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Abstract—Deep Neural Networks (DNNs) have garnered con-
siderable attention in the field of sparse signal recovery due
to their powerful learning capabilities. However, they face chal-
lenges such as a lack of interpretability and a strong dependence
on large training datasets. To address these issues, algorithm
unrolling has emerged as a promising approach that systemati-
cally transforms iterative algorithms into neural network archi-
tectures. Recently, the unrolling of orthogonal matching pursuit
(OMP), termed learned OMP (L-OMP), has demonstrated im-
proved performance over existing unrolled methods. Nonetheless,
L-OMP exhibits limitations in high-noise scenarios due to its
slower dictionary learning process. To overcome this limitation,
we propose the unrolling of compressive sampling matching
pursuit (CoSaMP), leveraging its batch-wise support selection
and noise-pruning capabilities. This method, termed learned
CoSaMP (L-CoSaMP), effectively addresses noise-dominated
components and accelerates dictionary learning. Experimental
results indicate that L-CoSaMP consistently outperforms state-
of-the-art unrolled networks, such as the learned iterative soft
thresholding algorithm (LISTA) and L-OMP, particularly in
high-noise environments. These findings highlight the robustness
and efficiency of L-CoSaMP in signal denoising tasks.

Index Terms—Sparse signal recovery, OMP, CoSaMP, Algo-
rithm unrolling, Deep neural networks.

I. INTRODUCTION

Linear inverse problems (LIPs) are fundamental aspects of
various science and engineering applications. These problems
involve the recovery of a target vector from an observation
vector using a linear operator. Mathematically, the problem
can be expressed as follows: Given a measurement vector y €
R™>1, which can be modeled as the result of applying a linear
operator A € R™*" (m < n) to an unknown target vector
x € R™*! such that

y =Ax+e, (1)
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where e is an error term due to noise such that |le]s < e.
Usually, an LIP is solved by applying certain constraints to the
target vector. A commonly used constraint involves ensuring
sparsity in the target vector, which transforms it into a sparse
signal recovery problem [1]-[3]. In literature, it has been
demonstrated that sparse signal recovery is useful for solving
various problems such as denoising, deblurring, deraining,
inpainting, demosaicing, image fusion, super-resolution, tomo-
graphic reconstruction, and MRI imaging [4]-[12]. In general,
two broad approaches have been adopted to address sparse
signal recovery problems: (A) model-based and (B) data-
driven methods.

The model-based method leverages mathematical frame-
works to characterize the relationship between observations
and target information. These techniques are known for their
simplicity, computational efficiency, and robustness to noise,
but their effectiveness relies on accurate knowledge of the
underlying model [13], [14]. Examples of this method in-
clude orthogonal matching pursuit (OMP) [15], compressed
sampling matching pursuit (CoSaMP) [16], the iterative soft
thresholding algorithm (ISTA) [17], and others.

The data-driven method employs machine learning tech-
niques to learn a mapping between the observed and the
target data. This approach proves beneficial when the un-
derlying model of the system is either unknown or difficult
to model explicitly. In this approach, a training dataset is
first collected, which consists of pairs of observed data and
corresponding target data. Subsequently, a machine learning
model is trained on this dataset using supervised techniques.
Once the model is trained, it can then predict the target
signal for newly and unseen observed data. These methods
have achieved state-of-the-art performance in various fields,
including signal processing, medical imaging, and computer
vision [18]-[24]. However, despite their advantages, they have
several limitations, including the need for a large amount of
training data, computational cost, and the potential lack of an



interpretable solution [13], [14], [25].

To address these issues, a new approach called model-
aware data-driven/ algorithm unrolling has been introduced in
literature [25], [26]. This approach uses both the mathematical
formulation of the model and machine learning abilities.
This method involves designing a neural network architecture
through an iterative algorithm, where each step in the iteration
corresponds to a single layer in the neural network. Ultimately,
the unrolling algorithm consolidates all these layers to form
a deep neural network (DNN). It has been observed that
unrolling methods outperform existing approaches in various
domains [27]-[30]. In particular, the learned ISTA (LISTA)
[26] and learned OMP (L-OMP) [31] are two widely used
unrolled algorithms, demonstrating their utility in applications
such as ultrasound imaging [28], image super-resolution [32],
and other related domains.

Despite the widespread use of LISTA and L-OMP networks,
they exhibit several limitations. Specifically, these networks
are sensitive to noise and often struggle to accurately identify
the correct support during recovery. Additionally, they require
significant time for training and are relatively slow in learning
the underlying dictionary. In contrast, the CoSaMP algorithm
employs a batch-wise support selection strategy combined
with a pruning step, effectively removing noise-dominated
components from the recovery process, making it particularly
suitable for noisy scenarios.

Building on this, we propose the unrolled CoSaMP al-
gorithm, referred to as learned CoSaMP (L-CoSaMP). This
approach leverages the adaptability of batch-wise support se-
lection and the computational efficiency of network unrolling,
aiming to enhance performance and robustness to noise. The
L-CoSaMP network is designed using MSPT and SAtoS units,
which are essential for ensuring the smoothness of the model
during training. Using synthetic data, we demonstrate that L-
CoSaMP exhibits superior denoising performance compared
to LISTA and L-OMP networks. Furthermore, the learned
dictionary in the L-CoSaMP network converges more rapidly
to the true dictionary during training, highlighting its efficiency
and robustness relative to LISTA and L-OMP under high noise
conditions.

The paper is organized as follows: Section II gives a brief
introduction to the CoSaMP algorithm. Section III designs
the L-CoSaMP network architecture. Experimental results are
presented in Section IV. Finally, Section V draws conclusions.

Throughout this paper, the following notations are em-
ployed. The set of real numbers is defined by R. We use bold
lowercase letters for vectors and capital letters for matrices.
Symbol ||x|| denotes the ¢o-norm of vector x. Support of
x denoted as supp(x), which is defined as {i : x; # 0}.
Let T = {i1,i2,...9:} C [n] be the set of indices, then
X7 = [xil,xiz, o .Z‘it}T S RlT‘ and AT = [ail,aiQ, o ait] S
R™*IT1, where a;, is the ijth column of A. The complement
of the set 7 is represented as 7 ¢. The transpose of the matrix
A is denoted as AT. For m > |T]|, the pseudo inverse of
Ar e R™ITlis AL = (AT A7) 1AL,

II. COSAMP ALGORITHM

CoSaMP [16] is an iterative algorithm designed to recover
a sparse signal x from a measurement vector y by solving
(1). Specifically, the algorithm iteratively identifies a subset
of components (supports) corresponding to the atoms that are
most correlated with the residual. Subsequently, it projects the
measurement vector onto the subspace spanned by the columns
of the measurement matrix associated with the selected support
set. Finally, it refines the estimate by pruning the components
dominated by noise in the projected vector, yielding an ap-
proximation of the target sparse signal.

CoSaMP recovers the s-sparse vector x € R™*! from a
given noisy measurement vector y € R™*! by using a linear
operator A € R™*™, A comprehensive summary of CoSaMP
[16] is given in Algorithm 1.

Algorithm 1: CoSaMP Algorithm [16]

Input: Linear operator A, noisy measurement vector
y, sparsity s

Output: s-sparse vector x

Initialization: x(©) = 0, r(® =y

for £k =0,1,2,... until stopping criteria do

ulf) = ATk

0= supp(ué];)); support of 2s largest component of u(¥)

T = QUsupp(x®)

br = Aly

by =0

combine by and by at corresponding indices to get b

S = Indices of the s largest components of b

bs on support

x(F+1) —
0 off support
r(F+1) = y — Ax(k+1)

end
x = x(k+D)

ITII. LEARNED COSAMP (L-CoSAMP)

Now, we discuss our method of converting the CoSaMP into
a neural network architecture. In this approach, each iteration
of CoSaMP is mapped into a layer within the proposed
architecture. The index sets €2 and 7 in Algorithm 1 contain
information that is carried from one iteration to the next.
However, incorporating this set of indices into a network poses
challenges in terms of differentiability. To address this, we
implement the following.

Maximal S Projection-thresholding (MSPT) unit [31]:
This unit is responsible for determining which s atoms are
added to the support in each layer. Given a vector u, let Z =
{i1,12,...,is} denote the set of indices corresponding to the
s-largest entries of |u|. The MSPT function of the vector u is

defined as
P =MSPT(u) = [p1, P2, - .-, Ps] € R™*?,

where p; include zeros except for i;-th entry, which includes
u;, . Specifically, when the input is the correlation vector ATr,



the resulting output is a matrix with s columns. Each column
p; in the matrix contains zeros in all positions except for the
1;-th index, which corresponds to one of the s most correlated
atoms with the residual.

S Atom selecting (SAtoS) unit [31]: This unit is designed
to extract a specific set of s atoms. It operates on the output
of the MSPT function P € R™*#, and the dictionary A. As a
result, this unit produces a collection of s atoms from A that
align with the s indices of non-zero values in the columns of
P. The SAtoS is defined as

SAtoS(A, P) = [AtoS(A,p1), ..., AtoS(A, ps)],

where AtoS(A, p;) = HTliHA' Ipi|, Vi€ [s].

We now describe the neural network architecture for the
CoSaMP algorithm by using MSPT and SAtoS units. As
discussed earlier, each iteration of the CoSaMP algorithm
corresponds to a layer in the proposed neural network archi-
tecture, and the DNN is formed by stacking these layers. The
details are discussed in the following.

A. L-CoSaMP Architecture

In L-CoSaMP, different layers exchange the aggregated sub-
dictionary instead of passing the support 2 and 7. The k-
th layer of the network receives the following inputs: an
observation signal y € R™*!, a global dictionary A € R™*",
the aggregated sub-dictionary Ap—;) € R™*° and the
restored signal y(*~1) € R™*! from the previous layer. The
k-th layer inference of L-CoSaMP is described in algorithm
2. It starts by identifying the 2s most correlated atoms with
the current residual, using both the M2SPT! and 2SAtoS?
units. These selected atoms are then appended to the temporal
sub-dictionary Al_“(lc)’ along with atoms from the previous
layer. Subsequently, f‘f(k) is computed under the pseudo
inverse of Ag,. Next, Argy) and [* are determined by
selecting the atoms corresponding to the s highest magnitudes
in Xp (k) achieved through a combination of MSPT and SAtoS.
Utilizing the updated support atoms of I*, x(*) is evaluated.
Finally, the restored signal y(*) is obtained as the product of
Ap(ry and %(%), Ultimately, all layers are stacked to construct
the L-CoSaMP network. The L-CoSaMP network architecture
is given in Algorithm 3, which uses L-CoSaMP layer inference
in each layer of the network.

In the next section, we illustrate the performance of the
proposed L-CoSaMP via simulations.

IV. EXPERIMENTAL RESULTS

In this section, we compare the denoising performance of
L-CoSaMP with other unrolled networks like L-OMP [31]
and LISTA [26]. We consider the following setup for our
experiments.

Data generation and Training setup: We consider a
random dictionary A of size 100 x 200, whose non-zero entries
follow mean zero and variance of one. Next, we generate a

IM2SPT adds 2s atoms to the support in each layer.
2Similar to M2SPT, 2SAtoS extracts 2s specific atoms from dictionary A.

Algorithm 2: L-CoSaMP k"Layer

Input: y,y*—1 e Rm*1 A e R™*™, Apg—1y €
R™*¢ [ = 3s x 3s Identity matrix

Output: x*) € R**1 y(K) € R™M*1 Ap,) € R™*S

begin

r(k_l) = y — y(k_l)

ul®) = WaATeE D, — aiag=1 (el ool llan I

Agmp = 2SAtoS(A, M2SPT(u®)))

Af‘(k) = [AF(k—l)vAtmp]

o _ gt
XL(k) = Af“(k)y i
Arg) = SAtoS(Af(k)7MSPT(WAf(k)xF(’“))

I* = SAtoS(I, MSPT (X4 );
XM= (1) %p
y®) = Ar %(F)

end

Algorithm 3: L-CoSaMP Network

Input: y € R™*!

Output: y € R™*!

Initialization:

yO =0 =y Apg =0

for k=1,2,... do

(&8, y® A} = L-CoSaMP
k"Layer(y,y =1, A, Ap(,_1))

r(k) = y —

if [[r®)[]y > ||r*=D ||, then

y=ykb

sparse vector x € R209%1 with sparsity s = 5,7, 10 for each
signal. The non-zero positions of these vectors are chosen
uniformly at random, with the values drawn from a Gaussian
distribution with mean 0 and variance 1. Each measurement
vector is then generated by multiplying the dictionary A with
the corresponding sparse vector x. To create input-output
training pairs (y,y™*), additive white Gaussian noise with a
mean of 0 and a standard deviation of 0.04 is added to each
measurement vector y*.

We generate a total of 10000 training signals, each with a
sparsity of s = 5,7, 10. The model is initialized with a random
Gaussian dictionary and trained using the Adam optimizer
[33]. The training process minimizes the squared loss, defined

as: Z

(y,y*)Etraining set

L= ly™ = 13, @)

where y, y*, and y are the noisy, cleaned, and predicted
signals, respectively.

Next, we evaluate the denoising capabilities of various
unrolled networks, including L-OMP, LISTA, and L-CoSaMP.
Specifically, the L-OMP, LISTA, and L-CoSaMP networks are
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Fig. 1: Denoising performance comparison of various unrolled networks under different sparsity levels during testing. In all
scenarios, L-CoSaMP outperforms both L-OMP and LISTA networks.
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Fig. 2: Comparison of dictionary learning performance across networks at varying sparsity levels. In all scenarios, L-CoSaMP

surpasses other unrolled networks.

configured with 15, 10, and 10 layers, respectively. These
networks are trained using the previously described training
data over 400 epochs and a batch size of 50. The learning
rates are set to 0.002, 0.00001, and 0.004 for the L-OMP,
LISTA, and L-CoSaMP networks, respectively.

Test MSE Result: First, we consider noise levels of
{0.04,0.08,0.12,0.16,0.2} for the testing datasets. For each
noise level, we construct 2000 test data points by adding a
noise vector to the original signal y, where the entries of the
noise vector follow a Gaussian distribution with a mean of
zero and a variance corresponding to the noise level. The test
mean squared error (MSE) is computed for the 2000 new
test datasets using the trained networks. Figure 1 presents
the comparison of noise levels and test MSE for the L-OMP,
LISTA, and L-CoSaMP networks for different sparsity levels.
As evident from the figure, the L-CoSaMP network achieves
superior test MSE performance compared to LISTA and L-
OMP. Therefore, we conclude that the L-CoSaMP network is
more effective at denoising signals under higher noise levels.

Dictionary Learning: Figure 2 presents the logarithmic-
scale distance between the learned dictionary and the true
dictionary for the given networks in different sparsity sce-
narios. The dictionary distance is calculated as the average
distance between each atom in A, = A and its closest atom

. . 1 n . T
in Ajeared, using the formula - > " min(1 — [A,peq@l),

where 1 represents a scalar vector whose all the entries are
set to be 1 and a; denotes the i-th column of A. The results
reveal that the dictionary learned by L-CoSaMP converges
more effectively to the true dictionary than those learned
by L-OMP and LISTA for all different sparsity scenarios.
This superior convergence explains why L-CoSaMP exhibits
enhanced denoising performance relative to the other networks
(see Figure 1).

V. CONCLUSIONS

In this paper, we proposed the unrolling of the CoSaMP
algorithm, termed L-CoSaMP, by incorporating MSPT and
SAtoS units. Through experiments on synthetic datasets, we
demonstrated that L-CoSaMP exhibits superior denoising ca-
pabilities compared to LISTA and L-OMP, particularly in high-
noise scenarios. Additionally, we observed that the dictionary
learned by L-CoSaMP converges more rapidly to the true dic-
tionary than those learned by LISTA and L-OMP, underscoring
its effectiveness and robustness in signal denoising tasks.
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