∥∥∥∥ n∑

i=1

ϕ(zih)
(
fh(xi)− f̂h(xi)

)∥∥∥∥
(Λh+λI)−1

. (37)

in both cases. We denote term fh(xi) − f̂h(xi) by ϵi. Recall that we condition on equation 24 and
equation 25, we have

n∑
i=1

ϵ2i ≤ O
(
H2e2H · |A|2 · log

(
H ·N(Q, ∥ · ∥∞, 1/n)/δ

)
n

)
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for both cases (1) and (2). Meanwhile, we also have

equation 262 =

( n∑
i=1

ϵiϕ(z
i
h)

)⊤(
λI +

n∑
i=1

ϕ(zih)ϕ(z
i
h)

⊤
)−1( n∑

i=1

ϵiϕ(z
i
h)

)

= Tr

(( n∑
i=1

ϵiϕ(z
i
h)

)( n∑
i=1

ϵiϕ(z
i
h)

)⊤(
λIH +Φ⊤

hΦh

)−1)
.

By Lemma F.2, we have( n∑
i=1

ϕ(zih)ϵi

)( n∑
i=1

ϕ(zih)ϵi

)⊤

≤ O
(
H2e2H ·|A|2·log(H·N(Q, ∥·∥∞, 1/n)/δ)

)
·
( n∑
i=1

Φ⊤
hΦh

)
,

For notation simplicity, denote ϕ(zh) by ui,

Tr

(( n∑
i=1

ϵiϕ(zh)

)( n∑
i=1

ϵiϕ(zh)

)⊤(
λIH +Φ⊤

hΦh

)−1)
≤ O

((
H2e2H · |A| · log(N(Q, ∥ · ∥∞, 1/n)/δ)

)
· Tr

((
Φ⊤
hΦh + λIH

)−1(
Φ⊤
hΦh

))
≤ dsample

eff
2
·H2e2H · |A|2 log(N(Q, ∥ · ∥∞, 1/n)/δ). (38)

here the last inequality comes from the definition of dsample
eff and Lemma D.3 in Jin et al. (2021).

Since there is no distribution shift, the effective dimension can be bounded by a constant. Next, we
bound (vi). We prove the following lemma, which is the RKHS version of Lemma C.1.
Lemma E.3. Let V : S → [0, H] be any fixed function. With our dataset D = {Dh}h∈[H], we have∥∥∥∥ n∑
i=1

ϕ(zih)

((
PhVh+1(z

i
h)− Vh+1(s

i
h+1)

))∥∥∥∥2
(Λh+λI)−1

≤ H2 ·G(n, 1 + 1/n) + 2H2 · log(H/δ)

with probability at least 1− δ for all h ∈ [H] when 1 + 1/n ≤ λ.

Proof. Note that for Vh+1 : S → R, we have

E[Vh+1(s
i
h+1)− PhVh+1(s

i
h, a

i
h) | F i

h] = E[Vh+1(s
i
h+1)− PhVh+1(s

i
h, a

i
h) | sih, aih] = 0.

Here F i
h = σ

(
{(sit, ait}ht=1

)
is the filtration generated by state-action pair before step h+1. We now

invoke Lemma F.5 with ϵih = Vh+1(s
i
h+1) − PhVh+1(s

i
h, a

i
h) and σ2 = H2 since ϵih ∈ [−H,H]

and it holds with probability at least 1− δ for all h ∈ [H] that

E⊤
h

[
(Kh + η · I)−1

+ I
]−1

Eh (39)

≤ H2 · log det [(1 + η) · I +Kh] + 2H2 · log(H/δ) (40)

for any η > 0, where Eh = (ϵih)
⊤
i∈[n]. We now transform into the desired form,

∥∥∥∥ n∑
i=1

ϕ(sih, a
i
h)

((
PhVh+1(s

i
h, a

i
h)− Vh+1(s

i
h+1)

))∥∥∥∥2
(Λh+λI)−1

= E⊤
h Φh

(
Φ⊤
hΦh + λ · IH

)−1
Φ⊤
hEh

= E⊤
h ΦhΦ

⊤
h

(
ΦhΦ

⊤
h + λ · I

)−1
Eh

= E⊤
h Kh (Kh + λ · I)−1

Eh

= E⊤
h Eh − λ · E⊤

h (Kh + λ · I)−1
Eh

= E⊤
h Eh − E⊤

h (Kh/λ+ I)
−1
Eh, (41)
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where the first equality follows from the definition of Λh, the second equality from equation 30, and
the third equality follows from the fact thatKh = Φ⊤

hΦh . Therefore for any λ > 1 such that λ ≥ λ,
it holds that∥∥∥∥ n∑

i=1

ϕ(sih, a
i
h)

((
PhVh+1(s

i
h, a

i
h)− Vh+1(s

i
h+1)

))∥∥∥∥2
(Λh+λI)−1

≤ E⊤
h Kh (Kh + λ · I)−1

Eh.

For any η > 0, noting that
(
(Kh + η · I)−1

+ I
)
(Kh + η · I) = Kh + (1 + η) · I , we have(

(Kh + η · I)−1
+ I
)−1

= (Kh + η · I) (Kh + (1 + η) · I)−1 (42)

Meanwhile, taking η = λ− 1 > 0, we have

E⊤
h Kh (Kh + λ · I)−1

Eh ≤ E⊤
h (Kh + η · I) (Kh + λ · I)−1

Eh

= E⊤
h

[
(Kh + η · I)−1

+ I
]−1

Eh,

where the second line follows from equation 42. For any fixed δ > 0, now we know that∥∥∥∥ n∑
i=1

ϕ(sih, a
i
h)

((
PhVh+1(s

i
h, a

i
h)− Vh+1(s

i
h+1)

))∥∥∥∥2
(Λh+λI)−1

≤ H2 · log det [λ · I +Kh] + 2H2 · log(H/δ)

≤ H2 ·G(n, λ) + 2H2 · log(H/δ)
(43)

for all h ∈ [H] with probability at least 1− δ.

Combining equation 34, equation 38, Lemma E.3 and Assumption 3.4, and set λ = 1 + 1/n ≤ λ,
we have

(iii) ≤ O
(
(1+γ)·dsample

eff ·HeH ·|A|
√
log(N(Q, ∥ · ∥∞, 1/n)/δ)+

√
H2 ·G(n, 1 + 1/n) + 2H2 · log(H/δ)

)
,

Since (ii) ≤ (iii) · ∥ϕ(z)∥Λh+λIH , combined with the bound for (i) in equation 33, we conclude the
proof of Theorem E.2.

E.2 PROOF FOR THEOREM 5.3

To prove Theorem, we again invoke Theorem D.1. Our proof proceeds in two steps: (1) We
prove that with β set in Theorem 5.3, equation 13 is an uncertainty quantifier with high proba-
bility for every h ∈ [H]. (2) We prove that with penalty function set in equation 13, we can bound∑n
i=1 Eπ∗ [Γh(zh)].

Step (1). In this step we prove that with β specified in Theorem 5.3, the penality functions
{Γh}h∈[H] are uncertainty quantifiers with high probability. By Algorithm 2, We have∣∣(r̂h + P̃hṼh+1

)
(s, a)−

(
rh + PhṼh+1

)
(s, a)

∣∣
≤
∣∣r̂h(s, a)− rh(s, a)

∣∣︸ ︷︷ ︸
(i)

+
∣∣P̃hṼh+1(s, a)− PhṼh+1(s, a)

∣∣︸ ︷︷ ︸
(ii)

,

To bound (i), recall that we construct r̂h by Algorithm 1 with guarantee

|rh(s, a)− r̂h(s, a)| ≤ ∥ϕ(s, a)∥(Λh+λI)−1

· O
(
(1 + γ)dsample

eff HeH |A|
√

log(H ·N(Q, ∥ · ∥∞, 1/n)/δ) +G(n, 1 + 1/n) + λ ·R2
r

)
(44)

for all (s, a) ∈ S × A, h ∈ [H] with probability at least 1 − δ/2. To bound (ii), recall that we
construct P̃hṼh+1(s, a) = ϕ(s, a) · ũh by the Algorithm 2,

f̃h = argminf∈H

n∑
i=1

(
ϕ(zih) · f − Ṽh+1(s

i
h+1)

)2
+ λ · ∥f∥2H,
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note that by the Representer’s theorem (see (Steinwart & Christmann, 2008)), we have a closed form
solution for f̃h,

f̃h =
(
Φ⊤
hΦh + λIH

)−1
Φ⊤
h ỹh,

here we use the notation ỹh = (Ṽh+1(s
i
h+1))

⊤. Meanwhile, with Assumption 5.2, we have
PhṼh+1(s, a) = ϕ(s, a) · fh with ∥fh∥H ≤ RQH , therefore we have∣∣P̃hṼh+1(s, a)− PhṼh+1(s, a)

∣∣ =|ϕ(s, a)
(
fh − f̃h

)
|

=
∣∣∣ϕ(s, a)⊤ (Φ⊤

hΦh + λ · IH
)−1

Φ⊤
h ỹh − ϕ(s, a)⊤fh

∣∣∣
=|ϕ(s, a)⊤

(
Φ⊤
hΦh + λ · IH

)−1
Φ⊤
hΦhfh − ϕ(s, a)⊤fh︸ ︷︷ ︸

(i)

|

+ |ϕ(s, a)⊤
(
Φ⊤
hΦh + λ · IH

)−1
Φ⊤
h (ỹh − Φhfh)︸ ︷︷ ︸

(ii)

|.

In the sequel, we bound terms (i) and (ii) separately. By the Cauchy-Schwarz inequality,

|(i)| =
∣∣∣ϕ(s, a)⊤ (Φ⊤

hΦh + λ · IH
)−1

Φ⊤
hΦhfh − ϕ(s, a)⊤fh

∣∣∣
=
∣∣∣ϕ(s, a)⊤ (Φ⊤

hΦh + λ · IH
)−1 [

Φ⊤
hΦh −

(
Φ⊤
hΦh + λ · IH

)]
fh

∣∣∣
= λ ·

∣∣ϕ(s, a)⊤(Λh + λIH)−1fh
∣∣

≤ λ ·
∥∥(Λh + λIH)−1ϕ(x, a)

∥∥
H · ∥fh∥H ,

recall that we define Λh = Φ⊤
hΦh. Therefore, it holds that

|(i)| ≤ λ1/2 ·
∥∥∥Λ−1/2

h ϕ(s, a)
∥∥∥
H
· ∥fh∥H

≤ RrH · λ1/2 · ∥ϕ(s, a)∥(Λh+λIH)−1 .

Here the first inequality comes from Λh + λIH ⪰ λIH, and the second inequality comes from
Assumption 5.2, On the other hand, we have

(ii) =
∣∣ϕ(s, a)⊤(Φ⊤

hΦh + λ · IH
)−1

Φ⊤
h (ỹh − Φhfh)

∣∣
=

∣∣∣∣ϕ(s, a)⊤(Φ⊤
hΦh + λ · IH

)−1
( n∑
i=1

ϕ(sih, a
i
h)
(
Ṽh+1(s

i
h+1)− PhṼh+1(s

i
h, a

i
h)
))∣∣∣∣

≤ ∥ϕ(s, a)∥(Λh+λIH)−1 ·
∥∥∥∥ n∑
i=1

ϕ(sih, a
i
h)
(
Ṽh+1(s

i
h+1)− PhṼh+1(s

i
h, a

i
h)
)∥∥∥∥

(Λh+λIH)−1︸ ︷︷ ︸
(iii)

(45)

where the last inequality comes from Cauchy-Schwarz inequality. In the sequel, we aim to bound
(iii). We define F i

h = σ
(
{(sit, ait}ht=1

)
to be the filtration generated by state-action pair before step

h+ 1. With Lemma E.3, we have
(iii)2 ≤ O

(
H2 ·G(n, λ) + 2H2 · log(H/δ)

)
with probbaility at least 1− δ/2. Therefore we have∣∣P̃hṼh+1(s, a)−PhṼh+1(s, a)

∣∣ ≤ ∥ϕ(s, a)∥(Λh+λIH)·O
(
R2
rH

2·λ+H2·G(n, λ)+2H2·log(H/δ)
)1/2

,

and combined with equation 44, we have∣∣(r̂h(s, a) + P̃hṼh(s, a)
)
−
(
rh(s, a) + PhṼh(s, a)

)∣∣ ≤ |r̂h(s, a)− rh(s, a)|+
∣∣P̃hṼh(s, a)− PhṼh(s, a)

∣∣
≤ ∥ϕ(s, a)∥(Λh+λIH)−1

· O
(
λR2

QH
2 +H2G(n, 1 + 1/n)

+ dsample
eff

2
H2e2H |A|2 log(H ·N(Q, ∥ · ∥∞, 1/n)/δ)

)1/2
(46)

with probability at least 1 − δ for all h ∈ [H]. For the constant term on the right-hand side of
equation 46, we have the following guarantee:
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Lemma E.4. We have

λR2
rH

2 +H2G(n, 1 + 1/n) + dsample
eff

2
H2e2H |A|2 · log(H ·N(Q, ∥ · ∥∞, 1/n)/δ) ≤ β2

for the three eigenvalue decay conditions discussed in Assumption 5.1 and β set in Theorem 5.3.

Proof. See Appendix E.3 for details.

With Lemma E.4, we prove that β · ∥ϕ(s, a)∥(Λh+λIH)−1 is an uncertainty quantifier satisfying
condition 7. Now we transform it into the desired form in equation 13. Note that

∥ϕ(z)∥2(Λh+λIH)−1 = ϕ(z)⊤
(
Φ⊤
hΦh + λIH)−1ϕ(z)

=
1

λ

[
ϕ(z)⊤ϕ(z)− ϕ(z)⊤Φ⊤

hΦh(Φ
⊤
hΦh + λIH)−1ϕ(z)

]
=

1

λ

[
K(z, z)− ϕ(z)⊤Φh(z)

⊤ · Φh(Φ⊤
hΦh + λIH)−1ϕ(z)

]
=

1

λ
[K(z, z)− kh(z)

⊤(Kh + λI)−1kh(z)], (47)

we conclude that

Γh(z) = β · λ−1/2 · (K(z, z)− kh(z)
⊤(Kh + λI)−1kh(z))

1/2, (48)

and thus we complete the first step.

Step (2). The second step is to prove that with Γh given by 13 and β given by Theorem 5.3, we
can give an upper bound for the suboptimality gap. Recall that for z ∈ Z , we define Λh(z) =
Λh + ϕ(z)ϕ(z)⊤, therefore we have

Λh(z)+λIH = (Λh+λIH)1/2
(
IH+(Λh+λIH)−1/2ϕ(z)ϕ(z)⊤(Λh+λIH)−1/2

)
(Λh+λIH)1/2,

which indicates

log det((Λh(z) + λIH)) = log det((Λh + λIH)) + log det
(
IH + (Λh + λIH)−1/2ϕ(z)ϕ(z)⊤(Λh + λIH)−1/2

)
= log det((Λh + λIH)) + log

(
1 + ϕ(z)⊤(Λh + λIH)−1ϕ(z)

)
.

Since ϕ(z)⊤(Λh + λIH)−1ϕ(z) ≤ 1 for λ > 1, we have

ϕ(z)⊤
(
Λh + λIH

)−1
ϕ(z) ≤ 2 log

(
1 + ϕ(z)⊤(Λh + λIH)−1ϕ(z)

)
= 2 log det(Λh(z) + λIH)− 2 log det(Λh + λIH)

= 2 log det(I +Kh(z)/λ)− 2 log(I +Kh/λ), (49)

recall that Γh(s, a) = β · ∥ϕ(s, a)∥(Λh+λIH)−1 by equation 47 and equation 48, we have

Γh(s, a) ≤
√
2β · (log(I +Kh(z)/λ)− log(I +Kh/λ))

1/2, (50)

for all (s, a) ∈ S ×A, and by Theorem D.1, we have

SubOpt({π̃h}) ≤
H∑
h=1

Eπ∗ [Γh(sh, ah)]

≤
H∑
h=1

√
2β · Eπ∗

[
{log det(I +Kh(zh)/λ)− log det(I +Kh/λ)}1/2

]
≤

H∑
h=1

√
2β ·

{
Eπ∗

[
log det(I +Kh(zh)/λ)− log det(I +Kh/λ)

]}1/2
=

H∑
h=1

√
2β ·

{
Eπ∗

[
ϕ(sh, ah)

⊤(Φ⊤
hΦh + λIH)−1ϕ(sh, ah)

]}1/2
=

H∑
h=1

√
2β Tr

(
(Kh + λIH)−1Σ∗

h

)1/2
,
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where the first inequality comes from Theorem D.1, the second from equation 50, the third inequality
from the feature map representation in equation 47. By Lemma D.19 in Jin et al. (2021), with λ
specified in Theorem 5.3, we have

H∑
h=1

Tr
(
(Kh + λIH)−1Σ∗

h

)1/2 ≤ 4dpop
eff

for eigenvalue decaying conditions defined in Assumption 5.1. Therefore, for any δ ∈ (0, 1), we set
β and λ as in Theorem 5.3, then we can guarantee that

SubOpt({π̃h}h∈[H]) ≤ O
(
β · dpop

eff

)
.

Recall that we define

β =


C ′′ ·H ·

{√
λRr + dsample

eff eH |A| · log(nRrH/δ)1/2+1/(2µ)

}
µ-finite spectrum,

C ′′ ·H ·
{√

λRr + dsample
eff eH |A| · log(nRrH/δ)1/2+1/(2µ)

}
µ-exponential decay,

C ′′ ·H ·
{√

λRr + dsample
eff eH |A| · (nRr)κ

∗ ·
√
log(nRrH/δ)

}
µ-polynomial decay,

we therefore conclude the proof of Theorem 5.3.

E.3 PROOF FOR LEMMA E.4

We prove Lemma E.4 by discussing the eigenvalue decaying conditions in Assumption 5.1 respec-
tively.

(i):µ-finite spectrum. In this case, since 1 + 1/n ∈ [1, 2], by Lemma F.7, there exists some
absolute constant C that only depends on d, µ such that

G(n, 1 + 1/n) ≤ C · µ · log n,

and by Lemma F.8, there exists an absolute constant C ′ such that

logN(Q, ∥ · ∥∞, 1/n) ≤ C ′ · µ · [log(nRrH) + C4] ,

Hence we could set β = c ·H ·
(√
λRr + dsample

eff eH |A| ·
√
µ log(nRrH/δ)

)
for some sufficiently

large constant c > 0.

(ii): µ-exponential decay. By Lemma F.7, there exists some absolute constantC that only depends
on d, γ such that

G(n, 1 + 1/n) ≤ C · (log n)1+1/µ,

and by Lemma F.8, there exists an absolute constant C ′ such that

logN(Q, ∥ · ∥∞, 1/n) ≤ C ′ · log(nRr)1+1/µ,

We can thus choose β = c·H ·(
√
λRr+d

sample
eff eH |A|·log(nRrH/δ)1/2+1/(2µ)) for some sufficiently

large absolute constant c > 0 depending on d, µ, C1, C2 and Cψ .

(iii): µ-polynomial decay. By Lemma F.7, there exists some absolute constant C that only de-
pends on d, µ such that

G(n, 1 + 1/n) ≤ C · n
d+1
µ+d · log n,

and by Lemma F.8, there exists an absolute constant C ′ such that

logN(Q, ∥ · ∥∞, 1/n) ≤ C ′ · (nRr)2/[µ·(1−2τ)−1] · log(nRr),

Thus, it suffices to choose β = c ·H · (
√
λRr + dsample

eff eH |A| · (nRr)κ
∗ ·
√
log(nRrH/δ)), where

c > 0 is a sufficiently large absolute constant depending on d, µ. Here

κ∗ =
d+ 1

2(µ+ d)
+

1

µ(1− 2τ)− 1
.
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F AUXILIARY LEMMA

The following lemma is useful in the proof of Lemma F.2.
Lemma F.1. For three symmetrical matrices A,B and C, suppose A ⪰ B and C ⪰ 0, we have

⟨A,C⟩ ≥ ⟨B,C⟩.

Proof. Consider
⟨A−B,C⟩ = tr

(
(A−B)C

)
.

Note that since C is positive definite, we have a real symmetrical matrix H such that C = H2.
Therefore we have

tr
(
(A−B)C

)
= tr

(
H(A−B)H

)
.

Denote H by (h1, · · · , hd), we then have

tr
(
H(A−B)H

)
=

d∑
i=1

h⊤i (A−B)hi,

and by A−B being semi-definite positive we conclude the proof.

The following lemma is useful when upper bounding the self-normalizing sequence.
Lemma F.2. For real numbers x1, x2, ..., xn and real vectors c1, c2, ..., cn ∈ H, where H is a
Hilbert space. If

∑n
i=1 x

2
i ≤ C, where C > 0 is a positive constant, then

(

n∑
i=1

xici)(

n∑
i=1

xici)
⊤ ⪯ C ·

n∑
i=1

cic
⊤
i .

Proof. Consider an arbitrary vector y ∈ H. We have

y⊤(

n∑
i=1

xici)(

n∑
i=1

xici)
⊤y =

∥∥∥∥ n∑
i=1

xi · (ci · y)
∥∥∥∥2
H

≤
( n∑
i=1

x2i

)( n∑
i=1

(ci · y)2
)

≤ C ·
(
y⊤

n∑
i=1

cic
⊤
i y

)
,

since this holds for all y ∈ H we conclude the proof.

The following lemma upperly bounds the bracketling number of a parametrized function class by
the covering number of the paramter class when it is Lipschitz-continuous to the parameter.
Lemma F.3. Consider a class F of functions mθ : θ ∈ Θ indexed by a parameter θ in an arbitrary
index set Θ with a metric d. Suppose that the dependence on θ is Lipschitz in the sense that

|mθ1(x)−mθ2(x)| ≤ d (θ1, θ2)F (x)

for some function F : X → R, for every θ1, θ2 ∈ Θ and x ∈ X . Then, for any norm ∥ · ∥, the
bracketing numbers of this class are bounded by the covering numbers:

N[](F , ∥ · ∥, 2ϵ∥F∥) ≤ N(Θ, d, ϵ).

Proof. See Lemma 2.14 in Sen (2018) for details.

The following two lemmas, obtained from Abbasi-Yadkori et al. (2011), establishes the concentra-
tion of self-normalized processes.
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Lemma F.4. [Concentration of Self-Normalized Processes, (Abbasi-Yadkori et al., 2011)] Let
{ϵt}∞t=1 be a real-valued stochastic process that is adaptive to a filtration {Ft}∞t=0. That is, ϵt
is Ft-measurable for all t ≥ 1. Moreover, we assume that, for any t ≥ 1, conditioning on Ft−1, ϵt
is a zero-mean and σ-subGaussian random variable such that

E [ϵt | Ft−1] = 0 and E [exp (λϵt) | Ft−1] ≤ exp
(
λ2σ2/2

)
, ∀λ ∈ R.

Besides, let {ϕt}∞t=1 be an Rd-valued stochastic process such that ϕt is Ft−1-measurable for all
t ≥ 1. Let M0 ∈ Rd×d be a deterministic and positive-definite matrix, and we define Mt =
M0 +

∑t
s=1 ϕsϕ

⊤
s for all t ≥ 1. Then for any δ > 0, with probability at least 1− δ, we have for all

t ≥ 1 that ∥∥∥∥∥
t∑

s=1

ϕs · ϵs

∥∥∥∥∥
2

M−1
t

≤ 2σ2 · log

(
det (Mt)

1/2
det (M0)

−1/2

δ

)
.

Proof. See Theorem 1 of Abbasi-Yadkori et al. (2011) for detailed proof.

Lemma F.5 (Concentration of Self-Normalized Process for RKHS, (Chowdhury & Gopalan, 2017)).
Let H be an RKHS defined over X ⊆ Rd with kernel functionK(·, ·) : X ×X → R. Let {xτ}∞τ=1 ⊂
X be a discrete-time stochastic process that is adapted to the filtration {Ft}∞t=0. Let {ϵτ}∞τ=1 be a
real-valued stochastic process such that (i) ϵτ ∈ Fτ and (ii) ϵτ is zero-mean and σ-sub-Gaussian
conditioning on Fτ−1, i.e.,

E [ϵτ | Fτ−1] = 0, E
[
eλϵτ | Fτ−1

]
≤ eλ

2σ2/2, ∀λ ∈ R

Moreover, for any t ≥ 2, let Et = (ϵ1, . . . , ϵt−1)
⊤ ∈ Rt−1 and Kt ∈ R(t−1)×(t−1) be the Gram

matrix of {xτ}τ∈[t−1]. Then for any η > 0 and any δ ∈ (0, 1), with probability at least 1 − δ, it
holds simultaneously for all t ≥ 1 that

Et

[
(Kt + η · I)−1

+ I
]−1

Et ≤ σ2 · log det [(1 + η) · I +Kt] + 2σ2 · log(1/δ)

Proof. See Theorem 1 in Chowdhury & Gopalan (2017) for detailed proof.

The following theorem gives a uniform bound for a set of self-normalizing sequences, whose proof
can be found in Appendix B.2, Jin et al. (2021). It is useful for uniformly bounding the self-
normalizing sequence in pessimistic value iteration, both for linear model MDP class:
Theorem F.6. For h ∈ [H], we define the function class Vh(R,B, λ) =
{Vh(x; θ, β,Σ) : S → [0, H] with ∥θ∥ ≤ R, β ∈ [0, B],Σ ⪰ λ · I} , where

Vh(x; θ, β,Σ) = max
a∈A

{
min

{
ϕ(x, a)⊤θ − β ·

√
ϕ(x, a)⊤Σ−1ϕ(x, a), H − h+ 1

}
+

}
,

then we have

sup
V ∈Vh+1(R,B,λ)

∥∥∥∥∥
n∑
i=1

ϕ
(
sih, a

i
h

)
·
(
V (sih+1)− E[V (sh+1) | sih, aih]

)∥∥∥∥∥
2

(Λh+λI)−1

≤ 8ϵ2n2/λ+ 2H2 ·
(
2 · log(N/δ) + d · log(1 + n/λ)

)
,

holds with probability at least 1− δ for every ϵ > 0. Here

log(N ) ≤ d · log(1 + 4R/ε) + d2 · log(1 + 8d1/2B2/(ε2λ)).

Proof. See Appendix B.2 in Jin et al. (2021) for details.

Lemma F.7 (Lemma D.5 in Yang et al. (2020)). Let Z be a compact subset of Rd and K : Z×
Z → R be the RKHS kernel of H. We assume that K is a bounded kernel in the sense that
supz∈Z K(z, z) ≤ 1, and K is continuously differentiable on Z × Z . Moreover, let TK be the
integral operator induced by K and the Lebesgue measure on Z , whose definition is given in equa-
tion 9. Let {σj}j≥1 be the eigenvalues of TK in the descending order. We assume that {σj}j≥1
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satisfy either one of the following three eigenvalue decay conditions: (i) µ-finite spectrum: We have
σj = 0 for all j ≥ µ + 1, where µ is a positive integer. (ii) µ-exponential eigenvalue decay: There
exist constants C1, C2 > 0 such that σj ≤ C1 exp (−C2 . jµ ) for all j ≥ 1, where µ > 0 is positive
constant. (iii) µ-polynomial eigenvalue decay: There exists a constant C1 such that σj ≥ C1 · j−µ
for all j ≥ 1, where µ ≥ 2 + 1/d is a constant.

Let σ be bounded in interval [c1, c2] with c1 and c2 being absolute constants. Then, for conditions
(i)-(iii) respectively, we have

G(n, λ) ≤


Cn · µ · log n µ-finite spectrum,
Cn · (log n)1+1/µ µ-exponential decay,
Cn · n(d+1)/(µ+d) · log n µ-polynomial decay,

where Cn is an absolute constant that depends on d, µ, C1, C2, C, c1, and c2.

Proof. See Lemma D.5 in Yang et al. (2020) for details.

Lemma F.8 ( ℓ∞-norm covering number of RKHS ball). For any ϵ ∈ (0, 1), we let N(Q, ∥ · ∥∞, ϵ)
denote the ϵ-covering number of the RKHS norm ball Q = {f ∈ H : ∥f∥H ≤ R} with respect to
the ℓ∞-norm. Consider the three eigenvalue decay conditions given in Assumption 5.1. Then, under
Assumption 5.1, there exist absolute constants C3 and C4 such that

logN(Q, ∥ · ∥∞, ϵ) ≤


C3 · µ · [log(R/ϵ) + C4] µ-finite spectrum,
C3 · [log(R/ϵ) + C4]

1+1/µ
µ-exponential decay,

C3 · (R/ϵ)2/[µ·(1−2τ)−1] · [log(R/ϵ) + C4] µ-polynomial decay,

where C3 and C4 are independent of n,H,R, and ϵ, and only depend on absolute constants Cψ ,
C1, C2, µ, and τ specified in Assumption 5.1.

Proof. See Lemma D.2 in Yang et al. (2020) for details.
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