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ABSTRACT

Recent breakthroughs in supervised learning domains such as computer vision
and natural language processing follow the consistent paradigm: pretrain a neural
network with a large dataset and fine-tune it onto downstream tasks with a relatively
small dataset. Offline reinforcement learning (RL) can be an alternative approach
for learning the best policy with the static dataset in sequential decision-making
problems, akin to supervised learning. Following the paradigm, previous works
have focused on constructing a large dataset or pretraining networks with the
static dataset and fine-tuning them with online interactions. However, it is still
vague that offline RL can exhibit data efficiency, e.g. robustness to static dataset
size. In this paper, we propose a simple yet effective plug-and-play method that
pretrains a Q-network under an offline RL scheme, improving task performance
and data efficiency. Our method consists of two core functionalities: Transforming
the Q-network structure to a shared network architecture and pretraining weights
of the shared network by a supervised regression task that predicts the forward
dynamics of a task. We provide an analysis of how our method enables improved
performance even in a small dataset in terms of the projected Bellman equation. We
also empirically demonstrate that the proposed method improves the performance
of existing popular offline RL methods on the D4RL and Robomimic benchmarks
with an average improvement of 135.94% on the D4RL benchmark. Moreover, we
demonstrate the proposed method boosts data efficiency in offline RL with varying
data collection strategies.

1 INTRODUCTION

In the deep learning fields including computer vision (Chen et al.,2020; Saharia et al.| |2022; [Ramesh
et al.| 2022; Meng et al.,[2023)), and natural language processing (Radford et al., 2018}, |Devlin et al.|
2019; Brown et al., 2020; Radford et al.,|2021), a dominant paradigm has been widely used to boost
the performance of deep learning algorithms: pretraining a scalable large model with a large dataset
and fine-tuning them to a specific task. In contrast, typical reinforcement learning (RL) considers an
online learning nature that involves iterative processes between experience collections and policy
improvements through online interactions with the environment (Sutton et al., |1998). Unfortunately,
online interaction is impractical in several cases since data collection requires expensive costs and
retains potential risks of the agent, e.g. hardware corruption. Offline RL provides a solution by
avoiding online interactions with the environment (Levine et al., 2020).

Offline RL aims to learn a policy from pre-collected data from an unknown behavior policy without
further interactions with the environment. Recent research has focused on a large dataset and a
scalable neural network model under an offline RL scheme, following the paradigm of the supervised
learning domain (Chebotar et al.l 2023} Padalkar et al., 2023} Team et al.,|2024). On the other hand,
pretraining with offline RL and fine-tuning with online RL has been investigated to improve sample
efficiency of online interactions (Nakamoto et al.,|2024b; [Xie et al., 2021} Rafailov et al., 2023b} Ball
et al.|[2023b)). Besides, pieces of work have focused on the dataset itself, e.g. an imbalanced dataset,
unlabeled data, and even data corruption under offline RL scheme (Hong et al., 2023} |Yu et al., |2022;
Yang et al.| 2023).

However, we denote that there is not enough work to improve data efficiency in offline RL; for instance,
robustness on dataset size or guaranteed performance even in a small dataset. Investigation into data-
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efficient offline RL is necessary since collecting experience charges expensive costs and unfavorable
exploration in the real world, hampering the possibility of offline RL in the real world. Furthermore,
numerous algorithms often depend on the large dataset to verify their superior performance while the
amount of required data for brilliant performance totally depends on a benchmarking dataset. In this
work, we propose a simple yet effective plug-and-play method that pretrains a Q-network under an
offline RL scheme, improving task performance and data efficiency. To this end, we devise a shared
Q-network structure that outputs the predicted next state and Q-value as illustrated in Figure[T} The
proposed approach consists of two phases: pretraining the Q-network with forward dynamics and
training existing offline RL algorithm.

We empirically demonstrate that the proposed method improves the performance of existing popular
offline RL methods on the D4RL (Fu et al., [2020), and Robomimic (Mandlekar et al., [2021)),
benchmarks with an average improvement of 135.94% on the D4RL benchmark. We demonstrate
that our data-efficient method maintains the performance with fragments of the dataset across the
data quality of the optimality on the D4RL dataset. Moreover, We investigate our method across
the data collection strategies on the ExoRL datasets (Yarats et al.,[2022)), assuming a small dataset
would have more narrow state-action coverage than a large dataset. As a result, we demonstrate that
our method improves the performance even in a narrow data distribution coverage. Additionally,
we provide an analysis of how our method enables improved performance even in a small dataset,
concerning the projected Bellman equation.

2 RELATED WORKS

Offline RL. Offline RL aims to learn a policy with static data without further interactions with the
environment. Previous approaches have mainly addressed the distribution shift problem, which is
caused from the idea that queries of the ()-function over out-of-distribution actions may yield overly
optimistic values during offline training (Fujimoto et al.,2019; Kumar et al.,2019; |Levine et al.,[2020;
Kumar et al., 2020; |Fujimoto & Gu, [2021}; |Kostrikov et al.,|2021a). Recently, scalability to a large
dataset and neural network model has been studied (Chebotar et al., [2023; |Padalkar et al., 2023} [Team
et al.,[2024)). On the other hand, pretraining with offline RL and fine-tuning with online RL improves
sample efficiency in online interaction (Nakamoto et al., [2024b; [Xie et al., 2021; Rafailov et al.,
2023bj; Ball et al.| 2023b). In contrast, dissimilar experiments over the way to consuming the static
dataset have been conducted, e.g. an imbalanced dataset, unlabeled data, and even data corruption
under an offline RL scheme (Hong et al., 2023} |Yu et al.,|2022;|Yang et al., 2023). However, we focus
on the data efficiency in offline RL (i.e. robustness on small datasets). In this work, we propose a
simple yet effective plug-and-play method for pretraining Q-network to overcome the data efficiency
problem.

Sample efficient RL. A common issue in most RL algorithms is sample efficiency: excessive
interactions with the environment are required to learn an optimal policy. For this reason, sample
efficiency has been an active research topic in RL. Model-based RL, (Sutton,|1991; Deisenroth &
Rasmussen, 2011} |Hafner et al., 2019bgaj |Hansen et al., 2022}, is a common approach to resolve
sample inefficiency by learning a (latent) dynamics model and using it to generate additional transition
samples. Otherwise, effective pretraining, (Schwarzer et al., 2021} |Yarats et al., [2021b)), and data
augmentation, (Laskin et al.| 2020; [Kostrikov et al., 2021b), play a critical role in improving sample
efficiency in RL. In recent, offline-to-online, (Lee et al.,[2022; Ball et al.l [2023a; Rafailov et al.|
2023a; [Feng et al.,[2023; [Nakamoto et al.,|2024a), and foundation model, (Ahn et al.,|[2022; [Seo
et al.,|2022; |Brohan et al., [2023bja}; [Bhateja et al., [2023)), have tackled this problem where the poor
data efficiency of online RL regime is alleviated by leveraging large offline data. In contrast, we
define the data efficiency problem in offline RL as the ability of an offline RL algorithm whether an
agent can learn the desired policy even with a small dataset.

3  MARKOV DECISION PROCESS

We consider the Markov decision process, where the agent sequentially takes actions to maximize cu-
mulative discounted rewards. In a Markov decision process with the state-space S := {1,2,...,|S|}
and action-space A := {1,2,...,|A|}, the decision maker selects an action a € A at the cur-
rent state s € S, then the state transits to the next state s’ € S with probability P(s’|s,a), and
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the transition incurs a reward r(s, a,s’) € R, where P(s'|s, a) is the state transition probability
from the current state s € S to the next state s’ € S under action a € A, and r(s,a,s’) is the
reward function. For convenience, we consider a deterministic reward function and simply write

r(Sk, ak, Sg+1) = Tk, k € {0,1,...}.

A deterministic policy, 7 : S — A, maps a state s € S to an action 7(s) € A. The objective of the
Markov decision problem is to find a deterministic (or stochastic) optimal policy, 7*, such that the
cumulative discounted rewards over infinite time horizons is maximized, i.e.,

o0

Sy ] ,
k=0

where y € [0, 1) is the discount factor, © is the set of all deterministic policies, (sq, ag, $1, a1, .. .) is

a state-action trajectory generated by the Markov chain under policy 7, and E[-|7] is an expectation
conditioned on the policy . Moreover, Q-function under policy 7 is defined as
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7" := argmax E
TEO

Q" (s,a) =E

sozs,aoza,w] , (s,0) € S x A.

4  PRETRAINING Q-NETWORK WITH FORWARD DYNAMICS HELPS IMPROVING
DATA EFFICIENCY

Algorithm 1 Pretraining Q-network scheme for Offline RL

Input: Dataset D of transition (s, a, '), Learning rate «
Initialize parameters @, v
for each gradient step do

Sample a mini-batch B ~ D

Compute the forward dynamics estimation error

ﬁpre((iga 7/}) = Z (S, - (gdi © h«p)(S, a))2
(s,a,s’")eB
Update weights of the shared network and forward network
P — avwﬁpre(‘fga 1/})a = — avwﬁpre“@y ZZJ)

end for
Output: Pretrained weights ¢ of the shared network

In this paper, we propose a simple yet effective pretraining method adapting features of forward
dynamics into the initialization of ()-network to improve data efficiency in offline RL. To this end,
we design Q-network that partially shares a network with the forward dynamics estimation model. In
particular, the forward model is constructed as follows:

§ = (gypohy)(s,a), (s,a) €S x A, (1)

where &' is the estimated next state, g, is a parameterized linear function, and h,, is shared with the
Q-network, which is defined as

Qp.o(s,a) = (foohy)(s,a), (s,a) €S x A, @

where fj is also a parameterized linear function that represents the linear output layer and h,,
represents the fully connected neural network layers shared with the forward model in equation I}
The overall structures of the neural networks are illustrated in Figure|[T]

In the proposed method, the forward model gy, o h, is pretrained by minimizing the mean squared
prediction error loss function

Lore(p,) = > (' = (gy 0 hy)(s,0))? 3)

(s,a,s")€D
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Figure 1: Overview of our pretraining method. Figure 2: Reduced approximation error with
Our method splits the original )-network into the expanded column space of H,. In linear
two core architectures: a shared network that ex- approximation, there exists Q™ outside of the col-
tracts the representation z from the concatenated umn space of H,,. To deal with this problem, the
vector of state s and action a and separated heads projected Bellman equation projects Q™ to IIQ™
for training the forward model network and ()- which exists in the column space of H.,.

network, respectively.

over the pre-collected dataset D which includes a given set of the transition (s, a, s"). Afterwards, the
pretrained parameter  can be used as an initial or fixed parameter for standard RL algorithms based
on the Q-network structure in equation 4 without any modification. The overall pretraining process is
summarized in Algorithm [I] for offline RL. We also note that similar principles can be applied for
online RL as well, and the corresponding algorithm is given in Appendix [A]

Later in this paper, we empirically demonstrate that combining the proposed pretraining method with
existing offline RL methods can effectively improve their performances. Moreover, we demonstrate
that our method indeed improves data efficiency through some experiment settings in offline RL.

4.1 ANALYSIS: BASED ON THE PROJECTED BELLMAN EQUATION

In this section, underlying insights behind the proposed method are discussed. For simplicity and
convenience of presentation, we assume that the state and action spaces are discrete and finite, and
the transition is deterministic. Our analysis is based on the observation that (Q-function with neural
networks can be generally represented by equation Defining the feature vector z = h,(s,a) € R™,
it can be rewritten as

Qpo(s,a) = ZGih%i(s,a) =(0,hy(s,a)), (s,a)eSxA )
i=1

When ¢ is fixed, then the above structure can be viewed as a linear function approximation with
the feature function h ;. In the proposed method, h, ; is indeed pretrained by minimizing the loss
in equation [3|and then fixed while learning Q-function in equation[d Therefore, the interpretation
based on the linear function approximation is expected to be a reasonable model to explain the
phenomenon in the proposed method.

It is well-known that with linear function approximation, the corresponding standard Bellman equation

Q%o(s?a) = R(s,a) +7 Z Pﬂ(s/|saa) Z Qap.ﬂ(slval)

s'eS a’€A

may not admit a solution in general. However, typical TD-learning algorithms are known to converge
to the unique fixed point of the projected Bellman equation. In particular, considering the vector form
of the Bellman equation, Q, 9 = R+ vP" Q) ¢, the projected Bellman equation (Melo & Ribeiro
(2007) is known to admit a solution

Qw,@ = H(R + fyPTerpﬁ)
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Table 1: The Rank of the latent space of Q-network on the D4RL benchmark. We compare the
rank of the latent space between a vanilla TD3+BC and TD3+BC adapted with our method over 512
samples. As a result, adapting our method significantly increases the rank of the latent space, leading
to reduced approximation error.

Halfcheatah Hopper Walker2d
TD3+BC  TD3+BC (+ours)  TD3+BC  TD3+BC (+ours) TD3+BC  TD3+BC (+ours)
Random 59 236 69 192 72 82
Medium 55 249 85 227 55 254
Medium Replay 49 252 77 249 77 255
Medium Expert 58 236 86 232 52 253
Expert 44 198 104 198 68 225

where II is the projection onto the column space, C'(H,,), of the feature matrix H,, defined as

The corresponding solution is known to have the error bound

1
Qe = Qe < 7= I0Q" ~ Q" 1. )
where Q™ is the true (Q-function corresponding to the target policy 7. As can be seen from the above
bound, the error depends on the feature matrix H,. We can observe that the smaller the distance
between C'(H,,) and Q7, the smaller the error between @), ¢ and Q™. Therefore, a proper choice of
the feature function is key to the successful estimation of Q.

With the neural network function approximation, typical value-based RL algorithms update both ¢
and 6 simultaneously via TD-learning algorithms. Since the feature functions, h, ;, are in general
nonlinear and non-convex in ¢, it may sometimes converge to a local optimal solution. This in
turn implies that appropriate initialization or pretraining of the feature functions, h,, ;, can play an
important role for estimating (Q-function with smaller approximation errors on the right-hand side
of equation[5]by avoiding suboptimal local solutions.

We conjecture that the pretraining approach with the forward model introduced in the previous
section can effectively shape the feature functions so that the column space C'(H,) can cover higher
dimensional vector space in RIS*4l As shown in Figure|2] this eventually results in a reduction of
the solution error on the right-hand side of equation 5| To support this, we empirically compare the
rank of the Q-network in the latent space between a vanilla TD3+BC and the pretrained TD3+BC
with our method over 512 data samples. As a result, adapting our method shows significantly higher
rank than the rank of the vanilla method. We suggest that the proposed method tends to expand
C(H,) and increases the probability of reducing the approximation error on the right-hand side
of equation 5] leading to more precise Q-function estimation.

5 EXPERIMENTS

In this section, we evaluate our method over existing offline RL methods with the popular offline
RL benchmarks, D4RL, and more complex domain, Robomimic. Furthermore, we examine the
proposed method over the partial fragments of D4RL and ExoRL datasets for data-efficient offline RL.
We introduce a detailed experimental setup and baselines in the following paragraphs and provide
empirical results subsequently.

Experimental setup. We have considered heterogeneous tasks and diverse datasets for precise
comparisons. For the locomotion task, the proposed method is compared with existing methods in the
popular D4RL benchmark (Fu et al.,[2020). Three different embodied agents and five distinct datasets
are considered in order to validate the effectiveness of the proposed method: HalfCheetah, Hopper,
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Table 2: Averaged normalized scores on the D4RL benchmark over 5 seeds. In each column
corresponding to different RL methods, values on the left-hand side are scores of the baseline methods
directly taken from the literature. The values on the right-hand side of each column represent scores
of the proposed methods combined with the baselines. The increased scores compared to the baselines
are highlighted in blue font, and they are reported with the mean and standard deviations over five
random seeds.

AWAC CQL QL TD3+BC
HalfCheetah 2.2—51.1040.89 21.740.9—31.944+2.63 —18.28+1.02 10.241.3—14.83+0.54
Random Hopper 9.6—59.474+33.79 10.740.1—30.204-2.66 —10.67+0.41 11.040.1—31.5640.16
Walker2d 5.1—13.1143.91 2.74£1.2—19.564+4.49 —8.8840.71 1.44+1.6—11.234+5.05
HalfCheetah 37.4—54.63+1.45 37.240.3—39.931+18.84 47.4—48.8540.16 42.840.3—49.174+0.26
Medium Hopper 72.0—101.73+0.20 44.2410.8—90.58+2.23 66.4—78.62+2.21 99.5+1.0—71.52+2.16
Walker2d 30.1—89.514+0.88 57.548.3—84.661+0.67 78.3—83.63+1.14 79.7+1.8—87.09+0.60
HalfCheetah —55.75+£1.30 41.941.1—47.601+0.37 44.2—45.4840.17 43.340.5—45.844+0.26
Medium Replay Hopper —106.67+0.59 28.6+0.9—98.63+2.12 94.7—99.43+£1.71 31.443.0—100.164-1.60
Walker2d —100.31£2.11 15.842.6—87.66+1.30 73.9—87.954+1.68 25.245.1—92.01+1.58
HalfCheetah 36.8—90.05+1.89 27.1+£3.9—82.75+6.51 86.7—95.254+0.14 97.9+4.4—96.89+0.92
Medium Expert Hopper 80.9—113.2340.22 111.4£1.2—111.06+0.81 91.5—105.774+11.31 112.240.2—113.02+0.19
Walker2d 42.7—111.88+0.28 68.14+13.1—91.63+42.48 109.6—112.0940.93 101.1£9.3—111.58+0.35
HalfCheetah 78.5—93.48+0.11 82.447.4—97.094+1.03 —97.40+0.13 105.741.9—98.8640.55
Expert Hopper 85.2—112.8640.10 111.242.1—112.10+0.35 —113.34+0.46 112.240.2—113.35+0.28
Walker2d 57.0—111.2240.35 103.8+£7.6—110.64+0.28 —112.80+£1.08 105.74£2.7—111.00£0.15
Total —1265.01448.07 764.34+61.5—1136.034+86.78 —1118.46423.25 979.3433.4—1148.124+14.65

Walker2d for agents and random, medium-replay, medium, medium-expert, expert for datasets. For the
tabletop manipulation tasks, we have evaluated the proposed method in the Robomimic benchmark,
(Mandlekar et al., 2021)), where off-the-shelf offline RL methods are already implemented. Two
different tabletop tasks and mixed-quality datasets are considered to verify the scalability of the
proposed method: Lift, Can for tasks and Machine-Generated (MG) for datasets. For data-efficient
offline RL, we have evaluated the proposed method across the optimal quality of the datasets of D4RL
Gym locomotion tasks, and the dataset collection strategies for walker walk (i.e. SMM, RND, ICM)
and point mass maze (i.e. Proto, Diayn) in ExoRL (Yarats et al.,[2022). See Appendix |C|for a more
detailed setup for tasks and datasets.

Baselines. We have designed extensive experiments on the D4RL benchmark to verify the effective-
ness of the proposed method built on top of the popular offline RL methods, including AWAC (Nair
et al., 2020), CQL (Kumar et al.| 2020), TD3+BC (Fujimoto & Gu, [2021)), and IQL (Kostrikov
et al., 2021a). To verify the benefits of the proposed method, we compared the normalized scores
between the vanilla method and the one combined with the proposed pretraining method. Similar
to the D4RL benchmark, the success rate are compared on the Robomimic benchmark, where IQL,
TD3+BC, BCQ (Fujimoto et al., 2019), and IRIS (Mandlekar et al., [2020), were used in combination
with the proposed methods. On the ExoRL benchmark, we used TD3 (Fujimoto et al., 2018)), for
walker walk task, and CQL for point mass maze tasks. See Appendix [E|for more implementation
details.

5.1 D4RL

The normalized scores between the vanilla and the one combined with our method are compared
in Table E] for each environment and dataset, where the scores of the baselines were taken directly
from the literature. One can observe that the proposed method combined with the baselines improves
the corresponding the original methods, achieving an average improvement of 135.94%, across
diverse environments and datasets. Specifically, one can observe that all methods including AWAC
(+306.45%), CQL (+132.77%), IQL (+9.21%), and TD3+BC (+95.34%) exhibit significantly
increased performance on average compared to the results reported in the original papers. We have
taken all normalized scores of TD3+BC, AWAC, and CQL from the reported scores in (Fujimoto &
Gu, 2021)). In addition, we have borrowed the score of IQL from (Kostrikov et al., [2021a)).

Furthermore, the proposed method demonstrates outstanding performance, achieving an average
improvement of 222.39%, on mixed-quality data regimes, which are mostly desirable in offline RL:
AWAC (+530.67), CQL (+191.85), IQL (+9.20), and TD3+BC (+157.83%) on average for random,
medium and medium-replay datasets. The results suggest that the proposed method effectively
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Figure 3: Learning curves of TD3+BC. The blue and orange curves are, respectively, the normalized
scores of TD3+BC and TD3+BC pretrained with the proposed method. The vertical red reference
lines split the pretraining and main training phases. After the pretraining phase, TD3+BC combined
with the proposed method quickly outperforms the vanilla TD3+BC by a large margin.
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Figure 4: Averaged normalized scores across pretraining rates. R, M, MR, ME, and E represent
random, medium, medium replay, medium expert, and expert datasets on the D4RL benchmark,
respectively.

adopts beneficial features to avoid suboptimal local solutions, enabling further improvements without
imposing any modification of the original methods.

The learning curves of TD3+BC are illustrated in Figure[3]to verify the effectiveness of the proposed
method. After the pretraining period (indicated by the red vertical lines), one can notice that the
learning curves rapidly increase and achieve higher returns compared to the original methods. These
results suggest that our method accelerates training and enhances performance with only a few lines
of modifications on top of the baselines. Full graphs of TD3+BC are provided on Figure [TT]in

Appendix [

We also applied our method with different pretraining ratios (i.e., 3%, 30%) on TD3+BC over 5
seeds. The results are presented on Figure [d] and Table 0]in Appendix [H] Notably, regardless of the
pretraining ratio, the proposed method demonstrates improved performance over different pretraining
rates. Overall, the pretraining ratio of 3% yields a slightly higher total sum of averaged scores while
the results of the 10% ratio yield the lowest standard deviation.

5.2 ROBOMIMIC

Additional experiments are conducted on large-scale robotic manipulation tasks to verify the effec-
tiveness of the proposed method for complex tasks. The proposed method is evaluated with tasks
containing suboptimal transitions, where the proposed method improves the baselines on the D4RL
benchmark. The averaged success rate of four offline RL baselines is reported in Figure 5| with and
without applying the proposed method. As can be seen, all the methods with the proposed pretraining
method are improved over the baselines in seven out of eight cases. Therefore, we conclude that the
proposed method also effectively performs in solving more complex tasks. We also have conducted
experiments on Adroit, 24-DOF environment, in Appendix [D] The results also demonstrate that the
proposed method is effective in solving complex tasks.



Under review as a conference paper at ICLR 2025

== w/o pretraining mmm w/ pretraining (ours)

Env: Lift Env: Can
0.6
0.5
Lo4
e
a
» 0.3
o
I+
&
0.2
00 —— *
QL TD3+BC IRIS BCQ QL TD3+BC RIS BCQ
Algorithm Algorithm

Figure 5: Averaged success rate on the Robomimic benchmark. We evaluate both vanilla methods
without pretraining (blue) and methods with pretraining (orange). 7 out of 8 cases depict notably
improved performance in both environments.
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Figure 6: Averaged normalized scores in reduced datasets across data quality. This figure shows
that overall performance of our method across reduced dataset sizes (i.e., 1%, 3%, 10%, 30%, 100%)
for three environments (i.e., halfcheetah, hopper, walker2d) in D4RL. From the overall results, we
conclude that our method guarantees better performance even in 10% of the datasets regardless of the
data quality of the dataset, and even 1% for the random datasets and 3% for the medium datasets.

5.3 DATA EFFICIENCY ACROSS THE OPTIMAL QUALITY OF THE DATASETS

To validate that the proposed method is indeed data efficient regardless of the dataset quality, we
have examined the proposed method with TD3+BC in reduced datasets (i.e., 1%, 3%, 10%, 30%,
100% of each dataset) across the data quality (i.e., random, medium, medium replay, medium expert,
expert) on D4RL over 5 seeds. To construct the reduced datasets, we uniformly have sampled the
transition segments (i.e., (s,a,r,s’)) from the each dataset. On the random datasets (a leftmost
section in Figure[T2), training with the proposed method with only 1% of the dataset outperforms
the vanilla TD3+BC trained with full datasets at halfcheetah and warker2d environments. On the
medium datasets (right to the random in Figure[I2), the proposed method shows similar or improved
results compared to the vanilla TD3+BC with full datasets by only using 3% size of the datasets. On
other datasets (i.e. medium-replay, medium-expert, and expert), training the proposed method with
10% datasets totally outperforms the vanilla TD3+BC with full datasets. From the overall results in
Figure[6] we conclude that our method guarantees better performance even in 10% of the datasets
regardless of the data quality of the dataset.

5.4 DATA EFFICIENCY ACROSS THE DATASET COLLECTION STRATEGIES

We have assumed that a typical small dataset would have more narrow state-action coverage than a
large dataset. Therefore, we have considered a goal-reaching offline agent in a maze environment
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exploration methods. (Right) Averaged return of CQL trained with two datasets with and without the
proposed pretraining method.
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Figure 8: Average returns in reduced datasets across the dataset collection strategies. We
evaluate our method over different dataset collection strategies (i.e., SMM, RND, ICM). TD3 with our
method outperforms the vanilla TD3 overall and even training with 10% of datasets outperform the
vanilla TD3 with full datasets. From the results, we demonstrate that our method is data efficient
regardless of the dataset collection strategies.

with different exploration strategies. Figure [7] visualizes the trajectories of each reduced dataset
collected by DIAYN (Eysenbach et al.,[2018)), and Proto (Yarats et al,[2021al), strategies (i.e., 1% of
DIAYN, 7% of Proto). In comparison with Figure 2 in|Yarats et al.| (2022), our reduced dataset settings
cover narrow state distribution. The top right figure of DIAYN shows that there are a few trajectories
around the trop right goal and the bottom left right figure of Proto also shows that there are a few
trajectories around the bortom right goal in Figure[7] To demonstrate our method is effective even in
narrow state distribution, we evaluated the proposed method on reduced point mass maze datasets
described in FigurelZ] over short (reach top right) and long (reach bottom right) goals with CQL.
Figure[7]demonstrates that our method significantly improves the performance even with narrow state
distribution.
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Based on the assumption we have made, we also have evaluated our method across dataset collection
strategies since each dataset has different distribution. In ExoRL (Yarats et al.,|2022), we chose TD3
as a comparison algorithm and SMM (Lee et al.,2019), RND (Burda et al., 2018)), and ICM (Pathak
et al., 2017), as walker walk task datasets. In (Yarats et al., [2022]), ICM shows best performance,
followed by RND, SMM and TD3 shows best performance in ICM. We compare TD3 to TD3 with
our method in reduced datasets (i.e., 1%, 10%, 100%) over 3 seeds. To construct reduced datasets, we
select the data from the front. Figure §|shows the results. For all datasets, training our method with
only 10% of datasets outperforms TD3 with full datasets. Specially in RND, even training with 1%
of datasets shows significantly high averaged return. From the results, we conclude that our method
indeed data efficient regardless of the dataset collection strategies.

6 CONCLUSION

In this paper, we propose a data efficiency problem of whether offline RL can maintain performance
even in small datasets under an offline RL scheme. To the authors’ best knowledge, we first define the
data efficiency problem in offline RL and propose an effective method for settling the problem. We
suggest the pretraining Q-network method using a forward dynamics prediction task. To pretrain the
Q-network, we design a novel shared network architecture that outputs predictions of the next state
and Q-values. This structure make our method easy to apply to any existing offline RL algorithms.

To demonstrate that our method improves the performance even in reduced datasets, we conduct
experiments with various setting in offline RL. From the results, we demonstrate that our method
significantly improve the performance of existing offline RL algorithms over D4RL and Robomimic
benchmarks. Furthermore, we demonstrate that our method is indeed data efficient across the data
qualities in D4RL and data collection strategies in ExoRL. We leave future work to validate that our
method can outperform in real-world applications, e.g. robotic manipulation.
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A PRETRAINING Q-NETWORK FOR ONLINE RL (OFF-POLICY)

Algorithm 2 Pretraining phase for Online RL (Off-policy)

Input: Learning rate o
Initialize parameters , ¢ and a buffer D
for each gradient step do
Uniformly sample a random action and collect a transition
a ~ U(amina amaz)
s’ ~p(s]s,a)
Update the buffer with a collected transition
D« DU{(s,a,r,s)}

Sample a mini-batch B ~ D
Compute the forward dynamics prediction error

Eprc(wvw) = Z (S/ - (gill ° hip)(sa a))2
(s,a,s")EB
Update weights of the shared network and forward network
P p— O‘V¢£pre(‘ﬁa 1[}), Y= — OzV¢£me(4p, 77[})

end for
Output: Pretrained weights ¢ of the shared network, collected buffer D

Algorithm 3 Pretraining phase for Online RL (Off-policy) with pre-collected dataset

Input: Dataset Dy, of transition (s, a, s’), Learning rate «
Initialize parameters @, v
for each gradient step do

Sample a mini-batch B ~ D,

Define the loss function

E;m’e(@v 1/)) = Z (Sl - (91/1 © hsa)(sa a))2
(s,a,s")EB
Take the gradient descent step
PP - av¢>£p7's(90a ¢)a '(/) — w - OéVwﬁpre(gO, ¢)

end for
Output: Pretrained weights ¢ of the shared network

We extended our pretraining method to popular online off-policy RL methods by incorporating
the pretraining phase ahead of the main training phase. During the pretraining phase of the online
agent, a trajectory dataset was obtained by either initializing the replay buffer with actively collected
interaction data by uniformly sampling a random action or offline static dataset.

For experiments on online RL using an off-policy setting, we adopted soft actor-critic (SAC) Haarnoja
et al.[(2018) and twin delayed deep deterministic policy gradient algorithm (TD3) |[Fujimoto et al.
(2018). We compare these algorithms with and without our pretraining method on OpenAl Gym
MuJoCo tasks. For a fair comparison, all algorithms were trained for 1 million time steps on each
task over 5 seeds.

Table 3| presents the results of the experiments following Algorithm 2] which collects the pretraining
dataset by uniformly sampling random actions. Incorporating our pretraining phase shows better
performance in more than half of the results. Additionally, we trained both SAC and TD3 with the
pre-collected dataset from the D4RL for the pretraining phase along the Algorithm [3] Note that
we only used the pre-collected dataset during the pretraining phase. Table ] shows the best scores
among the 5 datasets (i.e., random, medium, medium replay, medium expert, expert). Interestingly,
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pretraining with the suboptimal-level dataset (medium-replay) shows better performance compared
to the expert-level dataset.

Table 3: Results of Off-policy RL application on OpenAl gym MuJoCo tasks

SAC TD3
HalfCheetah-v2 10065.77+621.80—11005.51£374.14 10644.631+190.42—11697.71£236.01
Hopper-v2 3357.074+30.64—1419.554+137.55 3365.084+94.69—3454.83+129.34
Walker2d-v2 4279.67+509.51—2697.924+674.29 4193.11£435.31—4481.194190.93
Ant-v2 4191.174986.11—4399.56 766.24 5172.784+659.02—4407.40£759.64
Humanoid-v2 5545.70485.00—479.09 83.86 5247.144+187.64—5816.164199.25
Pusher-v2 -190.77+88.51—-133.96 29.00 -22.94+0.52—-22.854+1.25

Table 4: Results of Off-policy RL pretrain with the D4RL OpenAl gym MuJoCo datasets

SAC TD3
HalfCheetah-v2 10402.79+1675.67 11820.064269.76
Hopper-v2 3405.954+70.87 3465.254+149.87
Walker2d-v2 4785.154+247.37 4559.384+1007.69

From the above experiments, we conjecture that pretrained online RL (off-policy) has limitations
when they only exploit random action data for pretraining. A marginal state distribution induced by
uniformly sampling random actions is close to the initial state distribution, limiting the diversity in
the dataset and eventually leading to an increase in forward dynamics uncertainty. Consequently,
there are fewer opportunities to learn the good features of forward dynamics with random action
datasets than suboptimal-level datasets. This explains why Table 3|shows worse results than Table §]

We also applied another approach introduced in sectionB|to online RL settings. The results, shown
in Table[3] indicate that more than half exhibit enhanced performance compared to reported scores in
Table

Table 5: Results of Off-policy RL with Additional Loss

SAC TD3
HalfCheetah-v2 ~ 8498.68+£3195.13  9588.53+866.30
Hopper-v2 3539.394133.47 3523.67+£202.52
Walker2d-v2 4847.86+135.52 3819.68+552.84
Ant-v2 3710.73£917.35 5401.0+844.56
Humanoid-v2 5576.984+106.31 5489.73+38.28
Pusher-v2 -158.66+55.02 -25.47+£34.00

B ANOTHER DESIGN CHOICE USING OUR SHARED Q-NETWORK STRUCTURE

In this section, we introduce another approach that also utilizes features of forward dynamics using
the shared networks as in the previouse pretraining method. In this approach, we use the following
modified loss that adds the forward model loss to the loss for the Q-function estimation:

EQ = £TD + ‘Cdynamics (6)

In this way, the shared network is trained throughout the entire training period without the pretraining
phase. We adopt TD3+BC for evaluation and the results are presented in table [6] On TD3+BC,
this approach also outperforms almost all of the vanilla scores. Simply adding the supervised loss
term of state prediction without any multiplier or technique demonstrates improved performance.
Consequently, we suggest that the proposed shared Q-network can be expanded in other directions
and we expect that it holds significant potential for further research.

C TASKS AND DATASETS

In this section, we provide detailed experimental setups for the tasks and datasets. Illustrated
environments can be found in Figure 9]
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Table 6: Averaged normalized scores of TD3+BC with additional loss on D4RL benchmark. We
depict increased scores compared to their original scores in blue color and report mean and standard
deviations over 5 random seeds.

Random Medium Medium Replay Medium Expert Expert
HalfCheetah-v2 11.4540.51 48.231+0.33 44.931+0.29 93.554+1.00 96.59+0.25
Hopper-v2 31.5440.42 70.86+2.17 90.3947.34 113.444+0.35 113.2840.20
‘Walker2d-v2 13.46£6.58 82.65+1.65 86.11£1.54 111.88+0.63 110.98+0.22

(a) HalfCheetah.

(d) Lift. (e) Can.

Figure 9: Illustrations of each environment. Top and bottom rows are 2D locomotion and 3D
manipulation environments, respectively.

C.1 D4RL

DA4RL consists of 8 separate tasks. In this work, we utilized one of them for the main experi-
ments; OpenAl Gym MuJoCo continuous control tasks. It consists of 4 different environments (i.e.,
HalfCheetah, Walker2d, Hopper, and Ant) and 5 heterogeneous datasets in terms of data quality for
each environment. Each dataset is collected along the below strategies:

* Random (1M samples): Collected from a randomly initialized policy.

* Expert (1M samples): Collected from a policy trained to completion with SAC.

* Medium (1M samples): Collected from a policy trained to approximately 1/3 the perfor-
mance of the expert.

* Medium-Expert (almost 2M samples): A 50-50 split of medium and expert data.
* Medium-Replay (almost 3M samples): Collected from the replay buffer of a policy trained
up to the performance of the medium agent.

All environments have the same episode limit of 1000 and the goal of each locomotion agent is to
run as fast as possible without falling to the ground. More detailed information can be found at
https://github.com/Farama-Foundation/D4RL.
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C.2 ROBOMIMIC

Robomimic provides a large-scale and diverse collection of task demonstrations spanning multiple
human or robotic demonstrations of varying quality. We considered machine-generated (MG)
datasets generated by training an SAC agent for each task and then using intermediate policies
to generate mixed-quality datasets. We selected this dataset for evaluation since the proposed
method demonstrated superior performance with suboptimal datasets on the D4RL benchmark. All
environments have the same episode limit of 400. The goal of the Lift environment is lifting the cube
above a certain height and the goal of the Can environment is placing the can into the corresponding
container. More detailed information can be found at https://github.com/ARISE-Initiative/robomimic.

C.3 EXORL

They provide exploratory datasets for 6 DeepMind Control Stuite domains (i.e., Cartpole, Cheetah,
Jaco Arm, Point Mass Maze, Quadruped, Walker) and totally 19 tasks. For each domain, they
collected datasets by running 9 unsupervised RL algorithms (i.e., APS, APT, DIAYN, Disagreement,
ICM, ProtoRL, Random, RND, SMM) from URLB for total of 10M steps. More detailed information
can be found at https://github.com/denisyarats/exorl ?tab=readme-ov-file.

D EXPERIMENTS ON ADROIT IN D4RL

We conducted additional experiments on adroit in D4RL [Fu et al.| (2020) benchmark to validate that
the proposed method can be adopted to different complex domains. An illustration of the Adroit
environment can be found in Figure The Adroit domain involves controlling a 24-DoF robotic
hand with 4 different control tasks (i.e., Pen, Door, Hammer, and Relocate) and 3 heterogeneous
datasets as following:

* Human: Collected with the 25 human demonstrations provided in the DAPG |Rajeswaran
et al.[(2017) repository.

* Cloned: a 50-50 split between demonstration data and 2500 trajectories sampled from a
behavioral cloned policy on the demonstrations. The demonstration trajectories are copied
to match the number of behavioral cloned trajectories.

» Expert: Collected with 5000 trajectories sampled from an expert that solves the task,
provided in the DAPG repository.

Figure 10: The tasks of Adroit. (top left) Pen - aligning a pen with a target orientation, (top right)
Door - opening a door, (bottom left) Hammer - hammering a nail into a board, (bottom right)
Relocate - moving a ball to a target position.

For experiments, we compared AWAC, IQL, and TD3+BC with/without our pretraining method
over 5 seeds. Table[/|yields averaged normalized scores for each task. Overall, learning with our
pretraining phase demonstrates enhanced performance. From these results, we conclude that the
proposed method can be effective in complex domains not only tabletop but dexterous manipulation
as well.

18


https://github.com/ARISE-Initiative/robomimic
https://github.com/denisyarats/exorl?tab=readme-ov-file

Under review as a conference paper at ICLR 2025

Table 7: Averaged normalized scores on Adroit. Left-hand side scores are scores of vanilla
methods. Right-hand side scores are scores of baselines combined with our pretraining method. We
depict increased scores compared to their original scores in blue color and report mean and standard

deviations over 5 random seeds.

AWAC QL TD3+BC
Pen 146.194+5.29—157.60+£5.28 101.874+14.34—104.66+17.30 20.32+5.97—20.78+10.93
Human  Hammer 7.984+9.41—36.95+35.13 14.33+£5.22—17.78+9.27 2.40+0.16—2.384+0.17
Door 60.82+12.38—29.96+22.43 6.74+1.31—5.814+3.20 -0.0940.00—-0.04-£0.04
Relocate 1.51+£1.05—3.91£2.21 1.20£1.05—1.52+1.11 -0.2940.01—-0.18+0.13
Pen 145.374+4.19—144.48+3.42 98.38+£16.13—97.76+16.90 39.69+18.95—48.18+£11.27
Cloned ~ Hammer 10.37£7.88—12.6148.66 8.941+2.07—11.38+£4.46 0.59+0.17—1.1740.61
Door 2.95+2.97—9.594+7.73 5.61+3.02—5.00+1.44 -0.2340.11—-0.03£0.03
Relocate 0.04£0.09—0.184+0.21 0.91£0.45—1.0610.40 -0.0240.09—-0.13£0.09
Pen 163.99+1.19—163.73+1.88 148.38+2.46—147.79+£3.06 131.73+19.15—141.10£10.28
Expert Hammer 130.084+1.30—130.041-0.48 129.4640.42—129.50+0.36 33.36+34.61—59.76+£52.35
Door 106.6740.28—106.951+0.16 106.4540.29—106.711+0.28 0.99+0.83—0.87+1.48
Relocate 109.70+1.32—111.27+£0.35 110.13+1.52—109.82£1.45 0.57+£0.33—0.2240.13
Total 885.674+47.35—907.261+87.94  732.40+48.27—738.794+59.23  229.03£80.40—274.08+87.49

E IMPLEMENTATION DETAILS

In this section, we provide detailed implementation setups for extensive experiments. Since we
suggest a plug-and-play pretraining method for popular offline RL methods, we reuse open-source
code for comparative results: TD3+B IQIEI, AWACEL and CQIE| for D4RL. We use off-the-shelf
offline methods in the official repository]| for the Robomimic environment. We only use open-source
baselines which use PyTorch for fair comparisons. On the D4RL, we train each agent with 1M
gradient steps for each environment over 5 seeds. Also, we evaluate each agent with 5 rollouts every
5k gradient steps for TD3+BC, AWAC, and CQL and 10k gradient steps for IQL. We report the best
scores for all tables and figures. On the Robomimic, we train each agent with 200k gradient steps for
each environment over 5 seeds. Also, we evaluate each agent with 50 rollouts over 5 seeds. For all
experiments, we used RTX-A5000 GPU for training and evaluation.

1https:
Thttps:
3https:
4https:
5https:

//github.
//github.
//github.
//github.
//github.

com/sfujim/TD3_BC
com/Manchery/igl-pytorch
com/hari-sikchi/AWAC
com/young—-geng/CQL
com/ARISE-Initiative/robomimic
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F LEARNING CURVES

In this section, we provide the full results of learning curves in the section@for further information.
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Figure 11: Learning curves of TD3+BC on the D4RL benchmark.

G EXPERIMENTS WITH LINEAR APPROXIMATED ()-NETWORK

In this section, We pretrained TD3+BC and froze it except for the last linear layer during the remaining
learning time. The blue-colored scores indicate improved scores from the reported scores from the
original TD3+BC. Although only the last linear layer of the pretrained TD3+BC was trained and the
shared network was frozen, it shows better performance than the vanilla CQL. Moreover, it shows
better performance than the others over the suboptimal level of the datasets (i.e., random, medium,
medium replay).

Table 8: Results of pretrained TD3+BC which approximated with linear () function.

AWAC CQL QL TD3+BC freezed TD3+BC
HalfCheetah 22 21.7+0.9 10.2+1.3 6.03+2.65
Random Hopper 9.6 10.740.1 11.040.1 11.59410.56
Walker2d 5.1 2.7+1.2 1.4+1.6 7.1840.58
HalfCheetah 374 372403 474 42.840.3 42.64+1.19
Medium Hopper 72.0 44.2410.8 66.4 99.5+1.0 67.16+3.56
Walker2d 30.1 57.5+8.3 78.3 79.7£1.8 72.03£0.78
HalfCheetah 41.9+1.1 442 43.3£0.5 40.2140.79
Medium Replay ~ Hopper 28.640.9 94.7 31.443.0 64.41+19.54
Walker2d 15.84+2.6 739 25.245.1 41.02412.05
HalfCheetah 36.8 27.1£3.9 86.7 97.9+4.4 47.354+8.73
Medium Expert ~ Hopper 80.9 111.4£1.2 91.5 112.240.2 95.07415.27
Walker2d 42.7 68.1+13.1 109.6 101.1£9.3 74.7540.59
HalfCheetah 78.5 824474 105.7£1.9 61.93+10.71
Expert Hopper 85.2 111.242.1 112.240.2 113.13£0.39
Walker2d 57.0 103.8+7.6 105.7£2.7 57.14+44.96
Total 764.3£61.5 979.3+£33.4 801.644132.34
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H PRETRAINING RATE

In this section, we provide more details in section [3.1] of the pretraining rate. We conducted each
experiment with the same settings in subsection 5.1 over 5 seeds and reported the results that exhibit
averaged normalized scores.

Table 9: Results of TD3+BC with various pretraining rate.

w/o pretrain w/ 3% pretrain w/ 10% pretrain w/ 30% pretrain
HalfCheetah 102£1.3 14.2611.86 14.83+0.54 15.224+1.33
Random Hopper 11.0£0.1 31.5540.16 31.5610.16 32.0040.50
Walker2d 1.4+1.6 16.1315.60 11.23+5.05 11.8745.28
HalfCheetah 42.84+0.3 49.14£0.10 49.1740.26 49.354+0.24
Medium Hopper 99.5+1.0 73.90+3.54 71.524+2.16 73.53+4.75
Walker2d 79.7+1.8 87.1440.63 87.0940.60 86.7940.38

HalfCheetah 43.340.5 45914032 45.84+0.26 39.67+12.74
Medium Replay Hopper 31.4+3.0 99.69+1.51 100.1641.60 99.34+1.58
Walker2d 25.245.1 90.9140.70 92.014+1.58 91.5140.90
HalfCheetah 97.9+4.4 95.851+1.05 96.8910.92 96.351+0.49

Medium Expert Hopper 112.240.2 112.844-0.31 113.0240.19 112.9540.22
Walker2d 101.149.3 111.4540.30 111.5840.35 111.5240.37
HalfCheetah 105.74+1.9 98.68+0.52 98.8610.55 99.404-0.48

Expert Hopper 112.240.2 113.2340.31 113.3540.28 113.4340.44
Walker2d 105.74+2.7 111.1140.17 111.0040.15 111.06£0.20

Total 979.31+33.4 1151.844+17.08 1148.12414.65 1144.01+£29.90

I EXPERIMENTS WITH VARIOUS SIZES OF DATASETS

In this section, we provide more details in section @ of the dataset size. We conducted each
experiment with the same settings in subsection [5.I]over 5 seeds and reported the results that exhibit
averaged normalized scores.
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Figure 12: Averaged normalized scores across dataset optimal quality and sizes. This figure
compares the performance of our method with TD3+BC in reduced datasets (i.e., 1%, 3%, 10%, 30%,
100% of each dataset) to vanilla TD3+BC across the data quality (i.e., random, medium, medium
replay, medium expert, expert) on D4RL. From the overall results (Bottom Right), we conclude that
our method guarantees better performance even in 10% of the datasets regardless of the data quality
of the dataset.
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Table 10: Results of pretrained AWAC over various size.

w/o pretrain w/ pretrain 10% w/ pretrain 30% w/ pretrain
HalfCheetah 22 9.7143.08 36.37+1.47 51.10£0.89
Random Hopper 9.6 97.0543.24 93.3546.32 59.47433.79
Walker2d 5.1 8.57+0.47 8.36£1.30 13.114+3.91
HalfCheetah 37.4 55.47+1.52 56.6412.68 54.63+£1.45
Medium Hopper 72.0 101.2840.78 101.3240.20 101.73£0.20
‘Walker2d 30.1 95.1441.46 91.38+1.37 89.5140.88
HalfCheetah 51.0040.69 52.1240.76 55.75+1.30
Medium Replay Hopper 103.67£1.81 107.69£1.71 106.67£0.59
‘Walker2d 104.10£1.57 105.4241.97 100.31£2.11
HalfCheetah 36.8 83.18+1.69 86.551+0.94 90.05+1.89
Medium Expert Hopper 80.9 113.01£0.71 113.3440.09 113.23£0.22
‘Walker2d 42.7 117.26+1.77 114.68+2.18 111.88+0.28
HalfCheetah 78.5 91.544-1.04 93.4610.54 93.48+0.11
Expert Hopper 85.2 113.0240.17 113.18+0.20 112.86£0.10
‘Walker2d 57.0 117.9242.07 112.5540.56 111.2240.35
Total 1261.90422.05 1286.431+22.28 1265.01+48.07

Table 11: Results of pretrained IQL over varying dataset sizes.

w/o pretrain w/ pretrain 10% w/ pretrain 30% w/ pretrain
HalfCheetah 6.92+0.63 12.65+£2.53 18.28+1.02
Random Hopper 8.174+0.54 9.93+1.19 10.6740.41
Walker2d 8.261+0.64 9.08+£0.96 8.88+0.71
HalfCheetah 474 46.51+0.18 47.87+0.21 48.851+0.16
Medium Hopper 66.4 75.7243.23 80.7643.51 78.62+2.21
Walker2d 78.3 82.624+1.03 83.8941.69 83.63+1.14
HalfCheetah 442 33.49+1.26 41.1610.50 45.4810.17
Medium Replay Hopper 94.7 80.5948.25 91.0843.67 99.434+1.71
Walker2d 739 39.08+10.42 75.33+4.17 87.95+1.68
HalfCheetah 86.7 87.4442.52 93.661+0.46 95.2540.14
Medium Expert Hopper 915 93.89410.67 91.051+18.78 105.77+11.31
Walker2d 109.6 111.2340.83 111.65+0.93 112.09+£0.93
HalfCheetah 77.8513.82 95.88+0.44 97.4010.13
Expert Hopper 109.1643.25 112.85£1.30 113.34£0.46
Walker2d 113.7642.55 112.53£1.35 112.80£1.08
Total 974.68+49.84 1069.36+41.69 1118.46+23.25
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