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Abstract—Reinforcement learning (RL) controllers often rely
on multilayer perceptrons (MLPs), whose sharp action responses
can behave unpredictably when safety intervention is required.
Kolmogorov–Arnold Networks (KANs), built from smooth spline
operators, offer a more regular alternative. We compare MLP
and KAN policies under two RL algorithms and two control
tasks of differing difficulty, using identical training setups and a
light supervisory mechanism that overrides actions near unsafe
conditions. In the easier task, both architectures achieve compa-
rable performance. In the harder, safety-critical setting, the MLP
controller becomes unstable under supervision, while the KAN
policy maintains consistent learning and achieves substantially
lower unsafe-state rates. Our goal is not to claim superiority of
either model, but to characterize their stability, safety profiles,
and design trade-offs in the context of embedded AI controllers.
Early results suggest that mid-sized KANs produce smoother
activation patterns and safer trajectories while retaining sample
efficiency comparable to equally parameterized MLPs.

I. INTRODUCTION

Deep Reinforcement Learning (RL) policies [1] are increas-
ingly deployed in industrial control [2], yet the dominant
multilayer perceptron (MLP) architectures provide little induc-
tive bias for smooth dynamics, exhibit numerical brittleness,
and offer limited interpretability for safety-critical settings.
Kolmogorov–Arnold Networks (KANs) replace affine trans-
formations with learnable spline operators and have recently
demonstrated enhanced functional stability and symbolic de-
composability [3], [4], [5].

Neural-network controllers have long been studied as non-
linear feedback approximators [6], and RL has become a stan-
dard tool for synthesizing such controllers across continuous-
control tasks [1]. However, safety during training and deploy-
ment remains a key weakness of standard RL, motivating
the development of shielding mechanisms that override un-
safe actions using temporal-logic or heuristic constraints [7],
[8], [9], [10]. Shielding preserves modularity but implicitly
assumes policies whose outputs behave smoothly and pre-
dictably—properties not naturally satisfied by MLPs.

This motivates examining whether KANs, with their
smoother and more interpretable function classes, offer prac-
tical benefits for safety-aware control. Although KAN-based
RL [11], [12], [13], [14] and KAN-based safe control [15],
[16] have emerged independently, no prior work provides
a systematic comparison of MLP and KAN controllers on
accuracy–safety–efficiency trade-offs under an explicit shield-
ing module.

Goal. We investigate whether KANs offer advantages over
equally sized MLPs as controllers in safety-critical RL, focus-
ing on (i) unsafe-state frequency, (ii) shield intervention rate,
(iii) return stability, and (iv) embedded efficiency.

Experimental design. We compare matched-capacity MLP
and KAN controllers under REINFORCE and PPO [1],
[2], with identical actor–critic heads, identical training
pipelines, and identical handcrafted safety shields. The study
spans an easy benchmark (CartPole) and a harder one
(LunarLander-v3), the latter requiring precise thrust mod-
ulation, impact damping, and stable approach dynamics.

Contributions.

1) A matched, fair comparison of KAN vs. MLP RL con-
trollers under identical learning and safety conditions.

2) A mathematically defined shield for Lunar lander.
3) Evidence that KANs achieve smoother and safer control

on hard tasks while retaining embedded efficiency.

II. METHODOLOGY

Tasks. We evaluate on CartPole (state x = [xp, ẋ, θ, θ̇]; con-
tinuous action u; safety |θ| ≤ θmax) and LunarLander-v3 (state
s = (x, y, ẋ, ẏ, θ, θ̇, l, r); 4 actions). All runs use identical
settings, seeds, and matched feature-extractor capacity.

Architectures. The MLP uses layers 8→24→24→32. The
KAN replaces these with two spline layers: KANLayer(8, 64)
and KANLayer(64, 64) with grid=5, order k = 3. Actor and
critic heads are identical: π(a|s) = Waz, V (s) = Wvz,
z∈R64. Total parameters and feature-dimension are matched
(9472 parameters each, including PPO heads).

Shielding. For the harder task, we apply a lightweight
supervisory override. Let a denote the action proposed by the
policy, a′ the executed action, and s = (x, y, ẋ, ẏ, θ, θ̇) the
system state. When s enters an unsafe region, defined as

U = {s : |θ| > 0.3 ∨ |ẏ| > 0.8 ∨ (y < 0.05∧(|θ| > 0.15∨|ẋ| > 0.5))}.

the supervisor replaces the action with a stabilizing thrust
(a′ = 2) with probability p(s); otherwise a′ = a. The
probability: p(s) = α dist(s,U)−1, increases smoothly as the
state approaches the unsafe boundary, allowing intervention
without freezing exploration.

Metrics. We report (i) mean return, (ii) return std., (iii)
unsafe-state rate, (iv) shield-intervention rate, and (v) latency.



(a) CartPole (b) LunarLander-v3

Fig. 1: Training MLP vs. KAN under identical PPO pipelines.
x-axis: normalized training progress, y-axis: mean rewards.

III. RESULTS

Learning behaviour. Fig. 1 shows PPO learning curves.
CartPole saturates quickly for all models, while LunarLander
reveals clear architectural differences.

CartPole. In the easier task, REINFORCE exposes clear
weaknesses of both architectures. The MLP achieves moderate
returns (≈ 375) but does not improve with the shield, while
the KAN attains higher peak returns (≈ 394) but exhibits
large variance and becomes less stable when supervised. Under
PPO, however, both models reliably reach the task limit
(≈ 500) with zero unsafe states. Overall, for the simple task,
algorithmic effects dominate, and architectural differences
become negligible once a stable RL algorithm is used.

LunarLander (hard). Here architecture matters:
leftmargin=*
• MLP (no shield): mean 212.9, unsafe 0.157.
• MLP (shield): collapses (mean 5.0, huge variance, un-

safe 0.120, interventions 0.119).
• KAN (no shield): mean 272.1, unsafe 0.045.
• KAN (shield): unsafe drops to 0.0038 (12× reduction),

interventions only 0.030, with moderate return change.
Safety & stability. The shield destabilizes MLP but sta-

bilizes KAN, indicating that KAN policies form smoother
decision boundaries more compatible with a supervisory over-
ride. In contrast, MLPs respond sharply to small state changes,
triggering oscillatory override patterns.

Efficiency. Both models have identical parameter count
(9472). Latency is nearly identical: MLP 5.86ms vs. KAN
4.63ms. Thus, KAN safety improvements incur no embedded-
system overhead.

IV. CONCLUSION

KANs provide smoother control, lower unsafe-state frequen-
cies, and better compatibility with safety shields—especially
in difficult tasks—while retaining identical size and latency
to MLPs. These results suggest KANs are strong candidates
for resource-constrained safe RL. Future work includes shield
synthesis tuned to KAN smoothness and automated KAN
architecture design.
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