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Abstract

The contrastive vision-language pre-training, known as CLIP, demonstrates re-
markable potential in perceiving open-world visual concepts, enabling effective
zero-shot image recognition. Nevertheless, few-shot learning methods based on
CLIP typically require offline fine-tuning of the parameters on few-shot samples,
resulting in longer inference time and the risk of over-fitting in certain domains.
To tackle these challenges, we propose the Meta-Adapter, a lightweight residual-
style adapter, to refine the CLIP features guided by the few-shot samples in an
online manner. With a few training samples, our method can enable effective
few-shot learning capabilities and generalize to unseen data or tasks without addi-
tional fine-tuning, achieving competitive performance and high efficiency. Without
bells and whistles, our approach outperforms the state-of-the-art online few-shot
learning method by an average of 3.6% on eight image classification datasets
with higher inference speed. Furthermore, our model is simple and flexible, serv-
ing as a plug-and-play module directly applicable to downstream tasks. Without
further fine-tuning, Meta-Adapter obtains notable performance improvements in
open-vocabulary object detection and segmentation tasks.

1 Introduction

The contrastive vision-language pre-training [1–5], known as CLIP [6], has shown the impressive
potential in modeling open-world visual concepts [7–17], which benefits multiple vision tasks
including image recognition and open-vocabulary perception [7, 10]. It can be mainly attributed to
the large-scale datasets [2] and the advanced pre-learning techniques [18]. By constructing prompts
based on visual categories, CLIP shows effective zero-shot image classification capabilities and
generalization abilities for unseen data [19]. Recently, few-shot learning based on CLIP has garnered
increasing research attention. Motivated by the success of feature adapters [20] and prompt tuning
[21] for natural language processing, a wide range of few-shot approaches for CLIP [22, 8, 9, 7] are
proposed and studied.

Few-shot learning methods for CLIP can be categorized into offline [22, 8, 9] and online approaches
[7], according to whether the fine-tuning is required for the few-shot samples of unseen categories.
Offline methods extract the knowledge from few-shot samples via parameter optimization. Notable
examples include CoOp [8] and CoCoOp [22], which replace the hand-crafted templates in CLIP
with learnable continuous tokens by fine-tuning on few-shot samples. Additionally, CLIP-Adapter
[9] introduces feature adapters into CLIP by learning task-specific knowledge from few-shot samples.
Although the extra components yield promising few-shot learning capabilities, they also incur
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Figure 1: Comparison of different few-shot learning techniques. The models are trained on the set of
base classes and evaluated on the novel classes. The time is measured on a Tesla V100 GPU.

additional training costs and suffer from considerable over-fitting in a certain data distribution
[22, 23]. To eliminate training expenses, an online method called Tip-Adapter [7] is proposed.
This method proposes a hand-crafted modulation function that adjusts the ratio between category
embeddings and few-shot visual embeddings. It obtains the knowledge from few-shot samples
without fine-tuning and shows a notable improvement against the zero-shot manner. However, due to
its sophisticated hyper-parameter search scheme, we find that Tip-Adapter still tends to over-fit in the
distribution of seen data (details referring to Sec. 3.1), resulting in limited generalization capability.
Different from previous methods, we attempt to explore a new perceptive: learning an online few-shot
learner for CLIP via meta-learning.

To achieve it, we propose the Meta-Adapter that replaces the hand-crafted modulation function and
searching scheme in Tip-Adapter with a lightweight residual-style network. The offline few-shot
learning methods require additional fine-tuning for few-shot samples from unseen categories. In
contrast, our approach employs the meta-testing mechanism [24–27], thereby the categories of
training and testing data of our model can be different. By using a limited number of few-shot
data, the Meta-Adapter can be trained to enable few-shot learning capability. Without additional
fine-tuning, it can further generalize to other unseen data and extract knowledge from the few-shot
samples in an online manner. To achieve high efficiency, the Meta-Adapter is constructed by a
lightweight network based on the gated multi-head attention mechanism [28], which bridges the
gap between few-shot image features and textual features for each category. This procedure can be
considered as a learnable filter to refine the category embeddings guided by the few-shot images.
Since the Meta-Adapter does not require additional fine-tuning, it only has a slight computational
overhead over the zero-shot manner. Compared with the Tip-Adapter, it alleviates the over-fitting
problem and demonstrates superior generalization across datasets. Furthermore, the Meta-Adapter is
simple and can be applied as a plug-and-play module to various CLIP-based methods, making it a
versatile solution for many open-vocabulary downstream tasks.

The extensive experiments demonstrate the effectiveness and efficiency of the Meta-Adapter on image
classification, object detection, and segmentation. To verify the generalizability of Meta-Adapter,
we conduct a series of ablation studies, including cross-category generalization within a certain
dataset, cross-dataset generalization, and cross-task generalization which explores the potential of
Meta-Adapter in downstream tasks. As shown in Figure 1(a), by training on the data of base classes,
the Meta-Adapter achieves an average of 3.6% absolute gains over Tip-Adapter across the novel
classes of eight image classification datasets under the 16-shot setting. With a larger number of image
shots, our method achieves increased performance gain over the Tip-Adapter, which is illustrated in
Figure 1(b). Besides, through directly evaluating the ImageNet [29] pre-trained model on other seven
classification datasets, our method obtains an average of 4.9% improvements against Tip-Adapter. In
addition, Meta-Adapter shows the potential to improve other tasks, such as open-vocabulary object
detection, which leads to consistent improvements in both object detection and instance segmentation.
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By integrating the ImageNet-pretrained Meta-Adapter with the open-vocabulary object detection
framework, ViLD [11], our method achieves 1.0% absolute gains on the average precision of rare
categories APr without bells and whistles.

2 Related Work

2.1 Vision-Language Pretrained Models

Inspired by the success of pre-trained models in the field of CV and NLP, many works are proposed to
pre-train large-scale models to process both vision and language modalities. A typical vision-language
model consists of four key components, i.e., vision encoder, language encoder, fusion encoder, and
loss function. Recently, following the success of the base models in both CV and NLP [30, 6, 31–36],
the community of multi-modal learning can take advantage of these large-scale base models to
better elevate the performance. VisualBERT [37], OSCAR [38], Uniter [39] utilize BERT [30] to
preprocess the raw text and demonstrate impressive results in multimodal tasks, e.g., visual question
answering (VQA). Besides, these methods require a well-designed fusion encoder to integrate the
cross-modal interaction. Recently, CLIP [2], DeCLIP [40] and ALIGN [1] demonstrate that vision-
language contrastive learning is capable of generating transferable features to downstream tasks and
the multimodal interaction can be well interpreted by simply calculating the dot product between
vision and language embeddings. Without additional self-attention or cross-attention modules, the
multimodal embeddings can be pre-computed and stored, which is more efficient and can be easily
adapted to other tasks.

2.2 Vision-Language Model Adaption

Many recent works focus on exploring effective and efficient approaches for adapting vision-language
models to downstream tasks [8, 22, 7, 9, 41, 42, 14, 13, 15, 43, 12], which are prompt-tuning methods,
e.g., Context-Optimization (CoOp) [8], and feature adapters methods, e.g., Tip-Adapter [7, 14, 13].
Inspired by the success of prompt learning [21, 44], CoOp proposes to replace the hand-crafted
templates [2] with continuous tokens that can be optimized in a traditional fine-tuning fashion.
Besides, to mitigate the woeful over-fitting issue, CoCoOp further introduces integrate image-specific
tokens learned by a shallow MLP. Compared with the manually designed prompt templates, CoOp
and CoCoOp achieve impressive performance on few-shot image classification. Different from these
prompt tuning methods, CLIP-Adapter and Tip-Adapter conduct residual feature blending to integrate
few-shot knowledge with CLIP’s zero-shot knowledge. They keep the whole CLIP’s parameters
frozen and fine-tune an acceptable small number of additional weights and show impressive results in
few-shot image classification. Besides, by initializing the linear weights with few-shot knowledge
(i.e., cache model in this context), Tip-Adapter can further pose a training-free fashion with preferable
performance. Nevertheless, these methods suffer from over-fitting, especially when the domain gap
between the source and target datasets is large.

2.3 Meta-Learning

A simple interpretation of meta-learning [24–27] is “learning-to-learn” [45] which corresponds to
improving the generalization by searching for the algorithm (inductive bias) that is best suited for a
given task family. On the contrary, traditional machine learning algorithms [46, 47] are expected to
be improved as more data from a certain single task. Usually, meta-learning is conducted on learning
instances sampled from a task family, which is expected to simulate a base learning algorithm that
performs well on new tasks sampled from this family. Besides, as mentioned in [24], all training
instances can be sampled from a single task in a special case. In the context of adapting the vision-
language model to downstream tasks, meta-learning can be viewed as learning the general fine-tuning
algorithms which bring consistent gains over different tasks or datasets. Current methods [22, 8, 7, 9]
focus mainly on improving the performance of certain tasks or datasets. To the best of our knowledge,
this paper is the first one that studies the potential of meta-learning in the field of vision-language
model adaption.
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Table 1: Comparison of cross-dataset generalization based on ImageNet [29] pre-training. The Tip-Adapter
and Meta-Adapter are tuned on ImageNet and frozen for other datasets. ∆ reflects the generalization ability
across datasets.

Method FGVC OxfordPets SUN397 UCF101 Caltech101 DTD EuroSAT Avg. ∆

Zero-shot CLIP 0.42 56.25 28.96 21.05 60.62 10.00 4.17 25.92 -

Tip-Adapter* 13.96 68.75 45.16 40.09 68.33 42.92 56.25 47.92 -
Tip-Adapter 13.96 67.19 43.80 39.47 67.08 40.00 56.25 46.82 -

Meta-Adapter* 19.58 72.66 51.25 52.28 71.46 49.17 64.58 54.43 +6.51
Meta-Adapter 15.21 72.66 48.54 47.54 67.92 48.33 62.50 51.81 +4.99

* indicates searching hyper-parameter or training for each evaluation dataset individually.

3 Method

In this section, we introduce the proposed Meta-Adapter. In Section 3.1, we first revisit CLIP and
Tip-Adapter. In Section 3.2, we elaborate on the implementation of the proposed Meta-Adapter. In
Section 3.3, we discuss the difference with other related works.

3.1 Revisiting CLIP and Tip-Adapter

As a vision-language pre-training model, CLIP [2] has shown impressive zero-shot learning potential
in modeling open-world visual representation [11, 10] by exploiting contrastive learning with large-
scale noisy image-text pairs. To achieve zero-shot image classification, CLIP computes classification
scores by measuring the cosine distance between the image features and per-class textual features.
Specifically, given an image y, let f ∈ RD×1 be the feature of the query image and {wi}Ni=1, wi ∈
RD×1 be a set of category embeddings generated by the text encoder. The D indicates the dimension
of embedding space and N denotes the number of total categories. The textual feature wi for each
class is derived from hand-crafted templates that one of typical form is “a photo of [CLASS]”. The
class token is then replaced by a specific category name, such as “Alp” or “Lemon”, as shown in
Figure 2. The predicted logits of the given image y belonging to the i-th class can be formulated as:

logits(yc = i) =
w⊤

i f

∥wi∥ ∥f∥
, (1)

Tip-Adapter [7] further proposes an online method to learn knowledge from few-shot samples. This
method employs a straightforward modulation function with a stochastic hyper-parameter search
strategy, achieving impressive few-shot performance for a certain domain. Concretely, two hyper-
parameters, i.e., α, and β, are introduced to adjust the ratio between visual and textual features for
different datasets. Given a set of support images x = {xi}Ni=1 in N ways and K shots, the predicted
logits of Tip-Adapter can be formulated as :

logits(yc = i|x, α, β) = w⊤
i f

∥wi∥ ∥f∥
+ α · exp(−β(1−

F⊤
j f

∥Fj∥ ∥f∥
))Lj , (2)

where Fi ∈ RD×K is support embeddings of few-shot samples, and Li ∈ RN×K is the corresponding
one-hot labels of i-th class. Tip-Adapter obtains remarkable few-shot performance without additional
training for few-shot samples. However, Tip-Adapter relies heavily on the hyper-parameter search
strategy on the target dataset, rendering it susceptible to over-fitting within a certain data distribution
and limiting its out-of-distribution generalization capabilities. As presented in Table 1, we fix the
hyper-parameters searched on ImageNet [29] and directly evaluate the performance of Tip-Adapter
on seven other datasets. It demonstrates a poor generalization performance of the Tip-Adapter
across different distributions. Compared with the searching scheme for each dataset individually, the
Tip-Adapter exhibits a notable decline in performance.

3.2 Meta-Adapter

To address the issue of poor generalization, we propose a learnable Meta-Adapter to replace the
handcraft modulation function and searching strategy in Tip-Adapter. Different from the Tip-Adapter,
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Figure 2: Diagram of the proposed Meta-Adapter, which employs a learnable network to refine the
category embeddings guided by few-shot images.

we model the few-shot learning in a visual-language scheme as a learnable filter on textual features
under the guidance of few-shot image samples, to obtain more discriminative category embeddings.
Motivated by the non-local filters [48–50] in computer vision, we propose a Meta-Adapter based on
the gated multi-head attention mechanism.

As shown in Figure 2, through CLIP encoders, we first extract the support embeddings of input
few-shot images and category embedding. The Meta-Adapter then extracts and transfers the few-
shot knowledge from visual features into textual features to obtain refined category embeddings.
Specifically, we apply the original category embeddings as query and the support embeddings as both
key and value into a multi-head attention block. Unlike the standard transformer encoder [28], our
approach only introduces Multilayer Perceptron (MLP) layers for query and key. This strategy is
crucial since no feature transformations are performed on values, the zero-shot capability is generally
not changed after training. The predicted logits with the proposed Meta-Adapter can be formulated
as:

logits(yc = i|x) = ŵ⊤
i f

∥ŵi∥ ∥f∥
, where ŵ = MetaAdapter(w,F). (3)

The ŵ is the refined category embeddings. In the Meta-Adapter, as shown in the right-hand of
Figure 2, the proposed method adaptively aggregate the support embeddings according to the affinity
between categories and few-shot images. The aforementioned procedure can be implemented by a
cross-attention mechanism:

F̂ = F⊤σ((FW⊤
1 )(wW⊤

2 )⊤/
√
D) (4)

where W1 and W2 indicate the weights of MLP layers. The σ denotes the Softmax function, and F̂
represents the aggregated support features. Intuitively, similar to the non-local filters, Meta-Adapter
could disregard some outlier samples while paying more attention to the samples that are more related
to the category description [42], resulting in robust feature representations.

Besides, the importance of textual and visual features for few-shot learning varies across different data
distributions [9]. Therefore, we propose a learnable gating block g(·), generating a modulation scalar,
to adaptively control the ratio between category embeddings and aggregated support embeddings.
Accordingly, the refined category embedding can be obtained by:

ŵ = w + g(w)⊙ F̂, (5)

where ⊙ denotes Hadamard product. Through training on the few-shot samples, the gating block
could adjust the ratio according to the category descriptions. It enables the proposed method to
effectively integrated few-shot knowledge with zero-shot knowledge.
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Table 2: Quantitative results of in-domain generalization setting on UCF101, Caltech101, DTD, and
FGVCAircraft datasets between Meta-Adapter and other methods.

Model UCF101 Caltech101 DTD FGVCAircraft

Base Novel Base Novel Base Novel Base Novel

Zero-shot CLIP 79.42 21.05 93.39 60.62 59.38 10.00 23.84 0.42
Tip-Adapter 85.17 40.09 95.09 68.33 68.36 42.92 30.27 13.96
Meta-Adapter 82.44 52.28 93.39 71.46 64.26 49.17 27.32 19.58

3.3 Comparison with Counterparts

Compared to the offline methods, e.g., CLIP-Adapter [9] and CoOp [8], our Meta-Adapter does
not require additional fine-tuning for target samples, significantly reducing the computational costs
during inference. In addition, compared with the online methods, e.g., Tip-Adapter [7], the proposed
technique replaces the handcrafted hyper-parameter search process with a learnable network on
support samples. As shown in Table 1, the Meta-Adapter can better alleviates the over-fitting problem
and demonstrates the generalization across datasets without further fine-tuning. Moreover, as the
Meta-Adapter refines the textual embedding features directly without altering their dimensions, it can
naturally be applied to a variety of downstream tasks based on CLIP.

4 Experiments

It should be noted that the distributions of training and testing sets can be identical or dissimilar
and it is crucial that Meta-Adapter can well perform in both scenarios. Besides, the potential of
Meta-Adapter in downstream tasks is also of great importance. We refer to these three situations
as “cross-category generalization”, “cross-dataset generalization”, and “cross-task generalization”,
respectively. Specifically, for “cross-category generalization”, we split the full categories of each
dataset into base and novel sets according to the per-category accuracy predicted by Zero-shot CLIP,
that is, the base set contains easy samples and the novel set contains hard samples. This dataset
split strategy simulates a rather difficult situation to verify whether Meta-Adapter is able to learn the
dataset-irrelevant approach, especially for hard samples. We provide details of dataset splits in the
supplementary material. Before diving into experimental analysis, we first give the details of the
experimental setup.

Datasets For cross-category generalization experiments, we use 8 representative image classification
datasets: ImageNet [29], FGVCAircraft [51], OxfordPets [52], SUN397 [53], UCF101 [54], Cal-
tech101 [55], DTD [56], and EuroSAT [57], which cover a diverse set of classification tasks. As
for the cross-dataset generalization experiment, ImageNet is further utilized as the source dataset
and its three variants are treated as target datasets, i.e., ImageNet-A [58], ImageNet-R [59], and
ImageNet-Sketch [60]. Moreover, to explore the potential of Meta-Adapter on open-vocabulary
detection, we conduct experiments on LVIS [61].

Baselines We compare Meta-Adapter with two training-free methods: Zero-shot CLIP [2] and
Tip-Adapter [7].

Training Details As for the CLIP backbone, we choose ResNet50 [46] as the visual encoder in most
experiments and a transformer [6] as the textual encoder. We adopt the prompt ensemble strategy
[2, 7], which inputs 7 templates into the CLIP textual encoder and then averages them as the final
prompt embeddings. We optimize the Meta-Adapter on the base set with a batch size of 64 and use
AdamW optimizer [62] with a learning rate of 0.0001 and a cosine scheduler for 5 epochs.

4.1 Cross-Category Generalization

Based on empirical studies, it can be observed that Tip-Adapter often requires large hyper-parameters
(α and β) when applied to specific datasets. These hyper-parameters are used to smooth the classifica-
tion distribution and give significant weight to few-shot knowledge. This phenomenon indicates that
Tip-Adapter heavily relies on few-shot knowledge, even for relatively general datasets like ImageNet.
As a result, over-fitting issues arise, which hinder its generalization ability. Table 6 demonstrates that
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Table 3: Quantitative results on ImageNet of different models utilized various vision backbones.

Model RN50 RN101 ViT-B/32 ViT-B/16 RN50×16 RN50×64

Zero-shot CLIP 32.82 39.22 40.10 45.77 50.10 54.67
Tip-Adapter 36.51 42.42 43.71 49.84 53.08 57.99
Meta-Adapter 40.19 47.01 46.91 52.60 55.51 60.41

Tip-Adapter achieves slightly higher classification accuracy than Meta-Adapter on the training set
for datasets like UCF101 and Caltech101. However, when it comes to novel samples, Tip-Adapter
falls behind Meta-Adapter with significant gaps, such as 40.26% versus 47.72% on UCF101. This
suggests that Tip-Adapter becomes excessively tailored to a specific localized distribution due to its
excessive hyper-parameter search strategy.

On the contrary, thanks to the ingenious and generic ensemble approach, Meta-Adapter enjoys
comparable performances on the base set and superior performances on the novel set. As shown
in Figure 1(b), Meta-Adapter shows superior performances over other methods on the ImageNet
dataset. Compared to Zero-shot CLIP, Meta-Adapter consistently surpasses it on all different few-
shot settings. In comparison to Tip-Adapter, the classification accuracy of both methods witnesses
relatively steady improvements. When shots are less than 4, Tip-Adapter slightly outperforms Meta-
Adapter. The reason is two-fold. First, Tip-Adapter directly calculates classification logits given both
few-shot features and their corresponding one-hot labels, which can be viewed as a shortcut solution
compared to the generic ensemble approach of Meta-Adapter. Second, Tip-Adapter exploits the
potential of few-shot knowledge via a hyper-parameter searching strategy which intends to find out
the highest accuracy on certain datasets. Nevertheless, as shots get larger, Meta-Adapter outperforms
Tip-Adapter by a clear margin and classification accuracy goes up consistently while Tip-Adapter
witnesses performance drops when shots are 32, indicating a possible performance limitation for
Tip-Adapter. And we present the quantitative comparison on the other 7 datasets under 16 shots
setting in Figure 1(a). It can be observed that Meta-Adapter significantly boosts the classification
accuracy over Zero-shot CLIP and surpasses Tip-Adapter with gains of up to +7.46%. Due to space
limitations, we present the comparison of Meta-Adapter and other methods on the remaining seven
datasets under different few-shot settings in the supplementary material.

To further verify the effectiveness of Meta-Adapter, we apply different visual encoders for all
methods and conduct experiments on ImageNet. The quantitative comparison is shown in Table 3.
Undoubtedly, Meta-Adapter maintains its leading position over Tip-Adapter regardless of the choice
of visual encoders. As a more advanced backbone, such as ViT-B/16 [2], is utilized, the classification
accuracy of Meta-Adapter further increases. This suggests that the learning potential of Meta-Adapter
can be enhanced by employing a more powerful vision-language model. In summary, compared to
previous training-free methods, Meta-Adapter not only effectively mitigates the issue of over-fitting
but also retains superior generalization ability. As a result, it achieves state-of-the-art classification
accuracy on the novel set.

4.2 Cross-Dataset Generalization

It is of great importance that a learned classifier maintains comparable performance when handling
different datasets with diverse distributions. It is more challenging because the appearances and
shapes can be totally dissimilar across datasets (e.g., from object recognition of ImageNet to textual
classification of DTD). Besides, we are interested to know whether Meta-Adapter can learn dataset-
irrelevant discriminative ensemble approach. To this end, we transfer the optimal hyper-parameters
of Tip-Adapter searched on the source dataset and evaluate the performance on target datasets. And
Meta-Adapter is first trained on the source dataset, i.e., base set, and evaluated on the target dataset,
i.e., novel set, with all learnable parameters frozen. Both experiments are conducted under the
16-shot setting. We report the relative accuracy improvements when transferring from ImageNet
(with all categories utilized) to the other 7 datasets, as shown in Figure 3(a). Tip-Adapter base results
are set as the baseline in Figure 3(a), thus the corresponding relative accuracy improvements are
always 1.0. Considering that ImageNet contains a variety of classes, e.g., different animal breeds and
different kinds of vehicles, it is not surprising that both models retain comparable accuracy compared
with their counterparts. Nevertheless, Tip-Adapter poses rather clear performance drops compared
with Meta-Adapter. Moreover, transferring from ImageNet to SUN397, UCF101, and EuroSAT
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Figure 3: Relative accuracy improvements of Tip-Adapter and Meta-Adapter in cross-dataset general-
ization experiments.

Table 4: Quantitative results of domain generalization experiments between Tip-Adapter and Meta-
Adapter. The data in parentheses records the changes brought by comparing with Zero-shot CLIP.

CLIP Backbone Model Target Datasets

ImageNet-A ImageNet-R ImageNet-Sketch

RN50
Zero-shot CLIP 23.88 60.54 35.45

Tip-Adapter 23.25(-0.63) 58.73(-1.81) 34.77(-0.68)
Meta-Adapter 23.71(-0.17) 59.96(-0.58) 35.54(+0.09)

ViT-B/16
Zero-shot CLIP 50.65 77.82 48.42

Tip-Adapter 49.89(-0.76) 76.94(-0.88) 48.13(-0.29)
Meta-Adapter 51.12(+0.47) 77.54(-0.28) 48.76(+0.34)

results in surpassing their baselines, i.e., directly trained on the target datasets, which suggests that
the learning potential of Meta-Adapter can benefit from a generalized dataset. Besides, we report
the relative accuracy improvements of Tip-Adapter and Meta-Adapter by transferring from 7 small
classification datasets (with all available categories utilized) to ImageNet, as shown in Figure 3(b).
Surprisingly, Meta-Adapter maintains comparable results while Tip-Adapter poses clear performance
drops, particularly on OxfordPets and Caltech101. Thus, it can be concluded that Meta-Adapter
retains better transferability against diverse distributions and domain shifts.

Furthermore, we conduct domain generalization experiments as in [22]. Humans have a natural ability
to generalize to out-of-distribution data, which raises the question of whether Meta-Adapter possesses
the same advantage. To this end, we transfer Tip-Adapter’s optimal hyper-parameters (α and β) and
Meta-Adapter’s weights searched and optimized on ImageNet to its three variants, i.e., ImageNet-A
[58], ImageNet-R [59], and ImageNet-Sketch [60]. Besides, we report the performance of Zero-shot
CLIP on these three datasets as the baseline. The quantitative results are presented in Table 4. It is
clear that directly transferring Tip-Adapter’s optimal hyper-parameters searched on ImageNet to its
variants leads to performance drops, even worse than Zero-shot CLIP. This phenomenon accords with
the previous statement that Tip-Adapter is sensitive to hyper-parameter settings, or to say Tip-Adapter
suffers from severe over-fitting issues. On the contrary, Meta-Adapter can better adapt to domain
shifts, demonstrating comparable performances with Zero-shot CLIP.

4.3 Cross-Task Generalization

It is a major concern whether few-shot learning methods can benefit downstream tasks. To this end,
we integrate Meta-Adapter and Tip-Adapter with open-vocabulary object detection method ViLD
[11]. ViLD utilizes CLIP to explore the open-vocabulary potential, it replaces the typical classifier in
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Table 5: Comparison of different few-shot methods on LVIS [61] val set.

Methods Object Detection Instance Segmentation

APr APc APf APr APc APf

ViLD 18.1 27.3 32.0 17.4 25.5 28.5
ViLD + Tip-Adapter 11.3 23.3 26.7 10.8 21.8 24.2
ViLD + Meta-Adapter 19.1 27.3 31.7 18.3 25.5 28.3

object detection framework [63, 47, 64, 65, 17, 66–69] with textual features generated by CLIP’s text
encoder and aligns the textual features and ROI features by knowledge distillation.

We first generate pre-processed region features of LVIS [61] given its annotations as the few-shot
samples. Following ViLD, object categories in the LVIS dataset are split into “frequent”, “common”,
and “rare” according to their frequency in the training set. Among them, 866 frequent and common
categories of LVIS are taken as the base set, and 337 rare categories are held out as the novel set. For
Tip-Adapter, the prediction logits of ViLD is modified by adding an additional few-shot term.

logits(r̂) = f(r̂)wT + α · φ(f(r̂)F⊤)L, where φ(x) = exp(−β(1− x)) (6)

where f(r̂) represents the region features of proposal r̂; φ(·) is the modulation function introduced
in Tip-Adapter; F and L denotes few-shot region features and their corresponding one-hot labels.
It should be noted that Equation 6 is applied to both ViLD-text and ViLD-image as introduced in
ViLD. As for the hyper-parameter settings (α and β) of Tip-Adapter, we observe that setting them to
be the ones that are searched on ImageNet will cause ViLD collapses. Thus, we set α to 0.05 and β
to 1, which encourages ViLD to rely more on CLIP knowledge to avoid collapse. Besides, we utilize
the ImageNet pre-trained Meta-Adapter to integrate the pre-processed LVIS few-shot knowledge
into the original textual features. And for ViLD, we utilize the re-implement version as suggested in
DetPro [10] which replaces the pre-trained ResNet-50 [46] with self-supervised pre-trained SoCo
[70]. We report the average precision in Table 5. From Table 5, it is clear that Meta-Adapter can boost
the detection ability on rare categories by a clear margin while Tip-Adapter corrupts the detection
performances due to its poor transferability and its necessity to modify the original prediction score
of ViLD. Besides, considering that part of the LVIS annotations contains rather small bounding
boxes (usually around 10× 10), the quality of the LVIS few-shot dataset may not be as good as the
image classification counterparts. As mentioned before, Tip-Adapter naturally and heavily relies on
few-shot knowledge, which may be one of the main causes of poor performance in open-vocabulary
object detection. On the contrary, Meta-Adapter learns the generic ensemble approach and can be
easily integrated into open-vocabulary object detection methods without changing their formulation
of prediction scores.

Table 6: Comparison of Zero-Shot CLIP, Tip-Adapter, and Meta-Adapter on UCF101 and Caltech101
datasets in in-domain generalization setting. H: Harmonic mean (to highlight the generalization
trade-off [22]).

Dataset ImageNet UCF101 Caltech101
Model Base Novel H Base Novel H Base Novel H

Zero-shot CLIP 71.9 32.8 45.0 79.4 21.1 33.4 95.4 60.6 74.1
CLIP-Adapter 76.3 15.1 25.3 89.4 5.4 10.2 97.3 39.3 54.0
CoOp 75.3 2.7 5.2 89.3 1.0 2.0 97.2 31.3 47.4
CoCoOp 75.5 33.9 46.8 86.5 9.1 16.5 96.8 60.9 74.8
Meta-Adapter 76.3 40.8 53.2 82.4 47.7 0.4 94.9 76.1 84.4

4.4 Comparison with Offline Methods

As shown in Table 6, we provide the ablation studies between our meta-adapter and other offline
methods [22, 8, 9]. For a fair comparison, similar to CoCoOp, the experiments adopt a base-to-
novel generalization setting. The results demonstrate that our method has significant advantages in
generalization on novel classes, e.g. improving over CoCoOp by 6.9% on ImageNet. Additionally,
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as in previous works, we introduce Harmonic Mean to measure overall performance on base and
novel classes. It can be observed that our approach also shows clear superiority in terms of overall
performance. More importantly, finetuning is not needed for our method when applying to new
datasets or tasks.

4.5 More ablation studies of the Meta-Adapter

A2: Thanks for this insightful suggestion. Accordingly, we further conduct more ablation studies to
demonstrate the advantages of our design. As shown in Table 7, the results demonstrate that multi-
head attention contributes most significantly to improving accuracy. The proposed learnable gating
block can further enhance the performance while introducing value projection leads to decreased
generalization capability. Besides, as shown in Table 8, we increase the model scale of the meta-
adapter by widening the projection layers (Wider) or cascading multiple modules (Deeper). The
results show that increasing the number of modules can improve the parameter size and accuracy
slightly, but brings a significant efficiency decrease.

Table 7: Ablation study on different components. The ‘VP’, ‘MHA’, and ‘LGB’ indicate the value
projection layer, multi-head attention block, and learnable gating block, respectively.

Method ImageNet SUN397 UCF101 DTD

Meta-Adapter w/ VP 25.6 18.2 5.9 5.0
Meta-Adapter w/o MHA 32.9 28.9 21.4 10.0
Meta-Adapter w/o LGB 39.6 51.3 49.8 53.8
Meta-Adapter 40.2 52.7 51.4 54.6

Table 8: Comparison of different model scales on several datasets.

Method ImageNet SUN397 UCF101 DTD #Param Latency

Meta-Adapter 40.8 52.6 51.0 55.8 2.1M 3ms
+ Wider (×2) 40.1 51.4 50.0 55.0 4.2M 5ms
+ Wider (×4) 40.5 51.3 50.4 55.0 8.4M 9ms
+ Deeper (×2) 40.4 52.9 52.2 56.7 4.2M 6ms
+ Deeper (×4) 38.9 52.7 51.4 56.3 8.4M 11ms

5 Limitations and Conclusion

Limitations Based on the findings presented in Table 6, it can be observed that the learning potential
of Meta-Adapter may encounter limitations when the classification accuracy of Zero-shot CLIP is
high, as seen in the cases of UCF101 and Caltech101. The underlying reason behind this could be
the combination of image-image similarity scores with text-image similarity scores, which might
impede the potential of few-shot learning. In other words, in such scenarios, Meta-Adapter appears
to favor zero-shot knowledge over few-shot knowledge, resulting in an imbalance between the two.
Furthermore, empirical studies indicate that Meta-Adapter struggles to be applied to open-vocabulary
semantic segmentation tasks where obtaining high-quality few-shot datasets is challenging. It is
possible that incorporating external data could help alleviate this issue. These aforementioned
challenges are left for future research and investigation.

Conclusion This paper demonstrates the significant potential of Meta-Adapter, a new few-shot
learning method for CLIP, which is designed to overcome the limitations of previous methods in
terms of poor generalization ability and low efficiency. The Meta-Adapter, employing a meta-testing
mechanism and a lightweight residual-style network, extracts knowledge from few-shot samples
without the need for additional fine-tuning, thus alleviating the over-fitting issue while maintaining
high efficiency. Our findings highlight the impressive performance of the Meta-Adapter in various
tasks, including image classification, object detection, and segmentation, indicating its superior
generalization capabilities across datasets and tasks. Future work could focus on further refining the
Meta-Adapter and exploring its potential applications in other vision tasks, advancing the capabilities
of few-shot learning techniques in visual concept modeling.
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