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ABSTRACT

Despite rapid progress in Multi-modal Large Language Models and Large Audio-
Language Models, existing audio benchmarks largely test semantics that can be
recovered from text captions, masking deficits in fine-grained perceptual reason-
ing. We formalize audio 4D intelligence that is defined as reasoning over sound
dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-
Bench combines a Foundational Acoustic Perception setting (six attributes under
absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting
that includes segment reordering for continuous and discrete processes and spatial
tasks spanning static localization, multi-source relations, and dynamic trajectories.
Our data curation pipeline uses two methods to ensure high-quality samples. For
foundational tasks, we use procedurally synthesized and physics-simulated audio.
For holistic data, we follow a four-stage process that includes human annotation
and final selection based on human performance. Unlike prior benchmarks where
caption-only answering reduces accuracy slightly, STAR-Bench induces far larger
drops (-31.5% temporal, -35.2% spatial), evidencing its focus on linguistically
hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared
with humans and a capability hierarchy: closed-source models are bottlenecked by
fine-grained perception, while open-source models lag across perception, knowl-
edge, and reasoning. Our STAR-Bench provides critical insights and a clear path
forward for developing future models with a more robust understanding of the
physical world.

1 INTRODUCTION

As a fundamental modality of human perception, audio serves a pivotal role in communication, aes-
thetic appreciation, and situational awareness, complementing the limitations of visual perception.
With the rise of Multimodal Large Language Models (MLLMs) (Comanici et al.| |2025; |Achiam
et al.,|2023)) and especially Large Audio-Language Models (LALMs) (Chu et al., [2024} |Goel et al.}
2025), these models have shown impressive capabilities in understanding audio, representing a cru-
cial step toward diverse applications such as embodied intelligence (Paul et al.| [2022).

To drive progress, a series of audio benchmarks has been introduced (Yang et al., 2024} Sakshi et al.,
2025)), covering traditional tasks like Automatic Speech Recognition (ASR) and sound event classi-
fication. While some recent efforts are beginning to emphasize reasoning abilities (Ma et al.| 2025
Kumar et al.l |2025), we observe that existing benchmarks predominantly focus on coarse-grained
semantic content, which is audio information that can be distilled into textual descriptions with min-
imal loss. As shown in the left part of Fig. |1} we first use Gemini 2.5 Pro (Comanici et al., [2025)
to generate detailed audio captions for samples in recent representative audio benchmarks MMAU
(test-mini) (Sakshi et al.|[2025) and MMAR (Ma et al., 2025). We then prompt the model to answer
questions based only on these audio captions, and its performance drops by only 5.9% and 9.0%,
respectively, compared to when it processes the raw audio. This result suggests that existing bench-
marks primarily evaluate audio information that is easily representable by text. However, human
auditory intelligence is not limited to this coarse-grained understanding. For example, humans can
intuitively judge the water level in a container from the dynamic changes in the pouring sound, even
without being able to precisely articulate the underlying acoustic features. Similarly, we can infer
the trajectory and distance of a vehicle approaching from behind to ensure our safety. These abilities
are rooted in deep reasoning of audio cues that are difficult to represent linguistically.
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Figure 1: (Left): A comparison between humans and the Gemini 2.5 Pro with and without audio
captions on various audio benchmarks. Our STAR-Bench evaluates linguistically hard-to-describe
audio cues. See Appendix [B.I]for audio caption details. (Right): The three core abilities required
to solve tasks in the STAR-Bench benchmark.

To capture this human-like audio competence, we propose a new paradigm, called audio 4D intelli-
gence. This is defined as the ability to perform deep reasoning over the dynamics of sound sources
in time (1D) and three-dimensional space (3D), grounded in an understanding of the physical
world. Mastering 4D audio intelligence is crucial for various applications. In embodied Al and
robotics, for instance, agents must integrate fine-grained auditory cues to interact naturally with
their surroundings, such as using sound to infer the trajectory of an object or to monitor the sub-
tle operations of a machine. To systematically evaluate this paradigm and bridge the gap between
current audio benchmarks and real-world auditory intelligence, we introduce the Spatio-Temporal
Audio Reasoning (STAR-BENCH) benchmark.

STAR-BENCH is designed through a hierarchical task structure with two levels. At the Foun-
dational Acoustic Perception level, we conduct a fine-grained, quantitative evaluation of six core
audio attributes (pitch, loudness, duration, azimuth, elevation, distance) across both absolute percep-
tion ranges and relative discrimination sensitivity. We also introduce a Holistic Spatio-Temporal
Reasoning level that evaluates an audio model’s ability to infer both event order and 3D scene
structure. Temporal reasoning is tested via segment reordering that spans continuous processes and
discrete event scripts, while spatial reasoning covers static localization, multi-source relations, and
dynamic trajectory tracking. As shown in the right part of Fig.|l} every question in our holistic tasks
is designed to probe a synthesis of three core pillars, such as multi-step reasoning. A failure in any
one of these pillars will lead to an incorrect response. Our data curation pipeline couples procedu-
rally synthesized, fully parameterized audio for foundational perception with large-scale real-world
corpora for holistic reasoning. For the latter, we use a four-stage process including human annota-
tion and final selection by human performance to ensure the high quality of benchmark samples.

Our comprehensive evaluation of 19 models (16 open-source and 3 closed-source) reveals a clear
capability hierarchy between the two groups. Leading closed-source models like Gemini 2.5 Pro
excel in knowledge and reasoning, shifting their primary bottleneck to the more difficult challenge
of fine-grained perception. In contrast, open-source models exhibit fundamental weaknesses across
all three core capabilities. Through our detailed error analysis and ablation studies, we highlight
several key insights for the future development of open-source audio models: 1) Enhancing dense
audio captioning. Open-source models struggle to produce dense, fine-grained captions, which
limits their perceptual sensitivity and ability to extract embedded knowledge. Bridging this gap is
a crucial first step. 2) Improving multi-audio reasoning. Open-source models lag significantly in
comparing, integrating, and grounding information across multiple audio clips. 3) Moving beyond
channel-averaged audio preprocessing. The common practice of averaging multi-channel audio
into a mono signal is a major bottleneck for spatial reasoning. Developing architectures that natively
process multi-channel cues is essential for unlocking genuine spatial awareness.

Our contributions are summarized as: (1) We formalize audio 4D intelligence, and empirically
show that prior benchmarks largely probe text-representable semantics, motivating a shift toward
fine-grained, non-linguistic auditory cues. (2) We introduce the STAR-BENCH with foundational
acoustic perception and holistic spatio-temporal reasoning tasks, together with a rigorous curation
pipeline with expert validation. (3) We provide a comprehensive evaluation of 19 LALMs/OLMs.
Our analyses and standardized protocols establish strong baselines and testbeds for future research.
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Table 1: A comparative overview of our benchmark against other representative audio benchmarks.
(v': Fully supported, ©: Partially supported or limitted amount, X: Not supported)

Temporal Spatial Q:?g‘tigz?ge Robust Multi- Hﬁ::‘gﬂ_ El;ulel:t
Benchmark Deep R ing Deep R ing . Evaluation Audio P
Evaluation Annotated  Verified
AIR-Bench [45] X X X X X X X
MMAU [30] X X X X X v v
Dynamic-SUPERB Phase-2 [16] X X X X X
MMAR [27] X X X v/ v
MMAU-Pro [20] X X X v v v
STAR-BENCH (ours) v v v v v v v

2 RELATED WORK

The recent progress of Large Audio-Language Models (LALMs)(Kong et al., 2024} (Chu et al.,
20245 (Wu et al.| 20255 (Xiaomi, 2025) and Omni-Language Models (OLMs)(Xu et al., 2025; [Yao
et al., 2024; |AI et al) 2025) has significantly advanced audio understanding. At the same time, it
has spurred the development of numerous benchmarks to comprehensively evaluate their capabil-
ities. Earlier benchmarks(Wang et al., 2024; |Yang et al., 2024) mainly focused on semantic-level
understanding tasks (transcription, captioning, and simple question answering), and recent bench-
marks(Sakshi et al., [2025; Ma et al.l 2025; Kumar et al., [2025) have begun to investigate logical
audio reasoning tasks.

However, existing benchmarks largely overlook audio 4D intelligence. Although some advanced
benchmarks do touch upon spatio-temporal aspects, their coverage remains limited in both scale and
depth. While MMAU [Sakshi et al.| (2025), MMAU-Pro |Kumar et al.| (2025) and MMAR [Ma et al.
(2025) contain temporal questions, they mainly involve identifying the timing or ordering of events
(e.g., when a sound occurs, which event comes first). These are primarily perceptual-layer tasks. By
contrast, our “temporal deep reasoning” tasks require understanding physical principles or causal
dynamics across segments (e.g., inferring how a process evolves over time or how one event implies
another), which cannot be solved by local timing cues alone. In addition, the spatial tasks in MMAR
and MMAU-Pro are often restricted to single-source localization, and many items do not necessitate
meaningful use of stereo cues (e.g., simple arriving vs. departing judgments). In contrast, STAR-
BENCH introduces a hierarchical design covering three sub-tasks in complex scenes and explicitly
emphasizes stereo-cue-based reasoning.

A comparative overview of STAR-BENCH and prior benchmarks is presented in Tab. [l STAR-
BENCH evaluates deep spatio-temporal reasoning through tasks that go beyond surface-level per-
ception and instead require applying physical or causal knowledge, performing multi-step reasoning
in complex real-world scenarios, and integrating information across multiple clips or events. STAR-
BENCH rests on a hierarchical and comprehensive task design. In addition, a rigorous data curation
pipeline ensures high-quality samples, and robust evaluation strengthens the reliability of the results.

3 STAR-BENCH

Understanding dynamic sound sources in both time (1D) and three-dimensional space (3D) is a
crucial skill for MLLMs to comprehend the physical world. To address this need, our benchmark,
STAR-BENCH, is designed to comprehensively evaluate this 4D intelligence in the audio domain.
As illustrated in Fig. [2] our evaluation has two complementary sub-tasks: (1) Foundational Acoustic
Perception (Sec. [3.1)), which uses procedurally synthesized audio to quantitatively profile a model’s
basic perceptual abilities under controlled conditions, and (2) Holistic Spatio-Temporal Reasoning
(Sec.[3:2), which uses real-world audio to evaluate more complex reasoning in dynamic and authen-
tic scenarios. We also elaborate our data curation pipeline in the Sec.[3.3]

3.1 FOUNDATIONAL ACOUSTIC PERCEPTION

The Foundational Acoustic Perception task is motivated by the need for a robust, quantitative eval-
uation of the core perceptual abilities that underpin 4D audio intelligence. A model’s capacity for
complex reasoning about dynamic audio scenes in the physical world is directly dependent on its
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Temporal Reasoning
Question Template: You are a specialized sound event ordering
expert. Please listen to the following three audio clips labeled clip 1,
clip 2, and clip 3, and determine the most natural chronological
order in which these sounds would typically occur in the real world.
clip 1: [seg i] clip 2: [seg j] clip 3: [seg k]
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Figure 2: Data examples from STAR-BENCH: (1) the foundational perception task (upper) and
(2) the holistic spatio-temporal reasoning task, which includes both temporal reasoning (bottom left)
and spatial reasoning (bottom right). Zoom in for the best view.

ability to accurately perceive fundamental acoustic properties. Our foundational acoustic perception
task systematically probes a model’s understanding of three critical auditory attributes: Loudness,
Pitch, Duration, and the three spatial dimensions: Azimuth, Elevation, and Distance. Just as a
solid understanding of grammar is required for writing a complex narrative, a model must be able to
accurately perceive these core attributes before it can reason about the dynamic, spatial relationships
of sound sources in the physical world. Without a firm grasp of these foundational elements, a model
cannot accurately interpret complex, real-world acoustic scenes, which require understanding how
sounds change over time and move through space.

We employ a targeted synthesis strategy to generate precise evaluation samples in a controlled en-
vironment for the foundational perception task. For non-spatial attributes (Loudness, Pitch, Dura-
tion), we synthesize pure sine waves by directly specifying their parameters. For spatial attributes
(Azimuth, Elevation, Distance), we use the Pyroomacoustics (Scheibler et al.} 2018)) physics-based
simulation engine to render acoustic scenes. The targeted synthesis strategy allows us to investigate
a model’s audio perceptual abilities under the following two sub-tasks:

1) Absolute Perception Range, which defines the sensory limits of MLLMs for acoustic attributes.
For pitch and loudness, we adapt the design of human audiometry tests to create an “audiogram” for
the MLLMs. Specifically, we synthesize sine waves with frequencies ranging from 125 Hz to 8000
Hz and loudness levels from —10 to 110 dB HL and require the model to identify if a clear beep is
in the first or second part of an audio clip, or if it’s not there at all. For spatial attributes, we design
interval localization tasks that require the model to identify a sound’s azimuth within one of four 90°
quadrants (from 0° to 360°), its elevation relative to ear-level (above, at, or below, from -90° to 90°),
and its distance category (near, medium, or far, within a O - 10m range). Tab. |§| presents detailed
examples of these absolute perception range tasks. Through these precise tasks, we establish the
absolute limits of what the model can hear, which is crucial for developing Al systems that can
safely and effectively interact with the physical world.
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2) Relative Discrimination Sensitivity, which investigates how well a model can detect small
changes in acoustic attributes. The ability to detect small changes allows a model to make nuanced
judgments, like determining if a sound is getting louder or a pitch is rising. Analogous to measuring
the human Just Noticeable Difference (JND), the relative discrimination task presents the model with
an audio clip containing two sounds and requires it to compare them based on a specific attribute.
We meticulously designed four to six distinct difficulty levels for each of the six attributes, as de-
tailed in Tab.[3] Level 1 serves as a control group to test for random guessing, presenting identical
sounds (A=0) for non-spatial attributes and a sub-threshold difference for spatial ones. Subsequent
levels then introduce progressively larger differences, ranging from subtle variations perceptible to
humans to more significant, real-world changes. By analyzing the model’s performance across these
different levels of stimulus differences, we can quantitatively assess its discrimination sensitivity for
each attribute.

3.2 HOLISTIC SPATIO-TEMPORAL REASONING

Building on the model’s fundamental audio perceptual abilities (Sec. [3.1)), we further introduce
holistic temporal reasoning (Sec. [3.2.1)) and spatial reasoning (Sec. [3.2.2), which are designed to
systematically evaluate a model’s reasoning ability that is required for audio 4D intelligence.

3.2.1 TEMPORAL REASONING TASKS

The core of temporal reasoning lies in understanding the intrinsic logic of event sequences, encom-
passing physical causality, functional procedures, or social conventions. To evaluate this capability,
we design a novel Audio Segment Reordering setting. Specifically, we curate a collection of au-
dio events characterized by strong sequential uniqueness, semantic clarity, and logical universality.
Each event is segmented into three clips, which are then shuffled as inputs to the model. The models
are required to restore the original temporal sequence based solely on the audio content. Our tem-
poral reasoning tasks are organized into two meta-categories (continuous processes, discrete event
sequences) and five subcategories based on their core logical principles.

The continuous processes assess a model’s ability to track the subtle, continuous evolution of acous-
tic features within a single, uninterrupted acoustic event. The object spatial motion subcategory
reconstructs the spatio-temporal trajectory of moving sources (e.g., passing cars, airplanes) by inter-
preting key acoustic cues, such as the Doppler effect (frequency shifts indicating relative velocity)
and the inverse-square law (loudness changes indicating distance). Besides, the in-situ state evo-
lution subcategory assesses a model’s ability to track the intrinsic evolution of a stationary object’s
state, a process governed by predictable trend patterns. These trend patterns arise from various un-
derlying principles, including: Fluid & Pneumatic Dynamics, where the sound is governed by prin-
ciples of turbulence, resonance, and pressure changes (e.g., a toilet flushing, water being poured);
Thermodynamic Processes, involving irreversible state changes driven by heat (e.g., water boiling,
food frying); Energy Decay, a process governed by resonant decay and frictional damping after a
single excitation (e.g., a bell’s chime, an explosion’s echo); and complex Biological Rhythms that
reflect an evolving physiological or emotional state.

The discrete event sequences category requires the model to understand the logical and temporal
relationships between multiple, distinct acoustic events, which are governed by function, conven-
tion, or causality. The tool & appliance operation sub-category follows the standardized operating
procedure for tools and appliances (e.g., a microwave, a power drill), where the sequence is correct
when it follows the tool’s designed function. The daily scene scripts sub-category applies com-
monsense and contextual script knowledge to follow the conventional sequence of actions in a daily
activity (e.g., brushing teeth, drinking water). The event-triggered consequences sub-category ap-
plies causal reasoning to infer that a trigger event (e.g., a firework explosion) will be followed by an
automatic and irreversible outcome, whether physical (glass shattering) or social (a crowd cheering).

3.2.2 SPATIAL REASONING TASKS

Humans effortlessly perceive complex 3D auditory scenes (e.g., hearing a voice from behind, follow-
ing an approaching car, or locating multiple speakers). Such an ability is fundamental for egocen-
tric interaction and embodied Al systems, for instance, robots that navigate and interact with their
surroundings. However, existing benchmarks focus primarily on the localization of static sound
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sources, whereas real-world scenarios demand reasoning that integrates both spatial and temporal
cues. To address this gap, we organize the spatial reasoning task into three subcategories.

The single-source static localization evaluates the model’s ability to identify the direction of a tar-
get sound source among multiple static sources (e.g., judging whether a sound comes from the left
or right). It assesses the basic spatial perception capability of the model and provides the foundation
for more advanced reasoning. The multi-source spatial relation requires the model to determine
the relative spatial relationships among multiple simultaneous sound sources (e.g., comparing the
placement of two speakers to decide which one is further to the right). Beyond localizing each
source individually, the model must infer their spatial placement and choose the appropriate rela-
tional description from multiple candidates. The dynamic trajectory tracking introduces moving
sound sources, which require the model to go beyond basic spatial perception to dynamically model
spatio-temporal relations for reasoning about complex movement trajectories (e.g., tracking a pass-
ing car moving from left to right). This task extends spatial reasoning into the temporal domain and
is more faithful to the complexity of real-world acoustic scenarios.
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nals, the models consistently failed due to signal cancellation during the mono conversion. The
result confirms their lack of explicit support for genuine stereo audio processing. To provide a com-
prehensive assessment, we adopt two complementary strategies. The first is the native input setting,
where the model directly processes stereo audio using its default pipeline. This allows us to probe
its intrinsic ability to exploit spatial cues. The second is the channel-wise input setting, where the
left and right channels are presented separately with explicit textual instructions, as shown in the
bottom right of Fig. [2| This configuration serves as an ablation study to examine whether current
models have any spatial capability when the binaural information is preserved at the input.
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Figure 3: Audio preprocessing in existing models results
in the loss of dual-channel information.

3.3 DATA CURATION PIPELINE

Our data curation pipeline integrates procedural synthesis with real-world data collection to ensure
both comprehensive coverage and ecological validity. Fig. ] shows the distribution and statistics
of our STAR-BENCH. All audio for the foundational perception task is synthesized using precise
parameterization or the Pyroomacoustics (Scheibler et al.|[2018) physics-based simulator, providing
complete control over acoustic parameters. Domain experts rigorously validate the task difficulty
levels, which are then calibrated through human testing. For the holistic spatio-temporal reasoning
task, the curation process comprises four key stages (see Fig. [3):

1) Taxonomy Construction and Data Sourcing: We build a hierarchical task taxonomy through a
collaborative process involving domain experts and the Gemini 2.5 Pro (Comanict et al.| 2025). This
framework guides the sourcing of candidate data from large-scale, real-world audio libraries: Clotho
(Drossos et al., 2019) and FSD50K (Fonseca et al., 2022) for temporal reasoning, and STARSS23
(Shimada et al.l 2023)), along with audio sourced from the internet for spatial reasoning.

2) Al-Assisted Automated Filtering: This process employs an efficient three-stage funnel. First,
we discard unsuitable samples based on basic properties like duration and energy. Next, an LLM
(e.g., DeepSeek-V3 (Liu et al., [2024a)) performs an initial screening based on textual metadata,
providing justifications for its decisions. Finally, a powerful multimodal model (e.g., Gemini 2.5 Pro
(Comanici et al.} [2025)) analyzes the audio, metadata, and the LLM’s outputs. The final step yields
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Figure 5: The four-stage data annotation pipeline for constructing our STAR-BENCH.

a judgment, a quality score, and a preliminary classification, further filtering irrelevant samples. The
detailed prompts used to query the LLMs are provided in Appendix[B.3.1]

3) Human Annotation and Quality Control: We recruit and train 10 undergraduate annotators to label
the data using a professional platform. During this process, Al-generated information is provided as
an auxiliary reference. To ensure high-quality labels, we implement a stringent two-round review
process: the first round involves inter-annotator cross-validation until a consensus is reached, while
the second consists of random spot-checks by three domain experts. More details are provided in

Appendix[B32]

4) Final Validation via Human Performance Evaluation: To ensure all items in the benchmark are
fair, unambiguous, and solvable by humans, we implement a final validation stage. In this phase,
domain experts act as examinees and solve our tasks. Only items that are independently and correctly
solved by at least two-thirds of the experts are retained. Our rigorous protocol ensures that all
problems in our benchmark are well-posed and reliably solvable by human experts.

4 EVALUATION

Benchmarking Models. Our evaluation covers 19 models (16 open-source and 3 closed-source
models). The open-source models span three categories: (1) Large Audio Language Models de-
signed for universal audio-text understanding, including SALMONN (Tang et al.| [2024), Qwen2-

Audio Instruct (Chu et al., [2024), Audio Flamingo 3 2025) with its ‘think’ variant,
DeSTA2.5-Audio (Lu et al [2025), Kimi-Audio (KimiTeam et al., 2025), Step-Audio-2-mini

[2025), MidashengL.M (Dinkel et al., 2025), and Xiaomi-MiMo-Audio with
its ‘think’ variant; (2) a specialized model for spatial audio, BAT (Zheng et al},[2024); and (3) Omni
Language Models with fully multimodal support, including Qwen-2.5-Omni (Xu et al.} 2025)), Phi4-
MM (Abouelenin et all, [2025), Gemma-3n-E4B-it (Team et all, [2025)), and Ming-Lite-Omni-1.5
(AT et al., [2025). We also include three leading closed-source models: Gemini 2.5 Pro
(updated June 2025), Gemini 2.5 Flash (updated June 2025), and GPT-40-audio-preview
(Achiam et al., 2023)) (version 2025-06-03).

Robust Evaluation. All questions in STAR-BENCH are presented as multiple-choice questions and
evaluated using classification accuracy, with correctness determined via string matching of option
labels or their full text. To ensure robustness, we evaluate each question multiple times under minor
prompt perturbations, a strategy detailed in Appendix [C] This approach yields two key metrics:
Average Accuracy (AA), the mean accuracy across all runs, and All-Correct Rate (ACR), the
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Table 2: Evaluation results of various models on STAR-BENCH. The best performance is high-
lighted in bold, and the second-best ones are underlined. MA (Macro Accuracy) denotes the un-
weighted mean of class-wise accuracies, while OA (Overall Accuracy) denotes the proportion of
correctly answered instances. All reported values are AA (Average Accuracy across multiple runs)
only; for ACR (All-Correct Rate), see Appendix

Models Size Foundational Perception Temporal Reasoning Spatial Reasoning MA (%)
Range Sensitivity MA  Continuous Discrete OA  Localization Relation Trajectory OA

Random Guess - 23.75 26.38 25.33 14.29 14.29 14.29 33.33 33.33 33.33 33.33 24.32
Human - 79.42 74.55 75.60 90.12 85.51 88.00 70.00 80.00 77.00 73.72 79.11
SALMONN 13B 27.32 25.48 26.22 14.88 13.30 14.15 26.15 28.61 39.94 29.62 23.33
Audio Flamingo 3 [14] 8.4B 31.79 35.72 34.15 9.23 8.01 8.67 37.22 38.35 44.03 38.91 27.24
Audio Flamingo 3 think [14] 84B  25.54 34.08 30.66 13.22 14.02 1359 35.45 37.46 38.05 3645 26.90
Qwen2-Audio-Instruct [[7] 8.4B 29.88 26.47 27.84 13.29 12.10 12.74 21.32 24.78 15.09 20.78 20.45
DeSTA2.5-Audio 8.8B 29.87 19.79 23.82 16.53 17.39 16.93 23.67 34.81 37.74 29.15 23.30
BAT 311 7B 22.81 6.25 12.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.29
Phi4-MM (1] 5.5B 19.14 29.85 25.56 16.74 16.99 16.85 33.10 27.14 34.28 32.01 2481
Kimi-Audio 7B 23.29 27.50 25.82 19.97 16.83 18.52 27.56 38.94 44.03 33.60 25.98
MiDashengLM [10] 7B 36.94 30.78 33.24 15.43 17.31 16.30 43.11 4543 46.23 44.29 31.28
Step-Audio-2-mini 7B 29.65 27.14 28.14 15.36 15.87 15.59 33.33 31.27 37.74 33.80 25.84
Gemma-3n-E4B-it 7.5B 18.55 25.02 22.43 16.87 16.27 16.59 23.32 41.89 33.96 29.75 22.92
Ming-Lite-Omni-1.5 [3] 189B  26.76 26.76 26.76 17.08 15.54 16.37 20.14 35.10 38.36 27.35 23.49
Qwen-2.5-Omni [43] 7B 28.76 32.32 30.90 16.32 17.71 16.96 39.46 41.30 27.04 3725 2837
Xiaomi-MiMo-Audio [40] 7B 34.95 31.59 32.93 18.18 19.15 18.63 36.16 41.30 45.28 39.24 30.27
Xiaomi-MiMo-Audio-think [40] 7B 29.90 24.93 26.92 16.80 19.39 18.00 34.28 44.54 36.79 37.12 27.35
MiniCPM-O-v2.6 [48] 8B 31.02 31.87 31.53 15.36 17.39 16.30 29.92 43.36 38.36 34.73 27.52
GPT-40 Audio [2] - 27.58 34.55 31.76 1591 23.56 19.44 41.81 43.97 39.94 41.70 30.97
Gemini 2.5 Flash - 33.46 43.88 39.72 27.55 34.38 30.70 24.62 43.07 22.64 28.35 32.92
Gemini 2.5 Pro [§] - 39.90 51.13 46.64 54.88 62.74 58.52 40.87 48.97 45.28 43.62 49.59
Temporal Task Spatial Task
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Figure 6: Error distribution across temporal and spatial Tasks.

proportion of questions answered correctly in every run, which serves as a stronger indicator of
model reliability. Due to space limitations, we primarily report AA in the main text, while complete
experimental results are available in Appendix D}

4.1 MAIN RESULT ANALYSIS

We present a comprehensive evaluation on STAR-BENCH, as shown in Tab. 2} Due to the space
limit, detailed results on each task are provided in Appendix [D} Our key findings are as follows:

STAR-BENCH is Challenging STAR-BENCH presents a considerable challenge for existing mod-
els. Human evaluators achieve high accuracy across all task categories (e.g., 75.6% on perception,
88.0% on temporal, and 73.7% on spatial tasks), whereas all tested models fall well below this base-
line. Most open-source models perform close to random guessing, and even the best closed-source
model, Gemini 2.5 Pro, reaches only 49.59% average accuracy. In addition, model predictions on
STAR-BENCH exhibit low reliability, as evidenced by the pronounced gap between their Average
Accuracy (AA) and All-Correct-Rate (ACR) scores. A detailed discussion of this issue is provided
in Appendix[E.T} Although the underlying audio data for the temporal tasks (e.g., FSD50K, Clotho)
is commonly used for model pre-training, our novel task formulation of temporal reasoning de-
liberately departs from conventional audio QA formats. This design allows for a more thorough
evaluation of the integrated capabilities of current models. Meanwhile, this design also serves as a
diagnostic lens on the limitations of current training pipelines. The poor performance across models
suggests that existing training paradigms often centered on clip-level tagging, QA, or captioning
over linguistically salient cues (e.g., using FSD50K for sound event recognition) and do not equip
models with the abilities needed for audio 4D intelligence.

A Clear Performance Gap between Closed-Source and Open-Source Models On the founda-
tional perception and temporal tasks, Gemini 2.5 Pro establishes a commanding lead among all
models. On spatial tasks, however, nearly all models, both closed- and open-source, perform poorly.
As indicated by the prior experiment (Fig. 3], this is likely because most models (except BAT) dis-
card multi-channel information during preprocessing, thereby losing key acoustic cues needed for
spatial reasoning. Among closed-source models, Gemini 2.5 Pro surpasses Gemini 2.5 Flash, sug-
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[Pour water into the glass.]

@ GPT-40 Audio ®

The most natural chronological order of these sounds would likely be:
Clip 2: A liquid being poured.

Clip 3: Bubbling or boiling sound.

Clip 1: The liquid being stitred.

So, the order is <F>: clip 3 > clip 2 => clip 1.

Q: clipl: [seg 1] clip2: [seg 2] clip3: [seg 3] Error analysis Perception Error Knowledge Gap Failed to notice the characteristics
Answer: <A>: clip 1—clip 2—clip 3 between sounds, such as changes in pitch.

* Gemini 2.5 Pro S o= .
The most natural chronological order for these sound events is: 7 §vp Qwen-2.5-Omni
1. Clip 1: This clip captures the initial moment of pouring, with a clink of a container (like
a bottle or pitcher) against a glass, followed by the first splash of liquid hitting the bottom
of an empty vessel.
2. Clip 2: This is the sound of a continuous, sustained pour, suggesting the action of filling
the glass after the initial splash.
3. Clip 3: This clip features the sound of someone drinking or gulping the liquid, followed
by the distinct sound of the glass being placed back down on a hard surface.
Therefore, the logical sequence is starting the pour, filling the glass, and then drinking
from it.
The correct option is <A>: clip 1 -> clip 2 -> clip 3. P ption Error K ledge Gap ing Error It
Correct. It performs surprisingly well at distinguishing differences Error analysis :ufl:‘:)ﬁccﬂesfaﬂx? e e bcmg'?mblc s oo
] pitch. Consequently, its reasoning produces illogical
between segments. sequences.

The most natural chronological order in which these sounds would typically occur ig?c
real world is:<B>: clip 1 -> clip 3 > clip

Explanation:

Clip 1: Liquid being poured into a container (c.g., a glass or cup).

Clip 3: Liquid being poured into a larger container (e.g., a sink or basin).

Clip 2: Liquid being poured into a smaller container (e.g., a cup or mug).

This sequence suggests a typical scenario where someone is pouring water or another
liquid into a cup, then into a sink, and finally into another cup.

Error analysis

Figure 7: An error case in temporal reasoning task. More cases are provided in the Appendix B
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Figure 9: The ablation study on temporal

Figure 8: The range and sensitivity analysis in founda- .
reasoning.

tional perception.

gesting that stronger reasoning capabilities deliver substantial gains. In contrast, open-source models
show the opposite pattern: the “think” modes of Audio Flamingo 3 and Xiaomi-MiMo-Audio per-
form worse than their no-thinking counterparts, implying that without sufficiently solid perceptual
and knowledge foundations, reasoning can be ineffective or even detrimental.

4.2 DISCUSSION: WHY DO EXISTING MODELS STRUGGLE ON STAR-BENCH?

To better understand the underlying causes of the poor performance of existing models, we conduct
a detailed error analysis along with a series of ablation studies. Due to space limitation, the ablation
study on spatial reasoning is provided in Appendix

Error Analysis. We conduct a manual error analysis on 200 failed predictions sampled equally
from temporal and spatial tasks of three representative models (Gemini 2.5 Pro, GPT-40-audio,
and Qwen-2.5-Omni). For temporal tasks, our analysis reveals a clear capability hierarchy across
the models. The open-source Qwen-2.5-Omni shows major deficiencies in all three core abilities:
its perception is coarse-grained and unable to capture subtle inter-segment distinctions, and a sub-
stantial knowledge gap (54%) leads to reasoning that often appears specious due to the absence of
physical-world grounding. GPT-40-audio demonstrates stronger knowledge, but still suffers from
perceptual and reasoning limitations, along with low-level issues such as misalignment between rea-
soning and final answers. In contrast, Gemini 2.5 Pro excels in knowledge and reasoning, shifting its
primary bottleneck to the more advanced challenge of fine-grained perception (84%). As shown in
Fig.[7] Gemini 2.5 Pro is the only model to succeed by providing a remarkably detailed description
of acoustic nuances. Our finding suggests that the advanced world knowledge is deeply embedded
within detailed audio-text captioning. While open-source models largely remain at a coarse se-
mantic level (e.g., sound event classification), our analysis highlights that enabling them to generate
fine-grained acoustic descriptions is critical toward more robust reasoning. On the other hand, most
models demonstrate a lack of native spatial awareness in audio tasks, with weaknesses in perception,
knowledge, and reasoning. Additionally, a prevalent type of error involves vision-centric hallucina-
tions (e.g., “...based on the car’s trajectory in the video...”). This may be attributable to the models’
training on visual spatial tasks, leading them to misapply visual reasoning to auditory inputs.

Lack of Human-like Range and Sensitivity in Foundational Perception. To quantify the gap in
perceptual range and sensitivity, we provide detailed visualizations of model performance on our
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foundational perception tasks in Fig. [8] The first row of Fig. [§] presents audiograms that compare
model coverage across the pitch—loudness space. Gemini 2.5 Pro achieves a much broader coverage
than the other two models, where greener regions indicate higher accuracy and the covered area
reflects the perceptual range. In contrast, human listeners with normal hearing are expected to
achieve near-full coverage, underscoring the gap between current models and human perceptual
abilities in terms of range. The second row of Fig. [§] further track the performance of both models
and human subjects on the three core acoustic attributes (pitch, loudness, and duration) as task
difficulty decreases. The results reveal a stark performance gap between all models and the human
baseline, particularly in the perception of fine-grained loudness differences. A clear trend is visible
even for the top-performing Gemini 2.5 Pro: its accuracy, while competent on easier tasks, plummets
as perceptual granularity increases. This directly corroborates our error analysis, identifying fine-
grained perception as its primary bottleneck. Notably, its performance on duration perception is
an exception, showcasing temporal grounding capabilities superior to those of other models by
accurately assessing audio segment lengths.

Ablation Study on Temporal Reasoning. To further pinpoint the specific limitations of temporal
reasoning, we augment the baseline audio segment reordering task with two progressively easier
settings: (1) + Global Caption, where a single sentence describing the overall scene is provided as a
contextual guide; and (2) + Uncut Audio, where the complete, unsegmented audio track is offered as
a reference, reducing the task to a straightforward process where the correct order can be determined
simply by comparing and grounding each segment within the full audio. As shown in Fig.[9} Gemini
2.5 Pro’s performance scales effectively with task simplification, culminating in a near-perfect 99%
accuracy in the + Uncut Audio setting. In contrast, the open-source models show minimal to no
improvement across these settings. Their performance remains stagnant even when provided with
the complete audio reference, despite the simplified nature of the task. This finding starkly exposes
a core weakness in current open-source models: a fundamental inability to effectively compare,
ground, and integrate information from multiple audio inputs.

5 CONCLUSION

We introduce STAR-BENCH, a comprehensive benchmark for evaluating 4D audio intelligence over
time and 3D space. We use rigorous human annotation, consensus review, and expert validation to
ensure the high quality of data samples. STAR-BENCH establishes standardized tasks and protocols
for studying 4D audio intelligence, offering actionable diagnostics for model developers. We expect
STAR-Bench to accelerate progress on advanced audio models and training with spatialized corpora,
capabilities that are crucial for embodied agents.

10
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ETHICS STATEMENT

Our study primarily relies on datasets from open-source research communities and publicly avail-
able online resources, as described in detail in the main text. These datasets do not involve private
information, sensitive content, or material that could raise concerns related to safety, discrimina-
tion, or harmful societal impact. All annotation and evaluation tasks were carried out by university
volunteers who participated on a voluntary basis. No human subjects were placed at risk, and no
personally identifiable information was collected during the course of this research.

REPRODUCIBILITY STATEMENT

We provide a detailed description of the construction process of our benchmark dataset and evalu-
ation pipeline in the main text. To facilitate reproducibility, we will release the benchmark dataset
as well as the evaluation code to the community. Clear documentation and step-by-step instructions
are included to ensure that other researchers can replicate our experiments and verify the reported
results.
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THE USE OF LARGE LANGUAGE MODELS

We used Gemini-2.5-Pro to assist in expanding and consolidating the taxonomy of tasks in our
benchmark. Both DeepSeek-V3 and Gemini-2.5-Pro were utilized for the automated pre-screening
of candidate data. The final task definitions and data samples are verified by humans. We also used
GPT-4o to generate some of the illustrative figures presented in the paper, and used GPT-5 to polish
the manuscript text. Only human-verified revisions are included in the final version.

A RELATED WORK

A.1 AuUDIO LANGUAGE MODELS

With the advancements of large language models (LLMs) and multimodal language models (Yang
et al., 20254}, Jiang et al.| [2024; |Achiam et al., 2023 |Comanici et al., 2025} Cai et al., 2024} Touvron
et al.l 2023} [Liu et al.l [2024c; 2025 Zhang et al., |2025b; |Qi et al., 2025 Xing et al.l [2025bza;
Ding et al.l 2025} |Wei et al., [2025agb; |Li et al., 2025; Zhang et al.l [2025a)), recent research has
increasingly focused on integrating audio perception with LLMs to enhance audio understanding and
reasoning. Existing methods can be broadly grouped into two categories: Large Audio Language
Models(LALMSs) and Omni Language Models(OLMs).

Most LALMs combine a pre-trained audio encoder with an LLM backbone, where the two modal-
ities are aligned via large-scale text-audio joint training. Notable models include LTU-AS (Gong
et al., [2023), SALMONN (Tang et al., 2024), MidashengL.M (Dinkel et al.} 2025), Audio Flamingo
series (Ghosh et al, 2025} |Goel et al. [2025), Qwen-Audio series (Chu et al., |2023}; |2024), Step-
Audio (Wu et al.} 2025) and Mimo-Audio (Xiaomi, [2025)). These models have achieved remarkable
performance across a wide range of audio understanding tasks, including automatic speech recog-
nition(ASR), spoken question answering(SpokenQA), and automated audio captioning(AAC). In
parallel, OLMs extend this paradigm to unify multimodal understanding with representative exam-
ples such as Qwen-2.5-Omni (Xu et al.; 2025), Ming-Omni (Al et al.,[2025),MiniCPM-O (Yao et al.,
2024)), Phi-4 (Abouelenin et al.l 2025), GPT-40 (Achiam et al., |2023)), and Gemini 2.5 (Comanici
et al.,[2025)). Notably, they also achieve impressive performance on audio understanding and reason-
ing, highlighting their potential to bridge multimodal perception and advanced audio intelligence.

A.2 AUDIO BENCHMARKS

Existing audio benchmarks illustrate the rapid progress of multimodal evaluation but also expose
limitations. AudioBench (Wang et al., [2024) and AIR-Bench (Yang et al., |2024) primarily focus
on tasks such as automatic speech recognition (ASR), spoken question answering (SpokenQA),
and audio captioning (AAC). These settings tend to reduce audio understanding to transcription or
description, thereby neglecting the broader spectrum of acoustic reasoning. MMAU (Sakshi et al.,
2025) and MMAR (Ma et al.,[2025) further extend the evaluation scope. However, their results reveal
an inherent weakness—LLMs equipped with audio captions can perform on par with advanced
LALMs, suggesting that such benchmarks still probe little beyond language-level semantics.

Although some advanced benchmarks, such as MMAR (Ma et al.l [2025) and MMAU-Pro (Kumar,
et al.,2025])), do touch upon spatio-temporal aspects, their coverage remains limited in both scale and
depth. For instance, their temporal analysis is typically reduced to identifying the timing or order
of events occurring in the audio, while spatial analysis is often limited to localizing a single sound
source. In contrast, our benchmark systematically evaluates models’ temporal and spatial deep
reasoning capabilities within complex, real-world physical contexts, requiring them to infer causal
and dynamic relationships. Beyond audio benchmarks, multimodal benchmarks in video question
answering (Cheng et al., 2025} [Yang et al [2025c) and embodied Al (Yang et al., 2025b) have em-
phasized temporal and spatial reasoning. However, these frameworks are predominantly grounded
in the visual modality, where exploration of the audio modality remains comparatively limited. In
real-world scenarios, audio understanding often depends on integrating information across multiple
sound streams and reasoning about subtle changes in intensity, phase, or frequency—capabilities
that existing benchmarks scarcely capture.
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Attribute | Range / Level Example

Absolute Perception Range

[Audio]The audio you just heard is divided into two halves.

Pitch, 125 Hz - 8000 Hz X . i >
Loudness ~10dB - 110dB I)um_u sound appear in the first half, /Iu_' second half, or is it not present at all .
(A) The first half (B) The second half (C) It is not present at all (D) Unable to determine
Agimuth 0 360° TAudio] Given that 0° is directly in front and the angle increases clockwise, which azimuth range is the sound most likely coming from?
Amu . (A) Front-Right (0°-90°) (B) Back-Right (90°-180°) (C) Back-Left (180°~270°) (D) Front-Left (270°-360°) (E) Unable to determine
Elovation 950 90° [Audio] Where does the sound seem to be coming from in terms of elevation, relative to ear level?
cvati (A) Above ear level (B) Below ear level (C) At ear level (D) Unable to determine
Distance 0 meter - 10 meters [Audio] How far away does the sound seem to be?

(A) Near (within about 0-3 meters) (B) Medium (around 3-8 meters) (C) Far (more than 8 meters) (D) Unable to determine

Relative Discrimination Sensitivity

[Audio] Which sound has a higher pitch: the first sound, the second sound, or are they the same?
(A) The first sound has a higher pitch (B) The second sound has a higher pitch(C) Both sounds are the same (D) Unable to determine
[Audio] Which sound is louder: the first sound, the second sound, or are they the same?
(A) The first sound is louder (B) The second sound is louder (C) Both sounds are the same (D) Unable to determine
[Audio] Which sound is longer: the first sound, the second sound, or are they the same?
(A) The first sound is longer (B) The second sound is longer (C) Both sounds are the same (D) Unable to determine

Pitch 0, 50, 100, 200, 400, 1200 (cents)

Loudness 0,4, 8,12, 24, 48 (dB)

Duration 0, 20, 50, 100, 150, 200 (%)

. o Audio I: [Audio_I] Audio 2:[Audio 2] Are Audio I and Audio 2 at the same azimuth? (Consider differences of less than 45° as the same.)
Azimuth 30,60, 90, 120, 150, 180 (°) (A) Same (B) Different (C) Unable to determine
. o Audio 1: [Audio_T] Audio 2:[Audio 2] Which audio has the higher elevation angle? (Consider differences of less than 45° as the same.)
Elevation 15,90, 120, 150 (°) (A) Audio 1 is higher (B) Audio 2 is higher (C) Both are at the same elevation (D) Unable to determine
=77 517 5 T 5 TeTEE TG
Distance 1-2,4-5, 6-7, 8-9 (meters) Audio I: [Audio_I] Audio 2:[Audio 2] Which audio is farther away? (Consider differences of less than 3 meters as the same.)

(A) Audio 1 is farther away (B) Audio 2 is farther away (C) Both audios are the same (D) Unable to determine

Table 3: Task examples of foundational acoustic perception.

Our benchmark aims to address these gaps by introducing tasks that require multi-audio input and
cross-audio reasoning, such as comparing or integrating information across multiple sound inputs,
as well as fine-grained spatio-temporal deep reasoning, such as tracking how acoustic patterns
evolve with underlying physical changes. Rather than being limited to surface-level semantics, the
benchmark is designed to assess whether models can leverage raw audio cues to perform physically
grounded reasoning across spatial and temporal dimensions.

B DETAILS OF DATA ANNOTATION

In this section, we present the details of data annotation.

B.1 PROMPTS FOR AUDIO CAPTIONING

The prompt for Gemini 2.5 Pro audio captioning: “Please provide a detailed description of the audio,
including speech, music, environmental sounds, and any other noticeable elements. Be as specific
as possible.”

B.2 DETAIL INFORMATION FOR FOUNDATIONAL ACOUSTIC PERCEPTION

Tab. [3] details the ranges and levels used for each acoustic attribute, alongside illustrative examples
of our foundational acoustic perception tasks.

B.2.1 BINAURAL AUDIO SYNTHESIS

We generated binaural recordings for foundational perception tasks (azimuth, elevation, distance) in
Pyroomacoustics (Scheibler et al., [2018)) across three rectangular rooms—small (4.0x3.5%2.8 m),
medium (8.0x6.0x3.5 m), and large (20x15%8 m)—each with a frequency-independent wall absorp-
tion coefficient of 0.25. Image-source reflections were modeled up to order 10 at 44.1 kHz (matched
to the HRTF sampling rate). For each room, we evaluated two listener positions (distinct Carte-
sian coordinates) and oriented the head toward the +x axis. Binaural reception used a co-located
two-microphone array at the listener position with ear-specific directivity derived from a measured
SOFA HRTlﬂ (MIT KEMAR, “normal pinna”; interpolation order 12, 1000 points), loaded via a
local SOFA reader and applied to the left/right channels.

For each condition (room X listener), sources were placed on a sphere centered at the listener (radii
1-10 m; configurable azimuth/elevation), and ear-specific BRIRs were computed. Mono source
signals were drawn from three curated audio clips (“alarm,” “applause,” “telephones’’), downmixed
if necessary. Rendering was performed by convolving each dry signal with the left/right BRIRs
after an early/late mix to emphasize distance cues: we preserved the first 80 ms and attenuated the

'"https://sofacoustics.org/data/database/mit/mit_kemar_normal_pinna.sofa
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late tail by 0.5. We then applied global peak normalization across the batch to avoid clipping while
preserving inter-position level differences.

We discretized each attribute into fixed partitions to control dataset balance.

Absolute azimuth: Eight angles {30°, 60°, 120°, 150°, 210°, 240°, 300°, 330°}. For each angle
we rendered all combinations of 3 rooms x 2 listener positions x 2 source clips, yielding 8 x (3 x
2 x 2) = 96 utterances. Absolute elevation: Six angles {—75°, —45°, —15°, 15°, 45°, 75°}. Per
angle we rendered 3 rooms x 2 listener positions x 2 source clips, for 6x (3x2x2) = 72 utterances.
Absolute distance: Radii from 1-10 m with a nonuniform allocation to emphasize near-field cues:
for 1-7 m we generated 6 utterances per meter (42 total), and for 8—10 m we generated 3 per meter
(9 total), giving 42 + 9 = 51 utterances per (room X listener) set.

Relative azimuth: Differences were multiples of 30°: {30°, 60°, 90°, 120°, 150°, 180°} (6
levels), totaling 6 x 20 = 120 utterances. Relative elevation: Four difference angles
{15°, 90°, 120°, 150°} with 18, 17, 17, 12 utterances respectively (64 total). Relative distance:
Four difference levels {1 —2, 4 —5, 6 — 7, 8 — 9} m with counts per level {12, 12, 12, 9}, totaling
45 utterances.

B.3 DETAILS OF THE CURATION PROCESS FOR REASONING TASKS

B.3.1 PROMPT USED FOR AI-ASSISTED FILTERING OF TEMPORAL TASK DATA

Fig.[I0]and Fig. [TT] present our carefully designed prompts, which leverage Gemini 2.5 Pro to filter
candidate data that meet the requirements of audio segment reordering. Briefly, we feed the audio,
its metadata, and our task description, and ask Gemini 2.5 Pro to decide, under our strict criteria
of strong sequence uniqueness, semantic clarity, and high logical universality, (i) whether the audio
is suitable for a reordering task, (ii) whether it reflects a continuous or discrete process, (iii) the
reasoning behind its judgment, and (iv) a quality score. We adopt a conservative filtering strategy,
discarding only samples explicitly marked as “not applicable”. All remaining clips, along with the
model’s analysis, are then passed to professional annotators for verification and annotation. A prior
LLM-based filtering step follows a similar procedure, but without audio input.

B.3.2 DETAILS OF HUMAN ANNOTATION AND QUALITY CONTROL

Following automated filtering, each candidate sample undergoes a rigorous, multi-stage human an-
notation and quality control process to ensure high data quality and annotation consistency. This
process is as follows:

(1) Systematic Training: All annotators received detailed written guidelines and completed a trial
annotation of 10 samples. These trials were meticulously reviewed by experts to ensure a unified
understanding of the criteria.

(2) Inter-annotator Cross-validation:

(1) Initial Annotation: A sample is first annotated by Annotator A. The annotation content
includes:

* For Temporal Reasoning: Task compliance checks, segment boundary delineation,
textual descriptions for sub-clips and the global audio, scene classification, and audio
quality scoring.

» For Spatial Reasoning: Selecting appropriate segments, task classification, and the
generation of a question, the correct answer, and distractor options for the multiple-
choice format.

(ii) Review and Flagging: The annotated sample is then fully reviewed by Annotator B, who
flags any inconsistencies with detailed comments and marks the sample as “failed”.

(iii) Consensus through Negotiation: Annotators A and B then discuss all flagged issues to
reach a consensus and apply corrections. During the discussions, primary sources of
ambiguity are as follows:

» For Temporal Reasoning: (a) The reasonableness of the segmented clip boundaries.
(b) The existence of multiple logically plausible orderings for the segmented clips.
(c) Significant discrepancies in audio quality scores.(d) Adherence to formatting and
content guidelines for the captions.
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» For Spatial Reasoning: (a) Whether the spatial perception presented in the audio un-
ambiguously aligns with the annotated answer. (b) Whether the constructed question-
answer pair clearly necessitates the use of audio spatial cues for resolution. (c) Po-
tential ambiguity in mapping the event name mentioned in the question to a specific
sound in the audio. (d) The appropriate difficulty and plausibility of the distractor
options.

(iv) Expert Arbitration: In the cases where a consensus cannot be reached, the sample is

escalated to an expert panel for a final decision. If the experts still cannot agree, the
sample is discarded.

xpert Spot-check: After passing cross-validation, a random 10% of samples undergo a fina

3) E S heck: After passing lidati dom 10% of sampl dergo a final
quality check by experts to ensure consistency and accuracy. Any discovered issues are then
sent back for revision.

e N
# Role Setting:

You are a rigorous audio analysis expert, specializing in identifying dynamic audio with explicit temporal logic
conforming to physical laws or strong causality. Your task is to screen suitable audio samples for high-standard
“Audio Sequence Ordering Evaluation.” Analysis should rely on the audio itself, with text as auxiliary reference.

# “Audio Clip Ordering” Evaluation Task:
Qualified audio is segmented into three clips, shuffled, and given to the model, which must reconstruct the
sequence using only sound. Candidate audio must meet the following strict standards:
1.Strong sequence uniqueness: The events in the audio must present a unique and clearly discernible temporal
progressmn, w1th no p0551b1]1ty of alternative plausible orderings.
X : Events in the audio must be easily identifiable by sound alone.
ity: The event sequence should conform to commonsense physical laws or strong causal
relatlons, such that llsteners from different backgrounds can reach a consistent understanding.
Note: Since the model sees no text, samples must be interpretable solely from sound.

# Audio Classiflcation Standards:

LA Single ent
- Definition: Audio prlmanly represents a continuous event driven by a single process, exhibiting significant and
predictable temporal dynamics.
- Possible categories include (but are not limited to):

Spatial movement and distance variation. Physical processes in progression. Energy or state decay. Biological
activity dynamics.
- Core judgment: The core judgment is whether the change is governed by a single continuous physical process,
is significant, and is commonly recognized as unambiguous.
- Examples:

The sound of pouring water. A ball bouncing to rest.
2. Sortable Multi-Event:
- Definition: Audio contains two or more independent events, where the events exhibit a strong causal
relationship such that “A inevitably leads to B” or “A must precede B.”
- Core judgment: The core judgment is whether sub-events have distinct, separable acoustic features, follow a
direct and widely recognized causal chain, and together form a concise, complete, and unambiguous process.
- Examples:

Opening a bottle — pouring water — setting down the bottle.

Cracking an egg — stirring — pouring into an oil pan.
Note: If event boundaries are unclear but the overall structure forms a continuous process, classify as “Single
Event.” If there are clearly distinct stages with evident logical links, classify as “Multi-Event.”

#Special Exclusion Rules:

Filter out the following audio types, even if they exhibit some “dynamic change.” If they fail semantic clarity,
sequence uniqueness, or logical universality, they must be labeled “Not Applicable.”

- Static or repetitive sounds.

- Sounds with intensity variation but without reflecting a physical law or typical action sequence.

- Weak or absent causality, or dependent on special background knowledge.

- Ambiguous, subjective, or interpretable in multiple ways.

- Ambient noise or atmosphere shifts without structured events.

- Dialogue or speech as main content.

- Poor quality or indistinct segmentation.

# Features of High-Quality Samples:
- Clear event semantics: Each action or change is acoustically distinct and intuitively understandable.
- Unambiguous seq Temporal logic is indisputable, allowing only one reconstruction order.

- Narrativity and processuality: The audlo presents a complete, coherent event chain consistent with human
understanding and com I

-]

Figure 10: The prompt for our Al-assisted filtering process on temporal tasks.
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# Input
You will receive the following three components:
0 iption: Labels, annotations, or metadata about the audio.
2.Preliminary judgment based on text: A text-only hypothesis about the audio’s attributes.

Note: Always base your classification primarily on the acoustic features of the audio itself, using text only as
supplementary context.

#Output Format (Strlctly follow the four-line structure)
‘lassification label: Sortable Single Event | Sortable Multi-Event | Uncertain | Not Applicable
E 1 iption For “Sortable Multi-Event,” use the format Event A -> Event B -> Event C to describe the
strong causal chain. For “Single Event,” describe the core dynamic change. If “Not Applicable”, briefly
summarize the content.
Explain classification basis, focusing on the three standards: semantic clarity, sequence uniqueness,

and logical universality. Refer to specific acoustic features where possible.

re: (Composite evaluation based on the three standards)
- 5 points: Events clear, sequence strong, logic robust, full structure or rich narrative (>4 events).
- 4 points: Sequence clear, physics/logic reasonable, but semantics somewhat limited (<3 events).
- 3 points: Some ambiguity, human listeners may also struggle to interpret
- 2 points: Content vague, minimal sequential logic, not recommended for ordering.
- 1 point: Events unclear, structure absent, unusable for ordering tasks.

# Examples:
nput
Text description: “A ping-pong ball landing.”
Preliminary judgment: —
Audio file: Sharp bouncing sounds, gradually weakening, intervals shortening, finally stopping
vutput:
Classification label: Sortable Single Event
Event description: Ping-pong ball bouncing, sound intensity and interval decay until stop.
Reasoning:Clear physical energy decay, unique order, limited semantics.
Score: 4

Text description: “People counting down for New Year, then celebrating with fireworks.”
Preliminary judgment: —

Audibo file: 10-second countdown — fireworks — cheering

vutput:

Classification label: Sortable Multi-Event

Event description: Countdown (10s) -> Fireworks -> Cheering

Reasoning: Three distinct events, unique order, clear logic, strong semantics.

Score: 5

n
Text description: “A segment of continuous machine rumble.”
Preliminary judgment: —
Audibo file: Indistinct machine operating noise
Output
Classification label: Not Applicable
Event description: Continuous monotonous machine rumble without structural change.
Reasoning: Lacks identifiable dynamic events or temporal structure, unsuitable for ordering evaluation.
Score: 1

Figure 11: The prompt for our Al-assisted filtering process on temporal tasks.
C ROBUST EVALUATION

All questions in STAR-BENCH are presented as clear multiple-choice questions with well-formatted
options. We adopt classification accuracy as the evaluation metric. To determine the correctness of
a response, we employ string matching to extract either the chosen option label (e.g., <A>) or the
full text content of the option from the model’s output.

Furthermore, we implement a robust evaluation strategy to ensure rigorous and reliable results. For
perception and spatial tasks, we adopt the CircularEval method from MM-Bench (Liu et al.|[2024b)).
Specifically, each question is presented to the model /N times (/V is the number of options), with the
option order cyclically rotated in each run to mitigate potential positional biases. For temporal tasks,
we conduct three runs per question with different temporal segment orders to evaluate the model’s
robustness to sequence variations. Note that due to the significant API costs, GPT-40 Audio was
evaluated only once per question. This strategy yields two key metrics: Average Accuracy (AA), the
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mean accuracy across all evaluation runs, and All-Correct Rate (ACR), the proportion of questions
answered correctly in every single run, which serves as a stronger indicator of model reliability.

For models that do not support multi-audio input (only Audio Flamingo 3 and its Think variant
among the models we evaluated), we concatenate the audios with a 2-second silence and specify this
in the prompt. In contrast, for models that support multiple audio inputs, we feed them sequentially
with textual indices.

To establish a human performance baseline, we conduct a human evaluation on a randomly sam-
pled subset of approximately 10% of the data from each task. This evaluation is performed by 10
university students, from whom we explicitly exclude anyone involved in data annotation or with
domain-specific expertise, thereby ensuring a general, non-expert perspective.

D BREAKDOWN RESULTS

In this section, we present detailed results for perception, temporal reasoning, and spatial reasoning
on STAR-BENCH, as shown in Tab. ] Tab.[3] and Tab.[6]

E FURTHER ANALYSIS AND DISCUSSION

E.1 HIGH OUTPUT INSTABILITY AND CONCENTRATED PREDICTIONS

The reliability of model outputs on our benchmark is notably low, as evidenced by the stark contrast
between their Average Accuracy (AA) and All-Correct-Rate (ACR) scores. Even the top-performing
model, Gemini 2.5 Pro, exhibits an average drop of 25.01 percentage points from its AA to its ACR.
This issue is even more pronounced for the majority of open-source models, which record an ACR
near zero. This score indicates a complete failure to maintain consistent predictions under minor
input perturbations. For these models, the instability often manifests as a tendency to concentrate
predictions on a specific option, suggesting a reliance on superficial biases rather than genuine un-
derstanding.

E.2 ABLATION STUDY ON SPATIAL REASONING.

As shown in Tab.[6] the results reveal a fundamental limitation of LALMSs’ in spatial perception. The
native input inherently discards part of the multi-channel information during model preprocessing,
which leads to a significant loss of spatial cues that are essential for fine-grained reasoning. On
the other hand, the channel-wise input explicitly presents each channel with textual instructions,
mitigating some of the information loss. Despite this, most existing models are not trained to handle
multi-audio inputs. As a result, they consistently struggle to align channel representations and fail to
make reliable use of interaural differences. Overall, the pronounced gap between human and model
performance highlights that spatial reasoning in audio remains an unsolved challenge, underscoring
the need for audio encoders that natively support multi-channel audio input.

F CASE STUDY

In this section, we present several case studies of error analysis, including temporal reasoning
(Figs. [12]to[I7) and spatial reasoning (Fig. [I8).
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Table 4: Results for the foundational perception task. Each cell reports AA/ ACR: Average Accu-
racy (AA; overall accuracy across all runs) / All-Correct Rate (ACR; proportion of samples that are
correct on every run). The best model in each category is shown in bold, and the second best is
underlined.

Model Siz Absolute Perception Range Relative Discrimination Sensitivity

MA (%)
Pitch&Loudness  Azimuth  Elevation  Distance Pitch Loudness  Duration  Azimuth  Elevation  Distance

Random Guess — 25.00/0.30 2000/0.05  2500/039  25.00/039  25.00/0.39  25.00 2500/039  3333/37  25.00/039 2500/0.39  2533/0.68
Human — 98.67 73.33 66.67 70.00 83.33 85.56 83.33 83.33 38.09 73.68 75.60
SALMONN 13B 14.34/0.00 2583/0.63  3576/0.00 3333/000 31.04/0.00 25.00/0.00 28.54/0.00 31.39/380 24.15/0.00 12.77/0.00  26.22/0.45
Audio Flamingo 3 8.4B 37.59/0.00 27.92/315  2882/0.00  32.84/0.00  42.50/167 2896/0.00  3479/0.00  38.61/667 3390/0.00 35.56/0.00  34.15/1.15
Audio Flamingo 3 think 8.4B 51.75/6.99 875/0.00  3333/1.04  833/0.00  36.04/8.33  45.63/2.50 59.38/3833 4LIL/417  1229/0.00  10.00/0.00  30.66/6.14
Qwen2-Audio-Instruct 8.4B 35.66/1.40 2250/0.00  4861/10.76  1275/0.98  3563/0.00  1625/0.00  2646/0.00  3500/806 21.61/1.69  23.88/0.00 >
DeSTA2.5-Audio 8.88 16.96/0.00 2125/042  4549/139  3578/147  11.67/0.00  1125/0.00 2271/000  33.06/7.78 10.59/0.00 29.44/0.00

7B 0.00/0.00 26.04/26.04 41.67/41.6 2355 000/0.00  0.00/000  000/0.00  37.50/3750  0.00/0.00  0.00/0.00
Phi4-MM 5.58 9.44/0.00 24.07/000  1597/0.00  2696/0.00  2438/0.00  30.00/0.00  27.92/0.00  36.94/0.00 3262/0.00 27.22/0.00
Kimi-Audio 7B 18.71/0.00 18.12/0.00  38.19/0.00  18.13/0.00  24.38/0.00  3229/0.00  3417/0.83  39.72/3.89 25.00/0.85  9.44/0.00
MiDashengLM 7B 48.95/33.5 20.63/0.00  4826/1181 2990/0.98 40.00/34.17 17.08/0.83  2354/7.50  3472/861 27.12/1.69 42.22/6.11
Step-Audio-2-mini 7B 37.59/0.00 2000/0.00  31.60/0.69  2941/0.00  2500/000  29.17/0.00  3229/0.00  20.00/0.00 31.36/0.00  25.00/0.00
Gemma-3n-E4B-it 7.58 7.18/0.00 24.38/4.17  2500/0.00  17.65/0.00  3875/000  875/0.00  15.00/583  40.56/194 23.73/0.00  23.33/0.00
Ming-Lite-Omni-1.5 189B  28.67/0.00 2021/000  27.78/0.35 390 16.67/16.67 16.67/16.67 16.67/16.67  41.67/0.28 81/0.00  36.11/0.00
Qwen-2.5-Omni 7B 27.45/3.50 18.33/0.21 27.57/1.47 X 48.13/35.00  39.79/15.00  38.33/26.67 16.11/0.28 K .00 40.56/2.78
Xiaomi-MiMo-Audio 7B 3671/550  18.54/10.17  4826/382  36.27/2 46.04/2 36.46/0.83  17.70/16.67  40.56/2.22  20.98/0.00  27.78/1.67
Xiaomi-MiMo-Audio-think 7B 43.01/1460  1167/000  2569/0.00  39.21 28.13/333  1521/1.67  2271/1.67  29.44/250 21.88/0.45 32.22/1.67
MiniCPM-0-v2.6 8B 46.33/8.39 2458/021  2326/035  2990/0.00  38.13/3 3896/4.17  32.08/333  37.22/27%  22.10/( 22.78/0.00
GPT-40 Audio — 45.28 16.67 44.44 392 43.33 36.04 46.46 2958 11.86 40.00
Gemini 2.5 Flash — 6259/18.19  1250/0.00  18.06/035  40.69/147 48.54/21.67 40.83/6.67 63.13/2750 37.08/9.17 2542/0.85 4833/444
Gemini 2.5 Pro — 86.71/62.04  2583/125  588/0.00  4LI8/585  63.33/5250 33.75/15.83 78.96/0833 37.08/1375 29.24/636 64.44/12.20

Table 5: Results for the temporal reasoning task. Each cell reports AA/ACR: Average Accuracy
(AA; overall accuracy across all runs) / All-Correct Rate (ACR; proportion of samples that are
correct on every run). The best model in each category is shown in bold, and the second best is
underlined.

M " Continuous Processes Discrete Event Sequences
odel Size OA (%)
Object Spatial Motion In-Situ State Evolution Tool & Appliance Operation Daily Scene Scripts Event-Triggered Consequences
Random Guess — 14.29/0.00 14.29/0.00 14.29/0.00 14.29/0.00 14.29/0.00 14.29/0.00
Human — 9L.11 88.89 87.88 83.33 83.33 88.00
SALMONN 13B 13.88/0.74 16.12/0.00 13.56/1.96 13.15/1.1 12.50/0.00 14.15/0.89
Audio Flamingo 3 8.4B 8.55/0.00 10.08/0.4 8.66/0.98 7.22/1.11 8.33/3.13 8.67/0.6
Audio Flamingo 3 think 8.4B 14.37/0.00 11.78/0.93 15.36/1.47 12.96/2.22 11.46/0.00 13.59/1.00
Qwen2-Audio-Instruct 8.4B 12.89/0.00 13.80/0.93 12.09/0.00 12.22/1.1 11.46/0.00 12.74/0.44
DeSTA2.5-Audio 8.8B 16.98/0.3 15.97/1.40 19.93/1.4 15.56/0.56 11.46/0.00 16.93/0.89
BAT 7B 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Phi4-MM 5.5B 17.72/0.00 15.50/0.47 16.34/0.98 17.04/3.89 20.83/3.13 16.85/1.22
Kimi-Audio 7B 18.71/1.49 21.55/2.33 18.63/0.49 15.19 2 14.58/0.00 18.52/1.56
MiDashengLM 7B 17.10/0.37 13.33/0.00 17.16/1.96 16.67/2.22 21.88/0.00 16.30/1.00
Step-Audio-2-mini 7B 16.11/0.3 14.42/0.00 15.52/0.00 16.30/0.00 15.63/0.00 15.59/0.11
Gemma-3n-E4B-it 7.5B 17.10/0.00 16.59/0.00 17.81/0.00 13.70/0.00 20.83/0.00 16.59/0.00
Ming-Lite-Omni-1.5 18.9B 17.47/1.12 16.59/0.47 13.89/0.00 17.59/1.1 14.58/0.00 16.37/0.67
Qwen-2.5-Omni 7B 17.10/0.3 15.35/0.93 19.77/1.4 16.48/0.56 11.46/0.00 16.96/0.78
Xiaomi-MiMo-Audio 7B 18.22/0.00 18.14/0.47 17.16/0.98 20.19/2.22 26.04/3.13 18.63/0.89
Xiaomi-MiMo-Audio-think 7B 16.36/0.37 17.36/0.47 19.93/1.96 18.70/2 19.79/0.00 18.00/1.11
MiniCPM-0O-v2.6 8B 16.23/0.00 14.26/0.93 17.48/0.49 17.78/0.56 14.58/0.00 16.30/0.44
GPT-40 Audio —_ 15.61 16.28 24.02 2278 25.00 19.44
Gemini 2.5 Flash — 30.86/3.3 23.41/3.72 38.07/12.75 30.19/7.22 34.38/9.38 30.70/6.56
Gemini 2.5 Pro — 63.82/38.66 43.72/17.67 69.77/46.08 57.22/38.33 48.96/28.13 58.52/34.89

Table 6: Results for the spatial reasoning task using native and channel-wise audio input. Each
cell reports AA/ ACR: Average Accuracy (AA; overall accuracy across all runs) / All-Correct Rate
(ACR; proportion of samples that are correct on every run). The best model in each category is
shown in bold, and the second best is underlined.

Model Size _Single-S Static Localizati Multi-S Spatial Relation Dynamic Trajectory Tracking OA (%)

Native Input  Channel-wise Input  Native Input Channel-wise Input Native Input Channel-wise Input  Native Input  Channel-wise Input
Random Guess — 33.33/3.70 — 33.33/3.70 — 33.33/3.70 — 33.33/3.70 —
Human — 70.00 — 80.00 — 77.00 — 73.72 —
SALMONN 13B 26.15/3.18 26.62/3.1% 28.61 29.50/5.31 39.94/0.94 38.36/0.94 29.62/2.99 29.75/3
Audio Flamingo 3 8.4B 37.22/1.77 42.87/2.12 38.35 46.31/10.62 44.03/4.72 46.23/0.94 38.91/2 44.35
Audio Flamingo 3 think 8.4B 35.45/7.42 42.87/13.78 37.46/2 46.02/23.01 38.05/18.87 37.11/19.81 3645/ 1 42.36/17.13
Qwen2-Audio-Instruct 8.4B 21.32/8.48 6.36/1 24.78/3.5 12.09/4.42 15.09/0.94 11.64/2.83 20.78/5.78 8.76/2.59
DeSTA2.5-Audio 8.8B 23.67/2.83 20.38/4.59 34.81/9.73 41.30/19.47 37.74/10.38 32.08/21.70 29.15/5.98 27.56/11.55
BAT 7B 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Phi4-MM 5.5B  33.10/0.35 32.63/0.35 27.14/0.88 29.79/0.88 34.28/0.94 33.02/0.00 32.01/0.59 32.07/0.40
Kimi-Audio 7B 27.56/3.53 16.49/3.53 38.94/15.04 22.42/8.85 44.03/7.55 40.25/8.49 33.60/6.9 22.84/5
MiDashengLM 7B 43.11/15.19 37.22/17.67 45.43/23.89 42.77/16.81 46.23/30.19 45.60/21.70 44.29/20.32 40.24/18.33
Step-Audio-2-mini 7B 33.33/0.00 33.33/0.00 31.27/0.00 37.46/0.00 37.74/6.38 35.22/2.83 33.80/1.34 34.66/0.60
Gemma-3n-E4B-it 7.5B 23.32/1.41 28.27/6.01 41.89/15.04 36.58/7.96 33.96/5.66 40.57/8.49 29.75/5.37 32.74/6.97
Ming-Lite-Omni-1.5 189B  20.14/6.36 34.63/6.01 35.10/9.73 33.04/9.73 38.36/18.8 39.94/20.75 27.35/9.76 35.39/9.96
Qwen-2.5-Omni 7B 39.46/7.07 36.98/15.19 41.30/18 35.10/15.93 27.04/17.92 34.59/8.49 37.25/11.95 36.05/13.94
Xiaomi-MiMo-Audio 7B 36.16/0.71 41.58/5.65 41.30/5.31 38.05/4.42 45.28/9 44.34/9.43 39.24/3.58 41.37/6.1
Xiaomi-MiMo-Audio-think 7B 34.28/7.42 25.44/2.83 44.54/14.16 37.76/7.96 36.79/7 27.99/3.77 37.12/8.96 28.75/4.18
MiniCPM-0O-v2.6 8B 29.92/3.18 27.92/2.83 43.36/11.50 39.53/12.39 38.36/26.42 35.53/17.92 34.73/9.96 32.14/8.17
GPT-40 Audio — 41.81 42.76 43.07 54.87 42.45 41.70 45.42
Gemini 2.5 Flash — 24.62/4.95 40.75/7.42 43.07/15.93 43.07/17.70 40.57/11.32 28.35/6.9 41.23/10.56
Gemini 2.5 Pro — 40.87/10.95 34.98/11.66 48.97/25.66 49.26/20.35 47.17/7.55 43.62/14.94 40.77/12.75

22



Under review as a conference paper at ICLR 2026

[Brushing of teeth vigorously and then turning on the sink water.]

| teeth brushing :: spit foam :
1
11

Fturn on the tap spit

AR

[seg_1]

Q: clipl: [seg 2] clip2: [seg 3] clip3: [seg 1]
Answer: <E>:clip3 — clip 1 — clip 2
Gemini 2.5 Pro ®

The most natural chronological order for these sounds is <A>.

Here's a breakdown of the events:

Clip 1: The sound of solid objects, most likely ice cubes, being dropped into a container
like a blender pitcher.

Clip 2: The sound of a liquid being poured, which would typically follow adding the solid
ingredients.

Clip 3: The sound of a blender running, which is the final step to mix the ice and the liquid
together.

Therefore, the most logical sequence is dropping in the ice (clip 1), pouring in the liquid (clip
2), and then blending (clip 3).

Perception Error Reasoning Error The core error is a fundamental
scene misidentification: the audio depicts a teeth-brushing routine, not
making a blended drink. All subsequent step-by-step analysis is therefore
invalid.

@ GPT-40 Audio ®

Let’s break down the sounds:

Clip 1 sounds like spitting or rinsing into a sink.

Clip 2 sounds like water from a faucet, which typically happens before or after brushing.
Clip 3 sounds like someone brushing their teeth.

In a natural choreography of events, you might first turn on the water to wet the
toothbrush or rinse your mouth, then proceed to brushing your teeth, and finally, rinse
or spit after brushing.

That would make the most natural order:

Clip 2 (water on) -> Clip 3 (brushing) -> Clip 1 (rinsing/spitting).

So the answer is D: clip 2 ->clip 3 -> clip 1.

Error analysis

Reasoning Error Perception Error The failure to isolate the spitting
sound from the water noise led to an incorrect event order.

Se; Qwen-2.5-Omni

To determine the most natural chronological order of these sounds, let's analyze each clip:

1. Clip 1: A door is being opened and closed. This typically happens at the beginning of
a sequence of activities.

2. Clip 2: A toilet is being flushed. This usually follows the use of the bathroom.

3. Clip 3: Someone is brushing their teeth. This is a common activity that often happens
after using the bathroom.

Given this sequence, the most natural chronological order would be:

Open the door (Clip 1)- Use the bathroom (Clip 2)- Brush teeth (Clip 3)

Therefore, the correct answer is: <A>: clip 1 -> clip 2 -> clip 3

Error analysis

Perception Error Knowledge Gap Qwen-2.5-Omni’s perception is
. confined to individual clips, which prevents it from inferring sound events
Error analysis within the broader scene context. Consequently, seg_1 and seg 2 remain
unassociated with seg_3, causing the model to engage in flawed or spurious
reasoning.

Figure 12: An error case from the temporal reasoning task.
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[A man fastens his seatbelt, then starts up the car.]

: :get the keys  [Istart the engine:
T —

Q: clipl: [seg 3] clip2: [seg 1] clip3: [seg 2]
Answer: <D>: clip 2—clip 3—clip 1

* Gemini 2.5 Pro

The most natural chronological order for these sounds is <F>. Here's a breakdown of@:
events:

1. Clip 3: This is the sound of a car door closing. This is one of the first actions taken
after getting into a car.

2. Clip 2: This is the sound of a person settling into the car seat. You can hear clothes
rustling and the seat creaking as they get comfortable. This typically happens after the
door is closed.

3. Clip 1: This is the sound of keys being put into the ignition, followed by the car engine
starting. This is the final step in the sequence before driving away.

Therefore, the most logical real-world sequence is closing the door (Clip 3), settling into
the seat (Clip 2), and then starting the car (Clip 1).

Perception Error The first half of seg 2 is the sound of pulling the

Error analysis seatbelt, and the second half is the sound of inserting the buckle.

@ GPT-40 Audio ®

v

Let me break down the sounds.

Clip 2 sounds like a zipper, maybe someone zipping up a bag or coat.

Clip 3 is the sound of a car engine starting, along with some mechanical sounds.

Clip 1 sounds like a door closing.

In a natural sequence, you would expect someone to zip up their bag or jacket, then close a
door after stepping out or in, and then finally start the car.

So the most natural chronological order would be: clip 2 (zipping) -> clip 1 (door closing)
-> clip 3 (car starting).

That aligns with option E.

Perception Error Reasoning-Answer Misalignment <E> should be

Error analysis ;37 cjin1 =, clip2

Qwen-2.5-Omni

To determine the most natural chronological order of the sounds, let's analyze each clip@
1. Clip 1: This clip contains the sound of a car engine starting. This is typically the first
action in a sequence of events when someone is about to drive.

2. Clip 2: This clip contains the sound of a seatbelt being fastened. This action usually
happens after the car engine has started, as the driver or passenger needs to secure
themselves before driving.

3. Clip 3: This clip contains the sound of a car door opening. This action usually
happens before the car engine starts, as the driver or passenger needs to enter the car
before starting the engine.

Given this analysis, the most natural chronological order is:

Clip 3: Car door opening - Clip 1: Car engine starting- Clip 2: Seatbelt being fastened
Therefore, the correct answer is:<E>: clip 3 ->clip 1 -> clip 2

Error analysis Perception Error Seg 3 is the sound of inserting the seatbelt buckle.

Figure 13: An error case from the temporal reasoning task.
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* Gemini 2.5 Pro

[Dial, connect,call]

1
jdial the number

: : ringing tone 1 : ringing tone say hello :
L T i | N
: -1 : = ol 45 :-Ir - - :
| |
I seg_1 :: [seg_2] i [seg_3] !

—— o —— - -
Q: clipl: [seg 2] clip2: [seg 3] clip3: [seg 1]
Answer: <E>: clip 3—clip 1—clip 2

v
The most natural chronological order for these sounds is: G
1. Clip 3: The sound of a phone number being dialed on a touch-tone keypad. This is the
first action taken to initiate a call.
2. Clip 1: The sound of a phone ringing (the ringback tone). This is what the caller hears
after dialing and while waiting for the recipient to pick up.
3. Clip 2: The sound of someone answering the phone with "Hello?". This is the final step
in the sequence, where the call is connected.
Therefore, the correct order is clip 3 -> clip 1 -> clip 2. The correct option is <E>.

Error analysis correct

@ GPT-40 Audio

The most natural chronological order for these sounds would typically be: ®
<A>:clipl->clip2->clip3

This is because clip 1 sounds like a phone ringing, clip 2 has someone answering the phone
with "hello," and clip 3 is a busy signal, which can occur after the call is ended or fails to
connect.

Perception Error Seg_3 is the sound of pressing numbers, not a busy

Error analysis o,

Qwen-2.5-Omni

The most natural chronological order in which these sounds would typically occur in the
real world is:

<A>:clipl->clip2->clip3

Explanation:

1. The first sound (clip 1) is a telephone ringing, indicating that someone is calling.

2. The second sound (clip 2) is a person answering the phone, saying "hello."

3. The third sound (clip 3) is a dial tone, which typically occurs after the call is
connected and the call is being made.

Reasoning Error Seg_3's explanation is problematic: the dial tone

Error analysis cyrs before the call is connected, not after.

Figure 14: An error case from the temporal reasoning task.
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[An ambulance approached and then moved away.]

N S S S S S

[s seg 11 | seg 3]

Q: clipl: [seg 3] clip2: [seg 1] clip3: [seg 2]
Answer: <D>: clip 2—clip 3—clip 1

Gemini 2.5 Pro &
The most natural chronological order for these sound events is <D>: clip 2 -> clip 3 -> clip
1

Here is a breakdown of the events as they would likely occur:

1. Clip 2: This clip captures the sound of an emergency siren that is clearly approaching,
followed by the abrupt, jarring sound of a collision or a car horn blaring, signifying a
crash. This is the inciting incident.

2. Clip 3: This clip features a loud, steady siren. This represents the immediate aftermath
of the crash, with the emergency vehicle now at the scene, its siren still active.

3. Clip 1: This clip features the sound of a siren fading into the distance (the Doppler
effect is noticeable as the pitch drops). The sound of the damaged car's horn continues to
blare but also seems to be part of a more distant, ambient soundscape. This suggests time
has passed, and the emergency vehicle is now leaving the scene.

Error analysis correct
GPT-40 Audio

All three clips sound like sirens approaching, but there's a noticeable difference in pitch
and intensity that suggests a changing distance. It’s common for sirens to start from far
away and then approach closer, raising the volume and changing the pitch. From what I
heard:

One clip likely represents a more distant or quieter siren.

Another one sounds like it’s getting closer.

The final one should be the closest and the loudest.

Putting that together in a natural order, the most logical sequence of events in real life
would be the siren starting far away and gradually approaching closer.Hence, the best
chronological order would be where the siren is initially distant, moves closer, and finally
is the closest. Looking at the pitch and dynamics of the sirens: Clip 2 sounds furthest
away, clip 1 seems closer than clip 2 but not the closest, and clip 3 seems the closest.

So, the most natural chronological order would be clip 2 -> clip 1 -> clip 3.That
corresponds to option C.

Error analysis Perception Error Seg_3 decreases in volume.

g:; Qwen-2.5-Omni g‘s)

To determine the most natural chronological order of the sounds in the audio clips, 1
analyze each clip: o o o L .
Clip 1: An emergency vehicle siren is heard, indicating a situation requiring immediate
attention.

Clip 2: Another emergency vehicle siren is heard, suggesting a second emergency
vehicle is aﬁproachmg or responding. o ) o
Clip 3: A third emergency vehicle siren is heard, indicating a third emergency vehicle is
also responding. ) )

Given this sequence, the most natural chronological order would be: First, the first
emergency vehicle arrives (Clip 1). Then, the second emergency vehicle arrives (Clip 2).
Finally, the third emergency vehicle arrives (Clip 3). Therefore, the correct answer is:
<A>:clipl->clip2->clip3

. Knowledge Gap The descriptions disregard fundamental audio
Error analysis characteristics, making no attempt to leverage pitch or volume variations
to infer movement, thereby rendering the sequence meaningless.

Figure 15: An error case from the temporal reasoning task.
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[A person opens a jar, quickly gulps the water and then closes the jar.]

e EEEE—_I T mmmmm—_——_——_———————

I unscrew the cap drink I | put the cap on screw on the cap:
|

\

I
I
1
1
I
I
[seg 1] :

Q: clipl: [seg 1] clip2: [seg 3] clip3: [seg 2]
Answer: <B>: clip 1—clip 3—clip 2

Gemini 2.5 Pro ®
The most natural chronological order for these sounds is <F>: clip 1 -> clip 2 -> clip 3.
Here is a breakdown of the events in that order:

1. Clip 1: This clip features the sound of a container, possibly with a powder or solid
inside, being shaken. This is followed by the sound of the container being opened (like a
cap being twisted off). This is a common preparatory step, like shaking a bottle of drink
mix before opening it.

2. Clip 2: This clip begins with the distinct sound of a liquid being poured from a
bottle. This would logically follow opening the container in clip 3, as one would pour a
liquid (like water) into the mix. The clip also contains a spraying sound, but the pouring is
the key transitional sound from clip 3.

3. Clip 3: This clip is the sound of someone drinking and swallowing the liquid. This is
the final action of consumption after the drink has been prepared.

Error analysis Perception Error Seg_3 is the sound of closing the lid, not pouring.

GPT-40 Audio
G ®

Let's break down the sounds logically.

Clip 1 sounds like ice cubes being placed into a glass.

Clip 2 sounds like liquid being poured into that glass.

Clip 3 sounds like someone sipping or drinking from the glass.
In a natural sequence of events, you would first put ice in the glass, then pour the liquid,
and finally drink from it.

Therefore, the most natural chronological order is: clip 1 (ice first), clip 2 (liquid poured
next), and clip 3 (drinking the drink last).

That corresponds to option A: clip 1 -> clip 2 -> clip 3.

Error analysis Perception Error Descriptions of both seg_1 and seg_3 are incorrect.

va; Qwen-2.5-Omni

To determine the most natural chronological order of the sounds, let's analyze each clip:

1. Clip 1: Sounds like someone is stirring or mixing something in a container, possibly a
glass or a cup.

2. Clip 2: Similar to Clip 1, it also sounds like stirring or mixing, but the sound is slightly
different, possibly indicating a different type of container or a different substance.

3. Clip 3: Sounds like someone is drinking from a glass or a cup.

Given these observations, the most natural sequence would be:

1. Stirring or mixing (Clip 1)

2. Stirring or mixing (Clip 2)

3. Drinking (Clip 3)

Therefore, the most natural chronological order is: <A>: clip 1 -> clip 2 -> clip 3

Reasoning Error Simply placing the two mixing segments together lacks

Error analysis , .(onal explanation.

Figure 16: An error case from the temporal reasoning task.
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[Water is poured into a glass.]
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Q: clipl: [seg 3] clip2: [seg 2] clip3: [seg 1]
Answer: <E>: clip 3—clip 2—clip 1

Gemini 2.5 Pro ®
Based on the sounds in the audio clips, the most natural chronological order is:
1. Clip 2: This is the sound of a carbonated beverage being poured vigorously into a glass,
characterized by the "glugging" sound as air replaces the liquid in the bottle. This
represents the main part of the pour.
2. Clip 1: This sounds like the continuation or finishing of the pour, perhaps "topping off"
the glass after the initial foam has settled. The sound is less vigorous than in clip 2.
3. Clip 3: This is the distinct sound of someone taking a large gulp or swallowing the
drink that has just been poured.
Therefore, the logical sequence of events is pouring the drink, finishing the pour, and then
drinking it.The correct option is <C>.

Error analysis Perception Error Seg_1 is not the sound of gulping, but the crisp sound
of water being poured into a glass.

GPT-40 Audio

"The most natural chronological order in which these sounds would typically occur is:
<B>: clip 1 (blender sound) -> clip 3 (pouring liquid) -> clip 2 (sipping)

Perception Error All segments are sounds of pouring water; the

Error analysis perception of both seg 3 and seg_2 is entirely incorrect.

i:; Qwen-2.5-Omni 62
To determine the most natural chronological order of these sound events, let's analyze eac
clip:

Clip 1: Liquid being poured into a container.

Clip 2: Liquid being poured into a container.

Clip 3: Liquid being poured into a container.

Given that all three clips involve the same action (pouring liquid into a container), the
most natural chronological order would be based on the sequence of events typically
observed in a real-world scenario.

If we assume that the containers are being filled in a sequential manner, the most logical
order would be:

1. First container is filled.

2. Second container is filled.

3. Third container is filled.

Therefore, the most natural chronological order is: <A>: clip 1 -> clip 2 -> clip 3

. Perception Error Reasoning Error It cannot perceive differences
Error analysis between segments, and can only output coarse-grained captions,
leading to an inability to reason correctly.

Figure 17: An error case from the temporal reasoning task.
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0: What is the movement trajectory of the racing car?

Options: <A> From left to right <B> From right to left <C> Remains unchanged
Answer: <B>: From right to left

native input

* Gemini 2.5 Pro

Based on the audio, the sound of the race
car starts in the left channel, moves
across the stereo field, and then fades
out in the right channel. This indicates
the car is moving from left to right past
the recording point.

Therefore, the correct answer is <A>:
From left to right.

Error analysis

native: Perception Error the channels
interfere with each other, causing the
model’s basic perception to fail
channel-wise: Perception Error
Knowledge Gap It indicates that the
model lacks knowledge for processing
spatial audio tasks, relying only on
volume to perceive spatial audio, which
leads to incorrect answers.

@ GPT-40 Audio

The racing trajectory of a race car
typically involves taking the optimal
racing line through each corner to
maintain speed and minimize lap time. It
often involves starting wide on the
approach, cutting close to the apex of the
turn, and then moving wide again on the
exit, to achieve the smoothest and fastest
path. So, the trajectory changes
dynamically depending on the turns
and straights of the track.

S:; Qwen-2.5-Omni

The audio does not provide information
about the direction of the race car's

movement, so it is impossible to
determine the racing trajectory.
Therefore, the correct answer is C:

Remains unchanged.

Error analysis

Perception Error Generation Collapse
Hallucination

channel-wise

The correct answer is <A>: From lef@)
right.Here's a breakdown of why:

1. Audio 1 (Left Ear): The sound of the
race car starts, becomes very loud, and
then fades away.

2. Audio 2 (Right Ear): The sound is
initially quieter than in the left ear. It
becomes loud as the car passes the center
point and then remains louder than the
left ear as the car moves away.

By comparing the two channels, we can
hear that the sound is first prominent in the
left ear (Audio 1) and then becomes
prominent in the right ear (Audio 2). This
change in volume and timing between the
ears creates the auditory illusion of the
car traveling from the listener's left t
their right. -

e
Based on the binalg

.+, ITD, ILD cues in the audio

L] recording, the correct
0 == ® answer is B. From
Knowledge right to left.

Based on the audio, the sound of the race
car moves from the left channel to the right
channel, which means the car is moving
from the left to the right side. The correct
option is <A>: From left to right.

Error analysis

Hallucination Knowledge Gap
Perception Error

It shown that the model lacks knowledge
about spatial audio tasks, making it unable
to carry out the correct reasoning process,
which in turn leads to hallucinated outputs.

The racing trajectory of a race car would@e
<A>: From left to right.

It indicates that during the binaural audio processing, the channels interfere with each
other, causing the model’s basic perception to fail and resulting in hallucinated outputs.

Figure 18: An error case from the spatial reasoning task.

29



	Introduction
	Related Work
	STAR-Bench
	Foundational Acoustic Perception
	Holistic Spatio-Temporal Reasoning
	Temporal Reasoning Tasks
	Spatial Reasoning Tasks

	Data Curation Pipeline

	Evaluation
	Main Result Analysis
	Discussion: Why Do Existing Models Struggle on STAR-Bench?

	Conclusion
	Related Work
	Audio Language Models
	Audio Benchmarks

	Details of Data Annotation
	Prompts for audio captioning
	Detail information for foundational acoustic perception
	Binaural Audio Synthesis

	Details of the Curation Process for Reasoning Tasks
	Prompt Used for AI-Assisted Filtering of Temporal Task Data
	Details of Human Annotation and Quality Control


	Robust Evaluation
	Breakdown Results
	Further Analysis and Discussion
	High Output Instability and Concentrated Predictions
	Ablation Study on Spatial Reasoning.

	Case Study

